
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), pages 45–57
August 16, 2024 c©2024 Association for Computational Linguistics

Holistic Exploration on Universal Decompositional Semantic Parsing:
Architecture, Data Augmentation, and LLM Paradigm

Hexuan Deng, Xin Zhang, Meishan Zhang*, Xuebo Liu, Min Zhang
Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China

hxuandeng@gmail.com,zhangxin2023@stu.hit.edu.cn
{zhangmeishan,liuxuebo,zhangmin2021}@hit.edu.cn

Abstract

In this paper, we conduct a holistic explo-
ration of Universal Decompositional Semantic
(UDS) parsing, aiming to provide a more effi-
cient and effective solution for semantic pars-
ing and to envision the development prospects
after the emergence of large language models
(LLMs). To achieve this, we first introduce a
cascade model for UDS parsing that decom-
poses the complex task into semantically ap-
propriate subtasks. Our approach outperforms
prior models while significantly reducing in-
ference time. Furthermore, to further exploit
the hierarchical and automated annotation pro-
cess of UDS, we explore the use of syntactic
information and pseudo-labels, both of which
enhance UDS parsing. Lastly, we investigate
ChatGPT’s efficacy in handling the UDS task,
highlighting its proficiency in attribute pars-
ing but struggles in relation parsing, revealing
that small parsing models still hold research
significance. Our code is available at https:
//github.com/hexuandeng/HExp4UDS.

1 Introduction

A long-standing objective in natural language un-
derstanding is to create a structured graph of lin-
guistic meaning. Various efforts have been made
to encode semantic relations and attributes into a
semantic graph, such as Abstract Meaning Rep-
resentation (AMR; Banarescu et al., 2013), Uni-
versal Conceptual Cognitive Annotation (UCCA;
Abend and Rappoport, 2013), and Semantic De-
pendency Parsing formalisms (SDP; Oepen et al.,
2014, 2016). Recently, Universal Decompositional
Semantics (UDS; White et al., 2020) introduced a
more advanced hierarchical approach, as shown in
Figure 1. It can automatically construct semantic
relations from syntactic annotations (Zhang et al.,
2017) and annotates semantic attributes following
decompositional semantics (Reisinger et al., 2015),

*Corresponding author: Meishan Zhang.

Sounds like we may actually get these documents executed early next week .

ROOT SOMETHING

Assets

Subspace Attribute Value
factuality factual -1.529
genericity dynamic 1.145
genericity hypothetical 1.145

time instant -0.894
...

Assets

Subspace Attribute Value
protoroles exists-before 1.504
protoroles exists-during 1.507
protoroles exists-after 1.504
protoroles change-of-state 0.059

...

Words Semantic Node (Predicate) Semantic Node (Argument)

Syntactic Edge Instance Edge Non-Head Edge Semantic Edge

Figure 1: An example of UDS datasets with syntactic
tree and semantic graph. Syntactic tree corresponds
to the gray nodes and purple edges, semantic relations
correspond to the red and blue nodes as well as the
yellow edges, and semantic attributes are in the tables.

using only simple questions about words or phrases,
significantly lowering the annotation cost.

However, existing solutions on UDS parsing re-
main suboptimal. Previous parsing approaches
mainly rely on the Seq2Seq transduction frame-
work (Stengel-Eskin et al., 2020), suffering from
poor parallelism and long inference times that in-
crease with sentence length. In this paper, we pro-
pose a cascade architecture that decomposes the
complex parsing task into multiple semantically ap-
propriate subtasks. Within each subtask, our model
predicts all corresponding sentence elements simul-
taneously, enhancing parallelism and substantially
reducing inference time. Experimental results show
that our approach outperforms previous models
while maintaining high efficacy during inference.

Furthermore, the structured data and highly au-
tomated annotation procedure of the UDS dataset
enable low-cost data augmentation schemes. To
take full advantage of this, we design two ap-
proaches. Firstly, we incorporate syntactic informa-
tion, proven beneficial to various tasks (Zaremoodi
et al., 2018; Zhang et al., 2020; Stengel-Eskin et al.,
2021; Deng et al., 2023). We use multi-task train-
ing (Caruana, 1997) to incorporate syntactic infor-
mation, and propose several approaches for further
improvement. Secondly, to utilize the automated

45

https://github.com/hexuandeng/HExp4UDS
https://github.com/hexuandeng/HExp4UDS

tool in UDS that derives semantic relation from syn-
tax, PredPatt (Zhang et al., 2017), Stengel-Eskin
et al. (2020) attempted to introduce this tool during
inference but do not achieve improvements. In con-
trast, we propose a data augmentation method that
effectively exploits PredPatt’s capabilities, leading
to significant performance gains in relation pars-
ing. Detailed analysis is also provided to guide the
design of parsing systems.

Lastly, we reveal the strengths and weaknesses
of large language models (LLMs), such as Chat-
GPT (Bubeck et al., 2023), in semantic parsing
tasks, providing guidance for future developments
in this field. LLMs have shown considerable perfor-
mance in various tasks (Jiao et al., 2023; Wu et al.,
2023; Li et al., 2023). For semantic parsing tasks,
we conduct preliminary experiments on ChatGPT
for the UDS task, directly applying it for parsing,
as well as using it for data augmentation. Due
to poor performance when directly answering by
ChatGPT, we carefully design prompts, breaking
down questions into small steps. Results show that
ChatGPT excels in attribute parsing but struggles
in relation parsing, revealing that small, specialized
models still hold research significance.

2 Background and Related Work

UDS Datasets Silveira et al. (2014) create a stan-
dard set of Stanford dependency annotations for
the English Web Treebank (EWT, Silveira et al.,
2014) corpus. Subsequently, White et al. (2016)
proposed a framework aimed at constructing and
deploying cross-linguistically robust semantic an-
notation protocols and proposed annotations on top
of the EWT corpus using PredPatt (White et al.,
2016; Zhang et al., 2017). Several works have then
been proposed to provide semantic annotations
within this framework, including annotations for
semantic roles (Reisinger et al., 2015), entity types
(White et al., 2016), event factuality (Rudinger
et al., 2018), linguistic expressions of generaliza-
tions about entities and events (Govindarajan et al.,
2019), and temporal properties of relations between
events (Vashishtha et al., 2019). All of these efforts
culminated in White et al. (2020), which presents
the first unified decompositional semantics-aligned
dataset, namely, Universal Decompositional Se-
mantics (UDS).

UDS Parser UDS parsing has been conducted
using transition-based parser (Chen and Manning,
2014), deep biaffine attention parser (Dozat and

Manning, 2017), and sequence-to-graph transduc-
tive parser (Stengel-Eskin et al., 2020). The latter
significantly outperforms the others by employ-
ing an efficient Seq2Seq transduction framework
(Sutskever et al., 2014; Bahdanau et al., 2015). This
approach is initially used in AMR parsing (Zhang
et al., 2019a) and later extended to cover other
semantic frameworks, such as UCCA and SDP,
by Zhang et al. (2019b) in a unified transduction
framework, which predicts nodes and correspond-
ing edges simultaneously in a Seq2Seq manner.
For UDS, an attribute module is added by Stengel-
Eskin et al. (2020). Syntactic information is in-
corporated by Stengel-Eskin et al. (2021), yielding
further improvements. Despite these attempts, cas-
cade models with better parallelism and shorter
inference time have not yet been explored.

Incorporating Syntactic Information Syntactic
information has been shown to improve the perfor-
mance of downstream tasks. Multi-task learning
is widely used to incorporate syntactic informa-
tion. Hershcovich et al. (2018) improve the per-
formance of semantic parsing by using multi-task
learning, with syntactic and other semantic pars-
ing tasks serving as auxiliary tasks. Zaremoodi
et al. (2018) use syntactic and semantic informa-
tion to improve the efficacy of two low-resource
translation tasks. Stengel-Eskin et al. (2021) em-
ploy a single model to parse syntactic and semantic
information simultaneously to improve semantic
parsing. Graph convolutional networks (GCN, Kipf
and Welling, 2017) are also widely used. Marcheg-
giani and Titov (2017) use GCNs to incorporate
syntactic information in neural models and con-
struct a syntax-aware semantic role labeling model.
Zhang et al. (2018) propose an extension of GCNs
to help relation extraction models capture long-
range relations between words. Zhang et al. (2020)
presents a syntax-aware approach based on depen-
dency GCNs to improve opinion role labeling tasks.

3 Preliminaries

The UDS dataset comprises three layers of annota-
tions: syntactic annotations, semantic relation an-
notations, and decompositional semantic attribute
annotations at the edge and node levels.

Syntactic Annotation is derived from the EWT
dataset, which provides consistent annotation of
grammar, including part-of-speech (POS) tag, mor-
phological features, and syntactic dependencies,

46

for human languages. These annotations are used
to construct the syntactic tree, where each word
is tied to a node. As shown in Figure 1, the head-
word of "we" is "get", and the headword of the root
"Sounds" is defined as itself.

Semantic Relations consist of predicates, argu-
ments, and edges between them, which forms the
semantic relations. It is generated by Predpatt tool
(Zhang et al., 2017) automatically, using the POS
tag and the syntactic tree as input. Each semantic
node explicitly corresponds to one word in the sen-
tence called the center word, demonstrated by the
instance edge. Additionally, each semantic node is
also tied with several non-repetitive words with the
non-head edge, which forms a multi-word span. As
shown in Figure 1, the leftmost predict node has a
span "Sounds like" with the center word "Sounds".
Note that two semantic nodes may correspond to
the same word in the case of clausal embedding.
Then, an extra argument node "SOMETHING" is
introduced as the root of the clause, e.g., "executed"
corresponds to an extra argument node.

Semantic Attributes consist of crowdsourced
decompositional annotations tied to the semantic
relations, detailed in §2. These annotations can be
further categorized into node-level and edge-level
attributes, corresponding to the table on the left and
right in Figure 1, respectively. For each node or
edge, all attributes have a value in range [−3, 3].
Besides, each attribute also has a confidence in
range [0, 1], which shows how likely it is to have
the property. Following Stengel-Eskin et al. (2020),
we discretized it into {0, 1} by setting every non-
zero confidence to one.

4 Methodology

In this section, we introduce our cascade model
and methods to improve its performance.

4.1 Efficient Cascade Model

As discussed in §3, our goal is to predict syntactic
information (POS tags and syntactic tree), semantic
relations (semantic nodes, edges, and spans), and
semantic attributes (node- and edge-level) using
a single model. To this end, we propose a cas-
cade model to predict all of these information step
by step, as illustrated in Figure 2. In the follow-
ing paragraphs, we discuss each component of our
model in detail. The sentence is represented as
x1, x2, . . . , xK , where xi represents the i-th word.

The properties of the node are represented as t, the
properties of the edge as e, the softmax function
as σ, and the ReLU function as R.

Encoder Module embeds each word xi into a
corresponding context-aware representation hi. We
utilize three types of encoders: multi-layer BiL-
STM, transformer encoder, and Pre-trained Lan-
guage Model (BERT, Devlin et al., 2019). For BiL-
STM and transformer encoder, we employ a similar
embedding layer with Stengel-Eskin et al. (2021)
to ensure comparability, concatenating GloVe word
embeddings (Pennington et al., 2014), character
CNN embeddings, and BERT contextual embed-
dings. For BERT encoder, we use the default sub-
word embeddings layer and mean-pool over all
subwords to obtain the word-level representations.

Syntactic Module predicts the part-of-speech
(POS) tag and the syntactic tree. For POS, we
use a simple multi-layer perceptron (MLP) over
each word representation hi. For the syntactic tree,
each word has exactly one syntactic head, so we
predict the headword xyi and the corresponding
edge type tyi for each word xi. We follow the ap-
proach of Dozat and Manning (2017) and Zhang
et al. (2019b) to use a biaffine parser, formally:

x̂yi =p(x|xi)
=σ(Biaffine(R(wy

l hi), R(wy
rh1:K)))

t̂yi =p(ty|xi, x̂hi)
=σ(Bilinear(R(wt

lhi), R(wt
rĥ

y
i)))

(1)

where x ∈ {x1, x2, . . . , xK}, and ĥyi is the repre-
sentation of the predicted head x̂yi .

Word Classification Module predicts the seman-
tic edge directly connected to each word (instance,
non-head) and the type of the parent node. We
simplify this edge prediction problem into a classi-
fication problem. We define:

• Type “Φ”: Words with no connecting edge;
• Type “Syn”: Words connect with a non-head

edge;
• Type “Pre”: Words connect with an instance

edge, and its parent is a predicate node;
• Type “Arg”: Words connect with an instance

edge, and its parent is an argument node;
• Type “Pre + Arg”: Words connect with two in-

stance edges, and their parents are a predicate
node and an argument node;

We use a simple MLP for classification, formally:

t̂mi = p(tm|xi) = σ(MLP(hi)) (2)

47

Sounds
like

actually

we

these
get

may

documents

early

week
next

executed

E
ncoder

Input
Example

Word
Representation

like

Sounds

documents

we

may

actually

get

these

executed

next

week

Word
Classification

Sounds P

we A

get P

ROOT

documents A

executed P

executed A

week A

Pre + ArgM

Syn

Arg

Arg

Syn

Pre

Syn

Syn

Arg

Syn

Pre

M

M

M

M

M

M

M

M

M

M

early SynM
like

may

actually

these

next

early

Semantic Node

Syntactic Node

Semantic Span

Sounds like

we

may actually get

ROOT

these documents

executed (P)

executed (A)

early next weekS
S
S

S

S
S

Sem
antic E

dge M
odel

ROOT → Sounds like

ROOT → may actually get

may actually get → we

may actually get → executed (A)

... ...

Node Attributes

Assets

Subspace Attribute Value
factuality factual -1.529
genericity dynamic 1.145
genericity hypothetical 1.145

time instant -0.894
...

Assets

Subspace Attribute Value
protoroles exists-before 1.504
protoroles exists-during 1.507
protoroles exists-after 1.504
protoroles change-of-state 0.059

...

executed (P) → these documents

...

...

...

...

...

...

...

...

...

...

...

A

A

A

A

A

A

A

A

A

A

A

A

Edge Attributes

A

. ΦM

M Word Classification Model S Semantic Span Model A Attribute Model

Word Represention P APredicate Represention Argument Represention Root Represention Semantic Span Represention

Syntactic Model

Figure 2: The data flow of our cascade model. The detailed definition of every block is shown in §4.1.

Node Generation predicts the syntactic nodes,
semantic nodes, and their corresponding node em-
beddings. Syntactic nodes n1, n2, . . . , nN have the
label “Syn”, and we define the embedding gni of the
syntactic node ni the same as its word embeddings.
semantic nodes m1, m2, . . . ,mM have label “Pre”,
“Arg”, or “Pre + Arg”. We generate two nodes for
“Pre + Arg”. So for node embeddings, we first
concatenate a node type embedding with its word
embedding to distinguish whether it is an argument
or predicate node. Then we project it back to the
previous dimension with a linear layer to generate
the embedding gmi of the semantic node mi. Fur-
thermore, we generate a virtual root node for every
sentence with the same trainable embeddings.

Semantic Span Module predicts the semantic
span by separating each syntactic node from the
semantic nodes. Each syntactic node belongs to
exactly one semantic node. So we use the same
model as Eq. 1 to predicted which semantic node
mh

i is the syntactic node ni belongs to, formally:

m̂h
i =p(m|ni)

=σ(Biaffine(R(wm
l gni), R(wm

r gm1:M)))
(3)

where m ∈ {m1,m2, . . . , mM}. The new span
level embedding gsi for the semantic node mi is the
same as gmi by default. Besides, we have also tried
to refine gsi with the syntactic node embedding,
which does not achieve obvious effects.

Semantic Edge Module predicts the edge and
the corresponding type emi,j between any two se-
mantic nodes. We consider the case where there is
no edge between two semantic nodes as a special

type Φ. For prediction, we consider the span level
embedding for each pair of nodes, formalized as:

êmi,j =p(em|mi,mj)

=σ(Biaffine(R(we
l g

s
i), R(we

rg
s
j)))

(4)

Attribute Module predicts the node-level at-
tributes t̂ai for node mi, and edge-level attributes
êai,j for edge between mi and mj . We use the MLP
model as the main part, formalized as follows:

t̂ai =MLP(gsi)

vi =R(wv
l g

s
i), vj = R(wv

rg
s
j)

êai,j =MLP([vTi Wvj , vi, vj])

(5)

Here, W ∈ Rdv×dv×do , where dv is the dimension
of vi and vj , and do is the output dimension. i, j
must satisfy êmi,j ̸= ϕ for êai,j (edge exists). Note
that attributes may not exist, and we use the same
model as above to predict the mask of attributes.

Loss To train our models, we use different loss
functions depending on the task. For word classifi-
cation, semantic span, and semantic edge modules,
we use cross-entropy loss. For the attribute module,
when predicting the mask, we use binary cross-
entropy loss. When predicting the attribute, we
follow Stengel-Eskin et al. (2020) to use a compos-
ite loss function L for the values, formally:

Lvalue
attr

(
t̂, t

)
=

2 · LMSE

(
t̂, t

)
· LBCE

(
t̂, t

)

LMSE

(
t̂, t

)
+ LBCE

(
t̂, t

) (6)

where LMSE is the mean squared loss, LBCE is the
binary cross-entropy loss, t is the gold attribute,
and t̂ is our prediction. LMSE encourages the pre-
dicted attribute value to be close to the true value,

48

while LBCE encourages the predicted and reference
values to share the same sign.

Finally, to handle this multi-task problem, we
use a weighted sum of all the loss functions men-
tioned above for our model:

L =a1Lcls + a2Lspan + a3Ledge+

a4Lmask
attr + a5Lvalue

attr

(7)

where ai = 1 for i ∈ [1, .., 5], except a2 = 2.

4.2 Incorporating Syntactic Information
By default, we incorporate syntactic information
by multi-task training. Additionally, we propose
GCN and attention approaches for a more profound
incorporation of syntactic information. Specifically,
we utilize the syntactic information to update the
word embeddings generated by the encoder. The
strategies are as follows:

Multi-task Training We add the loss of the syn-
tactic module to term L, which incorporates syn-
tactic information into the shared encoder through
back-propagation. We use cross-entropy loss for
POS and syntactic tree parsing, formally:

Lsyn = L+ a6Lpos + a7Ltree (8)

where a6 = a7 = 1 during our experiments.

GCN Inspired by the idea of GCN (Kipf and
Welling, 2017), we try to encode the predicted ad-
jacency matrix information into the embedding. In
the syntactic tree, we consider two types of edges:
directed edges from parent nodes (top) to child
nodes (bottom), and those with reverse directions.
Then we employ a bidirectional GCN consisting
of 1) top-down GCN to convey sentence-level in-
formation to local words, and 2) bottom-up GCN
to convey phrase-level information to the center
word. Additionally, to further convey the edge type
information corresponding to the current word, we
3) consider the probability distribution of its edge
type, and use a GCN-like method to convey this
information. With the word embedding matrix H
being the input H(0), we use a l layer model (with
l = 2 in practice), formally:

V(i) =[AhH
(i)W

(i)
1 ,AT

hH
(i)W

(i)
2 ,AtTeW

(i)
3]

H(i+1) = R(W
(i)
4 R(V(i)))

Ho = Wo[H
(0),H(l)]

(9)
where Ah is the top-down adjency matrix predic-
tion, AT

h is the bottom-up ones, At is the edge

type probability distribution, and Te is the train-
able edge type embedding matrix. Note that the
adjacency matrix does not self-loop, so GCN does
not convey information about the words themselves.
We then combine the original word embeddings
H(0) with the output H(l) to get the new word em-
beddings Ho. Under such a design, good results
can be achieved with a relatively shallow network.

Attention Word representation after dimension
reduction used in syntactic edge and type predic-
tion contains basic information of the syntactic tree
(Stengel-Eskin et al., 2021). So we directly use
the representations in Eq. 1, which are used in the
Biaffine and Bilinear model. Formally:

V =R([ww
l H, ww

r H, wt
lH, wt

rH])

Ho = Wo[H,AhV]
(10)

where all the w∗
∗H come from Eq. 1 without re-

calculation. Compared to the GCN approach, this
method uses fewer new parameters and requires
less additional calculation, while still preserving
the performance improvements achieved by the
GCN approach to some extent.

4.3 Data Augmentation with PredPatt

One of the features of the UDS dataset is the strong
correlation with external tools PredPatt. Stengel-
Eskin et al. (2020) attempt to use an external model
to predict the POS tags and syntactic tree on the test
dataset, which are then fed directly to PredPatt to
obtain the semantic relations. However, the effec-
tiveness of this method is relatively poor, likely due
to two issues: 1) the error transmission problem
comes from the prediction of the syntactic model,
and 2) the rule-based tools are not as robust as
neural networks towards noisy inputs.

To address these issues, we propose a data aug-
mentation method. Instead of using it during infer-
ence, we use it to augment the data, with only the
help of external unlabeled data. Specifically, we
first train a model to predict the syntactic tree and
POS tag, using the above syntactic model. Next,
we use PredPatt to generate pseudo labels (i.e., se-
mantic relations) for the unlabeled data. Finally,
we use these data to pre-train our model, and then
fine-tune it with a smaller learning rate using the
labeled UDS dataset, which achieves significant
improvements in relation parsing.

49

Strategy S-P S-R S-F1 Attr. ρ Attr. F1 UAS LAS POS
B

as
el

in
e LSTM 89.90 85.85 87.83 0.46 60.41 - - -

+ SYN 88.58 87.67 88.12 0.46 61.28 91.44 88.80 -
TFMR 90.04 87.98 89.19 0.56 67.89 - - -

+ SYN 91.09 89.01 90.04 0.56 66.85 92.40 89.96 -

O
ur

s

LSTM 87.75 91.12† 89.79† 0.47† 57.93 - - -
+ SYN 88.82† 92.50† 90.62† 0.46 57.34 91.71 89.10 96.29
+ SYN + DA 90.00 93.37 91.65 0.33 49.66 92.65 90.51 96.67

TFMR 88.34 92.90† 90.56† 0.49 59.68 - - -
+ SYN 89.28 93.56† 91.37† 0.49 58.45 92.07 89.65 96.85
+ SYN + DA 90.15 93.49 91.79 0.42 54.27 93.03 90.91 97.10

BERT 88.90 92.77† 90.79† 0.60† 67.02 - - -
+ SYN 89.51 94.18† 91.79† 0.59† 65.78 92.81† 90.73† 97.18
+ SYN + DA 90.27 94.23 92.20 0.54 63.91 92.98 90.93 97.08

L
L

M PRED 35.50 51.28 41.96 - - - - -
CASC 38.13 53.26 44.44 - - - - -
ATTR - - - - 80.69 - - -

Table 1: Main results. “LSTM”, “TFMR”(Transformer), “BERT” stands for different encoder. We run t-test
against the corresponding baseline, and † means significantly higher with > 95% confidence. “+SYN” means GCN
approach in §4.2, and “+DA” means the data augmentation method in §4.3. Other abbreviations are detailed in §5.1.

5 Experiment and Analysis

5.1 Experimental Setup

Datasets We conduct experiments on the UDS
dataset (White et al., 2020), with 10k valid training
sentences. For English monolingual data, we use
publicly available News Crawl 2021 corpus (Zhang
and Zong, 2016; Wu et al., 2019). In the experiment
of the data augmentation method, we first generate
the pseudo-targets for all the monolingual data,
then filter out the ones that have invalid syntactic
and semantic graphs. Finally, we randomly select
a 100k corpus subset.

LLMs We explore the direct use of LLMs for
parsing tasks. First, for semantic relation pars-
ing, we try two types of prompts: 1) The Predpatt
prompt guides the LLM to first generate the syn-
tactic parsing, then follow the instructions of the
PredPatt tool step by step to generate the semantic
relations (PRED). 2) The cascade approach follows
the idea of our model to decompose the UDS pars-
ing (CASC), which first selects the center phrase of
the semantic node, and then expands every phrase
into a span. To make sure that the center word has
only one word, we select it at the last step. Sec-
ond, for semantic attribute parsing, we provide the
sentence and the corresponding node/edge as input,
definitions of attribute types as instruction, and con-
duct experiments under the oracle setting defined
in §A.2 (ATTR). As the scale of attribute scoring
may vary across conversation rounds, we only let
it predict positive or negative.

1 2 4 8 16 32 64 128
Batch Size

21

22

23

24

25

26

27

28

29
To

ta
l T

im
e

(s
)

Baseline
Ours

Figure 3: Total inference time for forward propagation
of the two models, varying with the batch size. We use
logarithmic coordinates for better comparison.

Metrics We follow the setting given by Stengel-
Eskin et al. (2021), using S-score for semantic re-
lation prediction, Attribute ρ and F1 for UDS at-
tributes, UAS and LAS for heads and edge types,
and POS for part-of-speech.

We use Stengel-Eskin et al. (2021) as the base-
line. Details regarding the baseline for comparison,
prompts and settings used for ChatGPT, the intro-
duction of metrics, and model training configura-
tions are provided in Appendix A.

5.2 Main Results

We conduct experiments on three types of encoders,
as demonstrated in Table 1.

Our cascade model outperforms the base-
line model. Under basic settings, our best set-
ting (BERT) significantly improves the baseline
(TFMR) in S-F1 (+1.60) and Attr. ρ (+0.04), and

50

Strategy S-P S-R S-F1 Attr. ρ Attr. F1 UAS LAS POS

L
ST

M
Naive 87.75 91.12 89.79 0.47 57.93 - - -

+ Joint 88.21 92.51 90.31 0.45 55.42 91.51 89.07 96.23
+ Attn. 88.62 92.55 90.54 0.45 57.65 91.95 89.41 96.26
+ GCN 88.82 92.50 90.62 0.46 57.34 91.71 89.10 96.29
+ Span 88.45 92.31 90.34 0.47 57.85 91.58 89.08 96.37

T
FM

R

Naive 88.34 92.90 90.56 0.49 59.68 - - -
+ Joint 88.64 93.53 91.02 0.51 59.56 91.99 89.42 96.60
+ Attn. 88.82 93.46 91.08 0.49 58.86 91.84 89.35 96.77
+ GCN 89.28 93.56 91.37 0.49 58.45 92.07 89.65 96.85
+ Span 88.85 93.19 90.97 0.50 59.46 91.60 89.29 96.71

B
E

R
T

Naive 88.90 92.77 90.79 0.60 67.02 - - -
+ Joint 88.87 93.75 91.25 0.60 67.63 92.95 90.79 97.12
+ Attn. 89.25 94.05 91.59 0.58 66.60 92.94 90.77 97.02
+ GCN 89.51 94.18 91.79 0.59 65.78 92.81 90.73 97.18
+ Span 88.95 93.64 91.23 0.59 65.97 92.92 90.74 97.23

Table 2: The effect of different strategies to incorporate syntactic information. “Naive” means no additional
syntactic information. “+Joint”, “+Attn”, and “+GCN” mean incorporating syntactic information using joint
training, GCN, and attention in §4.2, separately. “+Span” means refine span embeddings using syntactic nodes.

slightly worse in Attr. F1. The above results are
also preserved under +SYN settings (+1.75 and
+0.03, respectively). Furthermore, we calculated
the total inference time for forward propagation of
the two models, averaging on validation and test
datasets (about 1.3k sentences). The results are
shown in Figure 3 under logarithmic coordinates.
Our model significantly reduces the inference time
for all batch sizes (9.56 times faster on average). Fi-
nally, using additional data augmentation methods,
the S-F1 can be further improved (+2.16), which
is also held in LSTM and Transformer (+3.53 and
+1.75, respectively). The above results show that
our model significantly outperforms the baseline.

Syntactic information and data augmentation
methods enhance semantic relation parsing.
Our model primarily focuses on improving seman-
tic relation parsing, which LLMs are not good at.
We summarize the corresponding result in Fig-
ure 4. We can see that both the two approaches
can significantly improve relation parsing, with
+0.88 for syntactic information and +0.62 for the
data augmentation method on average. Besides,
the improvements are orthogonal to each other and
can be used simultaneously, pushing the results
of different models towards a similar limit, since
lower-performing models experience greater im-
provements.

The same methods do not benefit attribute pre-
diction. However, our proposed methods for fur-
ther improvements do not consistently improve the
attribute parsing. Attributes derive from crowd-
sourced annotation, which is not closely related to

LSTM TFMR BERT
87

88

89

90

91

92

93

S-
F1

 S
co

re

Ours
Ours +SYN
Ours +SYN +DA

Figure 4: S-F1 score of different encoders. Abbrevia-
tions are defined in Table 1.

the syntactic or semantic information. Thus, syntac-
tic information cannot provide useful information
for attribute prediction, and using more data to pre-
train a better model for semantic relation parsing is
harmful to the performance of attribute parsing.

ChatGPT performs poorly on relation parsing
but well on attribute parsing. The generated re-
lations of ChatGPT are typically semantically com-
pliant. However, they struggle to follow instruc-
tions step by step, resulting in poor performance on
relation parsing. Additionally, data augmentation
does not work well for the UDS task with Chat-
GPT, revealing significant distribution shifts for the
data generated by ChatGPT. Despite these short-
comings, its high performance on attribute parsing
demonstrates promising syntactic understanding.
Detailed analysis can be found in Appendix B.

5.3 Exploration on Syntactic Information
We conduct experiments on different ways to join
syntactic information into the model, and the re-

51

Model In domain Predpatt S-P S-R S-F1 ∆ UAS LAS POS

Ours × × 89.34 94.05 91.63 +0.38 93.05 91.01 97.10
Ours × ✓ 90.15 94.28 92.17 +0.92 93.26 91.28 97.17
Ours ✓ × 89.08 94.03 91.49 +0.24 92.62 90.52 97.19
Ours ✓ ✓ 89.56 94.37 91.90 +0.65 92.88 90.91 97.22
Stanza × ✓ 89.24 94.12 91.62 +0.37 92.96 90.86 97.27
Stanza ✓ ✓ 89.69 94.24 91.90 +0.65 92.76 90.74 97.10
ChatGPT × ✓ 88.25 93.28 90.70 -0.55 92.38 90.28 96.99

Syntactic Teacher - - - 93.24 91.14 97.54
Semantic Relation Teacher 88.87 93.75 91.25 - 92.95 90.79 97.12

Table 3: The effect of different data augmentation approaches. “Model” means which teacher model to use, “In
domain” means whether to select data with closer domain, and “Predpatt” means whether to use an external tool
or simply use the distillation method. “Syntactic Teacher” is trained only on syntactic targets, while “Semantic
Relation Teacher” on syntactic and semantic relation targets. Both only use multi-task learning methods.

sults are shown in Table 2.

Syntactic information enhances semantic rela-
tion parsing. Our experiments show consistent
improvements in S-F1 scores across different meth-
ods of integrating syntactic information, with +0.48
for SYN, +0.69 for Contact, and +0.88 for GCN,
which is also used as our default settings. How-
ever, because of the different syntactic foundations
arising from different annotation methods, we do
not observe a consistent trend of attribute parsing,
aligned with findings in Stengel-Eskin et al. (2021).

Incorporating child syntactic information has
less impact on the results. We tried to use a bet-
ter span representation, which uses a self-attention
over all words in the span, instead of using only
the representation of the center word. However,
the attribute prediction does not achieve consistent
improvements. This shows that the center word
can well represent the semantics of the whole span,
and is the default setting in our experiments.

5.4 Exploration on Data Augmentation
We conduct experiments using the data augmen-
tation method under the basic multi-task training
method to incorporate syntactic information, and
the results are shown in Table 3.

Data augmentation significantly improves the
semantic parsing. Under different ways to in-
corporate syntactic information, the S-F1 consis-
tently improves, with +0.54 on average and +0.92
for best settings (ours without in-domain and with
PredPatt), which is used as the default data aug-
mentation method. Besides, our proposed ways to
better utilize the external tool also significantly out-
perform the basic distillation settings, i.e., +0.48 on
average, which shows the efficacy of our methods.

How does the in-domain unlabeled data act?
We are also curious about how the domain of the
datasets influences the results. We follow the idea
of Moore and Lewis (2010) to score the unlabeled
data by the difference between the score of the in-
domain language model and the language model
trained from which the unlabeled data is drawn.
We refer the reader to the original paper for further
details. Results have shown that for our larger
models with better generalization, the in-domain
data hurt the performance (-0.27). For the smaller
model given in Stanza, the in-domain data performs
better (+0.28), while both are worse than the results
with our models. This shows that the performance
of the teacher model is important, and for models
with good generalization, always using in-domain
data is not a good choice.

6 Conclusion

In this paper, we conduct a holistic exploration of
semantic parsing, focusing on Universal Decompo-
sitional Semantic (UDS) parsing. First, we develop
an efficient cascade model that offers improved
performance and reduced training and inference
costs. Additionally, we examine data augmentation
methods that incorporate syntactic information and
employ the PredPatt tool to strengthen the model’s
syntactic and semantic comprehension. Lastly, we
find that ChatGPT performs poorly in relation pars-
ing and data augmentation but excels in attribute
parsing. This reveals that small, specialized models
still hold research significance in semantic parsing.

Acknowledgements

This work is supported by the National Natural
Science Foundation of China (No. 62176180).

52

Limitations

This study has several limitations. Firstly, due to
computational constraints, the research is confined
to using small models for solving semantic parsing
problems, resulting in a lack of exploration in fine-
tuning with LLMs. Better performance may be
achieved with LLMs, given their stronger semantic
understanding capabilities. Secondly, although the
approach proposed in this study can be applied to
various semantic parsing tasks, time constraints led
to the selection of only one representative dataset
for testing. This restricts a more comprehensive
analysis of the proposed approach and LLMs’ per-
formance. Furthermore, due to cost constraints
and regional lockouts, we were unable to include
more LLMs, such as GPT-4, GPT-4o, and Claude,
in our analysis. Lastly, before the era of LLMs,
semantic parsing was able to enhance the perfor-
mance of various downstream tasks. However, for
LLMs, whether fine-tuning LLMs with semantic
parsing datasets or providing semantic trees in the
context can improve downstream tasks remains to
be explored in future work.

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (ucca). In ACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In LAW@ACL.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: early experiments with gpt-4. ArXiv.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In ACL.

Rich Caruana. 1997. Multitask Learning. Mach. Learn.,
28(1):41–75.

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neural
networks. In EMNLP.

Hexuan Deng, Liang Ding, Xuebo Liu, Meishan Zhang,
Dacheng Tao, and Min Zhang. 2023. Improving

simultaneous machine translation with monolingual
data. AAAI.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In ICLR.

Venkata Subrahmanyan Govindarajan, Benjamin Van
Durme, and Aaron Steven White. 2019. Decompos-
ing generalization: models of generic, habitual and
episodic statements. Trans. Assoc. Comput. Linguis-
tics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In ACL.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is chatgpt a good
translator? a preliminary study. ArXiv.

Thomas N. Kipf and Max Welling. 2017. Semi-
Supervised Classification with Graph Convolutional
Networks. In ICLR (Poster).

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023. Evaluating
chatgpt’s information extraction capabilities: an as-
sessment of performance, explainability, calibration,
and faithfulness. ArXiv.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In EMNLP.

Robert C. Moore and William D. Lewis. 2010. Intel-
ligent selection of language model training data. In
ACL.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajic, Angelina Ivanova, and Zdenka Uresová. 2016.
Towards comparability of linguistic graph banks for
semantic parsing. In LREC.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task
8: broad-coverage semantic dependency parsing. In
SemEval@COLING.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: global vectors for word rep-
resentation. In EMNLP.

Barbara Plank, Héctor Martínez Alonso, Zeljko Agic,
Danijela Merkler, and Anders Søgaard. 2015. Do
dependency parsing metrics correlate with human
judgments? In CoNLL.

53

Dee Ann Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin Van
Durme. 2015. Semantic proto-roles. Trans. Assoc.
Comput. Linguistics.

Rachel Rudinger, Aaron Steven White, and Ben-
jamin Van Durme. 2018. Neural models of factuality.
In NAACL-HLT.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: summarization with pointer-
generator networks. In ACL.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel R. Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for english. In
LREC.

Elias Stengel-Eskin, Kenton W. Murray, Sheng Zhang,
Aaron Steven White, and Benjamin Van Durme. 2021.
Joint universal syntactic and semantic parsing. Trans.
Assoc. Comput. Linguistics.

Elias Stengel-Eskin, Aaron Steven White, Sheng Zhang,
and Benjamin Van Durme. 2020. Universal decom-
positional semantic parsing. In ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

Siddharth Vashishtha, Benjamin Van Durme, and
Aaron Steven White. 2019. Fine-grained temporal
relation extraction. In ACL.

Aaron Steven White, Dee Ann Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016. Uni-
versal decompositional semantics on universal depen-
dencies. In EMNLP.

Aaron Steven White, Elias Stengel-Eskin, Siddharth
Vashishtha, Venkata Subrahmanyan Govindarajan,
Dee Ann Reisinger, Tim Vieira, Keisuke Sakaguchi,
Sheng Zhang, Francis Ferraro, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2020. The
universal decompositional semantics dataset and de-
comp toolkit. In LREC.

Haoran Wu, Wenxuan Wang, Yuxuan Wan, Wenxiang
Jiao, and Michael Lyu. 2023. Chatgpt or grammarly?
evaluating chatgpt on grammatical error correction
benchmark. ArXiv.

Lijun Wu, Yiren Wang, Yingce Xia, Tao Qin, Jianhuang
Lai, and Tie-Yan Liu. 2019. Exploiting monolin-
gual data at scale for neural machine translation. In
EMNLP/IJCNLP.

Poorya Zaremoodi, Wray L. Buntine, and Gholamreza
Haffari. 2018. Adaptive knowledge sharing in multi-
task learning: improving low-resource neural ma-
chine translation. In ACL.

Bo Zhang, Yue Zhang, Rui Wang, Zhenghua Li, and
Min Zhang. 2020. Syntax-aware opinion role label-
ing with dependency graph convolutional networks.
In ACL.

Jiajun Zhang and Chengqing Zong. 2016. Exploiting
source-side monolingual data in neural machine trans-
lation. In EMNLP.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van
Durme. 2019a. Amr parsing as sequence-to-graph
transduction. In ACL.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van
Durme. 2019b. Broad-coverage semantic parsing as
transduction. In EMNLP/IJCNLP.

Sheng Zhang, Rachel Rudinger, and Benjamin Van
Durme. 2017. An evaluation of predpatt and open ie
via stage 1 semantic role labeling. In IWCS.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In EMNLP.

54

A Supplementary Experimental Setup

A.1 Experimental Configurations

Model Training Our model is trained on one
NVIDIA A30 Tensor Core GPU with a batch size
of 16 and a dropout rate of 0.3. We fix BERT
parameters for LSTM and transformer encoders
and keep them trainable when BERT itself is the
encoder. For the majority of the training process,
we set the learning rate to 2e-4, while for BERT
encoder, we set it to 1e-5. For a fair comparison,
we use a linear projection of the output of all the
encoders to unify the output dimension to 1024.
We run each model five times under different seeds
in the main table and show the average score.

Baseline We use Stengel-Eskin et al. (2021) as
the baseline. It first employs GloVe word embed-
dings (Pennington et al., 2014), character CNN
embeddings, and BERT (Devlin et al., 2019) to
generate the context-aware representations of the
input sentence. Then, it generates each edge with a
decoder in an autoregressive way, following the
idea of a pointer-generator network (See et al.,
2017). After that, it uses a deep biaffine (Dozat
and Manning, 2017) graph-based parser to create
edges. Node- and edge-level attributes are then
predicted after every step, with a multi-layer per-
ception for node attributes and a deep biaffine for
edge attributes. Besides, the introduction of syntac-
tic information is preliminarily tried, and we only
report their optimal results for each metric.

LLMs For ChatGPT, we conduct experiments in
the dialog box, using the ChatGPT Mar 23 Version
in 2023. We provide details on the prompts used for
evaluating ChatGPT under UDS tasks in Figure 5.

A.2 Metrics

We follow the setting given by Stengel-Eskin et al.
(2021), detailed as follows.

S-score This metric measures performance on the
semantic relation prediction task. Following the
Smatch metric (Cai and Knight, 2013), which uses
a hill-climbing approach to find an approximate
graph matching between a reference and predicted
graph, S-score (Zhang et al., 2017) provides pre-
cision (S-P), recall (S-R), and F1 score (S-F1) for
nodes, edges, and attributes. We follow Stengel-
Eskin et al. (2021) and evaluate the S-score for
nodes and edges only, which evaluates against full

UDS arborescences with linearized syntactic sub-
trees included as children of semantic heads.

Attribute ρ & F1 For UDS attributes, we use
the pearson correlation ρ (Attr. ρ) between the
predicted attributes at each node and the gold an-
notations in the UDS corpus. We also use F1-score
(Attr. F1) to measure whether the direction of the
attributes matches that of the gold annotations. We
binarized the attribute with threshold value θ = 0
for gold attributes, and tune θ for predicted ones
per attribute type on validation data. Both of them
are obtained under an “oracle” setting, where the
gold graph structure is provided.

Syntactic Metric We follow Plank et al. (2015)
to use Unlabeled Attachment Score (UAS) to com-
pute the fraction of words with correctly assigned
heads, and Labeled Attachment Score (LAS) to
compute the fraction with correct heads and edge
types. While for part-of-speech (POS), we simply
use the accuracy of prediction.

B Exploration on LLM Paradigm

ChatGPT performs poorly on relation parsing.
For semantic relation parsing, we use the prompt
given in §A.1 3 times, which generates 9 different
results. We filter out invalid output (no table or
table with incorrect headers) and select the best
result for each sentence. There are still 11.04% and
0.37% of the sentences that do not have correct re-
sults for PRED and CASC, respectively, which are
filtered out. Despite this favorable setting, it still
achieved poor results. Under our observation, the
generated relations of LLMs are typically semanti-
cally compliant. However, they struggle to follow
the instructions step by step, leading to outputs that
often do not meet our requirements, and repetitions
and incorrect summarizations in the table also com-
monly occur. As a result, LLMs perform poorly on
relation parsing, especially in precision, and com-
plex post-processing constructed by professionals
is highly required.

ChatGPT performs perfectly on attribute pars-
ing. For semantic attribute parsing, we only run
ChatGPT once. 3.03% of the sentences do not have
correct results and are filtered out. Results show
that ChatGPT significantly outperforms the small
models, achieving a +12.80 increase in Attribute
F1 scores compared to the best model. We think
that for ChatGPT, which is well-aligned with hu-
mans, it is easier to predict the attributes given by

55

Given the sentence "# Input #", I would like you to do the following works step by step.
First, ... for each clause, ... 0. Predict the Universal

Dependency parsing... 1. Predicate root identification:
... 2. Argument root identification: ... 3. Argument
resolution: ... 4. Predicate phrase extraction: ... 5.

Argument phrases extraction: ... Please follow the
instructions above and print the result of each step.

1) Select the predicate, the corresponding arguments,
and the root predicate in the sentence... 2) ... seperate
unused words into one and exactly one predicate or

argument part ... 3) Selece exactly one center word from
every predicate or argument phrases... Please follow the

instructions above and print the result of each step.

 Please summarize the process that you have performed above into a table, with ... If the predicate does not have a
father, ... If the predicate root or the argument root consists of multiple words, ...

 1) I notice some predicates you predicted are actually
 corresponding arguments subordinate to a predicate, ...
 2) I notice some of the information you predicted above
 is missing ...

 1) I notice some Predicate Roots or Argument Roots
 have more than one word, ...
 2) I notice some of the Argument Phrases overlap with
 each other, ...

Input

Instruction

Format
Defination

Post-
process

Input
PredPatt Instruction Cascade Instruction

Figure 5: The prompt for semantic relation parsing for ChatGPT. For each generation, we first input the input and
instruction, then input the format definition to get the prediction. Finally, we input the post-process part one by one
to generate better predictions, i.e., three predictions for a sentence in a single conversation.

fac
tua

lity
-fa

ctu
al

ge
ne

ric
ity

-ar
g-a

bst
rac

t

ge
ne

ric
ity

-ar
g-k

ind

ge
ne

ric
ity

-ar
g-p

art
icu

lar

ge
ne

ric
ity

-pr
ed

-dy
na

mic

ge
ne

ric
ity

-pr
ed

-hy
po

the
tic

al

ge
ne

ric
ity

-pr
ed

-pa
rtic

ula
r

tim
e-d

ur-
cen

tur
ies

tim
e-d

ur-
da

ys

tim
e-d

ur-
de

cad
es

tim
e-d

ur-
for

ev
er

tim
e-d

ur-
ho

urs

tim
e-d

ur-
ins

tan
t

tim
e-d

ur-
minu

tes

tim
e-d

ur-
mon

ths

tim
e-d

ur-
sec

on
ds

tim
e-d

ur-
wee

ks

tim
e-d

ur-
ye

ars

word
sen

se-
no

un
.To

ps

word
sen

se-
no

un
.ac

t

word
sen

se-
no

un
.an

im
al

word
sen

se-
no

un
.ar

tifa
ct

word
sen

se-
no

un
.at

trib
ute

word
sen

se-
no

un
.bo

dy

word
sen

se-
no

un
.co

gn
itio

n

word
sen

se-
no

un
.co

mmun
ica

tio
n

word
sen

se-
no

un
.ev

en
t

word
sen

se-
no

un
.fe

elin
g

word
sen

se-
no

un
.fo

od

word
sen

se-
no

un
.gr

ou
p

word
sen

se-
no

un
.lo

cat
ion

word
sen

se-
no

un
.m

oti
ve

word
sen

se-
no

un
.ob

jec
t

word
sen

se-
no

un
.pe

rso
n

word
sen

se-
no

un
.ph

en
om

en
on

word
sen

se-
no

un
.pl

an
t

word
sen

se-
no

un
.po

sse
ssi

on

word
sen

se-
no

un
.pr

oce
ss

word
sen

se-
no

un
.qu

an
tity

word
sen

se-
no

un
.re

lat
ion

word
sen

se-
no

un
.sh

ap
e

word
sen

se-
no

un
.st

ate

word
sen

se-
no

un
.su

bst
an

ce

word
sen

se-
no

un
.tim

e

pro
tor

ole
s-a

ware
ne

ss

pro
tor

ole
s-c

ha
ng

e_o
f_lo

cat
ion

pro
tor

ole
s-c

ha
ng

e_o
f_p

oss
ess

ion

pro
tor

ole
s-c

ha
ng

e_o
f_s

tat
e

pro
tor

ole
s-c

ha
ng

e_o
f_s

tat
e_c

on
t.

pro
tor

ole
s-e

xis
ted

_af
ter

pro
tor

ole
s-e

xis
ted

_be
for

e

pro
tor

ole
s-e

xis
ted

_du
rin

g

pro
tor

ole
s-in

stig
ati

on

pro
tor

ole
s-p

art
itiv

e

pro
tor

ole
s-s

en
tie

nt

pro
tor

ole
s-v

olit
ion

pro
tor

ole
s-w

as_
for

_be
ne

fit

pro
tor

ole
s-w

as_
use

d
0.00

0.25

0.50

0.75

1.00

At
tr.

 F
1

ChatGPT
Ours

Figure 6: Attribute F1 score for each UDS attribute using ChatGPT (80.69 on average) or using our basic BERT
model (67.02 on average). The x-axis is the UDS attribute name, with the ones beginning with “protoroles” being
the edge-level attributes (the rightmost 14 attributes), and other attributes are at the node level.

0 10 20 30 40 50 60 70 80 90 100
Attr. F1 (%)

0

2

4

6

8

10

12

14

16

C
ou

nt

ChatGPT
Ours

Figure 7: The Attribute F1 score distribution across each
UDS attribute. “ChatGPT” stands for prompted with
ATTR settings, and “Ours” represents our best strategy
under attribute prediction.

human annotators rather than the long logical chain
reasoning task. In addition, only need to predict
positive and negative without considering the pear-
son correlation is also one of its advantages.

For further verification, we calculate the At-
tribute F1 scores for all attributes in Figure 6. We
can observe that ChatGPT performs well on most
of the attributes when compared to our model, with

0 500 1000 1500 2000 2500 3000
Num. Update

0

10

20

30

40

50

60

70

Lo
ss

Ours +SYN
Ours +SYN +DA
ChatGPT Argument

Figure 8: Loss function curve over the first 3k steps.
The defination of “+SYN” and “+DA” are align with
ones in Table 1.

60.34% and 25.86% of the attributes respectively
having F1 scores above 85%. Furthermore, Chat-
GPT performs perfectly on word-sense attributes,
achieving an F1 score of 86.99. In contrast, our
models do not display significantly superior results,
with an F1 score of 68.49. For a clearer comparison,
we have compiled the distribution of Attribute F1
values for different attributes for our best-trained
small model and ChatGPT, as shown in Figure 7.

56

We can see that ChatGPT scores higher on a greater
number of attributes. We believe that with more
detailed guidance and rigorous post-processing,
LLMs have the potential to replace humans in an-
notation tasks.

How does data augmentation with ChatGPT
act? We investigate the generation of new data
for downstream model training, which is widely
used. We use the random token lists as input rather
than the unlabeled data, and let LLM generate the
POS tag and syntax tree, which are further used to
generate pseudo-labels, following §4.3. Since Uni-
versal Dependencies is a widely used dataset and
contains both of the required information, a simple
prompt can be used. For ChatGPT generation, we
select a 10k corpus subset.

LLMs do not perform well in semantic relation
generation, and directly using external tools to as-
sist the test set is not effective (Stengel-Eskin et al.,
2020), so it is natural to think of using LLM to
augment the data in a similar way. We used the
zero-shot settings, detailed in §A.1. However, the
performance has declined. For further analysis, we
propose the training loss for the first 3k updates for
different models in Figure 8. We can see that our
data augmentation method can significantly lower
the initial training loss, which shows that similar
data distribution is shared between our proposed
pseudo-labeled data and the training data. However,
the initial loss of ChatGPT argumentation is even
higher than random initializing (Ours +SYN). This
shows significant distribution shifts for the data
generated by ChatGPT, which shows the need for
more detailed prompts and ways to select properly
generated data.

57

