SubmissionNumber#=%=#67 FinalPaperTitle#=%=#USMBA-NLP at SemEval-2024 Task 2: Safe Biomedical Natural Language Inference for Clinical Trials using Bert ShortPaperTitle#=%=# NumberOfPages#=%=#5 CopyrightSigned#=%=#Anass Fahfouh JobTitle#==# Organization#==# Abstract#==#This paper presents the application of BERT in SemEval 2024 Task 2, Safe Biomedical Natu- ral Language Inference for Clinical Trials. The main objectives of this task were: First, to in- vestigate the consistency of BERT in its rep- resentation of semantic phenomena necessary for complex inference in clinical NLI settings. Second, to investigate the ability of BERT to perform faithful reasoning, i.e., make correct predictions for the correct reasons. The submit- ted model is fine-tuned on the NLI4CT dataset, which is enhanced with a novel contrast set, using binary cross entropy loss. Author{1}{Firstname}#=%=#Anass Author{1}{Lastname}#=%=#Fahfouh Author{1}{Username}#=%=#anass Author{1}{Email}#=%=#anass.fh10@gmail.com Author{1}{Affiliation}#=%=#FSDM Author{2}{Firstname}#=%=#Abdessamad Author{2}{Lastname}#=%=#Benlahbib Author{2}{Email}#=%=#abdessamad.benlahbib@usmba.ac.ma Author{2}{Affiliation}#=%=#LISAC Author{3}{Firstname}#=%=#Jamal Author{3}{Lastname}#=%=#Riffi Author{3}{Email}#=%=#riffi.jamal@gmail.com Author{3}{Affiliation}#=%=#LISAC Author{4}{Firstname}#=%=#Hamid Author{4}{Lastname}#=%=#Tairi Author{4}{Email}#=%=#htairi@yahoo.fr Author{4}{Affiliation}#=%=#LISAC ========== èéáğö