Alexander Taylor
2024
The PGNSC Benchmark: How Do We Predict Where Information Spreads?
Alexander Taylor
|
Wei Wang
Findings of the Association for Computational Linguistics ACL 2024
Social networks have become ideal vehicles for news dissemination because posted content is easily able to reach users beyond a news outlet’s direct audience. Understanding how information is transmitted among communities of users is a critical step towards understanding the impact social networks have on real-world events. Two significant barriers in this vein of work are identifying user clusters and meaningfully characterizing these communities. Thus, we propose the PGNSC benchmark, which builds information pathways based on the audiences of influential news sources and uses their content to characterize the communities. We present methods of aggregating these news-source-centric communities and for constructing the community feature representations that are used sequentially to construct information pathway prediction pipelines. Lastly, we perform extensive experiments to demonstrate the performance of baseline pipeline constructions and to highlight the possibilities for future work.
2023
DICE: Data-Efficient Clinical Event Extraction with Generative Models
Mingyu Derek Ma
|
Alexander Taylor
|
Wei Wang
|
Nanyun Peng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Event extraction for the clinical domain is an under-explored research area. The lack of training data along with the high volume of domain-specific terminologies with vague entity boundaries makes the task especially challenging. In this paper, we introduce DICE, a robust and data-efficient generative model for clinical event extraction. DICE frames event extraction as a conditional generation problem and introduces a contrastive learning objective to accurately decide the boundaries of biomedical mentions. DICE also trains an auxiliary mention identification task jointly with event extraction tasks to better identify entity mention boundaries, and further introduces special markers to incorporate identified entity mentions as trigger and argument candidates for their respective tasks. To benchmark clinical event extraction, we compose MACCROBAT-EE, the first clinical event extraction dataset with argument annotation, based on an existing clinical information extraction dataset MACCROBAT. Our experiments demonstrate state-of-the-art performances of DICE for clinical and news domain event extraction, especially under low data settings.
Search