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Abstract

A common approach to automatically assign-
ing diagnostic and procedural clinical codes
to health records is to solve the task as a
multi-label classification problem. Difficulties
associated with this task stem from domain
knowledge requirements, long document texts,
large and imbalanced label space, reflecting
the breadth and dependencies between medi-
cal diagnoses and procedures. Decisions in the
healthcare domain also need to demonstrate
sound reasoning, both when they are correct
and when they are erroneous. Existing works
address some of these challenges by incorpo-
rating external knowledge, which can be en-
coded into a graph-structured format. Incor-
porating graph structures on the output label
space or between the input document and out-
put label spaces have shown promising results
in medical codes classification. Limited focus
has been put on utilizing graph-based repre-
sentation on the input document space. To par-
tially bridge this gap, we represent clinical texts
as graph-structured data through the UMLS
Metathesaurus; we explore implicit graph repre-
sentation through pre-trained knowledge graph
embeddings and explicit domain-knowledge
guided encoding of document concepts and re-
lational information through graph neural net-
works. Our findings highlight the benefits of
pre-trained knowledge graph embeddings in
understanding model’s attention-based reason-
ing. In contrast, transparent domain knowledge
guidance in graph encoder approaches is over-
shadowed by performance loss. Our qualitative
analysis identifies limitations that contribute to
prediction errors.

1 Introduction

The codification of clinical texts by assigning
the International Classification of Diseases (ICD)
codes for the purpose of streamlining research, in-
surance billing, and other workflow standardiza-
tion is a necessary task in healthcare settings. To

assign an accurate and complete set of ICD codes
to a clinical text, both a knowledge of institutional
guidelines and understanding of medical terminol-
ogy are crucial. Consequently, it is time and cost
intensive. Solving the task as a multi-label clas-
sification (MLC) problem is one of the common
top-performing deep learning approaches to au-
tomating this task.

In addition to challenges stemming from the ex-
tensive domain knowledge requirements, clinical
notes are often over 3,000 words long; due to com-
putational time and memory limitations, models
often have to truncate these documents to a smaller
size (Moons et al., 2020; Kaur et al., 2021), risking
information loss that could be helpful in predic-
tions. Many pre-trained language models such as
BERT (Devlin et al., 2019) and its variants, for
instance, can only take inputs up to 512 tokens.

External knowledge resources such as the UMLS
Metathesaurus (Bodenreider, 2004) for medical
concepts and relational information have shown
promising results in named entity recognition
(NER) (Liang et al., 2023) and automatic ICD cod-
ing (Yuan et al., 2022). While attention mecha-
nism (Bahdanau et al., 2015) in combination with
knowledge graphs (KG) and graph neural networks
(GNN) have been shown to be beneficial when
applied to relational information from the output
(label) space in this task, the effects of graph repre-
sentation on the input (document) space are not yet
extensively studied.

We are motivated by the applications of this work
in modeling other clinical tasks that can also be set
up as an MLC problem, e.g. inpatient documenta-
tion from multi-modal or non-text input data1. It is
crucial in critical and highly-regulated fields that
human domain experts can understand what con-

1Real-time charting in electronic health records (EHR) for
clinicians in some settings involves selecting corresponding
options from a fixed menu with optional unstructured texts,
similar to data entries in a spreadsheet.
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Figure 1: Overview of MLC pipeline: a) concept-based tokens are extracted to represent the input documents, b)
tokens are represented by pre-trained feature embeddings (Word2Vec or KGE), c) encoding step transforms input
features into latent representations (LSTM or GCN output) and d) binary classifiers determine whether the output
representations belong to specific labels.

tribute to correct and incorrect predictions when
incorporating automated systems’ outputs in their
workflow. These considerations influence our deci-
sion to investigate concept-based features and ver-
ify model’s attention-based interpretability through
qualitative analysis.

We investigate the impact of implicit graph struc-
tures in the form of knowledge graph embeddings
(KGE) concept features representation and explicit
domain-knowledge guided encoding of input doc-
ument concepts and their relational information
using GNN. Our contributions can be summarized
as follows: 1) we highlight the benefits of do-
main knowledge injection through KGE over tradi-
tional contextualized embeddings in representing
concept-based features and facilitating clinically
intuitive attention-based reasoning, 2) we demon-
strate the limitations of GNN encoding architec-
ture, and 3) we identify challenges that contribute
to attention-based reasoning errors.

2 Related Works

Knowledge Graph Embeddings: Teng et al.
(2020) incorporate knowledge graph embeddings
(KGE) as a supplement to text representations to
simulate the human reasoning process of deriving
ICD codes from a medical knowledge base and to
make results more interpretable when combined
with the attention mechanism. Chang et al. (2020)
demonstrate that KGE are effective at leveraging
relational information and representing biomedi-
cal domain knowledge; e.g. TransE (Bordes et al.,
2013) and RotatE (Sun et al., 2018) are able to
retain semantic group and type information inher-

ent in the source knowledge base ontology e.g.
SNOMED CT in the UMLS. Combining KG repre-
sented entities with input document representations
also shows promising improvements in relation ex-
tractions (Matsubara et al., 2023). Beyond these
works in the biomedical domain, to date, methods
involving KGE in automatic ICD coding have been
limited.

Graph Neural Networks: EHR data often
contain information regarding diagnoses, lab val-
ues, encounters, and the patients organized in a
graph-like structure to reflect clinical decisions pro-
cess (Choi et al., 2020). These observations suggest
that the features in an EHR encounter and clinical
notes have structural relationships. GNN archi-
tectures are known to be effective at representing
relational information, making them suitable for
capturing dependencies among ICD codes and med-
ical concepts. Choi et al. (2020) posit that Graph
Convolutional Networks (GCN) represent a special
case of Transformer (Vaswani et al., 2017) and pro-
pose Graph Convolutional Transformer (GCT) to
structurally represent key components in an EHR
document. Qiu et al. (2019), Zong and Sun (2020),
and Cao et al. (2020) use GCN to model ICD code
and/or concept co-occurrence to address the class
imbalance problem in the output (label) space.

Attention Mechanism: To provide human-
interpretable results, Mullenbach et al. (2018) and
Teng et al. (2020) utilize attention mechanism (Bah-
danau et al., 2015; Luong et al., 2015) to verify that
relevant text spans are clinically informative. Teng
et al. (2020), Vu et al. (2020), Saini et al. (2021),
and Yuan et al. (2022) use the softmax operation to
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calculate label-wise attention weights from the en-
coder’s output to create label-specific vectors repre-
senting the input document. Many high-performing
models incorporate variations of the attention mech-
anism. In combination with domain knowledge
implicitly represented through KGE, the attention
mechanism helps the model focus on parts of the
input document relevant to the predicted labels, re-
sembling how a human medical coder concentrates
on relevant parts of the document to determine the
corresponding ICD codes based on their domain
knowledge expertise. We refer to this process as
attention-based reasoning in this work.

3 Methodology

When ICD coding is set up as an MLC task, as
shown in Figure 1, a document D is represented as
a sequence X = [x1, x2, x3, ...xn], where n repre-
sents the number of words or extracted concepts in
X . The classification model’s learning task is to
output a label vector Y = [y1, y2, ..., yL], where L
is the total number of codes from a label set L and
each yi ∈ {0, 1}. 1 denotes the document contains
code i and 0 otherwise. A common training objec-
tive is to minimize the binary cross entropy (BCE)
loss function between the predicted labels ỹi and
the true labels yi.

All experiments are conducted on the Multi-
parameter Intelligent Monitoring in Intensive Care-
III (MIMIC-III) dataset (Johnson et al., 2016).
We focus on the discharge summaries and their as-
signed International Classification of Diseases, 9th
Edition, (ICD-9) codes2. We follow pre-processing
steps and measure results using the same evaluation
metrics in Mullenbach et al. (2018) and Vu et al.
(2020).

3.1 Concept Features Tokenization

Using text input as a baseline reference, we rep-
resent a document as a sequence of medical con-
cepts. Exploiting mapping between medical terms
and their textual descriptions in large ontological
databases, e.g. the Unified Medical Language Sys-
tem (UMLS) (Bodenreider, 2004), identifying con-
cepts in the input documents can be viewed as an
entity linking (EL) task. Within the UMLS, terms
across vocabularies are assigned Concept Unique
Identifiers (CUIs). Additional attributes such as

2Multiple editions of ICD codes exist; for simplification,
ICD and ICD-9 codes are used interchangeably in this work
unless otherwise indicated.

semantic types, relations, and hierarchical infor-
mation are also available across CUIs. Since ICD
codes are a subset of concepts within the UMLS,
using concept (CUI) tokens also provides a way to
incorporate additional external knowledge into the
model.

3.1.1 Concepts Extraction
We use ScispaCy UMLS entity linking (EL) tool
(Neumann et al., 2019) to extract CUIs from the
original discharge summaries. We select only CUIs
with at least 0.7 confidence scores. Choosing a
higher score of 0.8 does not empirically improve re-
sults in our experiments (see Appendix A.4). Anal-
ogous to the pruning steps in a text pre-processing
pipeline, we also prune out rare and frequent CUIs.
Using analogous thresholds as in Mullenbach et al.
(2018) and Vu et al. (2020), we determine the min-
imum and maximum frequency thresholds for CUI
tokens as follows:

• frequent: normalized frequencies exceeding
1500 times per million tokens.

• rare: normalized frequencies less than 0.1
times per million tokens.

We also discard CUIs that do not belong to the
semantic types of the MIMIC-III dataset ICD-9
codes as well as zero-shot CUIs.3

The resultant vocabulary size of the dataset is
26,485 unique CUI tokens. As seen in Table 1, the
average input sequence lengths across partitions
are well within the typical truncated input lengths
of existing state-of-the-art models.

Version Partition Min Mean Max

Full
Train 9 (55) 696 (1,731) 4,560 (11,940)
Validation 103 (244) 819 (2,049) 3,038 (7,247)
Test 90 (252) 825 (2,057) 4,725 (8,209)

Top-50
Train 62 (117) 715 (1,782) 3,665 (8,387)
Validation 102 (244) 826 (2,066) 3,036 (7,247)
Test 108 (259) 841 (2,095) 3,061 (7,128)

Table 1: Minimum, mean, and maximum CUI and
text tokens (in parentheses) per document for the Full
and Top-50 MIMIC-III dataset partitions after pre-
processing.

3.2 Feature Representation
Contextualized Representation: Word2Vec

(W2V) embeddings for CUIs serve as a compara-
tive baseline against KGE in our experiments due

3Zero-shot CUIs are defined as CUIs in the validation or
test partition not seen in the train set.
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EHR Feature UMLS Semantic Group (SG) or Type (TUI)

Diagnosis

DISO - Disorders
ANAT - Anatomy
PHYS - Physiology
PHEN - Phenomena
LIVB - Living Beings

Procedure
PROC - Procedures
DEVI - Devices
ACTI - Activities & Behaviors

Lab Result
CHEM - Chemicals & Drugs
T034 - Laboratory or Test Result
T059 - Laboratory Procedure

Concept CONC - Concepts & Ideas

Table 2: UMLS Semantic Groups (SG) and Semantic
Type Information (TUI) and their corresponding EHR
structural features: Diagnosis, Procedure, Lab Result,
and Concept; features are identified based on our obser-
vations and findings in Choi et al. (2020).

to its usage in existing top-performing models for
the text input type. The reference results with text
features in Table 3 also use W2V embeddings. Us-
ing the same parameters as in Mullenbach et al.
(2018) and Vu et al. (2020), we train W2V embed-
dings for CUI tokens with CBOW (Mikolov et al.,
2013) algorithm. We use Gensim (Řehůřek and
Sojka, 2010) W2V implementation.4

Knowledge Representation: We use TransE
Bordes et al. (2013) KGE trained on pre-processed
data of the UMLS 2019AB released publicly by
Chang et al. (2020)5. Since both TransE (Bordes
et al., 2013) and RotatE (Sun et al., 2018) achieve
comparable results on semantic classification tasks
and capture similar semantic information as inves-
tigated in Chang et al. (2020), experiments compar-
ing performance between different types of KGE
are beyond the focus of this works and are left for
future works. We use DGL-KE (Zheng et al., 2020)
implementation of TransE for training according to
steps described in Chang et al. (2020).6

3.3 Encoders
Label Attention Encoder (LAAT): The

LAAT model introduced by Vu et al. (2020) fol-
lows an MLC pipeline as shown in Figure 1. It con-

4Other types of corpus-based embeddings have been pro-
posed to represent concepts in the UMLS, notably Cui2Vec
(Beam et al., 2020) and Med2Vec (Choi et al., 2016). How-
ever, Chang et al. (2020) observe that these approaches have
limitations due to data inaccessibility, high computational re-
quirements, and low coverage, which make their usability for
downstream tasks limited.

5The link to the data files is published through the
SNOMED CT Knowledge Graph Embeddings Git repository:
https://github.com/dchang56/snomed_kge

6See Appendix A.2.2 for KGE training hyperparameters.

sists of an embedding layer where pre-trained W2V
embeddings are used to represent document input
tokens. The encoder is a bidirectional Long Short
Term Memory (LSTM) network whose output pro-
vides latent feature representations for the input
tokens up to a specified number; this is represented
as a vector H where H ∈ R2u×n. n refers to the
number of input tokens and u is the LSTM hidden
size. The attention layer A ∈ R|L|×n transforms
the feature representations H into label-specific
vectors as shown in Eq. 1 to 3. W ∈ Rda×2u and
U ∈ R|L|×da matrices are learnable parameters. u
and da are tunable hyper-parameters. The output
of the label-specific layer V ∈ R2u×|L| is the rep-
resentation of the input document where each ith

column in V corresponds to the ith label in L. The
last layer is a feed-forward neural network followed
by a sigmoid activation function, which predicts
whether a specific ICD code is assigned to the input
document or not.

Z = tanh(WH) (1)

A = softmax(UZ) (2)

V = HAT (3)

We re-implement the model to accommodate
concept-based tokens using PyTorch (Paszke et al.,
2017). We follow implementation details such as
optimal hyper-parameters, learning rate, batch size,
number of epochs, dropout probability, AdamW
(Loshchilov and Hutter, 2018) optimization, and
learning rate scheduler as implemented by Vu et al.
(2020). In lieu of early stopping, we save the model
with the highest validation F1micro for evaluation
against the test partition. See Appendix A.2.1 for
implementation details. We consider this model a
high-performing non-GNN baseline encoder.7

GNN Encoder: We use 2-layer Graph Convo-
lution Networks (GCN) (Kipf and Welling, 2017)
as a representative GNN encoder for experiments
investigating GNN domain knowledge encoding.
Choi et al. (2020) demonstrates the correspondence
between normalized adjacency matrix calculations
in GCN and the attention equation in the Trans-
former (Vaswani et al., 2017) architecture. Similar
to how LAAT utilizes attention mechanism to fo-
cus on relevant parts of the input data (represented

7Higher performing encoders have since been proposed
and our study can be extrapolated to them; however, for sim-
plicity and discussion, we designate LAAT as a strong non-
GNN baseline for this task.
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Encoder Embedding Precision Recall F1 AUC P@5
macro micro macro micro macro micro macro micro

LAAT (50)
W2V 59.11 64.90 48.92 55.03 53.53 59.56 86.07 89.41 58.06
KGE 64.11 68.46 54.55 59.02 58.94 63.39 88.22 91.14 60.69
Text 72.04 75.60 61.84 66.95 66.55 71.01 92.79 94.60 67.28

LAAT (Full)
W2V 7.26 65.78 4.70 35.44 5.70 46.07 84.92 97.77 73.31
KGE 7.86 64.78 5.47 37.80 6.45 47.74 86.62 98.05 74.41
Text 10.65 65.70 9.19 50.64 9.87 57.20 89.84 98.56 80.91

GCNEHR (50)
W2V 54.81 65.04 34.75 44.15 42.53 52.60 83.96 87.02 54.49
KGE 58.75 65.24 41.61 48.41 48.71 55.58 84.72 87.72 56.23

GCNEHR (Full)
W2V 3.53 60.19 1.55 18.17 2.16 27.92 75.31 96.28 58.61
KGE 3.89 60.69 1.56 18.91 2.23 28.84 76.10 96.40 59.32

Table 3: Results from experiments on the LAAT and GCN models with the MIMIC-III Top-50 and Full test sets
comparing KGE and W2V CUI embedding types. Text input results are included as a reference as it is the input type
in Vu et al. (2020). Underlined scores are highest across input types; bold ones are the highest within CUI input.

Version Model Precision Recall F1 AUC P@5
macro micro macro micro macro micro macro micro

Top-50
GCNBASE 62.12 67.81 38.22 45.02 47.33 54.11 84.54 87.40 56.00
GCNEHR 58.76 65.24 41.61 48.41 48.72 55.58 84.72 87.72 56.23

Full
GCNBASE 2.86 55.53 1.31 17.81 1.80 26.97 77.19 96.07 55.60
GCNEHR 3.89 60.69 1.56 18.91 2.23 28.84 76.10 96.40 59.32

Table 4: Results from GCN experiment comparing different edge connection approaches; all models use KGE node
embeddings to represent CUIs.

as an output of an LSTM encoder), GCN encoder
and the readout function output a graph-level rep-
resentation of the input document that focuses on
relevant concept nodes in the graph.

Each input document that has been processed
into a sequence of CUIs is represented as a graph
G = {V, E}, where V and E are nodes and edges.
Each node in V represents a unique CUI in a doc-
ument. An edge in E represents a connection or
relation between CUIs (nodes) as determined by
different graph construction methods. To obtain
a document-level representation for classification,
we specify a sum pooling readout function as it has
been shown to be optimal for graph classification
tasks (Xu et al., 2018). A readout function can be
a simple sum, mean, or max pooling function or
more complex (Xu et al., 2018; Ying et al., 2018;
Zheng et al., 2020); however, this is beyond the
focus of this work.

3.4 Experiment Settings

Implicit Graph Structures with KGE: We
compare performance between KGE and W2V
embeddings on the LAAT model for the CUI-
represented input and on the GCN encoder model.
We investigate if KGE pre-training and the implicit

relational information from the external UMLS
knowledge base improve ICD-9 classification.

Explicit Graph Structures with GNN: We
compare a graph edge construction method that ex-
plicitly follows clinical reasoning steps as reflected
in CUIs co-occurrences against a baseline approach
guided by relations in the UMLS KG. As observed
in Choi et al. (2020) and our manual annotation
(see Appendix A.3), there is a relationship between
diagnostic information and treatments that is also
reflected in EHR structural features as shown in
Table 2. In this work, we refer to the process of
relating treatments or procedures to diagnostic in-
formation as clinical reasoning. Since ICD codes
encompass health-related phenomena (e.g. signs
and symptoms, findings, complaints, social factors
etc.) and treatment concepts, we investigate if the
explicit relational information encoding following
a domain-knowledge guided approach improves
ICD-9 classification.

1. Baseline (GCNBASE) Nodes representing
CUIs in a document have edges between them
if both nodes (CUIs) are related in the UMLS
KG used in pre-training KGE.

2. Domain-Knowledge Guided (GCNEHR)
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Figure 2: The clinical reasoning steps relating distantly mentioned CUIs in the manual annotation example shown in
Figure 5 of Appendix A.3 are demonstrated in this flow chart. The CUIs are color-coded by their UMLS Semantic
Group (SG) and are organized into EHR structural features described in Table 2. The arrows demonstrate how
Diagnostic (DISO) CUIs are related to Procedural (PROC) and Lab (CHEM, T034, T059) CUIs and how Concept
(CONC) CUIs are associated with both Diagnostic and Procedural CUIs.

From manual annotation of 5 randomly se-
lected samples in the Top-50 version of the
training dataset8, we observe co-occurrences
between CUIs that also follow typical clini-
cal presentations. For instance, CUIs describ-
ing diagnoses are present along with CUIs
for certain procedures. As shown in Figure
2, it is possible to group CUIs corresponding
to EHR feature types such as diagnoses, pro-
cedures, concepts, and lab data based on the
UMLS semantic information. While a domain
expert with clinical experience can easily re-
late diagnostic concepts and commonly asso-
ciated treatment procedures, conditional prob-
abilities between CUIs of different semantic
groups can provide a useful edge connection
guidance that follows clinical reasoning as
proposed in Choi et al. (2020). The steps are
summarized as follows:

(a) CUIs are grouped by their UMLS Seman-
tic Group (SG) and EHR feature type
described in Table 2.

(b) Conditional probabilities of the co-
occurrences of CUIs across these groups

8See Appendix A.3 for an annotated example.

are calculated from the training partition
as in Choi et al. (2020).

(c) Edges are present between CUIs if their
conditional probability exceeds a speci-
fied threshold: 0.3, 0.5, 0.7, 0.8.

3.5 Attention-based Reasoning Evaluation

To evaluate the attention-based reasoning inter-
pretability, we analyze input text and concept to-
kens from the Top-50 LAAT experiments. After
filtering out test partition samples with no predicted
labels, we randomly select 10 samples that contain
predictions of the most commonly occurring labels
in the test partition. We extract tokens with nor-
malized activation weights from LAAT Attention
Layer A (Eq. 2) of at least 0.5 of the maximum
attention weight (for each predicted label) and com-
pare them to tokens annotated by an intensive care
clinician9 as relevant. We choose 0.5 as results in
Teng et al. (2020) comparing interpretability evalu-
ation of text segments extracted from higher atten-
tion weights (0.8 threshold) show lower accuracy

9We use the definition of clinician as explained in Institute
of Medicine (US) Committee on the Future of Primary Care
(1994).
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than those from lower weights; their findings sug-
gest lower weight ranges may identify potentially
informative tokens.

4 Results

Results in Table 3 demonstrate the benefits of im-
plicit graph-representation in the form of KGE on
both LAAT and GCN encoders over corpus-based
CUI embeddings. KGE shows improvement over
W2V CUI embeddings across all metrics on the
LAAT model in the Top-50 and Full versions, with
an exception of the Precisionmicro where W2V per-
formance is higher. On GCNEHR model, KGE
shows slightly higher performance across all met-
rics over W2V embeddings. Our findings support
observations noted in Chang et al. (2020) and Teng
et al. (2020) that KGEs improve domain knowl-
edge representation on the input document space in
leveraging relational information. However, with
the exception of Precisionmicro and AUCmicro met-
rics in the Full version where CUI results are com-
parable to text-input baseline, concept features re-
sult in lower performance than text features. For
critical-domain applications, the interpretability ad-
vantage of concept-based features over text-based
input type as demonstrated in Section 4.1 may jus-
tify some performance trade-offs.

Table 4 shows the impact of graph edge con-
struction approaches on GCN performance. Across
most of the metrics, a graph construction method
that incorporates clinical reasoning and EHR struc-
ture offers some benefits over baseline, where
edges are connected based on KG relations. An ex-
ception is observed in the Top-50 Precision, where
the baseline KG-guided construction outperforms
the EHR-guided approach. The more noticeable
difference in the Full version can be attributed to
a larger code base exceeding KG coverage, thus,
contributing to a lower Recall in the GCNBASE

approach. While GCN as a standalone encoder pro-
vides an ability to explicitly encode relational in-
formation that reflects clinical reasoning and EHR
structural features in the graph construction meth-
ods, possibly improving model’s interpretability
by domain experts, this contribution is limited due
to much lower performance across all metrics in
comparison to LAAT model.

EHR Conditional Probability Threshold:
Among the GCNEHR approaches, performance
varies according to minimum co-occurrence con-
ditional probability threshold between EHR struc-

tural feature groups. As shown in Figure 3, this vari-
ability is more noticeable in the Top-50 than in the
Full version. Based on fine-tuning for the highest
F1micro among GCNEHR experiments over differ-
ent thresholds, the optimal minimum probabilities
for the GCNEHR are 0.7 and 0.5 for the Top-50
and Full version respectively. GCNEHR results
reported in Table 4 are based on these thresholds
for their respective version.

Figure 3: F1micro score in relation to minimum condi-
tional probability threshold in the Top-50 & Full ver-
sions of GCNEHR model. Error bars indicate the stan-
dard deviation from the mean F1 scores of each group;
boundaries are shown at 6 times the standard deviation
for clearer visualization.

4.1 Attention-based Reasoning
Interpretability

Examples in Table 5 demonstrate the impact of dif-
ferent input feature types on the model’s attention
mechanism. Clinician-annotated text and CUI to-
kens are shown as a reference. Our goal is to verify
that label predictions are made following clinically
informative attention-based reasoning. A false pos-
itive example (“401.9”) is included to illustrate if
erroneous predictions are avoidable, i.e. given the
available information (in the form of document text
or CUI tokens), would a clinician make similarly
incorrect label predictions?

In the example where the ICD label, its CUI,
and description match with the input CUI or
their text description, KGE and W2V concept fea-
tures are equally informative as in the example of
“427.31:Atrial Fibrillation”. Both concept embed-
ding types are more precise than the highlighted
text tokens (“fib” and “fibrillation”), possibly due
to exact CUI matching. Dropping “a” from “a fib”
suggests that the attention mechanism may poten-
tially associate the same text token for both “a fib”,
“v fib” (ventricular fibrillation), or other terms that
are partially similar in the text-input model.
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ICD-9:Description (CUI) Feature Type Attention Weight ≥ 0.5 % of Max

427.31:Atrial
Fibrillation
(C0004238)

Text fib, fibrillation
KGE C0004238 - Atrial fibrillation

W2V
C0004238 - Atrial Fibrillation
C0344434 - ECG: atrial fibrillation

Texthuman a fib, atrial fibrillation
CUIhuman C0004238-Atrial fibrillation

038.9:Septicemia
(C0036690)

Text septic

KGE

C0349410 - Single organ dysfunction (2:0.9-1.0)
C0026766 - Multiple organ failure (5:0.6-0.9)
C0277524 - Infectious colitis
C1457868 - Worse

W2V
C0349410 - Single organ dysfunction
C0004030 - Aspergillosis

Texthuman

drop in blood pressure, iv fluids,
pressors, hyperdynamic left ventricle
presumed to be septic, samples grew mold

CUIhuman

C0020649 - Low blood pressure
C0349410 - Single organ dysfunction
C0948268 - Hemodynamic instability
C0009450 - Disorder due to infection

995.92:Severe
Sepsis
(C1719672)

Text septic, pressors, central

KGE

C0026766 - Multiple organ failure (4:0.5-1.0)
C0349410 - Single organ dysfunction (2:0.8)
C1457868 - Worse
C0004030 - Aspergillosis

W2V
C0349410 - Single organ dysfunction
C0004030 - Aspergillosis

Texthuman

drop in blood pressure, iv fluids,
pressors, hyperdynamic left ventricle
presumed to be septic, multisystem organ failure
worsened, hemodynamic status worsened

CUIhuman

C0020649 - Low blood pressure
C0026766 - Multiple organ failure
C0948268 - Hemodynamic instability
C0009450 - Disorder due to infection
C0443343 - Unstable status

96.72:Continuous
invasive
mechanical
ventilation
for 96 consecutive
hours or more
(C2349745)

Text Intubated, mold, which, aspergillis

KGE

C0553891 - Extubation of trachea
C0011065 - Death (2:0.65-0.9)
C0425043 - Death of relative
C0205463 - Physiologic

W2V
C0011065 - Death
C0278060 - Mental state

Texthuman
Intubation, remained intubated,
over the next several days, extubation

CUIhuman
C0021925 - Intubation
C0553891 - Extubation of trachea

401.9:Essential
Hypertension
(C0085580)⋆

Text hypertension

KGE

C0020538 - Hypertensive disorder (4:0.6-1.0)
C0020473 - Hyperlipidemia
C0221155 - Systolic hypertension (3:0.5-0.7)
C0235222 - Diastolic hypertension (3:0.5-0.6)

W2V

C0428465 - Serum lipids high
C0221155 - Systolic hypertension (3:0.7-0.8)
C0235222 - Diastolic hypertension (4:0.6-0.7)
C1696708 - Prehypertension (2:0.7)
C0019099 - Congo-Crimean hemorrhagic fever
C0020538 - Hypertensive disorder
C0020473 - Hyperlipidemia

Texthuman

no† prior history of htn, hypertension,
due to pain† post procedure
or undiagnosed† htn

CUIhuman
C0030193 - Pain†
C0262534 - Labile hypertension due to being
in a clinical environment†

Table 5: Comparison of tokens with attention weights
≥ 0.5 of the highest attention weight across feature
types. ⋆ indicates a false positive label example. Bold
font indicates text tokens with highest attention weights.
†indicates tokens are crucial to preventing false pre-
dictions. CUI tokens are ordered from highest to low-
est weights with number of occurrences and attention
weight % range in parentheses.

When the label CUIs are not present in the input
document, as in “038.9:Septicemia”, “995.92:Se-
vere Sepsis”, and “96.72:Continuous invasive me-
chanical ventilation for 96 consecutive hours or
more” examples, the model’s attention mechanism
identifies more clinically informative CUIs in the
KGE model than in the W2V model. Slightly dif-
ferent KGE CUIs and attention weight distribu-
tions are associated with “038.9” and “995.92” la-

bels. In contrast, the exact same W2V CUIs and
almost identical attention distributions are associ-
ated with both labels. In the case of label “96.72”,
KGE model does identify one of the relevant to-
kens (C0553891 - Extubation of trachea, which
implies prior intubation and continuous invasive
mechanical ventilation), while W2V model does
not identify either of them. While both models
predict equally correct labels, the external knowl-
edge implicitly represented in KGE helps facilitate
more clinically intuitive attention-based reasoning
compared to W2V embeddings.

Both KGE and W2V attentions include neigh-
boring tokens and their synonyms, e.g. C0011065,
C0425043, C0278060, C0019099 for “96.72” and
“401.9”. The presence of extraneous CUIs that are
similar concept-wise to relevant collocate CUIs
such as “C0019099 - Congo-Crimean hemorrhagic
fever” and “C0425043 - Death of relative” high-
lights the importance of optimizing the concept ex-
traction accuracy in concept-based models. While
the extraneous CUI tokens can be clinically associ-
ated with the relevant tokens or the predicted label
concept-wise, the text-input attention mechanism
can identify tokens that have no clinical importance
as being most associated with a correctly predicted
label, e.g. “which” has the highest attention weight
for the label “96.72”. Making correct predictions
based on unjustifiable reasoning is undesirable as
it raises concerns over the model’s trustworthiness.

Regardless of feature type, the attention mecha-
nism ignores negation. Negated mentions are com-
mon in EHR as clinicians document their assess-
ments, noting findings as absent as opposed to not
mentioning them at all; the latter may lead to the
undesirable assumption of not having made an as-
sessment. As seen in the “401.9” example, “no”
or “undiagnosed” are not considered relevant, as
indicated by the tokens being omitted by attention
weights, leading to a false prediction. In contrast,
the clinician-annotated example shows these nega-
tion tokens are relevant for excluding the false posi-
tive label. As there are no CUIs indicating negation
or a diagnostic absence in the input document, it
appears that negation in the text input is filtered out
during the concepts extraction step. Despite the ab-
sence of negation-like CUIs in the input documents,
clinician-annotated CUIs include concepts that can
prevent the false “401.9” prediction: “C0262534 -
hypertension due to being in a clinical environment”
in conjunction with “C0030193 - pain”. This ob-
servation regarding negation-related errors aligns
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with findings in Hossain et al. (2020) (despite their
analysis being with respect to machine translation
systems), indicating that the presence of negation
can significantly lower downstream output quality.
The presence of CUIs that can lead to excluding
negation-related false positive labels without need-
ing to encode negation as a concept suggests a
potential alternative for future works in addressing
this challenge.

4.2 Limitations & Future Works
UMLS KG covers broad medical concepts and re-
lations that may not overlap with rules in the ICD-
9 coding guidelines that are periodically updated.
While our results suggest that GCN performance is
impacted by graph construction approaches, heuris-
tics based on clinical reasoning may not be as use-
ful for ICD coding, particularly if the intended
purpose is non-clinical. Future works on ICD-9
coding on this dataset should explore KG construc-
tion from concepts and relations according to rules
in the dataset’s edition of ICD coding guidelines.

Our qualitative analysis is based on a small
sample size and one clinician’s annotation; future
works with more resources should expand the sam-
ple size and include analysis by multiple experts
from the intended application domain. To main-
tain a defined scope of our study with respect to
existing reference models results, our experiments
are conducted only on one dataset and one version
of ICD-9 codes, excluding ICD-10. A more re-
cent dataset, MIMIC-IV (Johnson et al., 2023), has
been released since the time of our experiments.
Additionally, a recent study by Edin et al. (2023)
comparing benchmark models on both MIMIC-III
(Johnson et al., 2016) and MIMIC-IV (Johnson
et al., 2023) datasets with results on both ICD-9
and ICD-10 codes should facilitate the extrapola-
tion of our approach to broader datasets.

As shown in Table 1, documents represented
as concept-based (CUI) tokens are 1/3 in length
of those represented as text-based tokens. The
shorter input documents enable future experiments
on larger models previously deemed incompati-
ble. Since text-based models still lead in perfor-
mance, utilizing CUI descriptions instead of the
CUI themselves as features is worth exploring.
CUI and ICD codes have meanings through their
corresponding descriptions. Considering KGE’s
low concept coverage and recent works involv-
ing domain-knowledge-augmented (UMLS) BERT
(Michalopoulos et al., 2021), future research direc-

tions may include leveraging generative models in
KG expansion and using concept-based KGE or
GCN encoded relational information to augment
text-based features.

Standard MLC evaluation metrics, which con-
sider all label classes to be independent (Kos-
mopoulos et al., 2015), can be problematic as a
model predicting more generalized labels, e.g. par-
ent labels encompassing the ground truths, or sib-
ling labels in the ICD code structure, would be
considered as low-performing as a model predict-
ing completely unrelated labels. Depending on
downstream applications, hierarchical evaluation
metrics that are more suitable for MLC of depen-
dent label classes should also be considered for
automatic ICD coding evaluation.

5 Conclusion

Our investigation into implicit graph representa-
tion in the input space highlights the benefits of
KGE over corpus-based concept-feature embed-
dings in improving the model’s attention-based
reasoning interpretability. The experiments in-
volving explicit relational information representa-
tion through graph construction approaches demon-
strate the limitations of GCN as a standalone en-
coder in ICD coding task. The qualitative analy-
sis of the attention-based reasoning identifies chal-
lenges that contribute to erroneous predictions and
provides insight into how KG construction may
be improved in future works. Our contributions
underscore the potential for graph concept-based
features while addressing the difficulties associated
with medical codes classification as an MLC prob-
lem from long input documents, domain knowledge
requirements, and interpretability.
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A Supplementary Material

Additional information regarding the UMLS and
ICD-9 codes are explained in the following sec-
tions. Implementation details including hyper-
parameters specified in our experiments are pro-
vided for reproducibility. Our Git repository10 also
contains further implementation details and code to
reproduce our experiments. Additional experiment
results not part of the main contributions are also
included.

A.1 ICD-9 Code Structure
Moons et al. (2020) describes the structure of ICD-
9 codes as consisting of at most five numbers: the
first three represent a disease category, a fourth
number narrows down to specific diseases, and a
fifth number differentiates between specific disease
variants. This structure creates a hierarchical tax-
onomy with up to 4 layers (L1 - L4) from the root
level as shown in Figure 4.

Figure 4: An example of ICD-9 codes with code de-
scriptions illustrating the hierarchical layers. The exam-
ple here shows how diabetes mellitus and its specific
variants are represented in the ICD-9 code taxonomy.
Illustration is reproduced from Moons et al. (2020).

Being a subset of the UMLS Knowledge Bases
(Bodenreider, 2004), ICD-9 codes have corre-
sponding Concept Unique Identifiers (CUIs) in the

10https://github.com/pokarats/CoDER

UMLS, which also contains Semantic Type Infor-
mation (TUI); examples from the Top-50 ICD-9
codes of the MIMIC-III dataset and their UMLS in-
formation are shown in Table 6. Within the UMLS,
high-level grouping based on TUI is noted among
the codes in Table 6; both C0176511 and C0189898
share the same TUI as they both describe diagnos-
tic procedures. The grouping in the UMLS does
not always correspond to the same hierarchy in the
ICD-9 taxonomy as noted by the mentioned codes
being under two distinct L2-level numbers.

ICD-9 CUI TUI Description

33.24 C0176511 T060 Closed [endoscopic] biopsy of bronchus
37.23 C0189898 T060 Catheterization of both left and right heart
38.91 C0007431 T061 Arterial catheterization
38.93 C0162203 T058 Venous catheterization, not elsewhere classified

Table 6: Examples of ICD-9 codes and their correspond-
ing UMLS CUI, TUI, and descriptions from the Top-50
ICD-9 code labels of the MIMIC-III dataset (Johnson
et al., 2016).

A.2 Implementation Details
The following sections describe hyper-parameters
used in our experiments. We do not fine-tune hyper-
parameters for our specific dataset training; we pri-
oritize keeping hyper-parameters as close as possi-
ble to those reported as optimal by Vu et al. (2020)
for the LAAT model.

A.2.1 LAAT
As in Vu et al. (2020), we train for 50 epochs, using
a batch size of 8, with AdamW (Loshchilov and
Hutter, 2018) optimizer and learning rate of 0.001.
We also use a learning rate scheduler to reduce the
learning rate by 10% if there is no improvement
in F1micro on the validation set for 5 epochs. We
apply a drop-out probability of 0.3. We specify
the LSTM hidden size u = 256 and projection
size da = 256 for the Top-50 version and u =
512, da = 512 for the Full version as these are
the optimal hyper-parameters reported in Vu et al.
(2020). The text input results in Table 8 verify
that our re-implementation of the LAAT model
reproduces comparable performance on the same
dataset as reported in Vu et al. (2020) following the
same pre-processing steps and hyper-parameters.

A.2.2 KGE
We obtain KGE for CUI entities following train-
ing steps described in Chang et al. (2020) using
DGL-KE (Zheng et al., 2020) implementation of
TransE (Bordes et al., 2013). The case4 train, dev,
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Version Model Precision Recall F1 AUC P@5
macro micro macro micro macro micro macro micro

Top-50
GCN0.7 62.12 67.81 38.22 45.02 47.33 54.11 84.54 87.40 56.00
GCN0.83 56.44 63.22 41.61 47.05 47.98 53.95 83.75 86.22 54.23

Table 7: Results from GCNBASE experiments on the MIMIC-III Top-50 with CUI input type, comparing entity
linking threshold of 0.7 and 0.83. All GCN models use KGE as node embeddings to represent each CUI node in a
graph.

Encoder Implementation F1 AUC P@5
macro micro macro micro

LAAT (50)
Vu et al. (2020) 66.60 71.50 92.50 94.60 67.50
Ours 66.55 71.01 92.79 94.60 67.28

LAAT (Full)
Vu et al. (2020) 8.70 58.10 92.60 98.80 81.80
Ours 9.87 57.20 89.84 98.56 80.91

Table 8: Text input results on the MIMIC-III Top-50
and Full test sets from our implementation of the LAAT
model in comparison to the results reported in Vu et al.
(2020).

and test files are downloaded from SNOMED CT
Knowledge Graph Embeddings Git repository11.
We use the following key configuration parameters
for training:

model_name: TransE_l2, max_step: 60000,
batch_size: 1024, batch_size_eval: 1000,
neg_sample_size: 64,
neg_sample_size_eval: 90000,
hidden_dim: 100, lr: 0.1,
gamma: 10.0,
adversarial_temperature: 1.0,
regularization_coef: 1e-07,
pairwise: false, loss_genre: Logsigmoid

A.2.3 GCN

Our 2-layer GCN classification is implemented
using DGL (Wang et al., 2020) with PyTorch
(Paszke et al., 2017) backend. We control the
hyper-parameters to be as similar to the LAAT
specifications as possible. For the GCN layers,
we specify the hidden size u = 256 and projec-
tion size da = 256 for the Top-50 and u = 512,
da = 512 for the Full versions analogous to the
hyper-parameters for the LSTM encoder in the
LAAT experiments. We train for 50 epochs, using
a batch size of 8, and learning rate of 0.001, and
AdamW (Loshchilov and Hutter, 2018). We also
use the same learning rate scheduler and dropout
probability.

11https://github.com/dchang56/snomed_kge

A.3 From EHR to GCN Graph Construction
To demonstrate the relational characteristics in
EHR structural features and clinical reasoning, we
manually annotate 5 randomly selected discharge
summaries from the Top-50 version of the MIMIC-
III (Johnson et al., 2016) training dataset. The
annotations in Figure 5 illustrate that extracted con-
cepts representing parts of a note provide sufficient
information for a clinical domain expert to relate
the assigned ICD codes to relevant parts of the
document. Despite having only clinical domain
knowledge without ICD coding training, we are
able to identify relevant spans of text and CUIs that
relate to the assigned ICD codes.

A.4 CUI Extraction Entity Linking Threshold
Comparison

We notice many CUIs in the randomly selected
samples do not seem relevant to the clinical pre-
sentation described in the note nor assigned ICD
codes. We verify if a more selective (higher) thresh-
old has an impact on performance by experiment-
ing with the Top-50 GCNBASE and setting the
EL threshold to 0.83. Results in Table 7 show
performance scores of the GCNBASE model with
EL thresholds of 0.7 and 0.83. Evaluation scores
are higher in most metrics with the 0.7 threshold.
Recallmacro,micro and F1macro are the only met-
rics where the 0.83 threshold shows higher perfor-
mance. Considering the evaluation scores between
the two EL thresholds are within a few % points
of each other, it does not seem computationally
worthwhile to repeat all experiments with the 0.83
threshold.

A.5 Runtime Comparison
LAAT experiments are run on NVIDIA GeForce
RTX 3090 and GCN on NVIDIA RTX A6000. Ta-
ble 9 illustrates training runtime and mean input
document lengths in number of text or CUI tokens
for the LAAT model. CUI input models (W2V
and KGE) show training runtimes that are multi-
tudes less than the text input model. The shorter
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Figure 5: Spans of text and extracted CUIs in the input document are highlighted with colors that correspond to the
assigned ICD codes. Red-highlighting designates codes that we cannot definitively infer from the input document.
Additional information provided by the UMLS such as Semantic Type Information (TUI), Semantic Group (SG),
and corresponding CUI to each ICD code demonstrate correspondence between the input document and output label
space. The additional highlight colors in the annotation references group CUIs by their SG: DISO, CONC, and
PROC.
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Version Model Training Runtime (hh:mm:ss) Mean Training Input Length (tokens)

Top-50
LAATtext 04:53:10 1783
LAATW2V 00:41:13 396
LAATKGE 00:40:31 396

Full
LAATtext 21:35:34 1731
LAATW2V 05:40:58 385
LAATKGE 05:36:59 385

Table 9: Training runtime comparison between text and CUI input types for the Top-50 and Full versions of the
MIMIC-III dataset. Mean number of tokens for the training partition is provided. Runtime is only for training the
model and is exclusive of time required for concepts extraction and pre-processing.

Version Model Training Runtime (hh:mm:ss) Mean # Nodes Mean # Edges Mean # Sub-graphs

Top-50
GCNBASE 00:17:48 246 419 167
GCNEHR 00:09:44 246 513 145
GCNCOMBO 00:14:11 246 684 90

Full
GCNBASE 01:04:40 241 408 165
GCNEHR 00:49:25 241 1024 50
GCNCOMBO 01:08:22 241 1189 28

Table 10: Training runtime comparison between GCN graph construction approaches for the Top-50 and Full
versions of the MIMIC-III dataset. Mean node, edge, and sub-graphs (connected components) numbers for the
training partition are provided. Runtime is for training the GCN model and is exclusive of time spent on pre-
processing or building graph datasets.

runtime appears to correlate with shorter average
input lengths. Table 10 compares training runtime
across GCN graph construction approaches. Con-
trary to LAAT models, there does not seem to be
a notable relationship between runtime and graph
nodes, edges, or sub-graphs numbers. As notice-
able in the table, graph construction heuristic af-
fects the number of sub-graphs on average; more
edges result in fewer sub-graphs. Due to the multi-
ple steps involved in our proposed pipeline, from
concepts extraction to graph construction heuristics,
application to other datasets requires additional
data preparation and pre-processing time.

The LAAT model suffers from time and memory
complexity issues associated with the LSTM en-
coder and attention mechanism. The GCN models
are also limited by the memory requirement to store
a completed adjacency matrix; additional sampling
algorithms and alternative models are required for
scalability to larger datasets (Ma et al., 2022).
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