Artem Spector


2023

pdf
Zero-shot Topical Text Classification with LLMs - an Experimental Study
Shai Gretz | Alon Halfon | Ilya Shnayderman | Orith Toledo-Ronen | Artem Spector | Lena Dankin | Yannis Katsis | Ofir Arviv | Yoav Katz | Noam Slonim | Liat Ein-Dor
Findings of the Association for Computational Linguistics: EMNLP 2023

Topical Text Classification (TTC) is an ancient, yet timely research area in natural language processing, with many practical applications. The recent dramatic advancements in large LMs raise the question of how well these models can perform in this task in a zero-shot scenario. Here, we share a first comprehensive study, comparing the zero-shot performance of a variety of LMs over TTC23, a large benchmark collection of 23 publicly available TTC datasets, covering a wide range of domains and styles. In addition, we leverage this new TTC benchmark to create LMs that are specialized in TTC, by fine-tuning these LMs over a subset of the datasets and evaluating their performance over the remaining, held-out datasets. We show that the TTC-specialized LMs obtain the top performance on our benchmark, by a significant margin. Our code and model are made available for the community. We hope that the results presented in this work will serve as a useful guide for practitioners interested in topical text classification.

2021

pdf
YASO: A Targeted Sentiment Analysis Evaluation Dataset for Open-Domain Reviews
Matan Orbach | Orith Toledo-Ronen | Artem Spector | Ranit Aharonov | Yoav Katz | Noam Slonim
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Current TSA evaluation in a cross-domain setup is restricted to the small set of review domains available in existing datasets. Such an evaluation is limited, and may not reflect true performance on sites like Amazon or Yelp that host diverse reviews from many domains. To address this gap, we present YASO – a new TSA evaluation dataset of open-domain user reviews. YASO contains 2,215 English sentences from dozens of review domains, annotated with target terms and their sentiment. Our analysis verifies the reliability of these annotations, and explores the characteristics of the collected data. Benchmark results using five contemporary TSA systems show there is ample room for improvement on this challenging new dataset. YASO is available at https://github.com/IBM/yaso-tsa.

2020

pdf
Multilingual Argument Mining: Datasets and Analysis
Orith Toledo-Ronen | Matan Orbach | Yonatan Bilu | Artem Spector | Noam Slonim
Findings of the Association for Computational Linguistics: EMNLP 2020

The growing interest in argument mining and computational argumentation brings with it a plethora of Natural Language Understanding (NLU) tasks and corresponding datasets. However, as with many other NLU tasks, the dominant language is English, with resources in other languages being few and far between. In this work, we explore the potential of transfer learning using the multilingual BERT model to address argument mining tasks in non-English languages, based on English datasets and the use of machine translation. We show that such methods are well suited for classifying the stance of arguments and detecting evidence, but less so for assessing the quality of arguments, presumably because quality is harder to preserve under translation. In addition, focusing on the translate-train approach, we show how the choice of languages for translation, and the relations among them, affect the accuracy of the resultant model. Finally, to facilitate evaluation of transfer learning on argument mining tasks, we provide a human-generated dataset with more than 10k arguments in multiple languages, as well as machine translation of the English datasets.

2018

pdf
Learning Concept Abstractness Using Weak Supervision
Ella Rabinovich | Benjamin Sznajder | Artem Spector | Ilya Shnayderman | Ranit Aharonov | David Konopnicki | Noam Slonim
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We introduce a weakly supervised approach for inferring the property of abstractness of words and expressions in the complete absence of labeled data. Exploiting only minimal linguistic clues and the contextual usage of a concept as manifested in textual data, we train sufficiently powerful classifiers, obtaining high correlation with human labels. The results imply the applicability of this approach to additional properties of concepts, additional languages, and resource-scarce scenarios.