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Abstract

This paper describes the results of the Knowl-
edge Graph Question Answering (KGQA)
shared task that was co-located with the
TextGraphs 2024 workshop.1 In this task, given
a textual question and a list of entities with the
corresponding KG subgraphs, the participat-
ing system should choose the entity that cor-
rectly answers the question. Our competition
attracted thirty teams, four of which outper-
formed our strong ChatGPT-based zero-shot
baseline. In this paper, we overview the partici-
pating systems and analyze their performance
according to a large-scale automatic evaluation.
To the best of our knowledge, this is the first
competition aimed at the KGQA problem using
the interaction between large language models
(LLMs) and knowledge graphs.

1 Introduction

Recent years have witnessed remarkable ad-
vances in natural language processing (NLP) and
network science domains that mostly develop in-
dependently with rare intersections. We believe
that a proper utilization of graph-based methods
for reasoning over a knowledge graph (KG) is a
prospective way to overcome critical limitations of
the existing large language models (LLMs) which
lack interpretability and factual knowledge and are
prone to the hallucination problem. In order to en-
courage novel research efforts that aim to explore
the hot topic of LLM prompting from the unique
perspective of graph theory, we organized a shared

1https://codalab.lisn.upsaclay.fr/
competitions/18214

♢ Equal contribution

task focused on Knowledge Graph Question An-
swering (KGQA) as a part of the TextGraphs 2024
workshop on graph-based methods for natural lan-
guage processing, which was co-located with the
ACL 2024 conference hosted on August 15 in
Bangkok, Thailand.2

The goal of our KGQA shared task was to investi-
gate how the output of LLMs can be enhanced with
KGs, push the boundaries of current methodologies,
and to foster innovative solutions that leverage the
strengths of both LLMs and KGs. We formulate
the problem as follows. Given an entity from a
KG that corresponds to a given textual question,
the participating teams have to build a system that
classifies whether the entity constitutes the correct
answer to this question, or not. The distinctive fea-
ture of our task is that it does not only provide pairs
of textual question and answer, but provides every
pair with a graph representation of the shortest path
in KG from entities in the query to the candidate
entity generated by an LLM. This setup allows the
participants to experiment with different strategies
for text and graph information fusion.

The KGQA setup with textual passages anchored
to relevant KG subgraphs has been addressed pre-
viously. Yasunaga et al. (2022) proposed to pre-
train and fine-tune with joint intermodal text-graph
interaction on arbitrary text passages linked to
ConceptNet (Speer et al., 2017). In LC-QuaD
dataset (Trivedi et al., 2017), questions are paired
with SPARQL queries for the DBPedia (Lehmann
et al., 2015) database. LC-QuaD 2.0 (Dubey et al.,
2019) extends LC-QuaD to cover both DBPedia
and Wikidata3 with broader question type coverage.

2https://sites.google.com/view/textgraphs2024
3https://www.wikidata.org
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While LC-QuaD’s SPARQL queries are inferred
from manually curated question-specific SPARQL
templates, we stick to the algorithmic approach
of Salnikov et al. (2023) to find relevant subgraphs
as shortest path KG subgraphs. Thus, we present
the first KGQA dataset with a graph construction
procedure unified across all questions and Wikidata
as reference KG. Previous approaches tried to com-
bine LLMs and KGs by using linearized graphs for
fine-tuning (Salnikov et al., 2023; Nikishina et al.,
2023) or by fusing encoded representations from a
pre-trained Transformer encoder and a graph neural
network (Zhang et al., 2022).

The work, as described in this paper, has the
following contribution:

• We released a novel dataset for the KGQA
binary classification task: given a question,
an answer candidate, and a KG subgraph, the
goal is to identify whether the provided candi-
date is a correct answer for the given question
using factual information from the graph.

• We organized the open-call shared task
and built a public leaderboard to evaluate
reasoning-over-graph approaches in a unified
controllable set-up by providing questions
paired with shortest question-answer paths re-
trieved from the Wikidata knowledge graph.

Unlike the existing datasets for end-to-end
KGQA, our dataset eliminates the potential effect
of erroneous entity retrieval, linking, and subgraph
retrieval by focusing solely on the fusion phase
for textual questions and provided KG subgraph.
Thus, it encourages future research focused on
cross-modal text and graph interaction.

2 TextGraphs 2024 KGQA Dataset

We constructed a novel dataset for KGQA that was
inferred from Mintaka (Sen et al., 2022). Mintaka
is a dataset for end-to-end knowledge graph ques-
tion answering, where each question q is annotated
with a set of Wikidata entities Eq mentioned in the
question and ground truth answers Aq for q. Enti-
ties from Eq can serve as anchors for further KG
subgraph retrieval and reasoning over the retrieved
relevant entities. Although the Mintaka dataset con-
tains the correct answers, we decided to focus on
the reasoning part only in our shared task to offer
a more controllable environment. In our case, a
participating system has to choose the correct an-

swer from a list of possible answer options and the
corresponding KG subgraphs.

For our shared task, we followed the KG sub-
graph construction pipeline proposed by Salnikov
et al. (2023). We find the shortest paths between Eq
and the answer candidate entities Aq generated by
a language model, such as T5 (Raffel et al., 2020),
further linked to the Wikidata KG. The summary
of our dataset is presented in Table 1.

Dataset Format. Each instance of the
dataset in our shared task was a tuple
s = (q, Eq, c,G(Eq, c), y) of the following
elements:

• q: question text

• Eq: set of Wikidata entities mentioned in q

• c: candidate answer for q. Unlike Mintaka, we
ensure each candidate to be a valid Wikidata
entity

• G(Q,C): a node- and edge-labeled oriented
graph obtained as a union of shortest path
graphs from each e ∈ Eq to candidate c

• y: a binary label describing whether c is a
correct answer for q: y = 1 if c ∈ Aq and
y = 0 otherwise

Data Split. Our dataset was split into two parts:

• The train set set consists of 3,535 unique
questions inferred solely from Mintaka. We
make all ground truth question-candidate bi-
nary labels publicly available during the com-
petition.

• The test set set covers 1,000 unique questions.
357 of the questions are absent in Mintaka and
are manually created and labeled with ground
truth answer entities from scratch. The test
set consists of two subparts: (i) public and
(ii) private with 700 and 300. The private part
(300 unique questions) includes newly created
questions exclusively.

2.1 Wikidata Knowledge Graph
Wikidata is a collaborative knowledge graph that
contains nearly two billion facts, covering a diverse
range of topics including geography, history, fa-
mous people, and events.4 It serves as a centralized

4https://www.wikidata.org/wiki/Wikidata:
Statistics
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Figure 1: Overview of the pipeline for TextGraphs 2024 shared task workflow. We link entities mentioned in
question and answer candidates generated by an LM to Wikidata KG. Then, we extract shortest path subgraphs
between question and candidates. Question and candidate graph can be further passed to a ranking network to obtain
a confidence score of a candidate being the correct answer to the given question.

repository for structured data and supports various
Wikimedia projects and external applications. The
data in Wikidata can be accessed through a pub-
lic SPARQL endpoint.5 However, due to the large
volume of information, the endpoint is limited to
shorter queries. Nevertheless, Wikidata is fully
downloadable, allowing users to locate all the data
on local servers and bypass public endpoint restric-
tions by using SPARQL query engines or graph
databases such as iGraph, which we have used to
manage our local Wikidata dump.

2.2 Answer Candidate Generation

To generate an initial set of answers, we use the
T5-large language model (Raffel et al., 2020),
which has been trained on the Mintaka training
dataset (Sen et al., 2022). To increase the diver-
sity of the generated responses, we employ Diverse
Beam Search (Vijayakumar et al., 2016), a gen-
eralized framework for producing a list of varied
sequences, which may be used instead of the tradi-
tional beam search approach.

Partition # Questions # Candidates

Train 3,535 36,762
Test (Total) 1,000 10,961

Public Test 700 7,694
Private Test 300 3,267

Table 1: Summary of the dataset used in the shared task.

5https://query.wikidata.org

2.3 Candidate Entity Linking

Entity linking with Wikidata involves identifying
and linking entities to their corresponding entries
in the Wikidata knowledge graph using generated
strings. This process can be challenging due to the
large number of entities in Wikidata, variations in
their names, and the high ambiguity of entity men-
tions. To address these challenges, modern neural
network-based approaches require extensive pro-
cessing (Cao et al., 2022). For our shared task, we
used the public Wikimedia APIs6 that use search
engines to retrieve entities based on their labels and
aliases. By indexing Wikidata entities and their
associated textual data in a search engine like Elas-
ticsearch, which is used by the public Wikimedia
API, we can efficiently retrieve candidate entities
through queries based on their profiles generated
from contextual mentions.

2.4 Answer Candidate Filtering

While our answer candidate generation and link-
ing pipeline could produce an arbitrary number
of negative samples, we aimed at mining a small
subset of only the hardest ones. We assumed that
a harder negative candidate entity should be se-
mantically similar to the ground truth answer. For
example, for a question “In Greek mythology, who
stole fire from Olympian gods to give it to human-
ity?” with the correct answer “Prometheus” (Titan,
culture hero, and trickster figure in Greek mythol-
ogy), a more challenging negative sample would
be “Hermes” (Olympian god in Greek religion and

6https://www.wikidata.org/w/api.php
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mythology) rather than “Pythia” (priestess of the
Temple of Apollo at Delphi). For a given question
q and ground truth answers set Aq, we sampled
a random true answer a ∈ Aq. Next, we ranked
each negative candidate c with respect to the se-
mantic similarity of its description desc(c) to the
description desc(a) of a. As a similarity measure,
we adopted the mutual implication score7 (MIS), a
RoBERTalarge-based (Liu et al., 2019) similarity
metric designed for paraphrase detection (Babakov
et al., 2022). For each question, we truncated its
negative candidate count to 9 having the highest
MIS score and removed questions with less than
five negative candidates.

2.5 Subgraph Construction

We associated each question-answer pair with the
corresponding induced subgraph from the Wikidata
KG. This subgraph was generated by extracting the
shortest paths between an entity derived from the
question and a candidate answer entity, and then by
identifying all distinct nodes along these paths. The
extraction process also preserves all edges between
these nodes, ensuring that relationships between
the entities in the question and answer are main-
tained. The goal of this approach was to create a
comprehensive representation of relevant informa-
tion from the KG for each question-answer pair, ac-
curately reflecting the connections between entities
present in the original graph. Figure 2 shows sim-
ple examples of the obtained shortest path graphs.

3 Shared Task Description

Typically, an end-to-end KGQA pipeline includes
multiple subtasks, such as named entity recognition
and entity linking of entities mentioned in a ques-
tion; construction of a KG subgraph for reasoning.
It is challenging in multi-step KGQA pipelines to
determine whether a prediction error comes from
inaccurate entity retrieval and linking, or the model
failed to perform reasoning over a fine-grained and
informative graph. In our shared task, we used
a simplified setup with fixed question-candidate
subgraphs to enable more accessible evaluation of
knowledge graph reasoning systems.

3.1 Baselines

As baselines, we adopted three supervised ap-
proaches built upon a BERT-based encoder (Devlin

7https://huggingface.co/s-nlp/Mutual_
Implication_Score

et al., 2019) and ChatGPT8 model as a zero-shot
LLM-based baseline. Additionally, we reported
the quality for constant baseline. For non-LLM
baselines, the task was formulated as a binary clas-
sification task: each question-candidate pair is la-
beled with either 1 or 0 independently of other
candidates.

For three encoder-based supervised baselines,
we adopt encoder-only MPNet9 model (Song
et al., 2020) as a base model and perform a 9:1
train/validation split. Each model is trained for five
epochs with a batch size of 64 using Adam opti-
mizer (Kingma and Ba, 2015) and cross-entropy
loss. For prediction, we load each model’s parame-
ters from the best epoch in terms of validation F1
score. The classification threshold of 0.5 remains
constant for all three baselines.

Graph Linearization. For shortest path graphs
representation, we adopt the graph linearization for-
mat from Salnikov et al. (2023) to represent each
candidate graph as a textual string. We traverse
graph edges starting from question entities Eq mov-
ing to candidate answer entities Ec. Each labeled
edge (h, r, t) of type r starting in h leading to t is
linearized as “h, r, t”. If either h = c or t = c, they
were additionally emphasized with BERT model’s
[SEP] tokens: e.g., “[SEP] h [SEP] r [SEP] t” if
h = c. A linearized graph L(G(Eq, c)) for question
q and candidate c was obtained as a concatenation
of all its linearized edges.

Text-Only Baseline. This baseline completely
ignored the presence of question-candidate graphs
and learned to classify textual question-candidate
pairs. Specifically, we pass concatenated question
and candidate string “q [SEP] c” to a binary classi-
fier, where [SEP] was a special separator token of
a BERT-based model.

Graph-Only Baseline. This baseline aimed to
explore what quality a model would demonstrate
seeing only linearized graph L(G(Eq, c)) without
even knowing what question q produced graph
G(Eq, c).
Text+Graph Baseline. As a simple joint text-
and-graph reasoning baseline, we adopted a binary
classifier over the concatenation of question and lin-
earized candidate graph following (Salnikov et al.,
2023): “q [SEP] L(G(Eq, c))”.

8https://chat.openai.com
9https://huggingface.co/sentence-transformers/

all-mpnet-base-v2
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Figure 2: Question-candidate graph visualizations. First row: question “Which film directed by James Cameron
became the highest-grossing movie of all time?” and three answer candidates: (i) Titanic (true answer), (ii) Godzilla,
and (iii) Avengers: Infinity War. Second row: question “Which game is in The Elder Scrolls series and has Alduin
as the main villain?” Entities mentioned in question (e.g., “James Cameron”) are colored blue, intermediate nodes
on the path from question entities to a candidate are colored grey. Correct and incorrect answer candidates are
colored in green and red, respectively

ChatGPT Baseline. As an LLM baseline, we
adopted ChatGPT version gpt-4-0613. To let the
model differentiate between candidate answers
with matching textual names but different underly-
ing Wikidata entities, we modified ambiguous an-
swer choices by adding the type of graph edge lead-
ing to the candidate node in the question-candidate
graph. For instance, for the question “Which film
directed by James Cameron became the highest-
grossing movie of all time?” there are two can-
didate answers named “Titanic”: (i) 1997 film by
James Cameron and (ii) 1953 film by Jean Neg-
ulesco. The types of edges leading to these two
candidate answers are “director” and “original lan-
guage of performance work”. Table 2 shows an
example of the prompt.

Constant Baseline. This baseline assigned label
1 to all samples, i.e., marked all candidate answers
as being correct.

3.2 Evaluation

Our shared task was deployed on the Codalab com-
petition platform.10 All submitted systems were
evaluated on precision, recall, and F1-score for
positive class as well as classification accuracy.

10https://codalab.lisn.upsaclay.fr/
competitions/18214

We performed the ranking of submitted systems
based on F1 score. Overall, the task consisted of
three phases: development, evaluation, and post-
evaluation.

Development Phase. This phase started with the
release of the labeled train set on March 10, 2024.
The participants were invited to get acquainted with
the data format and to start their preliminary exper-
iments. The phase can be considered closed with
the release of the test set on March 25, 2024.

Evaluation Phase. On March 25, 2024, we re-
leased the test set with no ground truth labels pro-
vided. The set consisted of both public and private
subsets, but the participants were not informed of
what subset each test sample belongs to. At this
stage, the participants were encouraged to submit
test set prediction to the public leader board which
provided evaluation results for the public test sub-
set. By the end of the evaluation phase on May 6,
2024, participants were allowed to make their final
submission to obtain evaluation scores on both pri-
vate and public subsets. Private evaluation results
were made publicly available after May 6, 2024.

Post-Evaluation Phase. After the end of Shared
Task’s official evaluation part on May 6, 2024, all
participants can make submissions on the test data.
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Baseline Input Examples

Text-Only

- Which film directed by James Cameron became the highest-grossing
movie of all time? </s> Avatar
- Which film directed by James Cameron became the highest-grossing
movie of all time? </s> Titanic

Graph-Only
- </s> Titanic </s>, director, James Cameron
- </s> Godzilla </s>, award received, star on Hollywood Walk of Fame
James Cameron, award received, star on Hollywood Walk of Fame

Text+Graph

- Which film directed by James Cameron became the highest-grossing movie of
all time? </s> </s> Titanic </s>, director, James Cameron
- Which film directed by James Cameron became the highest-grossing movie of
all time? </s> </s> Godzilla </s>, award received, star on Hollywood Walk
of Fame James Cameron, award received, star on Hollywood Walk of Fame

ChatGPT

Please answer the following question.
provide one or more comma-separated option ids as an answer.

Which film directed by James Cameron became the highest-grossing movie of
all time?
0. Avatar
1. Avengers: Infinity War
2. Godzilla
3. Home Alone
4. Home Alone: The Holiday Heist
5. Spectasia
6. Terminator 2: Judgment Day
7. Terminator II
8. The Terminator
9. Titanic (director)
10. Titanic (original language of performance work)

Table 2: Input examples for baseline models; </s> is a separator token of the MPNet encoder used for baselines.

These submissions have a separate leaderboard and
are not considered for the official public evaluation
summary.

4 Official Results

In total, we have received submissions from 30
teams, including both public and private leader-
boards. After the end of the evaluation phase, we
asked the participants to describe their systems.

4.1 Shared Task Submissions

Team NLPeople applied the Chain-of-Thought
(CoT, Wei et al. (2022)) technique to decompose
the target question into a series of sub-questions
and attempted to use question-specific prompts
based on question types (Moses et al., 2024). The
final prediction is an ensemble of three LLM-based

solutions: (1) Llama3-70B-Instruct11 with CoT, (2)
GPT-3.5 with CoT, and (3) Llama3-70b-instruct
with Question-Specific prompts. In cases when the
ensemble failed to make a prediction, a zero shot
GPT-4’s prediction was reported.
Team HW-TSC implemented an LLM prompt de-
sign based on self-ranking and emotional incen-
tives (Tang et al., 2024). Self-ranking implied that
the gpt-4-1015-preview base model is asked to
score its answer choices with confidence levels.
Emotional prompts were aimed at encouraging the
model to carefully examine a question.
Team Skoltech adopted question-candidate graph
sizes and Wikidata entity description as addi-
tional features to enhance the initial GPT-4 pre-

11https://huggingface.co/meta-llama/
Meta-Llama-3-70B-Instruct
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Private Evaluation Public Evaluation
Team Name Rank P R F1 Acc Rank P R F1 Acc

NLPeople 1 86.67 85.14 85.90 97.39 1 86.54 85.45 86.00 97.41
HW-TSC 2 84.34 82.11 83.21 96.91 2 83.95 81.96 82.94 96.87
Skoltech 3 81.78 84.26 83.00 96.78 3 81.05 84.34 82.66 96.71
POSTECH 4 82.50 80.65 81.56 96.60 4 82.14 80.42 81.27 96.56
Baseline: ChatGPT 5 59.91 78.59 67.99 93.09 5 58.11 78.18 66.67 92.73
Team <blank> 6 60.54 72.73 66.07 93.03 6 58.20 71.47 64.16 92.58
BpHigh 7 55.99 75.86 64.43 92.18 — — — — —
tigformer 8 40.39 80.35 53.76 87.10 7 39.93 79.02 53.05 87.00
CUFE 9 51.92 55.52 53.66 91.05 — — — — —
Team_87 10 65.13 42.72 51.59 92.52 8 63.71 43.22 51.50 92.44
Iron Autobots 11 73.15 35.68 47.96 92.77 9 77.05 32.87 46.08 92.85
nlp_enjoyers 12 40.90 39.98 40.43 89.01 10 39.29 38.46 38.87 88.76
NLPunks 13 40.61 37.83 39.17 89.03 12 41.23 32.87 36.58 89.41
KseniiaPetrushina 14 34.90 44.18 39.00 87.10 11 33.96 40.28 36.85 87.17
Transformers-Spring24 15 29.19 44.48 35.24 84.75 16 28.56 40.70 33.56 85.03
Cordyceps 16 35.60 34.80 35.20 88.04 15 34.43 33.71 34.06 87.87
YAR 17 40.99 30.69 35.10 89.41 17 42.70 26.99 33.08 89.85
Transformers-Spring24 18 34.27 34.70 34.48 87.69 — — — — —
Fancy Transformers 19 39.31 30.01 34.04 89.14 19 38.64 27.83 32.36 89.19
xren 20 48.40 22.19 30.43 90.53 22 51.16 21.68 30.45 90.80
ThangDLU 21 18.56 67.55 29.12 69.31 20 22.29 58.04 32.21 77.29
adugeen 22 50.14 17.89 26.37 90.68 18 46.63 25.17 32.70 90.37
Baseline: Text+Graph 23 64.88 15.35 24.82 91.32 28 72.41 11.75 20.22 91.38
IRRRR 24 15.27 57.77 24.16 66.14 25 16.03 59.16 25.22 67.40
YAR 25 65.61 14.17 23.31 91.30 — — — — —
Baseline: Text-Only 26 15.04 38.32 21.60 74.04 27 14.57 38.88 21.20 73.13
mathamateur (–) 27 10.01 86.51 17.95 26.17 21 35.49 26.85 30.57 88.67
Baseline: Constant 28 9.33 100.00 17.07 09.33 29 9.29 100.00 17.01 9.2
Baseline: Graph-Only 29 62.16 6.74 12.17 90.91 30 66.67 06.99 12.66 91.03
hawkeoni 30 23.86 2.05 3.78 90.25 13 24.68 68.11 36.24 77.72
Hijli_JU_NLP 31 17.65 1.47 2.71 90.17 31 22.64 1.68 3.12 90.33
a063mg — — — — — 14 42.71 28.67 34.31 89.80
russabiswas — — — — — 23 28.47 29.23 28.85 86.60
__Team1()__ — — — — — 24 43.37 18.74 26.17 90.17
GrahamSquad — — — — — 26 70.78 15.24 25.09 91.54

Table 3: Official evaluation results of the TextGraphs 2024 Shared Task for the public and private evaluation phases.
P, R, F1, and Acc stand for positive class precision, recall, F1-score, and accuracy, respectively. The best values for
each metric are highlighted in bold. Official baselines are highlighted in cyan.

dictions (Lysyuk and Braslavski, 2024). They
rephrased the given questions to further question
rephrasing technique, we further strengthen their
prediction.
Team <Blank> used gpt-3.5-turbo enhanced
with CoT and XML tags prompting techniques.
Team tigformer implemented a late interaction
for exchanging information between text and
graph representations via an attention-pooling
layer (Rakesh et al., 2024). They employed Graph-
former (Ying et al., 2021) to encode question-
candidate graphs and a T5 model (Raffel et al.,

2020) to obtain textual representations.
Team nlp_enjoyers fine-tuned an MPNet en-
coder (Song et al., 2020) using LoRA (Hu et al.,
2022). For a given question q and candidate c, they
modified the input format for Text+Graph baseline
as: “Eq: q [SEP] L(G(Eq, c))” and separated each
edge in the linearized graph with a semicolon (Kur-
diukov et al., 2024). They assumed only a single
candidate for each question to be correct and re-
formulated the task from binary classification to

11https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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ranking: given a question, they select the most
probable answer based on model scores for all can-
didate answers.
Team Fancy Transformers experimented with
different graph characteristics including length,
density, degree centrality, eigenvector centrality,
closeness centrality and PageRank. They adopted
the encoder-only all-MiniLM-L12-v212 and all-
MiniLM-L6-v213 models for encoding textual in-
formation. They reported that the latter model
achieved higher performance.
Team JellyBell applied Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020) approach to
answering questions (Belikova et al., 2024). They
retrieved relevant to question documents from inter-
net by DuckDuckGo API14 and generated answer
by prompting LLM with fetched documnets.

5 Discussion

Table 3 presents the evaluation results for both
public and private phases of the TextGraphs 2024
shared task on knowledge graph question answer-
ing. Three teams have managed to outperform a
strong ChatGPT baseline with their LLM-based
systems showing that large models are good at
memorizing factual knowledge during pre-training.

Since one of the primary goals of our shared task
was to evaluate the ability of LMs to reason over
given KG subgraphs, we highlight the teams that
submitted non-LLM solutions. Team tigformer
has gained rank 8 of 31 with 53.76% F1-score us-
ing two separate encoders for textual and graph
information with late intermodal interaction. It is
worth noting that while Team nlp_enjoyers only
achieved the 12th place on the private leaderboard,
they managed to surpass the initial Text+Graph
baseline by 15.6% F1-score with light-weighted
modifications only. Their results indicate that while
resource-demanding and computationally expen-
sive LLM dominate the task in general, there might
be some room for improving light-weighted task-
specific solutions. Team Fancy Transformers has
achieved 34.04% F1-score using all-MiniLM-L6-v2
encoder having 22.7M parameters only enhanced
with classical non-neural graph features.

12https://huggingface.co/sentence-transformers/
all-MiniLM-L12-v2

13https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

14https://duckduckgo.com

6 Conclusion

We presented an overview of the TextGraphs 2024
shared task on knowledge graph questions an-
swering (KGQA) with pre-calculated shortest path
graphs for Wikidata entities mentioned in the ques-
tion and a candidate answer. Analysis of the results
has revealed that large language models (LLMs)
currently show superior performance even in a very
simplified binary classification task formulation
when a model is asked to find the right answer
among the pre-defined set of answer candidates.
While LLMs are extremely resource-demanding,
the exploration of effective light-weighted systems
for question-oriented graph representation and rea-
soning still remains a challenge

We hope that our competition will encourage
further research on developing effective reasoning
methods over retrieved KG subgraphs, exploring
novel subgraph representation techniques, and im-
proving the interpretability and explainability of
the resulting question answering models.
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