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Abstract

This paper presents our system built for the
WASSA-2024 Cross-lingual Emotion Detec-
tion Shared Task. The task consists of two
subtasks: first, to assess an emotion label from
six possible classes for a given tweet in one of
five languages, and second, to predict words
triggering the detected emotions in binary and
numerical formats. Our proposed approach
revolves around fine-tuning quantized large
language models, specifically Orca 2, with
low-rank adapters (LoRA) and multilingual
Transformer-based models, such as XLM-R
and mT5. We enhance performance through
machine translation for both subtasks and trig-
ger word switching for the second subtask. The
system achieves excellent performance, rank-
ing 1st in numerical trigger words detection,
3rd in binary trigger words detection, and 7th
in emotion detection.

1 Introduction

Analyzing emotions in text, including emotion de-
tection and other related tasks, is a well-studied
area in natural language processing (NLP). This
field has been extensively explored in various Se-
mEval (Mohammad et al., 2018; Chatterjee et al.,
2019) and WASSA (Klinger et al., 2018) compe-
titions. The goal of WASSA-2024 Shared Task
2 (Maladry et al., 2024) is to predict specific emo-
tions and identify the words that trigger these emo-
tions. Additionally, this study investigates how
emotional information can be transferred across
five languages. While the training data is provided
in English, the evaluation data includes English,
Dutch, Russian, Spanish, and French.

Specifically, the task consists of two subtasks:
1) Cross-lingual emotion detection: Predicting

emotion from six possible classes (Love, Joy, Fear,
Anger, Sadness, Neutral) in five target languages.

2) Classifying words that express emotions: Iden-
tifying words that trigger emotions, with the output

format being either binary (assigning a binary value
to each token in the text) or numeric (assigning a
numeric value to each token in the text).

Figure 1 shows an example from the dataset for
both subtasks. For detailed label descriptions, see
the annotation guidelines (Singh, Pranaydeep and
Maladry, Aaron and Lefever, Els, 2023).

Next move better
than my last move

Subtask 1: label – Joy 
Subtask 2: trigger words – [0, 0, 1, 0, 0, 0, 0] 

→ better

Tweet

Figure 1: Example tweet with labels for both subtasks.

The first subtask can be considered a sentence-
level classification task, while the second can be
treated as a token-level classification task. Both
subtasks can also be viewed as text-generation
tasks (Raffel et al., 2023). Learning the repre-
sentation of a given text is essential for solving
these problems. Neural networks, including con-
volutional neural networks (CNNs) (Kim, 2014)
and recurrent neural networks (RNNs) (Zaremba
et al., 2015), alongside their variations, have been
employed for this purpose. However, while these
models are effective, they primarily rely on static
word embeddings to capture semantic meanings.
Consequently, they may struggle with more com-
plex linguistic features such as anaphora and long-
term dependencies.

Recent NLP research has shifted towards
Transformer-based pre-trained language models
(PLMs), such as BERT (Devlin et al., 2019) and
T5 (Raffel et al., 2023). These models undergo
initial pre-training on extensive datasets to grasp
language representation intricacies. Subsequently,
they can be fine-tuned on labelled data, capitaliz-
ing on the knowledge acquired during pre-training.
For cross-lingual tasks, multilingual pre-trained
models such as mT5 (Xue et al., 2021) and XLM-
RoBERTa (XLM-R) (Conneau et al., 2020) have
emerged as standard choices (Hu et al., 2020).
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Recently, open-source large language models
(LLMs), such as LLaMA 2 (Touvron et al., 2023)
and Orca 2 (Mitra et al., 2023), have made signifi-
cant progress across various NLP tasks. These mod-
els show remarkable performance in many zero-
and few-shot tasks. Nevertheless, they are primar-
ily pre-trained on English, which often necessi-
tates additional fine-tuning to optimize their perfor-
mance for other languages (Zhang et al., 2023).
However, fine-tuning LLMs on non-specialized
consumer GPUs presents challenges due to their
large number of parameters. Techniques like
QLoRA (Dettmers et al., 2023) address this is-
sue by employing a quantized 4-bit frozen back-
bone LLM with a small set of learnable LoRA
weights (Hu et al., 2021).

This paper proposes improving cross-lingual
emotion detection by combining a quantized Orca 2
LLM, fine-tuned with LoRA, and machine trans-
lation. Additionally, we leverage fine-tuned
Transformer-based multilingual language models,
such as XLM-R and mT5, for trigger word detec-
tion. By incorporating alignment-free translation
and trigger word switching, we aim to enhance
performance further.1

2 System Description

We conduct experiments using the dataset provided
by Maladry et al. (2024), which contains tweets in
five different languages.

2.1 Problem Formulation

For both subtasks, the input is a sentence x =
{xi}Li=1 containing L tokens. We denote the pa-
rameters of the models as Θ, which includes task-
specific parameters W and b. Given the sentence-
label pairs (xS , yS) in the source language S, the
aim is to predict labels yT for the sentence xT in
the target language T .

We formulate the emotion detection subtask as
a text-generation problem, which can be modelled,
for example, with decoder-only Transformer-based
models. The decoder-only model calculates the
probability of generating the next token yt at each
step t based on previous outputs y1, . . . , yt−1 as

PΘ(yt|y1, . . . , yt−1) = Dec(y1, . . . , yt−1), (1)

where Dec is the decoder function.
1The code is publicly available at https://github.com/

biba10/UWBWASSA2024SharedTask2.

We formulate the second subtask as a token-level
classification problem. Given the feature represen-
tations h = {h}Li=1 for each token in the sentence
obtained by the model, we apply a linear layer on
top to get the label distribution for each token xi as

PΘ(yi|xi) = softmax(Whi + b), (2)

where y ∈ Y = {0, 1}. We select the class with the
highest probability. To obtain the numerical values,
we extract the logits for class 1, which represents

“is a trigger word” class, and apply the softmax
function to these logits to get numbers between 0
and 1. We consider only the first token of each
word for both binary and numerical values.

2.2 Label Projection
Following related work in cross-lingual classifi-
cation (Hassan et al., 2022; Zhang et al., 2021),
we translate the English training set into all non-
English target languages using the Google API2.
This approach significantly expands the training
data. The process for the emotion detection task
is straightforward: we translate the data and retain
the original labels.

Creating translated data for the second subtask
is more challenging because the translated text may
not perfectly align with the original English text,
resulting in different token counts between the two.
Previous approaches (Mayhew et al., 2017; Fei
et al., 2020) often rely on word alignment tools
like fastAlign (Dyer et al., 2013) to map token-
label pairs from the source sentence to the targeted
one. We adopt an alignment-free label projection
proposed by Zhang et al. (2021) to create pseudo-
labelled data in the target languages.

First, we mark each trigger word in a sentence
with predefined special symbols, such as “[]” or
“{}”, before translating it. We use distinct symbols
for a sentence containing multiple trigger words.
After translation, we extract the trigger words from
the translated sentence using the special symbols.
The translation system may occasionally overlook
these special symbols, leading to their omission.
In such cases, we discard the sentences. This pro-
cess, illustrated in Figure 2, yields pseudo-labelled
sentences in the target language.

Furthermore, we create additional datasets for
the second subtask by combining data from differ-
ent languages, as shown in the lower part of Fig-
ure 2. Given an English source sentence xS and its

2https://translate.google.com/
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@user I’m [so] {happy} you’ve found
some success for yourself

@user Estoy [tan] {feliz} que hayas
encontrado algo de éxito para ti

@user I’m [tan] {feliz} you’ve found
some success for yourself

@user Estoy [so] {happy} que hayas
encontrado algo de éxito para ti

xS: en xT: es

xSt: en-es xTs: es-en

[]: so
{}: happy

[]: tan
{}: feliz

Translation
system

Trigger words
switching

Trigger words
switching

Figure 2: Example of label projection method with trigger words switching (lower part) for English and Spanish
language pair.

translation xT , we switch the trigger words to con-
struct two new bilingual sentences: the first, xSt,
originates from xS with trigger words expressed
in the target language; the second, xTs, originates
from xT with trigger words in the source language.

We denote the original English dataset as DS ,
the translated dataset into all four non-English lan-
guages as DT , the English source dataset with trig-
ger words in other languages as DSt, and the trans-
lated dataset with trigger words in English as DTs.

2.3 LoRA
Fine-tuning LLMs like Orca 2 requires significant
computational resources due to the model’s exten-
sive parameter count. To address this challenge,
Dettmers et al. (2023) propose to use low-rank
adapters (LoRA) (Hu et al., 2021) on top of a quan-
tized backbone model. This method employs a
small set of trainable parameters called adapters
while keeping the original model frozen, thus re-
ducing memory requirements.

For a pre-trained weight matrix W0, LoRA rep-
resents it with a low-rank decomposition as

W0 +∆W = W0 +BA, (3)

where B and A are matrices with much lower di-
mensions than W0. During fine-tuning, W0 is
frozen while the weights of A and B matrices are
updated. Figure 3 shows the concept of LoRA.

Pretrained 
Weights

𝑊 ∈ ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0, 𝜎2)

𝑑

𝑟

Pretrained 
Weights

𝑊 ∈ ℝ𝑑×𝑑

x

f(x)

𝑑

Figure 3: The illustrative depiction of parameter-saving
LoRA fine-tuning proposed by Hu et al. (2021).

2.4 Models
We fine-tune the large versions of XLM-R (Con-
neau et al., 2020) and mT5 (Xue et al., 2021), as

well as the 13B version of Orca 2 (Mitra et al.,
2023), using the HuggingFace Transformers li-
brary3 (Wolf et al., 2020). The Orca 2 model is
used for the first subtask, while the XLM-R model
and the encoder part of the mT5 model are em-
ployed for the second subtask.

2.5 Experimental Setup

For the initial hyperparameter selection, we sam-
ple 10% of the English training dataset as valida-
tion data for all experiments, following other cross-
lingual work (Hu et al., 2019; Zhang et al., 2021)
that simulate true unsupervised settings. This 10%
is also excluded from the translation process that
creates additional datasets. We use the original val-
idation data in five languages to further reduce the
number of models.

For both subtasks, we always fine-tune the mod-
els on the original English dataset DS (excluding
the 10% of data used for validation) and explore
the impact of incorporating additional data. Specif-
ically, for the first subtask, we experiment with
adding the translated dataset DT . For the second
subtask, we explore the following options: adding
the translated dataset DT , datasets with switched
trigger words (DSt and DTs), or both.

Figure 4 shows the prompt used for fine-tuning
the Orca 2 model, where we train the model to out-
put the specific emotion class in a textual format.

Predict one emotion label for the given text. The possi-
ble labels are: “Love”, “Joy”, “Anger”, “Fear”, “Sadness”,
“Neutral”.
Answer in one following format: “Label: <emotion_label>”

Figure 4: Prompt for the emotion detection task.

2.5.1 Hyperparameters
We employ the AdamW optimizer (Loshchilov and
Hutter, 2019) with a batch size 16 for all models.

3https://github.com/huggingface/transformers
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For Orca 2, we use QLoRA for fine-tuning with 4-
bit quantization, setting LoRA r = 64 and α = 16,
a learning rate 2e-4 with linear decay, and applying
LoRA adapters on all linear Transformer block
layers. We fine-tune the model for up to 5 epochs.
For other models, we fine-tune them for up to 30
epochs and search for the learning rate from {2e-6,
2e-5, 5e-5, 2e-4} using a constant scheduler. All
experiments are conducted on an NVIDIA A40
with 48 GB GPU memory.

2.5.2 Evaluation Metrics
The main metric for the emotion detection subtask
is the macro-averaged F1 score. The primary met-
ric for the binary trigger word detection subtask is
the token-level F1 score, calculated on a token level
and averaged across instances. A new metric called
accumulated precise importance attribution is used
for the numerical trigger word detection subtasks.
After normalization (ignoring negative values and
ensuring the attributions for each sentence add up
to 1), this metric sums up the attributions for each
trigger word (i.e., the tokens with a label 1).

3 Results

This section presents the results.

3.1 Emotion Detection

Table 1 shows the results of the emotion detection
subtask. The results indicate that the Orca 2 largely
benefits from the additional data translated into
target languages, improving the results by over 3%
on test data and by more than 7% on the validation
set. The best model achieves a test score of 59.10,
ranking seventh in the competition.

Dataset Dev Test Rank

DS 50.12 55.73
DS + DT 57.74 59.10 7.

Baseline 44.76
Best 62.95

Table 1: F1 macro scores on the emotion detection
task with the Orca 2 model compared to baseline and
best results (Maladry et al., 2024). Bold indicates the
officially announced results and their competition rank.

Figure 5 and Figure 6 show the confusion matri-
ces for the Orca 2 model fine-tuned on English
data only and both English and translated data,
respectively. The model fine-tuned on translated
data demonstrates significantly better performance

for the Fear (0.52 vs 0.29) and Joy (0.66 vs 0.55)
classes while maintaining similar performance for
other classes compared to the model fine-tuned
only on English data.

Anger Fear Joy Love Neutral Sadness
Predicted label

Anger

Fear

Joy

Love

Neutral

Sadness

Tr
ue

 la
be

l

0.64 0.01 0.06 0.02 0.18 0.09

0.19 0.29 0.03 0.03 0.29 0.18

0.05 0.00 0.55 0.21 0.14 0.06

0.05 0.00 0.27 0.55 0.10 0.03

0.07 0.00 0.10 0.04 0.74 0.04

0.17 0.00 0.10 0.04 0.17 0.52

Figure 5: Confusion matrix on test data for the Orca 2
model fine-tuned on English data only.

Anger Fear Joy Love Neutral Sadness
Predicted label

Anger

Fear

Joy

Love

Neutral

Sadness

Tr
ue

 la
be

l

0.69 0.02 0.07 0.00 0.10 0.11

0.09 0.52 0.03 0.01 0.19 0.16

0.04 0.00 0.66 0.14 0.12 0.04

0.03 0.00 0.35 0.49 0.09 0.04

0.08 0.01 0.14 0.03 0.69 0.04

0.19 0.03 0.11 0.02 0.14 0.51

Figure 6: Confusion matrix on test data for the Orca 2
model fine-tuned on English and translated data.

Misclassified labels tend to cluster by sentiment.
For instance, the Love label is frequently misclas-
sified as Joy. The Neutral, Anger, and Joy classes
appear to be the easiest to predict, likely due to
their higher representation in the training and test
data, as shown in Table 2.

Label Train Dev Test

Anger 1,028 129 614
Fear 143 14 77
Joy 1,293 102 433
Love 579 40 190
Neutral 1,397 157 916
Sadness 560 58 270

Table 2: Label distribution for the emotion detection.
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3.2 Trigger Words Detection

Table 3 presents the results of the trigger words
detection subtask, evaluating the performance for
binary and numerical outputs using various training
combinations. For binary classification, XLM-R
achieves the highest test score (59.19) when trained
on the full combination of datasets (DS + DT +
DSt+DTs), ranking third in the competition. Con-
versely, mT5 excels in numerical value prediction
with a top test score of 70.52 under the same train-
ing conditions, securing first place. In most cases,
the mT5 model’s overall performance on numerical
triggers is substantially worse than the performance
of XLM-R. However, the results improve signifi-
cantly when all dataset combinations are used.

Determining the best dataset combination and
model is challenging due to the similar results
achieved across many cases. Variability from ran-
dom seeds during fine-tuning can obscure slight
performance differences, which may not truly in-
dicate superiority but rather random fluctuations.
Nonetheless, our best test set results are obtained by
training on a combination of the original, translated,
and trigger words switched datasets. Combining
all datasets for numerical trigger word detection
using the mT5 model significantly improves the
second-best settings by 8%.

Model Dataset Binary Numerical

Dev Test Rank Dev Test Rank

XLM-R

DS 61.85 58.59 70.07 70.06
DS + DT 60.82 56.69 71.52 66.20
DS + DSt + DTs 57.97 53.18 73.14 70.16
DS + DT + DSt + DTs 60.46 59.19 3. 70.05 70.02

mT5

DS 59.99 58.12 60.11 60.00
DS + DT 62.12 58.06 63.14 62.06
DS + DSt + DTs 53.32 48.61 66.18 62.86
DS + DT + DSt + DTs 59.22 56.79 70.92 70.52 1.

Baseline 23.49 21.60
Best 61.58 70.52

Table 3: Token-level F1 score for binary trigger words
detection and accumulate precise importance for numer-
ical trigger words detection compared to baseline and
best results (Maladry et al., 2024). Bold indicates the
officially announced results and their competition rank.

3.3 Discussion

Overall, the Orca 2 benefits more from the trans-
lated data than the XLM-R and mT5 models, likely
because the Orca 2 is pre-trained mostly on English
data. In contrast, the other two models are multi-
lingual. The translated data adds more knowledge
to a model pre-trained mainly on English data than
those already exposed to multiple languages. In

addition, trigger word detection tasks may be more
prone to translation errors, which could diminish
the benefits of translated data for these tasks. How-
ever, the mT5 model shows marginal improvements
from the translated and trigger words switched
datasets for the numerical trigger words detection,
improving the results by 8% and achieving the best
result overall in the competition.

4 Conclusion

This paper describes our system for the WASSA-
2024 Cross-lingual Emotion Detection Shared Task.
We propose fine-tuning a quantized large language
model with low-rank adapters combined with ma-
chine translation for the emotion detection subtask
and fine-tuning multilingual Transformer-based
models enhanced with machine translation and trig-
ger word switching for the trigger words detection
subtask. We show that additional translated data
improves the performance. Our system achieves
excellent results and ranks first in numerical trig-
ger word detection, third in binary trigger word
detection, and seventh in emotion detection.
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