Baoquan Zhang


2024

pdf
A Challenge Dataset and Effective Models for Conversational Stance Detection
Fuqiang Niu | Min Yang | Ang Li | Baoquan Zhang | Xiaojiang Peng | Bowen Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Previous stance detection studies typically concentrate on evaluating stances within individual instances, thereby exhibiting limitations in effectively modeling multi-party discussions concerning the same specific topic, as naturally transpire in authentic social media interactions. This constraint arises primarily due to the scarcity of datasets that authentically replicate real social media contexts, hindering the research progress of conversational stance detection. In this paper, we introduce a new multi-turn conversation stance detection dataset (called MT-CSD), which encompasses multiple targets for conversational stance detection. To derive stances from this challenging dataset, we propose a global-local attention network (GLAN) to address both long and short-range dependencies inherent in conversational data. Notably, even state-of-the-art stance detection methods, exemplified by GLAN, exhibit an accuracy of only 50.47%, highlighting the persistent challenges in conversational stance detection. Furthermore, our MT-CSD dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection, where a classifier is adapted from a different yet related target. We believe that MT-CSD will contribute to advancing real-world applications of stance detection research. Our source code, data, and models are available at https://github.com/nfq729/MT-CSD.

2022

pdf
Sentiment Interpretable Logic Tensor Network for Aspect-Term Sentiment Analysis
Bowen Zhang | Xu Huang | Zhichao Huang | Hu Huang | Baoquan Zhang | Xianghua Fu | Liwen Jing
Proceedings of the 29th International Conference on Computational Linguistics

Aspect-term sentiment analysis (ATSA) is an important task that aims to infer the sentiment towards the given aspect-terms. It is often required in the industry that ATSA should be performed with interpretability, computational efficiency and high accuracy. However, such an ATSA method has not yet been developed. This study aims to develop an ATSA method that fulfills all these requirements. To achieve the goal, we propose a novel Sentiment Interpretable Logic Tensor Network (SILTN). SILTN is interpretable because it is a neurosymbolic formalism and a computational model that supports learning and reasoning about data with a differentiable first-order logic language (FOL). To realize SILTN with high inferring accuracy, we propose a novel learning strategy called the two-stage syntax knowledge distillation (TSynKD). Using widely used datasets, we experimentally demonstrate that the proposed TSynKD is effective for improving the accuracy of SILTN, and the SILTN has both high interpretability and computational efficiency.