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Abstract

We introduce ImplicaTR, a linguistically in-
formed diagnostic dataset designed to evaluate
semantic and pragmatic reasoning capabilities
of Natural Language Inference (NLI) models
in Turkish. Existing Turkish NLI datasets treat
NLI as determining whether a sentence pair
represents entailment, contradiction, or a neu-
tral relation. Such datasets do not distinguish
between semantic entailment and pragmatic
implicature, which linguists have long recog-
nized as separate inferences types. ImplicaTR
addresses this by testing NLI models’ ability to
differentiate between entailment and implica-
ture, thus assessing their pragmatic reasoning
skills. The dataset consists of 19,350 semi-
automatically generated sentence pairs cover-
ing implicature, entailment, contradiction, and
neutral relations. We evaluated various mod-
els (BERT, Gemma, Llama-2, and Mistral) on
ImplicaTR and found out that these models
can reach up to 98% accuracy on semantic and
pragmatic reasoning. We also fine tuned vari-
ous models on subsets of ImplicaTR to test the
abilities of NLI models to generalize across un-
seen implicature contexts. Our results indicate
that model performance is highly dependent on
the diversity of linguistic expressions within
each subset, highlighting a weakness in the
abstract generalization capabilities of large lan-
guage models regarding pragmatic reasoning.
We share all the code, models, and the dataset.1

1 Introduction

Natural Language Inference (NLI) tasks are gener-
ally designed as three-way classification problems
between sentence pairs (Gubelmann et al., 2023).
Given a sentence pair consisting of a premise (P)
and a hypothesis (H), the task is to classify the
relation between P and H as one of entailment,
contradiction, or neutral. Some of the most com-
monly used NLI datasets such as SNLI (Bowman

1https://github.com/kursathalat/ImplicaTR

et al., 2015) and MNLI (Williams et al., 2018)
contain three way annotations of sentence pairs
and recently Budur et al. (2020) translated both
datasets into Turkish to create the combined NLI-
TR dataset. Although these NLI datasets have been
useful in testing the sentential understanding and
reasoning capabilities of language models, they
fall short of detecting the precise nature of rea-
soning, i.e. semantic vs. pragmatic, due to the
coarseness of their labeling schemas. In particu-
lar, these datasets conflate various implicational
relations such as entailment, implicature, and pre-
supposition under the same label i.e. entailment.
However, linguists have long observed that entail-
ments differ from implicatures and presuppositions
specifically in terms of what kind of reasoning
mechanisms underlie such implicational relations
(Grice, 1975; Horn, 2006, 1972; Levinson, 2000;
Sauerland, 2012).

A key distinction between entailments and im-
plicatures is that of reasoning over what is said
and what is not said. Entailment relations are in-
ferences based on what is said and they arise as a
consequence of the meanings of expressions in a
sentence and the general laws of logic. The defin-
ing characteristic of an entailment relation between
a premise (P) and a hyopthesis (H) is Truth. P en-
tails H if and only iff whenever P is True H must
be True as well. The P-H pair in (1) illustrates
entailment. This is a logical corollary of the subset-
superset relation between fluffy cats and cats.

(1) P entails H
P: Garfield is a fluffy cat.
H: Garfield is a cat.

Implicatures on the other hand are inferences based
on what is not said and they follow from general
cooperativeness principles of conversation (Grice,
1975, 1989). In (2), the relation between P and H
is implicature but not entailment.
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(2) P implicates H
Q: Is he handsome?
P: He is smart.
H: He is not handsome.

Unlike entailments, implicatures are not logical
consequences of their premises. Instead, they arise
through pragmatic reasoning. Implicatures can be
distinguished from ordinary entailments by means
of various tests such as cancellation, suspension,
and reinforcement. For example, implicatures can
be cancelled without leading to a contradiction but
entailments cannot as illustrated in (3) and (4).

(3) Entailment cancelled, contradiction
P: Garfield is a fluffy cat.
H’: Garfield is not a cat.

(4) Implicature cancelled, no contradiction
Q: Is he handsome?
P: He is smart... (H’:) And handsome.

To test the pragmatic reasoning capabilities of lan-
guage models in Turkish, we introduce ImplicaTR,
the first fine-grained Turkish NLI dataset consisting
of Premise-Hypothesis pairs containing entailment,
implicature, contradiction, and neutral labels. We
test various types of large language models (LLMs)
using ImplicaTR and observe that LLMs are capa-
ble of carrying out both semantic and pragmatic
reasoning with success rates of up to 98% accuracy.
Despite their high levels of success, our ablation
studies reveal that LLMs do not form a high level
abstraction for pragmatic reasoning as they can-
not generalize across various types of implicature
contexts.

2 Related Work

NLI, a subset of the broader task known as Natural
Language Reasoning (Yu et al., 2023), has been
extensively researched within the context of textual
entailment. Research in NLI led to the creation
of numerous benchmark datasets aimed at training
and evaluating the inferencing capabilities of lan-
guage models. Major NLI datasets such as SNLI
(Bowman et al., 2015) and (Williams et al., 2018)
focused on three-way (entailment, contradiction,
neutral) classification of inferential relations. Al-
though these benchmark datasets have been widely
adopted, they have also been noted to have some
issues such as the predictability of the inference
between premise and hypothesis due to repeating
patterns within the hypothesis like negation (Guru-

rangan et al., 2018; Poliak, 2020) or the overwhelm-
ing majority of upward entailing contexts leading
the models to make errors in downward entailing
contexts (Yanaka et al., 2019a). To overcome some
of these challenges various NLI datasets have been
created. (Yanaka et al., 2019b) created the HELP
dataset to overcome the issues with downward en-
tailment contexts. (Conneau et al., 2018) created
the XNLI dataset to expand the NLI research into
languages other than English. The availability of
NLI datasets in Turkish is limited with NLI-TR
(Budur et al., 2020), which presents an automatic
translation of SNLI and MNLI combined, and with
STSb-TR (Fikri et al., 2021) for semantic textual
similarity.

Recent NLI research started to pay attention to
more granular inference types that can help evalu-
ate the precise reasoning capabilities of language
models by distinguishing inference types such as
implicature, entailment, presupposition. Implica-
ture (George and Mamidi, 2020) and BIG-Bench
(Srivastava and others, 2022) datasets were created
for particulatized implicatures. Similarly, GRICE
(Zheng et al., 2021) offers conversational reason-
ing and implicature data in the form of open di-
alogues devised by an automated grammar. The
IMPPRESsive dataset (Jeretic et al., 2020) consists
of semi-automatically generated scalar implica-
tures and presuppositions as Premise-Hypothesis
pairs, where authors show that models can do prag-
matic reasoning for some types of scales in their
dataset.

This brief review of the literature reveals that
the NLI literature needs more work in the areas of
pragmatic reasoning and we aim to help fill this
gap by investigating implicatures, which present
a distinct line of work for the NLI research with
its more granular comprehension of the pragmatic
inferences. In addition, NLI research in Turkish
has a limited scope, totally lacking an investiga-
tion into implicatures to the best of our knowledge.
With its rich morphology and agglutinative nature
especially reflected on the verbs, Turkish presents
a peculiar case for probing into how implicatures
are handled by NLI models.

3 Dataset: ImplicaTR

ImplicaTR is a semi-automatically generated Turk-
ish NLI dataset annotated with a granular classifi-
cation of sentential inference types covering scalar
implicatures in addition to the conventional three-
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Figure 1: Square of Opposition

way NLI classes (entailment, contradiction, neu-
tral). The dataset comprises five different linguistic
categories (quantifiers, adjectives, verbs, modals,
and numerals) with varying number of scalar pairs
for each category.

3.1 Scalar Pairs

A scale (or a Horn Scale) (Horn, 1972) is a set
of two or more lexemes that are in a relationship
of strength or intensity. For instance, the scalar
pair ⟨some, all⟩ contains the weaker term some
and the stronger term all, between which there is a
quantificational difference. Horn (2006) observed
a set of logical relations between scalar elements
(e.g. some - all) and their negations (none - not all)
which he represented as quadruplets on a square of
opposition shown in Figure 1.

In Figure 1, the universals B and C entail A and
D, respectively, while B and C logically contradict
each other. The particulars A and D are in a neu-
tral relationship with their universal counterparts
B and C. Notably, utterance of A or D implicate
the truthfulness of one another. Thus, we obtain
the conventional NLI classes along with the impli-
cature inference from a quadruplet of sentences
stemming from a scalar pair and their negation.

We created ImplicaTR by using a variety of
scalar pairs and their negations as captured by the
Square of Opposition. To ensure wide coverage,
we covered a total of 44 scalar pairs from give dis-
tinct linguistics categories consisting of adjectives,
verbs, quantificational determiners, modal expres-
sions, and numerals. Some scalar pairs, as those
in De Melo and Bansal (2013), were excluded as
their scalar interpretations are highly contextual
and impossible to control without further context.

3.2 Linguistic Categories

Scalar meanings in natural languages can be ex-
pressed by different lexical categories (e.g. ad-
jectives, verbs, etc.) and yet the logical relations

among scalar pairs are constant as noticed by lin-
guists (Horn, 2006; Kennedy and McNally, 2005;
Kennedy, 1999) and illustrated on the Square of
Opposition in Figure 1. This indicates that humans
are able to make abstract generalizations regard-
ing the logical relations among scalar expressions
regardless of their lexical categories or linguistic
expression. To evaluate the abstract generalization
capabilities of language models across different
lexical categories, we used scalar pairs from five
different categories: adjectives, verbs numerals,
modals and quantificational determiners.

Adjectives and verbs form open-class categories.
Open-class categories permit new members and
cover a wider range of linguistic expressions com-
pared to closed-class categories. Usually, this trans-
lates lower relative frequency per lexeme in a cor-
pus compared to closed class categories. We used
a total of 46 open-class words (28 adjectives and
18 verbs). Adjectival pairs include examples such
as ⟨benzer,aynı⟩ (‘similar-same’), ⟨yakın, bitişik⟩
(‘close-adjacent’), whereas verbal pairs include in-
stances such as ⟨başla, bitir⟩ (‘start - finish’) (fol-
lowing Jackendoff (1996); Pedersen (2014)).

Quantificational determiners, modals, and nu-
merals form closed-class categories. Quantifica-
tional determiners are naturally scalar as they de-
note degrees of quantification. We used seven quan-
tificational determiners to form various scalar pairs
such as ⟨birkaç, bütün⟩ (‘a few’- ‘all’). Modal ex-
pressions also encode quantificational force (Hac-
quard, 2010) and thus create scalar pairs. Modal ex-
pressions come in various flavors such as epistemic,
referring to the certainty of knowledge (Kaufmann
et al., 2006), and deontic, referring to the cases
of obligation or permission (Johanson, 2009). We
have only used four epistemic modal expressions
as deontic modals in Turkish usually result in am-
biguity which makes it hard to evaluate the success
of language models.

The last type of scalar expressions in the dataset
are numerals. Numerals belong to closed-class
words consisting of a finite number of lexical items
yet they require particular attention for two key
reasons. Numerals are by definition ordered and
they form an infinite scale (⟨0, 1, 2, 3, 4, ...⟩ or ⟨bir,
iki, üç, dört, ...⟩. This makes their distribution in
any given dataset quite unbalanced. While some
common numerals such as bir, iki, beş, on can be
very frequent in a corpus, complex numeral expres-
sions such as üç yüz elli yedi (357) or on iki bin
sekizyüz otuz üç (12833) will be rare if present at
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all. To alleviate the sparsity issue, we have limited
the number of unique numerals in the dataset to
18 and we opted for relatively common numerals
such as bir, iki, beş, otuz, altmış, ... (1,2,5,30,60,...)
The second point to note is that numerals behave
differently from other scalar expressions when they
are combined with negation. In general, negation
of a stronger value on a scalar pair implicates the
weaker term. “Not all chairs are dirty.” implicates

“Some chairs are dirty.” With numerals, negation of
a stronger value raises two additional implicatures
besides the implicature of the weaker value. These
are at-most (Papafragou and Schwarz, 2005) and
the existential implicatures as illustrated in (5).

(5) A: You need five apples for this dessert.
P: Oh, we don’t have four apples.
H1: We have at most four apples.
H2: We have at least one apple.

3.3 Data Generation
ImplicaTR was built semi-automatically through
an iterative process. For each scalar pair (<bazı,
tüm> <some, all>), we manually created a few
sample quadruplets of sentences ⟨A,B,C,D⟩, where
sentence A contains the weaker term (bazı), B the
stronger term (tüm), C negation of the weaker term
(hiç), and D negation of the stronger term (tümü
değil) as illustrated in Figure 2. A sample quadru-
plet is given in Table 1.

Figure 2: Quadruplets and inference relations

Table 1: A Sample Quadruplet

Sentence ID Scalar Item Sentence
A bazı Kitapların bazısını okudum.
B tüm Kitapların tümünü okudum.
C hiç Kitapların hiçbirini okumadım.
D tümü değil Kitapların tümünü okumadım.

In addition, we manually created a set of A sen-
tences for each scalar pair that covers a wide range
of linguistic structures. By using the manually
created quadruplets as few-shot examples, we em-
ployed GPT-4 (OpenAI, 2024) to autogenerate the

B, C, and D sentences for the remaining A sen-
tences. At each iterative step, two expert linguists
reviewed the autogenerated quadruplets to verify
their grammaticality and the accuracy of the infer-
ence relations among the quadruplets. Scalar pairs
that led to ambiguities and linguistic structures that
disrupted the inference relations were removed af-
ter each iteration until we reached a reliable set of
scalar pairs and linguistic structures. See Table 2
for a complete set of inferences obtained from a
quadruplet.

In the final iteration, we created 19,350 sentence
pairs covering the four types of inference types
entailment, implicature, contradiction and neutral.
The quality of the dataset was verified by randomly
sampling 2,137 sentence pairs, ensuring a 95% con-
fidence interval and a 2% margin of error. An
expert linguist reviewed these sentence pairs, re-
vealing that 97.89% of the data had correct infer-
ence labels. See Appendix A for the distribution
of scalar pairs and other descriptive statistics about
the dataset.

4 Experiment 1

Experiment 1 aims to explore whether LLMs ex-
hibit pragmatic reasoning, specifically in scalar
implicature resolution. We fine-tuned a series of
models on ImplicaTR and observed that language
models can successfully identify implicatures.

4.1 Experimental Setup

4.2 Data

We split the dataset into train (12,309 items), val-
idation (3,153 items), and test (3,888 items) sets
via stratified sampling to ensure that the model can
see examples from each category and scalar pair
and that a single quadruplet is included in only and
only one of the splits.

4.3 Models

For this experiment, we used two different sets of
models: Masked Language Models (e.g. BERT-
family models) and generative models. BERT (De-
vlin et al., 2019) is an encoder-decoder model based
on the transformers architecture (Vaswani et al.,
2017). With their bidirectional architecture, BERT-
family models take into account the left and the
right context of a masked element within a sen-
tence. On the other hand, generative LLMs based
on transformers are trained on seq2seq tasks, where
they take the input sequence and generate an out-
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Table 2: A Sample Set of Inferences out of a Quadruplet

Premise
Type

Hypothesis
Type

Premise Example Hypothesis Example Inference Type/Label

A D Kitapların bazısını okudum. Kitapların tümünü okumadım. implicature
D A Kitapların tümünü okumadım. Kitapların bazısını okudum. implicature
C D Kitapların hiçbirini okumadım. Kitapların tümünü okumadım. entailment
B A Kitapların tümünü okudum. Kitapların bazısını okudum. entailment
D C Kitapların tümünü okumadım. Kitapların hiçbirini okumadım. neutral
A B Kitapların bazısını okudum. Kitapların tümünü okudum. neutral
B C Kitapların tümünü okudum. Kitapların hiçbirini okumadım. contradiction
C B Kitapların hiçbirini okumadım. Kitapların tümünü okudum. contradiction

put sequence; thus, these models learn and generate
output by performing next-word prediction. We se-
lected these two types of models as BERTs have
been shown to demonstrate superior comprehen-
sion of language (Cho et al., 2021), while genera-
tive models are in widespread use in spite of their
relatively poorer grasp of the linguistic insights (Fu
et al., 2023; Raffel et al., 2023).

BERT-family models employed in this experi-
ment are bert-base-uncased, BERT-NLI (Laurer
et al., 2023), and BERTurk (Schweter, 2020).
BERT-NLI is the DeBERTaV3-based zero-shot
model and was trained on XNLI and MNLI
datasets, which we expect would show greater
performance on NLI tasks. BERTurk is a Turk-
ish model and was trained on Turkish Wikipedia
dumps, which allows us to compare the cross-task
ability of this model against the cross-lingual abil-
ity of BERT-NLI. As for generative models, we
fine-tuned the 7B parameter versions of Llama-2
(Touvron et al., 2023), Gemma (Team et al., 2024),
and Mistral (Jiang et al., 2023). Training was done
via prompting for generative models, for which a
sample training item is given in Appendix B.

The training hyperparameters used for the BERT
models are as given below.

Table 3: Training Hyperparameters for BERT Models

Hyperparameter Value
hidden dropout value 0.3
attention dropout prob 0.25
number of epochs 10
gradient accumulation steps 2
warmup ratio 0.01
batch size 64
weight decay 0.05
learning rate 0.00001
lr reduction factor 0.5
lr reduction threshold 0.2

4.4 Results

We fine tuned the models on the training datasets
and evaluated their success on the test sets. Figure
3 presents the accuracy scores of the fine-tuned
models as well as the base models (before fine
tuning). We observe that the base models are not
biased towards any of the inference classes.

Figure 3: Accuracy scores from Experiment 1

Within the BERT family, BERT-NLI excelled the
task with 0.97 while BERTurk achieves a higher
score than the base model. This shows that the NLI
training of BERT-NLI increased the ability of the
model to recognize textual entailment even though
we introduced a new class, implicature. Genera-
tive models demonstrated parallel results, where
Gemma and Mistral reached accuracy scores of
0.98. These results suggest that generative mod-
els can handle pragmatic reasoning tasks such as
detecting scalar implicatures. Llama-2 showed a
poorer performance with 0.69, which we think is
due to the the size the of the training data. Llama-2
was trained on 2T tokens whereas this number is
6T for Gemma and probably a similarly high num-
ber for Mistral. Therefore, models seem to learn
the pragmatic contributions of words when they are
exposed to them more during training.
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4.5 Benchmark on XNLI and MNLI

In order to evaluate the performance of our fine-
tuned models, we tested our fine-tuned BERT-NLI
model on the XNLI and MNLI test sets as it was
the best performing BERT model in our exper-
iments. The original BERT-NLI model as well
as XNLI and MNLI offers a three-way classifica-
tion whereas our fine-tuned BERT-NLI model does
more granular classification by predicting implica-
ture as well. Thus, to evaluate the performance, we
employed four different strategies in mapping our 4-
way classification onto the 3-way classes of XNLI
and MNLI test sets. First, without any alteration,
we calculated the accuracy score by comparing
predictions against ground labels as is. Then, we
converted the implicature predictions to entailment,
neutral and contradiction, and we calculated the
accuracy score accordingly to see how the accuracy
scores change per label.

Figure 4: Accuracies of Finetuned BERT-NLI with Dif-
ferent Labeling on selected XNLI and MNLI sets, and
Original BERT-NLI Score

The original implicature case has the lowest
score in all sets while converting the predicted label
to neutral or contradiction yielded the best scores.
This is in line with the argument that NLI models
are positively biased towards the contradiction and
neutral classes because of the existence of nega-
tion words like not and superlative expressions
denoting the maximal values (Gururangan et al.,
2018). Compared to the base BERT-NLI model,
our model’s accuracy score is lower by 12%, which
is expected due to the granularity of our labels and
the smaller size of the implicature data.

5 Experiment 2

Upon observing that LLMs are capable of learning
pragmatic inferences in the form of scalar impli-
catures, we conducted a second experiment where
we perform an ablation study to test the general-
ization abilities of LLMs with respect to pragmatic
reasoning in a supervised fashion. This experiment

consists of two phases. In the first phase, we train
five models by eliminating one of the linguistic cat-
egories entirely from training split in each model
training and then test the model on the eliminated
linguistic category. The goal is to test whether
LLMs can create a sufficiently abstract generaliza-
tion of scalar implicatures that can be used inde-
pendent of the linguistic structures. In the second
phase, we develop a sixth model by eliminating
some scalar pairs from each linguistic category and
test the model on the eliminated pairs. The goal in
this second phase is to test the generalization abil-
ities of LLMs within each category. The ablation
study is followed by a feature analysis to inspect
which linguistic features are influential in LLM
performance in textual entailment and implicature
reasoning.

5.1 Data Preparation
For the ablation study, we created five different
splits. Table 4 presents the training and test cate-
gories for each model. We used stratified sampling
to create training and validation splits to ensure
that the model does not encounter any particular
sentence in more than one split.

Table 4: Linguistic Categories Used for Training and
Testing for Each Model

Train Test

Model-NUM

Adjectives
Verbs
Quantifiers
Modals

Numerals

Model-MOD

Adjectives
Verbs
Quantifiers
Numerals

Modals

Model-QUA

Adjectives
Verbs
Modals
Numerals

Quantifiers

Model-VER

Adjectives
Quantifiers
Modals
Numerals

Verbs

Model-ADJ

Verbs
Quantifiers
Modals
Numerals

Adjectives

The second phase of the experiment involves
MODEL-ALL, where some of the scalar pairs from
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Table 5: Split sizes of models in Experiment 2

Each Model in
Phase 1

MODEL-ALL

N of pairs N of pairs
Train 11520 10560
Validation 2880 2640
Test 3600 4800
Total 18000 18000

Figure 5: Validation Loss of Models in Phase 1

each category are removed from the training set
(except for modals since the total number of pairs
is very low). For example, all 30 quadruplets of
<harmful, lethal> are left out in training and they
are included in the test set of MODEL-ALL with
a view to test whether the model can generalize
what it learns for a specific linguistic category to
the unseen scalar pairs within the same category.
Data split sizes for all models are given in Table 5.

5.2 Ablation Study

We conducted Experiment 2 with the BERT-NLI
model as it achieved the best performance in the
Experiment 1 among the BERT models. Losses
on validation set are plotted in Figure 5. While
the elimination of adjectives, verbs, or numerals
from the training data exhibits similar decrease pat-
terns in loss, MODEL-MOD and MODEL-QUA
values indicate that the absence of modals or quan-
tificational determiners introduce a slight challenge
for the model to learn the patterns but the models
converge eventually.

Table 6: Chi-Square and Cramer’s V Results

Pearson Chi-Square p-value Cramer’s V
1256.2951 <0.0001 0.1525

5.3 Results

We evaluated each model on their respective test
datasets and conducted a chi-square test to deter-
mine whether differences between categories are
significant or not. The results indicated a signif-
icant differences between category results with a
p-value <0.0001. Table 6 presents the results of the
chi-square test and Table 7 reports the test scores
for each model.

The results indicate that the models can success-
fully generalize to the categories of modals and
quantificational determiners while we see moder-
ate accuracy scores for verbs and adjectives and
relatively low scores for numerals. We believe that
these results are due to the distribution of scalar
items in the pre-training data. Modals and quantifi-
cational determiners are closed-class expressions
with relatively lower type frequencies (and thus
higher token frequencies for each type). On the
other hand, adjectives and verbs are members of
open-class categories with relatively higher type
frequencies (and thus lower token frequencies for
each type). Finally, numerals have the largest type
frequencies (theoretically infinite) despite being
members of a closed-class category. Thus, the num-
ber of scalar relationships that a particular numeral
can establish is also large (theoretically infinite),
majority of which are unknown to the model or
not reinforced in pre-training, which possibly de-
creases the model performance for numerals. These
results suggest that the token frequency of a lexical
item in the pre-training data is an important factor
in a model’s ability to execute pragmatic reasoning
over expressions involving that lexical item. The
results suggest that the tested LLMs may lack the
ability to create sufficiently abstract generalizations
for pragmatic reasoning that transcend particular
linguistic structures.

In the second phase, we trained and evaluated
MODEL-ALL in order to test the performance of
the fine tuned NLI model on unseen scalar pairs
within a previously trained category. The results
are presented in Table 7.

MODEL-ALL suggests that the scalar reasoning
exists within the linguistic categories for adjec-
tives and numerals. Training on similar structures
helped the model gain pragmatic reasoning capa-
bilities to identify implicatures. Quantificational
determiners also showed similarly accuracy scores.
However, the model did not achieve high scores
within the category of verbs. We believe that this
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Table 7: Test results of models in Phase 1 and of respective linguistic categories in MODEL-ALL, where MODEL-
ALL Accuracy scores specifically refer to the accuracy score of the linguistic category tested in the respective model
from Phase 1. No score for modals as they are not tested in MODEL-ALL.

Model Test Loss Accuracy F1 Precision Recall
MODEL-ALL

Accuracy
MODEL-NUM 1.5592 0.6036 0.5506 0.6723 0.6036 0.8541
MODEL-MOD 0.1416 0.9622 0.9621 0.9644 0.9622 -
MODEL-QUA 0.286 0.9336 0.934 0.9396 0.9336 0.9866
MODEL-VER 0.7137 0.7969 0.7948 0.8153 0.7969 0.6625
MODEL-ADJ 1.3374 0.7152 0.715 0.7169 0.7152 0.9733

might be due to the agglutinating nature of Turkish
verbs (verbs usually occur with various suffixes on
them) leading to a sparsity in the training data and
impeding its generalization abilities.

5.4 Featural Significance Analysis

We followed up the ablation study with a featural
significance analysis in order to unveil the potential
linguistic triggers in our dataset that lead to the
correct or incorrect classification of the premise-
hypothesis pairs. For this, we first extracted a set
of linguistic features and then fit logistic regression
and random forest models to measure their impact
on model performance.

In the NLI literature, various linguistic features
have been argued to affect the model performance
(Miaschi et al., 2020; Kriz et al., 2015; Talman
et al., 2021; Wendland et al., 2021). Accordingly,
we have included various features such as counts
and lengths of certain tokens, predicate type, polar-
ity, the word similarity within sentence, the similar-
ity between premise and hypothesis, TF-IDF scores
of the scalar items, the position of scalar item, and
NER tags and sentiments in our analysis. The full
list of features extracted is given in Appendix C .
In a preliminary regression test, we observed that
the NER and sentiment features had no impact on
model performance; therefore, we excluded them
from further analysis.

5.5 Logistic Regression

We fit a linear regression model with predictors
as our extracted features and the outcomes as the
prediction accuracy of the model. The linear re-
gression model achieved an accuracy score of 0.80,
which, we believe, makes the model appropriate
for featural significance analysis. Figure 6 below
presents the features with the most effect along
with their coefficient scores.

The results suggest that the similarity between

Figure 6: Feature coefficients of logistic regression
model

a premise and a hypothesis and the high TF-IDF
score of the scalar item in the premise sentence
lowered the model performance. The feature
‘premise_scale_position’ refers to the position of
the scalar item in the sentence. Given that Turk-
ish is an SOV language and our dataset does not
contain any word order inversions, we observe that
closeness of the scalar item to the main verb im-
proves the accuracy of the model. Although it goes
beyond the scope of our current study to explain
this observation properly, we speculate that this
might be due to the pre-verbal position in Turkish
being associated with new information focus (Gök-
sel and Özsoy, 2000). In general, this position is
reserved for new information in Turkish and new
information is usually more attended to by speech
participants. If LLMs are capable of associating
the pre-verbal position with new information focus,
they might be paying more attention to the scalar
items in this position, leading to an increased accu-
racy.

5.6 Random Forest Model

We also fit a random forest model to further verify
the effects of the features on the model prediction
accuracy. For this model, we eliminated the fea-
tures with low effect size and only used the con-
tinuous variables as predictors. The random forest
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model achieved 0.79 accuracy and the coefficient
results are in Figure 7.

Figure 7: Feature importance of random forest model

We see that the results of the random forest
model are in line with the regression analysis we
did. In this model, where the coefficients are cal-
culated by the decrease they cause in the mean
accuracy (MDI), the features with the highest de-
crease are TF-IDF scores of the scalar items within
the sentence. This is valid for both premise and
hypothesis sentences, as the values of both are the
highest. The similarities of the embeddings of the
premise-hypothesis pair can be seen to have a neg-
ative effect on the correctness of the model predic-
tion. Additionally, the average similarity scores of
the words within a sentence are again one of the
factors that decrease the score.

6 Conclusion

We presented ImplicaTR, a diagnostic dataset to
test the pragmatic reasoning abilities of language
models. ImplicaTR contains NLI-style sentence
pairs with four distinct inference types, entailment,
contradiction, neutral and implicature. We evalu-
ated various LLMs and showed that they are capa-
ble of doing pragmatic reasoning and distinguish-
ing entailments from implicatures with a high de-
gree of accuracy. Our results also indicated that the
models we tested cannot make sufficiently abstract
generalizations across various linguistic structures
for pragmatic reasoning and the type frequency
of the scalar items is inversely correlated with the
model success.

7 Limitations

This study introduces ImplicaTR and conducts two
experiments on it to investigate the pragmatic ca-
pabilities of LLMs, but it also comes with a couple
of limitations. First, while ImplicaTR is a diagno-
sis dataset, it is not a large one considering that
it introduces a new class. Second, the genre and

style of the items are not versatile, which might
hinder the generalization capabilities of models.
While the linguistic inquiry in Experiment 2 of-
fers an insight into how models execute reasoning
over implicatures, the features extracted can be ex-
tended to account for other syntactic and semantic
phenomena.

8 Ethical Considerations

All sentence pairs used in ImplicaTR were gen-
erated synthetically, and no personal or sensitive
information was used in order to ensure compliance
with privacy standards and data protection regula-
tions. Besides, efforts were made to minimize bias
in the dataset by including a diverse range of lin-
guistic expressions and contexts. We have made all
code, models, and the dataset publicly available to
promote transparency and reproducibility.
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A Appendix A: Data Distribution

Table 8: ImplicaTR: Data Distribution

N of scales N of distinct terms N of quadruplets per scale N of sentences per quadruplet Total N of Quadruplets Total Pairs
Adjectives 15 28 30 8 450 3600
Verbs 9 18 50 8 450 3600
Quantifiers 9 7 50 8 450 3600
Modals 2 4 225 8 450 3600
Numerals 9 18 50 11 450 4950
Total 2250 19350

B Appendix B: Prompt Example

Below is an instruction that describes a classification task. Give a label in your response that
appropriately completes the request.
You will give only the label.
Instruction:
The labels are:
**Labels:** entailment, neutral, contradiction, implicature
The two sentences that you will classify are:
**Sentences:** A: Yeni kullanmaya başladığı ilaçlar zararlı değil. B: Yeni kullanmaya başladığı
ilaçlar ölümcül. **Question:** What is the correct label that describes the relationship of B to A?
### Response:
contradiction
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C Appendix C: Features
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