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Abstract

We study highly granular dialect normalization
and phonological dialect translation on Limbur-
gish, a non-standardized low-resource language
with a wide variation in spelling conventions
and phonology. We find improvements to the
traditional transformer by embedding the geo-
graphic coordinates of dialects in dialect nor-
malization tasks and use these geographically-
embedded transformers to translate words be-
tween the phonologies of different dialects.
These results are found to be consistent with
notions in traditional Limburgish dialectology.

1 Introduction

We argue in this paper that encoding geo-
graphic coordinates as continuous parameters into
transformer-based architectures allows for the im-
provement of normalization tasks between closely
related varieties and reveals new methods in han-
dling spatially-determined language variation.

In most tasks on multilingual data or closely re-
lated varieties, the varieties are treated on a coarse
level (Dabre et al., 2020; Wu et al., 2021), with-
out meaningfully encoding their relation to one an-
other. The main idea behind encoding the relation
between the different varieties is that knowledge
transfer will take place between closely related va-
rieties, therefore allowing for a solution to the issue
of imbalanced data and a more generalized and
continuous treatment of the studied varieties.

In this work we encode the geographic coor-
dinates of approximately 1000 locations within
the Limburgish language area - whose language
varieties we will refer to as dialects from now
on - by appending them as additional dimen-
sions after the positional encoding in the origi-
nal transformer architecture (Vaswani et al., 2023).
This geographically-embedded transformer is then
trained to normalize single dialect words following
various different spelling conventions to a single

phonetic-like spelling convention. The geographic
embedding also enables the transformer to translate
between any pair of Limburgish dialects on a highly
granular level. We therefore separately consider
the task of phonological dialect translation.

1.1 A Short Introduction to Limburgish

Limburgish is a West-Germanic language spoken
by at least a million1 native speakers in Belgium,
the Netherlands and Germany. Limburgish par-
tially underwent the High German consonant shift
and has some unique features such as 3 grammat-
ical genders, tonality, a gerund and a subjunctive
in some dialects. Due to its geography and his-
tory it remained relatively isolated from both the
Dutch and German standardization processes (Bele-
mans and Keulen, 2004). Nowadays, Limburgish
does not have a standard language and is super-
seded in official domains by the Dutch, German
and French standard languages in different parts of
the language area. As a result of this, Limburgish
retains a complex phonology that varies continu-
ously throughout its spoken area.

At the same time, Limburgish has been going
through an atypical codification process where vari-
ous standardized spelling conventions have existed
since the 19th century, but often codified for indi-
vidual towns. Its speakers consider all Limburgish
dialects to be equally important, yet distinct vari-
eties in what has been called a multidialectal space
(Assendelft, 2019). This results in Limburgish texts
featuring variation not only in terms of their native
speakers’ phonologies, but also in terms of the cho-
sen spelling conventions. Additionally, Limburgish
is one of the more extreme low-resource languages
among the Germanic language family (Blaschke
et al., 2023), making it very difficult to work with

1As per Ethnologue (2024), no elaborate estimates are
known as the language only enjoys some official recognition
in the Netherlands and the French-speaking community of
Belgium (Limburgish Academy, 2024).
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in most Natural Language Processing tasks.
Due to the structure of the used dataset (see

Section 3), we will only consider the Limburgish
dialects spoken in Belgium and the Netherlands,
although there is a priori no linguistic reason to
separate the dialects in Germany from the ones in
Belgium and the Netherlands.2

2 Related Work

2.1 Limburgish NLP
NLP research on Limburgish is scarce: Nguyen
and Cornips (2016) developed dialect identification
for Limburgish using the Limburgish Wikipedia
as a corpus. This is the only available corpus for
Limburgish apart from very limited web crawl and
Ubuntu localization files corpora (Blaschke et al.,
2023). Michielsen-Tallman et al. (2017) is work-
ing on a Limburgish corpus which is not publicly
accessible yet, and Meta’s No Language Left Be-
hind included the Maastricht dialect through its
FLORES-200 dataset (NLLB Team et al., 2022),
which is now included in some applications on
Hugging Face. Franco et al. (2019a,b) previously
applied a statistical approach to study lexical diver-
sity and the influence of geography on loanwords
in Limburgish using the WLD (Section 3).

2.2 Dialect Normalization
Methods related to normalizing dialects using ma-
chine learning and neural approaches have been
studied by Pettersson et al. (2014); Scherrer and
Ljubeić (2016); Bollmann and Søgaard (2016);
Honnet et al. (2018); Lusetti et al. (2018); Parta-
nen et al. (2019); van der Goot (2021). To the best
of our knowledge, no dialect normalization task
has been considered where the geographic coordi-
nates are explicitly embedded in the transformer
architecture with the goal of improving knowledge
transfer. Neither has such a smooth, highly gran-
ular geographic normalization task been studied.
Scherrer (2011) previously studied continuous vari-
ation of Swiss-German through a statistical word
generation approach. Ramponi and Casula (2023)
introduced a coordinate-tagged variety corpus for
Italy using Tweets and studied highly granular lan-
guage identification, which was previously also
considered on other languages by Han et al. (2016);
Gaman et al. (2020); Chakravarthi et al. (2021).

2Limburgish is typically demarcated between the major
Uerdinger and Benrather isoglosses within West-Germanic
(Goossens, 1965). This region extends into Germany, where it
is also known as Südniederfränkisch.

2.3 Dialect Translation

Character or syllable-based dialect machine transla-
tion have been considered for Swiss-German (Hon-
net et al., 2018), and for Japanese (Abe et al., 2018).
To the best of our knowledge, no approach has con-
sidered a smooth, highly granular dialect transla-
tion task of our magnitude or considered the di-
rect embedding of geographic coordinates for the
purpose of knowledge transfer between dialects in
dialect machine translation.

3 Data

The dataset used for this work is the digitized (van
Hout et al., 2024) version of the Woordenboek van
de Limburgse Dialecten (Dictionary of the Limbur-
gish Dialects) or WLD (Weijnen et al., 1983-2008),
an onomasiological dictionary of Limburgish, cov-
ering the dialects spoken in the Belgian and Dutch
provinces of Limburg and the north of Liège. The
dictionary is onomasiological in the sense that it is
indexed along semantic concepts such as agrarian
(e.g. ploughing, cattle), professional (e.g. bakery,
mining) and general concepts (e.g. health, reli-
gion). Per semantic concept, it groups all variants
per cognate, geotagged with their exact town of
origin. The structure of this dictionary therefore al-
lows us to study the phonological and orthographic
variation of the Limburgish lexicon and how they
interact with geography.

The WLD contains approximately 17k concepts,
featuring 139k cognates and a total of 1.7M Lim-
burgish words spread over approximately 1000 lo-
cations. About half of the entries follow a high-
quality morpho-phonological spelling, a combina-
tion of standard Dutch orthography, the Interna-
tional Phonetic Alphabet (IPA) and some custom
diacritics. This part of the WLD was carefully re-
viewed by its original curators (Weijnen et al., 1983-
2008). The remainder follows various spelling con-
ventions from local dictionaries or standardized
conventions such as the Veldeke spelling (Bakkes
et al., 2003).

The locations are tagged with kloeke codes, geo-
graphic tags that refer to all locations in Belgium,
the Netherlands, northern France and western Ger-
many. We converted these kloeke codes to geo-
graphic coordinates, which were then normalized
to unit intervals. Entries corresponding to locations
that were clearly outside the Limburgish area were
omitted. We carried out some preprocessing and
cleaning steps on the data such as deleting entries
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Figure 1: 2D frequency histogram of the geographic
spread of entries in the WLD.

with overly noisy characters (as a result of poor
digitization), splitting sentence entries into indi-
vidual words and omitting superfluous characters
such as punctuation marks. The geographic spread
of the resulting data are shown in Fig 1. Finally,
we applied some manually curated rules to resolve
predictable digitization errors, such as converting
incorrect ASCII characters.

3.1 Task-Specific Datasets

Since we did not have access to curated datasets
or parallel corpus data for Limburgish or any of
its dialects, two new datasets needed to be gen-
erated from the WLD for the normalization and
phonological dialect translations tasks.

For the normalization task, we aimed to train a
model that correctly converts the characters of any
of the Limburgish (conventional) spelling systems
to the high quality morpho-phonological standards
that constitute approximately half the WLD. These
standards closely resemble IPA, and enable fur-
ther study of Limburgish text data, which is often
blurred by localized spelling conventions.

We therefore split the dataset into words follow-
ing an accurate phonetic spelling convention and
words with local or other conventional spelling
conventions. This is achieved using manually se-
lected filters containing typical conventions in the
Veldeke spelling and other local conventions that
are not known within the WLD’s phonetic system,
such as the use of ieë, aa or äö. Any words that

do not contain any n-grams which are exclusively
used in conventional spelling are then assumed to
be in phonetic notation, which a manual inspec-
tion confirms. This results in an approximately
equal split in normalized-unnormalized data. For
each unnormalized entry, cognates of nearby di-
alects are then selected as the normalized equiva-
lents. By defining a nearby dialect as being within
a 0.5 km radius, we ensure that the variation is
more likely due to spelling conventions rather than
a change in phonology between the two dialects.
Typically, the phonologies of Limburgish dialects
stay consistent within such a radius, unless major
isoglosses are crossed. This results in a dataset of
118k unnormalized-normalized pairs, with an aver-
age pair distance of 0.39 km. An example of such
a pair is given below (with both words originating
from the dialect of Echt).

kroedwès- krutweš (without translation;
a folkloristic herb)

For the task of phonological dialect machine
translation, we again chose a character-based
approach and trained a model to translate the
phonology between any dialects, as this is the
largest source of variation in Limburgish apart from
spelling variation. We only used the part of the
WLD dataset that is already normalized (approxi-
mately 805k entries), therefore avoiding arbitrary
spelling conventions, and generated a new dataset.
We paired each word in this normalized subset with
all cognates from other dialects in the same dataset.
Very frequent words such as in (English: in) or van
(English: of) were omitted, as were words that are
rare in other dialects (a frequency of <10). For each
family of cognates, we undersampled the available
cognates due to the imbalance in geographic rep-
resentativeness of the data (see Fig 1). The under-
sampling was done by weighting the geographic
frequency distribution of the cognates according to
a 2D Gaussian kernel smoothing with a bandwidth
factor of 0.2 and then undersampling by 70%.

As the entries in the new dataset grow quadrati-
cally with the number of cognates, a 10% subset is
sampled of all pairs in the new dataset, resulting in
a phonological dialect translation dataset of 20.2M
entries. For example, the word šo.l (originating
from Bree) is paired with 85 different cognates
from other dialects:

sxo:l (Grote-Brogel), šō– l (Kanne), šu@l
(Kerkrade), šo.@l (Valkenburg), sxo.l
(Nederweert) . . .
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4 Methods

4.1 Encoding

We tried two encoding methods: a simple one-
hot encoding and an experimental method using
phonological vectors from the PanPhon library
(Mortensen et al., 2016) in Python. The main idea
was that encoding 24 articulatory features is more
meaningful and compact for data that varies greatly
phonologically. The phonological encoding was
surprisingly outperformed by a simple one-hot en-
coding in all experiments. This was likely due to
the high complexity of the phonology of some di-
alects. For example, the dialect of Weert has 28
vowels over 5 heights, for which PanPhon’s binary
vowel height system is insufficient.

We opted for a 92-dimensional one-hot encod-
ing, corresponding to all unique characters that re-
mained after the preprocessing and cleaning steps.
Due to the complexity of Limburgish phonology,
many special diacritics are featured to realize the
correct vowels or tonality. These diacritics are rep-
resented as separate characters. All words above
10 characters were omitted, and shorter words were
padded to 10-dimensional vectors.

4.2 Coordinate Embedding in Transformer

The modification to the traditional transformer ar-
chitecture was done in Tensorflow’s functional API
v2.12 (Abadi et al., 2015), Keras v2.15 (Chollet
and et al., 2015), and KerasNLP v0.4.1 (Watson
et al., 2022). Typically when discrete language
tokens are used for multilingual models (and there-
fore different from our approach), this is done at
the tokenizer level, thereby increasing the input
vocabulary dimension or dimension of the input
embedding. We instead pass the geographic co-
ordinates as two extra dimensions directly after
the positional encoding, resulting in a similar num-
ber of weights and training complexity when com-
pared to the traditional transformer architecture.
The (rescaled) coordinates are only appended to
the first dimension of the embedded vector (after
the input embedding and positional encoding) to
keep the data sparse and can be visualized as




e1,1 e1,2 . . . e1,9 e1,10
...

...
...

...
eN,1 eN,2 . . . eN,9 eN,10

y 0 . . . 0 0
x 0 . . . 0 0



,

where ei,j represent the floats of the embedded
vector after the input embedding and positional en-
coding, N the dimension of the embedding vector
space and x, y the rescaled geographic coordinates.

For the encoder block, the coordinates corre-
sponding to the input word are embedded. For the
decoder block, the first input (using autoregression)
is the embedded start token with the coordinates of
the target word appended as two extra dimensions.

4.3 Evaluation
We consider two evaluation metrics::

Levenshtein ratio: the Levenshtein ratio be-
tween two words s1 (reference) and s2 (hypothesis)
is defined as (Bachmann, 2021)

1− Levenshtein distance(s1, s2)
len(s1) + len(s2)

(1)

where the Levenshtein distance between s1 and
s2 is defined as the number of single-character in-
sertions, deletions, and substitutions required to
transform s1 into s2. The Levenshtein ratio is a
character-based measure of similarity between two
words, normalized for the lengths of the words (un-
like the typical Levenshtein distance). Two identi-
cal words have a Levenshtein ratio of 1, the mini-
mum ratio is 0.

CharacterF: character n-gram F-score or chrF
(Popović, 2015) is the character-based machine
translation equivalent of the traditional F-score. As
it relies on character n-grams, it is more sensitive
towards morpho-syntactic phenomena. The chrF
score between two words s1 (reference) and s2
(hypothesis) is defined as (Popović, 2015)

chrF = 2
chrP · chrR

chrP + chrR
(2)

where chrP is the percentage of n-grams from s2
that can be found in s1 and chrR the percentage of
n-grams from s1 in s2. We use 3-grams as these
correspond closely to human judgment (Popović,
2015).

We initially expect both these metrics to under-
value the performance in this task; the WLD is
very rich in diacritics and it is undesirable that the
predicted normalized word is penalized for using a
diacritic that is phonologically very close, but not
identical to the expected diacritic. To mitigate this,
we will also compute these metrics after stripping
the diacritics, and thus only considering the ASCII
characters. An example of how these metrics be-
have can be found in Table 1.
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Unnormalized - Normalized ChrF Levenshtein ratio ChrF Levenshtein ratio
(translation) (no diacritics) (no diacritics)
vief - viêf (five) 0 0.75 1 1
kroedwès - krutweš (herb) 0 0.4 0.18 0.53
waere - wěre (to become) 0 0.8 0.4 0.8
aafdoeë - āfdū@ (to mow grass) 0 0.33 0.25 0.33
schoppen - sxop@ (to kick) 0 0.46 0 0.46

Table 1: A sample of the normalization dataset and their evaluation according to the selected metrics.

We observe that chrF is generally much too strict,
while chrF with diacritics removed is significantly
more tolerant. The Levenshtein ratio seems more
tolerant than the non-diacritic chrF, while the non-
diacritic Levenshtein ratio seems the most tolerant
metric. A more in-depth manual analysis showed
that the non-diacritic chrF metric corresponded
closest to human judgement.

An inherent difficulty of working with Limbur-
gish data is discerning the variation caused by dif-
ferences in phonology from the variation caused
by different spelling conventions, which is also a
barrier for any other language that varies phono-
logically and orthographically (usually the case for
non-standardized languages or families of dialects).
To establish some baselines, we determined a lower
boundary for all four metrics by measuring them
on the unnormalized-normalized word pairs in the
dataset, reflecting the accuracy when the same in-
put were to be predicted. We also determined an
upper boundary by estimating the inherent varia-
tion in spelling conventions: we computed the four
metrics for all cognates within a radius of 6 km
of each unnormalized word in the dataset. The as-
sumption is that most remaining variation will then
be due to differences in orthography, rather than
phonology. This baseline therefore indicates the
maximally attainable values for these metrics. We
found the following lower and upper boundaries:

ChrF ChrF Lev. Lev.
no diac. no diac.

Lower 0.112 0.242 0.599 0.710
Upper 0.440 0.589 0.751 0.84

Table 2: Expected lower and upper boundaries for the
evaluation metrics.

Due to a lack of any curated data for Limburgish
and the inherent variation in the data, these bound-
aries and a manual analysis in Section 6 are our
best available approaches for evaluation, for a more

elaborate discussion we refer to Section 8.

4.4 Normalization Task
To test whether embedding geographic coordinates
improves the traditional transformer architecture,
we first ran a hyperparameter search on the task us-
ing a traditional transformer without coordinate em-
bedding. Using the traditional transformer for this
task is possible since the target words follow the
(relatively) uniform morpho-phonological spelling
of the WLD and no dialect or spelling variation is
required from the decoding part. We split the data
in a 80− 10− 10 train, validation, test dataset and
varied stacking of encoder and decoder blocks from
1 − 5, the embedding dimension from 1 − 1024,
the latent dimension from 1− 1024 and the num-
ber of attentions heads in each block from 1− 16
using the Optuna library (Akiba et al., 2019). We
used the Adam training method and a Sparse Cate-
gorical Crossentropy metric and ran 100 iterations
using Optuna’s Tree Parzen Estimator. The op-
timized set of parameters was then used to train
the traditional transformer and the geographically-
embedded transformer and compare their perfor-
mance on the test set.

The optimized traditional transformer has a total
of 5.1M parameters, the geographically-embedded
transformer has 5.2M parameters due to the ex-
tra 2 dimensions after the positional encoding step.
These additional parameters only allow for a hetero-
geneous interaction between the coordinates and
the embedded characters in the attention mecha-
nism, and do not allow for any further inference of
information in the attention mechanism that could
otherwise be associated with having slightly more
parameters.

4.5 Phonological Dialect Translation Task
Unlike the previous task, performance in the phono-
logical dialect translation cannot be readily com-
pared to the traditional transformer architecture
as it does not natively allow for variation of the
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target dialect. We therefore only considered the
geographically-embedded transformer.

We again used an 80− 10− 10 train, validation,
test dataset split but did not run a hyperparameter
search due to resource constraints. We instead used
standard parameter values such as an embedding
dimension of 256, a latent dimension of 1024, 8
attention heads, and no stacked encoder or decoder
blocks, resulting in a total of 7.6M parameters. For
the optimizer and loss we again opted for Adam
with a Sparse Categorical Crossentropy loss.

5 Results

5.1 Normalization Task

The hyperparameter search for the traditional trans-
former architecture yielded the following parame-
ters: 2 layers of stacked encoder/decoder blocks, an
embedding dimension of 150, a latent dimension
of 1000, and 7 attention heads, resulting in a total
of 5.1M parameters. The evaluation metrics on the
test sets for the traditional transformer and the ar-
chitecture with geographic coordinates embedded
can be found in Table 3. We also present some
representative examples of the geographically-
embedded transformer’s performance when nor-
malizing the test set, along with the non-diacritic
chrF metric in Table 5.

coords ChrF ChrF Lev. Lev.
no diac. no diac.

no 0.353 0.506 0.713 0.817
yes 0.363 0.516 0.718 0.821

Table 3: The evaluation metrics on the test set for the
traditional transformer and the transformer with geo-
graphic coordinates embedded.

5.2 Phonological Dialect Translation Task

The evaluation of the geographically-embedded
transformer on the phonological dialect translation
task can be found in Table 4. We again present
some representative examples of the translation
task with their corresponding non-diacritic chrF
metrics and the locations of the input and target
dialects in Table 6.

6 Discussion

6.1 Normalization Task

As can be seen in Table 3, the geographically-
embedded transformer outperforms the normal

ChrF ChrF Lev. Lev.
no diac. no diac.

0.407 0.485 0.687 0.736

Table 4: The evaluation metrics on the test set for the
phonological translation task.

transformer according to all metrics that we mea-
sured. The results are statistically significant (p <
0.001) according to two-sided Wilcoxon hypoth-
esis tests. The improvements to the traditional
transformer’s performance are most prominent in
ascending order of ‘tolerance’ of the metrics, as
we could have expected. When comparing these
results with our established lower and upper bound-
aries (Table 2), we again find that the upper bound-
aries are approached more closely by the more
tolerant metrics. A geographic analysis of the
evaluation metrics showed that there is no geo-
graphic bias, as the performance is relatively ho-
mogeneously spread.

Manually analyzing a sample of the
geographically-embedded transformer’s pre-
dictions (Table 5), we find that the model generally
succeeds in correctly normalizing various Limbur-
gish spelling conventions to a phonetic spelling.
For example, in entry 3 (daavekot → dāv@ko– t), the
long aa is normalized to ā, the e to the schwa and
the o to the correct Limburgish phoneme.

The model also abides by well-known notions
in Limburgish dialectology: in entry 1 (sjnaps →
snaps), the sj is normalized to an s, even though this
is a neologism derived from High German, show-
ing that the model correctly applies the Panninger
isogloss within Limburgish that is associated with
the s→S rule (Bakkes et al., 2007). In entry 7 (kool
→ ki@l), the unnormalized word uses the Dutch
phoneme o which does not occur for that word in
Limburgish, but the model correctly predicts i@.

In other instances such as as 5 and 13, the model
predicts normalized words that are more accurate
than the original target normalizations. This is due
to the fact that we generated this dataset ourselves
without a very elaborate manual curation, as we
did not have access to a curated or golden stan-
dard dataset. Despite inaccuracies in the generated
dataset, the model has generalized well to avoid
conventional spelling: in entry 3 an ò is included
in the target, which is not part of the phonetic nota-
tion used in the WLD. The model instead correctly
normalized this phoneme to o– . The evaluation met-
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Unnormalized word Prediction Target ChrF (no diac.) Translation
1 sjnaps snaps snàps 1.0 schnaps (drink)
2 zeik ze– i

“
.k ze– i

“
.k 1.0 fecal sludge

3 daavekot dāv@ko– t dāv@kòt 1.0 dovecote
4 sjollek šol@k šo– l@k 1.0 type of apron
5 volle vo– l@ vo– l 0.667 full
6 strooie stroi

“
@ strō@n 0.5 of straw (material)

7 kool ki@l kī@l 1.0 cabbage
8 hèndich@ hendix hendixe 0.889 handy
9 kwartsche kwartse kwē<rtš@ 0.2 quarter
10 hiemël hi:m@l hi:m@l 1.0 heaven
11 lintteeke lintēk@ lentēk@ 0.6 scar
12 sjei še– i

“
še– i

“
1.0 vagina (horse)

13 tweede twēd@ de 0 second
14 preuv@ prèùve prēūv@ 0.75 to taste
15 áfzétt@ ifzet@ afzEt@ 0.75 to rip off/defraud

Table 5: A random sample of the geographically-embedded transformer’s performance on the test set.

Input Prediction Target ChrF Translation Locations
(no diac.)

1 špat spat spat 1.0 osteoarthritis Moresnet→Meeuwen
(horse)

2 remp@l rimpels rumpels 0.6 wrinkles Meterik→Blerick
3 moder moj@r moj@r 1.0 mother Bocholt→Millen
4 xeld xē– lt xēld 0.5 money Gulpen→Moelingen
5 bo– t@rham bot@ram bot@ram 1.0 sandwich Achel→Blitterswijck
6 werk werk werk 1.0 work Sittard→Beverst
7 be–s@l be–s@l be– .s@l 0.286 bushel (hay) Beverst→Munsterbilzen
8 we–x wex wex 1.0 road Landen→Venray
9 hō– t@ ho– wt@ ho– wt@n 0.857 wooden Genk→Neeroeteren
10 bri@.k@ brē– .k@ brē– .k@ 1.0 to spread manure Jesseren→Nerem
11 kát kat kat 1.0 cat Wijchmaal→Blitterswijck
12 sle– i

“
p sle– i

“
.p sle– i

“
.p 1.0 field drag Neeritter→Bocholt

13 wilde wel wøl 0 wild Ophoven→Lummen
14 nak nek nek 1.0 neck Munsterbilzen→Horst
15 hūs hōēs hôêês 0.4 house Gruitrode→Lottum

Table 6: A random sample of the geographically-embedded transformer’s performance on the phonological dialect
translation test set.

rics penalize these instances, even though they are
desirable for our purposes.

The model fails in a few instances in predict-
ing the correct normalization: in 8 the wrong gen-
der/plural is predicted, in 9 (pred.: kwartse, target:
kwē<rtš@) and in 15 (pred.: ifzet@ target: afzEt@)
some characters are incorrectly normalized. In en-
try 14, conventional spelling is used in the predic-
tion (prèùv@).

From this manual analysis and the close corre-
spondence to the estimated upper boundaries we

can conclude that the geographically-embedded ar-
chitecture is appropriate for normalization of Lim-
burgish spelling to phonetic notation and an im-
provement over the traditional transformer archi-
tecture for this purpose.

6.2 Phonological Dialect Translation Task

The evaluation metrics (Table 4) approach the esti-
mated upper boundaries, but not as closely as in the
normalization task. There is again no geographic
bias as the evaluation metrics are homogeneously
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spread over the studied language area. A manual
analysis of a sample of some predictions (Table 6)
shows that the model succeeds in correctly trans-
lating the phonology of various words from one
Limburgish dialect to another: in for example entry
1 (špat → spat), the s→S rule associated with the
Panninger isogloss is correctly applied. In entry 10
(bri@.k@ → brē– .k@), the correct sound ē– is translated
for Nerem, even though the place of origin Jesseren
is only 10 km removed and uses the sound i@.

In most instances, the translation matches the
expected target. In some entries such as 2 and 13
the model corrects the input: entry 2 is an incorrect
singular as the other cognates are plurals and the
missing pluralization is therefore an error in the
dataset, entry 13 is likewise a transcription error in
the WLD and should have been wel.

In entries such as 4, 9, and 15 the model also per-
forms better than the dataset and correctly predicts
phonetic notation: t instead of d for entry 4 (pred.:
xē– lt target: xēld), no end-n for entry 9 (pred.: ho– wt@
target: ho– wt@n) and no conventional Limburgish
spelling in the case of entry 15 (pred.: hōēs target:
hôêês).

In some instances the model fails to predict the
correct diacritics, such as in entry 7 (pred.: be–s@l
target: be– .s@l), but most of the low evaluation met-
rics correspond to instances where the model pre-
dicted more desirable results than the dataset pro-
vided as target words.

From this manual analysis and the evaluation
metrics we can conclude that phonological dialect
translation was successfully achieved using the
geographically-embedded transformer.

6.3 Language Variation Maps
The phonological translation model allows us to
specify any input and target coordinates for the
translation task; by fixing an input word and co-
ordinates and varying the target coordinates we
can generate highly granular language variation
maps that show the phonological variation of the
input word/phoneme. These maps can be used
to extensively compare the model’s predictions to
traditional dialectological maps, or to study gener-
alizations the model has learned due to the inherent
language variation. In Fig 2 we provide such a map
with all variation of school for fixed location Bree
with input word šo.l. Overlaid on this map we indi-
cate the natural variation of Limburgish phonology
using dots, sourced from the WLD. We notice the
close correspondence to the natural phonological

Figure 2: Generated variation map for school (šo.l) with
Bree as fixed input. The overlaid dots correspond to the
natural variation as found in the WLD. The color scheme
purposely groups closely related phonemes. The black
lines indicate the major isoglosses in the Limburgish
area (Bakkes et al., 2007).

variation, in particular the clear separation between
variants starting with sx and š. This isophone is part
of the Panninger side line, an important isogloss
in the Limburgish language area (in black, right
next to Hasselt and converging in the north with
the other isoglosses).

6.4 Availability
The trained models, datasets, figures and GIS
data will be made available on github.com/
AndreasJCSimons/LimburgishNLP.

7 Conclusion

We found that embedding geographic coordinates
after the positional encoding allows us to normalize
highly phonologically and orthographically vary-
ing data more accurately than the traditional trans-
former architecture. Additionally, we found that
this geographic embedding allows us to translate
the phonology of words between any Limburgish
dialects and to generate language variation maps
that can be compared to traditional dialectology or
to study generalized phonological patterns that the
model has implicitly learned.
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8 Limitations

This work is limited by the lack of properly cu-
rated datasets and methodologies to evaluate the
performance of dialect normalization and transla-
tion tasks, which hinders a more accurate evalua-
tion of the used methods. We therefore had to eval-
uate the trained models using a manual analysis and
estimates for an expected upper boundary on some
evaluation metrics, given the inherent phonological
and orthographic variation in the data. In Subsec-
tions 6.1 and 6.2 it is clear that in some instances
the dataset is of low quality. However, due to the
size of the dataset it is likely that the model has gen-
eralized beyond the low-quality entries: this can be
seen both in the manual analysis where the model
corrects wrong targets (even though it is penalized
by the loss function) as well as in the language
variation maps of Subsection 6.3 where the model
has correctly learned Limburgish sound changes.

Another limitation is that the normalization and
phonological dialect translation tasks only took the
spelling and phonology of the words into account
and not their semantics. While this rarely resulted
in inaccurate predictions, a more elaborate normal-
ization or translation scheme should take semantic
information into account, as this can sometimes be
tied to phonological patterns. For example, High
German loanwords such as sjnaps (Table 5) are
typically not subject to internal Limburgish sound
changes and remain invariant.

Finally, the data of the WLD is not fully syn-
chronous: it contains older dialect surveys such as
the data from the Willems survey (19th century),
SGV (1914), and ZND (from 1922 onwards). Ad-
ditionally, data was collected in Belgian Limburg
from the 1960s onwards to match missing data with
respect to Dutch Limburg (Weijnen et al., 1983-
2008). This means that the data collection occurred
during a period of a major linguistic shift: between
1950 and 1980 a period of hyperstandardization oc-
curred in Belgium that sought to promote Algemeen
Beschaafd Nederlands (General Civilized Dutch)
and stigmatize any other languages or language
variation (Hoof and Jaspers, 2012). We also did
not have access to any data from beyond the Dutch-
German border, even though there is linguistically
no reason to separate the dialects spoken between
the Uerdinger and Benrather lines in Germany from
the dialects in Belgium and the Netherlands.

9 Ethics Statement

This work complies with the ACM Code of
Ethics and Professional Conduct (https://www.
acm.org/code-of-ethics) with particular atten-
tion to articles 1.1 and 1.4: many underserved lan-
guages and language communities exist, and lan-
guage variation and diversity is itself an exercise in
low-resource NLP. By contributing to the research
of non-standardized languages, low-resource lan-
guages or methods in NLP that can handle language
variation, we hope to provide instruments that may
be beneficial to disadvantaged languages commu-
nities.

The data used in this work, the Woordenboek van
de Limburgse Dialecten, was manually processed
over many years using dialect surveys and native
speakers, who have been anonymized in the final
dataset. Regardless, we are aware that by the very
nature of this research, i.e. highly granular geo-
graphic analysis of language variation using meth-
ods in Deep Learning, we are studying phenomena
that are tied to a person’s native dialect, upbringing
and socioeconomic situation. It is worrying that
in recent years this has been abused for purposes
of surveillance. For example, language variation
has been used in dialect identification software by
countries to evade privacy regulations during asy-
lum procedures (European Digital Rights et al.,
2021).
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