Alex Nguyen


2024

pdf
Smaller Language Models are capable of selecting Instruction-Tuning Training Data for Larger Language Models
Dheeraj Mekala | Alex Nguyen | Jingbo Shang
Findings of the Association for Computational Linguistics ACL 2024

Instruction-tuning language models has become a crucial step in aligning them for general use. Typically, this process involves extensive training on large datasets, incurring high training costs. In this paper, we introduce a novel training data selection based on the learning percentage of the samples. We assert that current language models possess the capability to autonomously select high-quality training data, leading to comparable or improved performance compared to training on the entire dataset. Our experiments span different-sized models, revealing that this characteristic holds for models ranging from 1B (small) to 13B (large) in size. Moreover, we demonstrate an interesting finding that the data hardness transfers across model sizes, and a smaller 350M model can effectively curate high-quality training data with hard samples for a larger 13B model, resulting in an equally or superior instruction-tuned model compared to training on the complete dataset. Utilizing open-sourced OPT and Llama-2 models up to 13B in size, two publicly available instruction-tuning training datasets and evaluated by both automatic metrics & humans, our paper introduces a novel approach to training data selection, showcasing a more efficient alternative.

pdf
DOCMASTER: A Unified Platform for Annotation, Training, & Inference in Document Question-Answering
Alex Nguyen | Zilong Wang | Jingbo Shang | Dheeraj Mekala
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)

The application of natural language processing models to PDF documents is pivotal for various business applications yet the challenge of training models for this purpose persists in businesses due to specific hurdles. These include the complexity of working with PDF formats that necessitate parsing text and layout information for curating training data and the lack of privacy-preserving annotation tools. This paper introduces DOCMASTER, a unified platform designed for annotating PDF documents, model training, and inference, tailored to document question-answering. The annotation interface enables users to input questions and highlight text spans within the PDF file as answers, saving layout information and text spans accordingly. Furthermore, DOCMASTER supports both state-of-the-art layout-aware and text models for comprehensive training purposes. Importantly, as annotations, training, and inference occur on-device, it also safeguards privacy. The platform has been instrumental in driving several research prototypes concerning document analysis such as the AI assistant utilized by University of California San Diego’s (UCSD) International Services and Engagement Office (ISEO) for processing a substantial volume of PDF documents.