LexSemTm: A Semantic Dataset Based on All-words Unsupervised Sense Distribution Learning

Andrew Bennett, Timothy Baldwin, Jey Han Lau, Diana McCarthy, Francis Bond


Anthology ID:
P16-1143
Volume:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
August
Year:
2016
Address:
Berlin, Germany
Editors:
Katrin Erk, Noah A. Smith
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1513–1524
Language:
URL:
https://aclanthology.org/P16-1143
DOI:
10.18653/v1/P16-1143
Bibkey:
Cite (ACL):
Andrew Bennett, Timothy Baldwin, Jey Han Lau, Diana McCarthy, and Francis Bond. 2016. LexSemTm: A Semantic Dataset Based on All-words Unsupervised Sense Distribution Learning. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1513–1524, Berlin, Germany. Association for Computational Linguistics.
Cite (Informal):
LexSemTm: A Semantic Dataset Based on All-words Unsupervised Sense Distribution Learning (Bennett et al., ACL 2016)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-4/P16-1143.pdf