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Abstract

Conversational question answering aims to re-
spond to questions based on relevant contexts
and previous question-answer history. Existing
studies typically use ground-truth answers in
history, leading to the inconsistency between
the training and inference phases. However,
in real-world scenarios, progress in question
answering can only be made using predicted
answers. Since not all predicted answers are
correct, indiscriminately using all predicted an-
swers for training introduces noise into the
model. To tackle these challenges, we pro-
pose an automatic answer correctness evalu-
ation method named Auto-ACE. Specifically,
we first construct an Att-BERT model which
employs attention weight to the BERT model,
so as to bridge the relation between the current
question and the question-answer pair in his-
tory. Furthermore, to reduce the interference of
the irrelevant information in the predicted an-
swer, A-Scorer, an answer scorer is designed to
evaluate the confidence of the predicted answer.
We conduct a series of experiments on QuAC
and CoQA datasets, and the results demonstrate
the effectiveness and practicality of our pro-
posed Auto-ACE framework.

1 Introduction

Conversational Question Answering (ConvQA) in-
volves responding to a sequence of questions within
a conversation, while considering the relevant con-
text provided (Qu et al., 2020; Pearce et al., 2023;
Reddy et al., 2019). Different from the traditional
extractive question-answering tasks which conduct
one-turn dialog, as shown in Figure 1, ConvQA is
expected to resolve such implicit information from
the conversational history in a multi-turn way.

With the rise of virtual assistants and chatbots,
ConvQA has recently garnered increased interest.
Hence, numerous works have been conducted for

*These authors contributed equally to this work.
†Corresponding author.

Figure 1: Examples of using (a) ground-truth answers
and (b) predicted answers.

further study. Raposo et al. (2022) proposed a con-
versational question answering system specifically
designed for the Search-Oriented Conversational
AI (SCAI) shared task, and provided a detailed
analysis of its question rewriting module. Qu et al.
(2019b) introduced a positional history answer em-
bedding method to encode conversation history
with positional information using BERT (Devlin
et al., 2018). They also designed a history attention
mechanism (HAM) for each question-answer pair
and utilized multi-task learning to predict the final
answer. Nevertheless, despite their successes, these
works on ConvQA rely on the ground-truth answer,
overlooking the fact that real-world progress can
only be achieved using predicted answers.

Existing researchers found a way to tackle this
limitation by using the predicted label (Mandya
et al., 2020; Christmann et al., 2022). This method
can partially trade off the balance between training
and inference. However, if the predicted answer is
incorrect, it will introduce noisy samples into the
model, thereby affecting performance. For exam-
ple, as shown in Figure 1, {Q2, A2, Q1, A1} are
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input as the conversation history of Q3 into the
Question Answering (QA) model to perform infer-
ence for A3. Figure 1(a) indicates that ground-truth
answers are used for inference, which significantly
differs from the real-world inference scenarios. Fig-
ure 1(b) indicates the use of all predicted answers
for inference. Although this way is more practical,
it introduces noise into the model to some extent
when the predicted answers are incorrect. There-
fore, we propose an answer scorer model that can
automatically assign attention weights to predicted
answers and incorporate them into the QA model’s
inference phase. The most similar work to ours is
the work of Jeong et al. (2023), which requires an
initial round of training and prediction to obtain
the predicted answers along with their confidences
and uncertainties before the official training. This
additional training and prediction step increases the
overall training time and computational resource
consumption.

In this paper, we propose an automatic answer
correctness evaluation method named Auto-ACE,
which comprises an Att-BERT and an A-Scorer
method to maximize the use of effective informa-
tion from the predicted answers. To be more spe-
cific, we first construct an Att-BERT model which
employs attention weight to the BERT model, so as
to bridge the relation between the current question
and the question-answer pair in history. Further-
more, to reduce the disturbance of the irrelevant
content in the predicted answer, A-Scorer, an an-
swer scorer is designed to evaluate the confidence
of the predicted answer. During the training phase,
Att-BERT and A-Scorer are trained, while in the
inference period, A-Scorer evaluates each question-
answering pair in the history to obtain the correct-
ness of the predicted answer. Numerous experi-
ments on QuAC and CoQA datasets demonstrate
the effectiveness and practicality of our proposed
Auto-ACE framework1.

The main contributions of our work can be sum-
marized as follows:

• We propose an Auto-ACE framework to es-
tablish the connection between the current
question and historical question-answer pairs,
balancing the process between training and
inference phases.

• To bridge the relation between the current
question and the historical question-answer

1https://github.com/baibaizhixin/Auto-ACE

pair, Att-BERT is designed. Moreover, we
devised the A-Scorer, which is trained with
Att-BERT during the training phase and eval-
uates the correctness of the predicted answer
during the inference phase to mitigate the im-
pact of erroneous predicted answers and max-
imize the utilization of historical conversation
information.

• Our Auto-ACE framework achieves excellent
performances on QuAC and CoQA datasets,
which shows our approach is effective.

2 Related Works

2.1 Conversational Question Answering
ConvQA is an extension of the QA task which aims
to train a model that can answer the question by
means of understanding the context of the given
context and the previous conversational questions
and answers. In the work by Nishida and Tomita
(2019), BERT is utilized to encode contexts in-
dependently conditioned with each question and
answer within a multi-turn context. This process
enables the method to predict answers based on the
context representations encoded with BERT. Qu
et al. (2019a) presented a distinct method termed
history answer embedding, which incorporates con-
versation history into a ConvQA model built on
BERT. Query rewriting became a popular technique
for ConvQA. Vakulenko et al. (2021) addressed
question ambiguity by rewriting them, ensuring
they can be effectively processed by existing QA
models as standalone questions, independent of the
conversation context. Wu et al. (2022) introduced
a query rewriting model tailored for converting
conversational questions within a context into stan-
dalone queries. This model is trained using a novel
reward function, optimized directly for retrieval via
reinforcement learning. Although the above stud-
ies attain excellent performance in ConvQA, they
ignore the unbalance between training and infer-
ence phases due to the utilization of ground truth
or predicted answers.

2.2 Score-based Methods
Score-based methods have gained significant at-
tention in various Natural Language Processing
(NLP) tasks due to their capability to enable mod-
els to selectively focus on relevant parts of the in-
put sequence. For example, Osama et al. (2020)
introduced the Score-Based Ambiguity Detector
and Resolver method. This system uses Stanford
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Figure 2: A figure

CoreNLP to generate possible parse trees for each
sentence in a given textual requirement. It then
analyzes these parse trees through four filtering
pipelines to detect syntactic ambiguities and sug-
gest multiple possible interpretations, effectively
resolving the ambiguities. Several attempts have
been made to enable self-attention to learn depen-
dencies between words in a sentence and capture
the sentence’s inner structure (Tan et al., 2018; Cao
et al., 2018). Liu et al. (2021) devised an attention
score-based word rank approach, incorporating a
word sequence encoder and a word-level attention
layer. Despite the extensive work on score-based
methods in various natural language tasks, their ap-
plication in ConvQA remains under-explored. This
is particularly important when historical questions
and answers contain implicit information, making
the predicted answer unusable directly.

3 Methodology

This section begins with a concise introduction to
the ConvQA task, then we describe how the pro-
posed Auto-ACE framework can bridge the gap
between training and real-world inference scenar-
ios by incorporating predicted answers into model
training, as demonstrated in Figure 2. In addition,
we discuss the calculation of attention weights and
the overall training pipeline.

3.1 Conversational Question Answering

We first provide a general description of the Con-
vQA task. For the i-th turn of the conversation, a
question Qi and its corresponding context C are
given, as well as a conversation history Hi com-
posed of previous questions and answers: Hi =

{Qi−1, Ai−1, ..., Q1, A1}. Then, the goal of Con-
vQA is to correctly extract the answer Ai from C,
along with Qi and Hi, as shown below:

P (Ai) = P (Ai | C,Qi,Hi)

= Mθ (C,Qi, Qi−1, Ai−1, . . . , Q1, A1)
(1)

where Mθ is the ConvQA model.
In previous work, some of them assumed that

the ground-truth answers {Ai−1, Ai−2, ..., A1} are
available in the inference phase, as shown in Equa-
tion 1. However, this setup is far from reality be-
cause progress in the real world can only be made
using the predicted answer. If the training process
always uses ground-truth answers, it will lead to
the model not performing well in real-world infer-
ence scenarios. Another part of them recognized
this and tried to select whether to include the pre-
dicted answer of a certain historical turn in the
conversation history by setting a threshold. How-
ever, it often requires an additional step of training
to calculate the confidence of all predicted answers
and determine the value of the threshold, which in-
creases the overall training time and computational
resource consumption. Therefore, we modify the
formulation in Equation 1 to bridge the gap be-
tween the training and the inference phase, which
we will describe in the following section.

3.2 Training with Predicted Answers

As delineated in Section 3.1, employing ground-
truth answers during model training and predicted
answers during inference is inadvisable. To align
the model’s training phase more closely with real-
world inference scenario, a rational strategy entails
utilizing the model’s prior predictions as inputs to
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the conversation history for subsequent turns of
prediction, as follows:

P (Ai) = Mθ

(
C,Qi, Qi−1, Ai−1, . . . , Q1, A1

)
(2)

where {Ai−1, Ai−2, ..., A1} are the predicted an-
swers.

Given that the accuracy of the model’s predictive
answers is not infallible, incorporating erroneous
predictions into the conversation history may intro-
duce superfluous noise, thereby potentially degrad-
ing the efficacy of the predictions. Therefore, we
propose an Att-BERT model that applies attention
weights to the BERT model, giving higher weights
to answers with high confidence and lower weights
to answers with low confidence, which allows for
the use of predicted answers during training while
minimizing the noise caused by incorrect predicted
answers.

To be more specific, we assign attention weights
to each turn’s question Qj and predicted answer
Aj in the conversation history. The weight of the
Qj represents the degree of relevance to the cur-
rent question, and on this basis, the weight of the
Aj also represents the confidence of the predicted
answer, as shown in the following.

P (Ai) = Mθ

(
C,Qi,W

q
i−1Qi−1,W

a
i−1Ai−1,

. . . ,W q
1Q1,W

a
1A1

) (3)

Considering the real-world inference scenario,
we assign attention weights to the questions and an-
swers at each turn of the conversation history. The
attention weight W q

j of the question Qj represents
the degree of relevance to the current question Qi,
that is, the more similar Qj is to the Qi, the more
attention the model will give to this sequence. No-
tably, the attention weight is complemented by the
cosine similarity between Qj and Qi, as shown in
Equation 4. Since all questions in the conversation
history are provided in the inference scenario, the
whole attention weights can be directly calculated.

W q
j = Similarity(Qj , Qi) (4)

where W q
j represents the attention weight of the

question in the j-th turn of the conversation history,
Similarity is used to compute the cosine similarity.

3.3 Confidence-based Attention Calculation
In this section, we aim to enhance the model’s fo-
cus on the most relevant content of the predicted
answers. However, it is impractical to calculate

weights for all predicted answers, as some of them
may be incorrect. To address this challenge, an
A-Scorer is devised to automatically evaluate the
confidence of predicted answers and is trained in
conjunction with the Att-BERT model. In specific,
after the Att-BERT model generates a predicted an-
swer each turn, we input the question Qj , the pre-
dicted answer Aj , and the corresponding context C
into the A-Scorer model to evaluate the confidence
of the Aj , and use the cosine similarity between
the predicted answer and the actual answer as the
ground truth for the confidence.

W a
j = W q

j × A-Scorer(Qj , Aj) (5)

where W q
j and W a

j represent the attention weights
of the question and the predicted answer in the
j-th turn of the conversation history, A-Scorer is
the model we proposed for automatic confidence
evaluation.

Following the joint training of the Att-BERT
model and the A-Scorer model, these two models
become capable of operating in concert with real-
world inference scenarios. The answer predicted
by the Att-BERT model is evaluated for confidence
by the A-Scorer model. Furthermore, during the
prediction of an answer, the attention weight of
each question or answer within the conversation
history is ascertained contingent upon the predicted
answer’s confidence, as well as the degree of corre-
spondence to the current question.

3.4 Overall Pipeline

In this subsection, we describe the training pipeline
for the Att-BERT model and the A-Scorer model,
which are trained together in a single step and are
also applied together in the inference phase.

We divide the training data into batches, ensur-
ing that (1) the same batch does not contain ex-
amples from the same conversation, and (2) for
any two examples from the same conversation, the
batch of the example that appears later in the con-
versation is also later. We do this to ensure that
when an example is input into the model, all pre-
dicted answers for the questions in its conversation
history have already been obtained, thus ensuring
that only predicted answers are used during the
training phase, not the ground-truth answers. Then,
we train the Att-BERT model and the A-Scorer
model together following the training protocol in
Equation 3. The Att-BERT model assigns different
attention weights to the questions and predicted
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answers in the conversation, while the A-Scorer
model evaluates the confidence of the answers pre-
dicted by the Att-BERT model.

For evaluation, we still use Equation 3 as the
actual evaluation protocol. Instead of using ground-
truth answers or sampling predicted answers based
on the confidence obtained during training, we di-
rectly apply the predictions of the A-Scorer model
to the attention weights of the Att-BERT model.
Doing so not only bridges the gap between training
and real-world inference scenarios but also avoids
the need for additional training steps and reduces
the demand for excessive computational resources.

4 Experiments

4.1 Datasets and metrics

QuAC (Choi et al., 2018) is a benchmark ConvQA
dataset, which comprises 14K conversations and
100K question-context pairs and is designed to sim-
ulate realistic information-seeking conversations.
In QuAC, questioners did not have access to the
contexts during data collection. Since the test set
is not publicly available, we use the development
set for evaluation.

CoQA (Reddy et al., 2019) is another ConvQA
dataset, containing 127K question-context pairs.
Similar to QuAC, we use the development set for
CoQA as the test set is not publicly accessible.

F1-score: To assess the performance of our mod-
els, we use the F1-score as the evaluation metric.
This follows the standard evaluation protocol es-
tablished by (Kim et al., 2021). The F1-score is a
widely recognized metric that balances precision
and recall, making it particularly suitable for evalu-
ating the quality of predictions in natural language
tasks.

Baselines: We compare Auto-ACE with several
relevant baselines. Except for the gold and No Pred
models, all other models used predicted answers as
the conversation history in the inference phase.

• Gold: which uses an unrealistic setting in both
training and inference phases, using ground-
truth answers as conversation history.

• No Pred: which does not use predicted an-
swers during training and inference.

• All Pred: which retains all predicted answers
as conversation history during both training
and inference.

Method
QuAC CoQA

BERT RoBERTa BERT RoBERTa
Gold† 59.86 65.08 72.79 77.62

No Pred† 55.44 61.24 70.83 75.56
All Pred† 55.76 61.53 71.28 75.42
CoQAM† 55.83 61.55 71.27 74.29

AS-ConvQA† 57.06 62.18 71.99 76.76

Auto-ACE (ours) 58.38 63.04 72.56 77.29

Table 1: Performance(%) on QuAC and CoQA. Bold
indicates the model with the best performance. Results
with † comes from Jeong et al. (2023).

• CoQAM: which dynamically adjusts the sam-
pling rate to alternately select ground truth
answers or predicted answers during training,
and uses predicted answers during inference
phase.

• AS-ConvQA: This method decides whether
to include the predicted answer in the con-
versation history during the training and in-
ference phases based on the confidence and
uncertainty of the predicted answer.

4.2 Main Results
As shown in Table 1, the Auto-ACE framework,
which includes an Att-BERT and an A-Scorer
model, demonstrates significant performance im-
provements across all baselines. The evaluation
results show that, our method outperforms the
strongest baseline that does not use ground-truth
answers by 1.32%. In addition, our model can be
trained in one step, unlike AS-ConvQA, which re-
quires additional training and prediction steps. It
should be noted that since the Gold model uses an
unrealistic evaluation setting where ground-truth
answers are used as conversation history, it is not
fair when compared with other methods.

It is worth mentioning that the No Pred meth-
ods outperform those using predicted answers or
heuristic sampling of conversation history, which
demonstrates incorrect predicted answers can in-
troduce noise to the QA model. Moreover, our
method shows a significant advantage, it might at-
tribute to the A-Scorer can automatically evaluate
the confidence of predicted answers, allowing the
QA model to truly focus on relevant and correct
answers, and minimize the impact of noise at the
same time.

4.3 Ablation Study
We also conducted an ablation study on the use
of the attention mechanism. Specifically, we di-
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Method
QuAC CoQA

BERT RoBERTa BERT RoBERTa
Auto-ACE 58.38 63.04 72.56 77.29

w/o attention(Q&Q) 57.32 62.08 70.95 75.29
w/o attention(Q&A) 57.88 62.25 71.19 76.68
w/o attention(both) 56.46 60.98 69.23 74.57

Table 2: Performance (%) of ablation study on QuAC
and CoQA datasets. Bold indicates the model with the
best performance.

vided it into three scenarios: not considering the
attention between the current question and the his-
torical question-answer pairs, not considering the
attention to the predicted answers in the history,
and not using the attention mechanism at all. The
evaluation results are shown in Table 2. The perfor-
mances of all ablation models are worse than the
complete model, which demonstrates the necessity
of the attention mechanism.

The most significant performance drop occurs
when neither of the two attention mechanisms is
considered, so using either one of them alone can
improve the performance, indicating that both of
them are effective. An interesting finding is that
disregarding the attention between the current and
previous questions (Q&Q) often results in worse
performance than disregarding the attention to the
predicted answer (Q&A), indicating that the simi-
larity between the current question and the histori-
cal question-answer pairs seems to have a greater
impact on the model’s performance.

4.4 Difference of Evaluator
To demonstrate that our proposed Auto-ACE frame-
work can deliver robust performance across differ-
ent QA models, we also evaluated it by replacing
the evaluator with Roberta, with the results shown
in Table 1. It can be seen that our model has per-
formed well in both configurations using BERT
and Roberta as evaluators. In the configuration us-
ing RoBERTa as an evaluator, Auto-ACE improved
the F1 scores on the quac and coqa datasets by %
and % compared to the best-performing baseline,
respectively.

4.5 Effect of the Contextual Number
To examine and analyze the impact of the max
length of utterances over the performance of our
proposed Auto-ACE framework, we conduct ex-
periments by varying the max length from 1 to 12.
Since the maximum number of conversation turns
in all sessions of the QuAC dataset is 12, setting

Figure 3: Results(%) of the effect of the different con-
textual number.

the contextual number to 12 means that all samples
retain the complete conversation history. In other
cases, samples retain the most recent contextual
number of conversation turns’ history.

We plotted the experimental results in a bar chart
and demonstrate them in Figure 3. It should be
noted that, to consider the relationship between the
attention in our proposed Att-BERT model and the
contextual number, we also evaluated the model
without applying the attention under different con-
textual number settings. From Figure 1, it can be
seen that as the contextual number increases, the
model’s performance gradually decreases, with the
best results for the model being achieved when the
contextual number is set to 1-3. This also conforms
to our intuition: the more recent Q&A turns in the
conversation history tend to be more relevant to the
current question.

Another point worth noting is: with the increase
of contextual number, although the model’s per-
formance declines, the model without attention to
the conversation history declines more significantly
than our model. This is because, even though there
are many irrelevant Q&A pairs in the long conver-
sation history, the proposed Auto-ACE model can
allocate attention to the conversation history based
on relevance and predicted answer’s confidence,
thus allowing the model to focus on the information
that is relevant and reliable to the current question
in a long sequence.

4.6 Case Study

Two representative conversation scenarios are pro-
vided in Figure 4. These two examples demonstrate
that our method of weighting the conversation his-
tory in the form of attention is highly practical and
meaningful. From example (a), we can observe
that the current question Q3 has a strong correla-
tion with the historical question Q1, because "first
film" in the current question refers to the answer
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Figure 4: Examples of applying the attention weight to the history.

of question Q1:"Flesh and Blood". In our method,
due to the high similarity to Q3, Q1 is assigned
a high attention weight. A1, as the predicted an-
swer for Q1, also receives a high final attention
weight because the A-Scorer deems it to have a
high degree of confidence. When these weights are
applied in the form of attention to Att-BERT, the
model can focus more on the useful information
in the history: Q1 and A1, and thus it is easier to
predict the correct answer.

The opposite scenario is depicted in Figure 4(b).
Although the predicted answer A2 is crucial for the
current question as it includes the keyword "cam-
paign" from Q3, the model’s prediction for ques-
tion Q2 is "Can not answer" at this point, which
could introduce noise into the model when being
used as part of the conversation history. In our
method, "Can not answer" is assigned an atten-
tion weight of 0 by the A-Scorer, hence its final
attention weight is 0. The Att-BERT does not pay
attention to this incorrect answer, thus not affecting
the prediction of the answer for the current turn.

5 Conclusion

In this paper, we introduce an automatic answer cor-
rectness evaluation method named Auto-ACE for
ConvQA task, which can balance the inconsistency
between training and inference. The proposed
Auto-ACE method consists of two primary compo-
nents including Att-BERT and A-Scorer. The Att-
BERT effectively bridges the current question with

historical Q&A pairs using attention mechanisms,
enabling the model to focus on more relevant
content. Furthermore, the A-Scorer is designed
to evaluate the confidence of predicted answers
and is applied to the Att-BERT as the confidence-
based attention. Experiments conducted on QuAC
and CoQA datasets demonstrate that our proposed
Auto-ACE method significantly improves the per-
formance and reliability of other baseline models.

Limitations

Although the Auto-ACE framework demonstrates
promising results in the Conversational Question
Answering task, there are still some limitations that
require further attention: 1) The model’s capability
to process lengthy conversational histories needs
enhancement to ensure consistent performance. In
the future, we will consider the richness of real-
world conversations to improve the model’s perfor-
mance. 2) The A-Scorer may still introduce noise
due to inappropriate evaluation of predicted an-
swers, future work could consider employing large
language models to further enhance the accuracy
of answer evaluation.
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