This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Task-oriented Dialogue (TOD) Systems aim to build dialogue systems that assist users in accomplishing specific goals, such as booking a hotel or a restaurant. Traditional TODs rely on domain-specific APIs/DBs or external factual knowledge to generate responses, which cannot accommodate subjective user requests (e.g.,”Is the WIFI reliable?” or “Does the restaurant have a good atmosphere?”). To address this issue, we propose a novel task of subjective-knowledge-based TOD (SK-TOD). We also propose the first corresponding dataset, which contains subjective knowledge-seeking dialogue contexts and manually annotated responses grounded in subjective knowledge sources. When evaluated with existing TOD approaches, we find that this task poses new challenges such as aggregating diverse opinions from multiple knowledge snippets. We hope this task and dataset can promote further research on TOD and subjective content understanding. The code and the dataset are available at https://github.com/alexa/dstc11-track5.
The bulk of work adapting transformer models to open-domain dialogue represents dialogue context as the concatenated set of turns in natural language. However, it is unclear if this is the best approach. In this work, we investigate this question by means of an empirical controlled experiment varying the dialogue context format from text-only formats (all recent utterances, summaries, selected utterances) as well as variants that are more structurally different (triples, AMR). We compare these formats based on fine-tuned model performance on two downstream tasks—knowledge selection and response generation. We find that simply concatenating the utterances works as a strong baseline in most cases, but is outperformed in longer contexts by a hybrid approach of combining a summary of the context with recent utterances. Through empirical analysis, our work highlights the need to examine the format of context representation and offers recommendations on adapting general-purpose language models to dialogue tasks.
Automatic Evaluation (AE) and Response Selection (RS) models assign quality scores to various candidate responses and rank them in conversational setups. Prior response ranking research compares various models’ performance on synthetically generated test sets. In this work, we investigate the performance of model-based reference-free AE and RS models on our constructed response ranking datasets that mirror real-case scenarios of ranking candidates during inference time. Metrics’ unsatisfying performance can be interpreted as their low generalizability over more pragmatic conversational domains such as human-chatbot dialogs. To alleviate this issue we propose a novel RS model called MERCY that simulates human behavior in selecting the best candidate by taking into account distinct candidates concurrently and learns to rank them. In addition, MERCY leverages natural language feedback as another component to help the ranking task by explaining why each candidate response is relevant/irrelevant to the dialog context. These feedbacks are generated by prompting large language models in a few-shot setup. Our experiments show the better performance of MERCY over baselines for the response ranking task in our curated realistic datasets.
Dialogue models are able to generate coherent and fluent responses, but they can still be challenging to control and may produce non-engaging, unsafe results. This unpredictability diminishes user trust and can hinder the use of the models in the real world. To address this, we introduce DialGuide, a novel framework for controlling dialogue model behavior using natural language rules, or guidelines. These guidelines provide information about the context they are applicable to and what should be included in the response, allowing the models to generate responses that are more closely aligned with the developer’s expectations and intent. We evaluate DialGuide on three tasks in open-domain dialogue response generation: guideline selection, response generation, and response entailment verification. Our dataset contains 10,737 positive and 15,467 negative dialogue context-response-guideline triplets across two domains - chit-chat and safety. We provide baseline models for the tasks and benchmark their performance. We also demonstrate that DialGuide is effective in the dialogue safety domain, producing safe and engaging responses that follow developer guidelines.
Conventional Task-oriented Dialogue (TOD) Systems rely on domain-specific APIs/DBs or external factual knowledge to create responses. In DSTC11 track 5, we aims to provide a new challenging task to accommodate subjective user requests (e.g.,”Is the WIFI reliable?” or “Does the restaurant have a good atmosphere?” into TOD. We release a benchmark dataset, which contains subjective knowledge-seeking dialogue contexts and manually annotated responses that are grounded in subjective knowledge sources. The challenge track received a total of 48 entries from 14 participating teams.
Accurate automatic evaluation metrics for open-domain dialogs are in high demand. Existing model-based metrics for system response evaluation are trained on human annotated data, which is cumbersome to collect. In this work, we propose to use information that can be automatically extracted from the next user utterance, such as its sentiment or whether the user explicitly ends the conversation, as a proxy to measure the quality of the previous system response. This allows us to train on a massive set of dialogs with weak supervision, without requiring manual system turn quality annotations. Experiments show that our model is comparable to models trained on human annotated data. Furthermore, our model generalizes across both spoken and written open-domain dialog corpora collected from real and paid users.
Implicit knowledge, such as common sense, is key to fluid human conversations. Current neural response generation (RG) models are trained to generate responses directly, omitting unstated implicit knowledge. In this paper, we present Think-Before-Speaking (TBS), a generative approach to first externalize implicit commonsense knowledge (think) and use this knowledge to generate responses (speak). We argue that externalizing implicit knowledge allows more efficient learning, produces more informative responses, and enables more explainable models. We analyze different choices to collect knowledge-aligned dialogues, represent implicit knowledge, and transition between knowledge and dialogues. Empirical results show TBS models outperform end-to-end and knowledge-augmented RG baselines on most automatic metrics and generate more informative, specific, and commonsense-following responses, as evaluated by human annotators. TBS also generates knowledge that makes sense and is relevant to the dialogue around 85% of the time
Recent progress on neural approaches for language processing has triggered a resurgence of interest on building intelligent open-domain chatbots. However, even the state-of-the-art neural chatbots cannot produce satisfying responses for every turn in a dialog. A practical solution is to generate multiple response candidates for the same context, and then perform response ranking/selection to determine which candidate is the best. Previous work in response selection typically trains response rankers using synthetic data that is formed from existing dialogs by using a ground truth response as the single appropriate response and constructing inappropriate responses via random selection or using adversarial methods. In this work, we curated a dataset where responses from multiple response generators produced for the same dialog context are manually annotated as appropriate (positive) and inappropriate (negative). We argue that such training data better matches the actual use case examples, enabling the models to learn to rank responses effectively. With this new dataset, we conduct a systematic evaluation of state-of-the-art methods for response selection, and demonstrate that both strategies of using multiple positive candidates and using manually verified hard negative candidates can bring in significant performance improvement in comparison to using the adversarial training data, e.g., increase of 3% and 13% in Recall@1 score, respectively.
Humans make appropriate responses not only based on previous dialogue utterances but also on implicit background knowledge such as common sense. Although neural response generation models seem to produce human-like responses, they are mostly end-to-end and not generating intermediate grounds between a dialogue history and responses. This work aims to study if and how we can train an RG model that talks with itself to generate implicit knowledge before making responses. We further investigate can such models identify when to generate implicit background knowledge and when it is not necessary. Experimental results show that compared with models that directly generate responses given a dialogue history, self-talk models produce better-quality responses according to human evaluation on grammaticality, coherence, and engagingness. And models that are trained to identify when to self-talk further improves the response quality. Analysis on generated implicit knowledge shows that models mostly use the knowledge appropriately in the responses.
Smooth and effective communication requires the ability to perform latent or explicit commonsense inference. Prior commonsense reasoning benchmarks (such as SocialIQA and CommonsenseQA) mainly focus on the discriminative task of choosing the right answer from a set of candidates, and do not involve interactive language generation as in dialogue. Moreover, existing dialogue datasets do not explicitly focus on exhibiting commonsense as a facet. In this paper, we present an empirical study of commonsense in dialogue response generation. We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet, a commonsense knowledge graph. Furthermore, building on social contexts/situations in SocialIQA, we collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting. We evaluate response generation models trained using these datasets and find that models trained on both extracted and our collected data produce responses that consistently exhibit more commonsense than baselines. Finally we propose an approach for automatic evaluation of commonsense that relies on features derived from ConceptNet and pre-trained language and dialog models, and show reasonable correlation with human evaluation of responses’ commonsense quality.
Incorporating external knowledge sources effectively in conversations is a longstanding problem in open-domain dialogue research. The existing literature on open-domain knowledge selection is limited and makes certain brittle assumptions on knowledge sources to simplify the overall task, such as the existence of a single relevant knowledge sentence per context. In this work, we evaluate the existing state of open-domain conversation knowledge selection, showing where the existing methodologies regarding data and evaluation are flawed. We then improve on them by proposing a new framework for collecting relevant knowledge, and create an augmented dataset based on the Wizard of Wikipedia (WOW) corpus, which we call WOW++. WOW++ averages 8 relevant knowledge sentences per dialogue context, embracing the inherent ambiguity of open-domain dialogue knowledge selection. We then benchmark various knowledge ranking algorithms on this augmented dataset with both intrinsic evaluation and extrinsic measures of response quality, showing that neural rerankers that use WOW++ can outperform rankers trained on standard datasets.
Open-domain dialog systems aim to generate relevant, informative and engaging responses. In this paper, we propose using a dialog policy to plan the content and style of target, open domain responses in the form of an action plan, which includes knowledge sentences related to the dialog context, targeted dialog acts, topic information, etc. For training, the attributes within the action plan are obtained by automatically annotating the publicly released Topical-Chat dataset. We condition neural response generators on the action plan which is then realized as target utterances at the turn and sentence levels. We also investigate different dialog policy models to predict an action plan given the dialog context. Through automated and human evaluation, we measure the appropriateness of the generated responses and check if the generation models indeed learn to realize the given action plans. We demonstrate that a basic dialog policy that operates at the sentence level generates better responses in comparison to turn level generation as well as baseline models with no action plan. Additionally the basic dialog policy has the added benefit of controllability.
Pretrained language models have excelled at many NLP tasks recently; however, their social intelligence is still unsatisfactory. To enable this, machines need to have a more general understanding of our complicated world and develop the ability to perform commonsense reasoning besides fitting the specific downstream tasks. External commonsense knowledge graphs (KGs), such as ConceptNet, provide rich information about words and their relationships. Thus, towards general commonsense learning, we propose two approaches to implicitly and explicitly infuse such KGs into pretrained language models. We demonstrate our proposed methods perform well on SocialIQA, a social commonsense reasoning task, in both limited and full training data regimes.
Most prior work on task-oriented dialogue systems are restricted to a limited coverage of domain APIs, while users oftentimes have domain related requests that are not covered by the APIs. In this paper, we propose to expand coverage of task-oriented dialogue systems by incorporating external unstructured knowledge sources. We define three sub-tasks: knowledge-seeking turn detection, knowledge selection, and knowledge-grounded response generation, which can be modeled individually or jointly. We introduce an augmented version of MultiWOZ 2.1, which includes new out-of-API-coverage turns and responses grounded on external knowledge sources. We present baselines for each sub-task using both conventional and neural approaches. Our experimental results demonstrate the need for further research in this direction to enable more informative conversational systems.
Encoder-decoder based neural architectures serve as the basis of state-of-the-art approaches in end-to-end open domain dialog systems. Since most of such systems are trained with a maximum likelihood (MLE) objective they suffer from issues such as lack of generalizability and the generic response problem, i.e., a system response that can be an answer to a large number of user utterances, e.g., “Maybe, I don’t know.” Having explicit feedback on the relevance and interestingness of a system response at each turn can be a useful signal for mitigating such issues and improving system quality by selecting responses from different approaches. Towards this goal, we present a system that evaluates chatbot responses at each dialog turn for coherence and engagement. Our system provides explicit turn-level dialog quality feedback, which we show to be highly correlated with human evaluation. To show that incorporating this feedback in the neural response generation models improves dialog quality, we present two different and complementary mechanisms to incorporate explicit feedback into a neural response generation model: reranking and direct modification of the loss function during training. Our studies show that a response generation model that incorporates these combined feedback mechanisms produce more engaging and coherent responses in an open-domain spoken dialog setting, significantly improving the response quality using both automatic and human evaluation.
Current approaches to Natural Language Generation (NLG) for dialog mainly focus on domain-specific, task-oriented applications (e.g. restaurant booking) using limited ontologies (up to 20 slot types), usually without considering the previous conversation context. Furthermore, these approaches require large amounts of data for each domain, and do not benefit from examples that may be available for other domains. This work explores the feasibility of applying statistical NLG to scenarios requiring larger ontologies, such as multi-domain dialog applications or open-domain question answering (QA) based on knowledge graphs. We model NLG through an Encoder-Decoder framework using a large dataset of interactions between real-world users and a conversational agent for open-domain QA. First, we investigate the impact of increasing the number of slot types on the generation quality and experiment with different partitions of the QA data with progressively larger ontologies (up to 369 slot types). Second, we perform multi-task learning experiments between open-domain QA and task-oriented dialog, and benchmark our model on a popular NLG dataset. Moreover, we experiment with using the conversational context as an additional input to improve response generation quality. Our experiments show the feasibility of learning statistical NLG models for open-domain QA with larger ontologies.