An Liu


2024

pdf
PANDA: Preference Adaptation for Enhancing Domain-Specific Abilities of LLMs
An Liu | Zonghan Yang | Zhenhe Zhang | Qingyuan Hu | Peng Li | Ming Yan | Ji Zhang | Fei Huang | Yang Liu
Findings of the Association for Computational Linguistics ACL 2024

While Large language models (LLMs) have demonstrated considerable capabilities across various natural language tasks, they often fall short of the performance achieved by domain-specific state-of-the-art models. One potential approach to enhance domain-specific capabilities of LLMs involves fine-tuning them using corresponding datasets. However, this method can be both resource and time-intensive, and not applicable to closed-source commercial LLMs. In this paper, we propose Preference Adaptation for Enhancing Domain-specific Abilities of LLMs (PANDA), a method designed to augment the domain-specific capabilities of LLMs by leveraging insights from the response preference of expert models without requiring fine-tuning. Our experimental results reveal that PANDA significantly enhances the domain-specific ability of LLMs on text classification and interactive decision tasks. Moreover, LLM with PANDA even outperforms the expert model that being learned on 4 tasks of ScienceWorld. This finding highlights the potential of exploring tuning-free approaches to achieve weak-to-strong generalization.

pdf
MusTQ: A Temporal Knowledge Graph Question Answering Dataset for Multi-Step Temporal Reasoning
Tingyi Zhang | Jiaan Wang | Zhixu Li | Jianfeng Qu | An Liu | Zhigang Chen | Hongping Zhi
Findings of the Association for Computational Linguistics ACL 2024

Question answering over temporal knowledge graphs (TKGQA) is an emerging topic, which has attracted increasing interest since it considers the dynamic knowledge in the world. Several datasets along with model developments are proposed in the TKGQA research field. However, existing studies generally focus on fact-centered reasoning, with limited attention to temporal reasoning. To tackle the intricate and comprehensive nature of temporal reasoning, we propose a new TKGQA dataset, MusTQ, which contains 666K multi-step temporal reasoning questions as well as a TKG. The multi-step temporal reasoning is established based on six basic temporal reasoning types derived from a well-established measure theory. Using MusTQ, we evaluate previous TKGQA methods and find that they typically fall short in multi-step temporal reasoning. Furthermore, we propose a TKGQA model, MusTKGQA, which enhances multi-step reasoning ability with entity-time attention mechanism and optimized temporal knowledge graph representation. Extensive experiments on MusTQ show that our model achieves state-of-the-art multi-step temporal reasoning performance.

pdf
LEGENT: Open Platform for Embodied Agents
Zhili Cheng | Zhitong Wang | Jinyi Hu | Shengding Hu | An Liu | Yuge Tu | Pengkai Li | Lei Shi | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Despite advancements in Large Language Models (LLMs) and Large Multimodal Models (LMMs), their integration into language-grounded, human-like embodied agents remains incomplete, hindering complex real-life task performance in 3D environments. Existing integrations often feature limited open-sourcing, challenging collective progress in this field. We introduce LEGENT, an open, scalable platform for developing embodied agents using LLMs and LMMs. LEGENT offers a dual approach: a rich 3D environment with interactive, communicable, and actionable agents, paired with a user-friendly interface, and a sophisticated data generation pipeline utilizing advanced algorithms to exploit supervision from simulated worlds at scale. In our experiments, an embryonic vision-language-action model trained on LEGENT-generated data surpasses GPT-4V in embodied tasks, showcasing promising generalization capabilities. The demo video is available at the following link https://video.legent.ai.

2021

pdf
Tackling Zero Pronoun Resolution and Non-Zero Coreference Resolution Jointly
Shisong Chen | Binbin Gu | Jianfeng Qu | Zhixu Li | An Liu | Lei Zhao | Zhigang Chen
Proceedings of the 25th Conference on Computational Natural Language Learning

Zero pronoun resolution aims at recognizing dropped pronouns and pointing out their anaphoric mentions, while non-zero coreference resolution targets at clustering mentions referring to the same entity. Existing efforts often deal with the two problems separately regardless of their close essential correlations. In this paper, we investigate the possibility of jointly solving zero pronoun resolution and coreference resolution via a novel end-to-end neural model. Specifically, we design a gap-masked self-attention model that encodes gaps and tokens in the same space, where gaps could capture valuable contextual information according to their surrounding tokens while tokens could maintain original sequential information without disturbance. Additionally, we also propose a two-stage interaction mechanism to make full use of the exclusive relationship between zero pronouns and mentions. Our empirical study conducted on the OntoNotes 5.0 Chinese dataset shows that our model could outperform corresponding state-of-the-art approaches on both tasks.