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Abstract
In this paper, we present TeleChat, a collection
of large language models (LLMs) with param-
eters of 7 billion and 12 billion. TeleChat is
initially pretrained on an extensive corpus con-
taining a diverse collection of texts from both
English and Chinese languages, encompassing
trillions of tokens. Subsequently, the model
undergoes fine-tuning to align with human pref-
erences, following a detailed methodology that
we describe. We evaluate the performance
of TeleChat on various tasks, including gen-
eral dialogue generation, language understand-
ing, mathematics, reasoning, code generation,
and knowledge-based question answering. Our
findings indicate that TeleChat achieves state-
of-the-art performance to other open-source
models of similar size across a wide range of
public benchmarks. To support future research
and applications utilizing LLMs, we release the
fine-tuned model checkpoints of TeleChat-7B
and TeleChat-12B, along with code and a por-
tion of our filtered high-quality pretraining data,
to the public community1.

1 Introduction

The research community has witnessed substan-
tial proliferation of open large language mod-
els (LLMs). Following the introduction of Chat-
GPT(OpenAI, 2022), there have been thrilling ad-
vancements and applications of LLMs, but the ma-
jority of prominent LLMs, such as GPT-4(OpenAI,
2023) and PaLM-2(Anil et al., 2023), are restrictive
in their technological sharing. In contrast, a steady
stream of openly accessible text-based LLMs
has emerged, including OPT(Zhang et al., 2022),
BLOOM(Scao et al., 2022), LLAMA(Touvron
et al., 2023a), LLAMA 2(Touvron et al., 2023b),
etc. Furthermore, there exist various other LLMs
that have been designed with a focus on Chinese-
English bilingual language generation, including

∗These authors contributed equally to this work.
†Corresponding Authors.

1https://github.com/Tele-AI/Telechat

models such as Baichuan-2(Yang et al., 2023),
Qwen(Bai et al., 2023), InternLM(InternLM_Team,
2023) and SkyWork(Wei et al., 2023). While these
models offer comprehensive details about their pre-
training strategies, they often lack transparency in
their instruction finetuning processes for chat mod-
els, including limited disclosure of the finetuning
data composition, methods for concatenating multi-
turn dialog data, and techniques employed to en-
hance conversational performance.

To encourage reproducibility of fine-tuned
LLMs and foster responsible development of
LLMs, we release TeleChat, a collection of pre-
trained language models and chat models that have
been fine-tuned using human alignment techniques
including supervised fine-tuning and reinforcement
learning. In particular, we provide a comprehen-
sive explanation of our model architecture and the
approach we used to extend TeleChat’s context win-
dow to 96k in Section 2. Furthermore, in Section 3,
we delve into the specifics of our pretraining dataset
and cleaning techniques. We then discuss align-
ment with human preferences in Section 4 and 5.
Additionally, in Section 6, we conduct a thorough
analysis of the model’s performance on standard
benchmark tasks and general dialogue generation.
Throughout the development of TeleChat, we gain
insights regarding mitigating hallucination with a
knowledge graph, which is discussed in Section 7.
Furthermore, we describe our parallel computing
method in Section 8. Our contribution are listed as
follows:

• We release TeleChat, a suite of pretrained and
fine-tuned large language models with param-
eter sizes of 7 billion and 12 billion. We re-
lease model checkpoints and code to the pub-
lic community.

• We present our comprehensive data cleaning
workflow, and release a portion of our high-
quality training corpus, comprising more than
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1TB of text data and exceeding 160 billion to-
kens. To the best of our knowledge, this marks
the largest open Chinese corpus for language
model pre-training to the date.

• We disclose a comprehensive description of
our supervised fine-tuning methodology, an
aspect that is frequently overlooked in reports
of other publicly available models. Further-
more, TeleChat stands out with its longest con-
text length among open-source large language
models.

2 Model Design

2.1 Model Architecture

TeleChat is an autoregressive transformer model
that employs a stack of transformer-decoder layers,
whose architecture largely follows that of GPT-
3(Brown et al., 2020). However, TeleChat deviates
from the original transformer model in several no-
table ways, drawing inspiration from influential
language models such as LLaMA(Touvron et al.,
2023a) and BLOOM(Scao et al., 2022). The key
parameters of the architecture are summarized in
Table 1.

Rotary Position Embedding. We use Rotary
Positional Embedding (RoPE(Su et al., 2022)) to
encode absolute positions with explicit integration
of relative position dependencies. To further opti-
mize computational efficiency and minimize mem-
ory usage, we implement Flash Attention v2 in the
attention modules(Dao, 2023).

Normalizations. To ensure robust training, we
incorporate an additional layer normalization step
after the initial embedding layer for TeleChat, draw-
ing inspiration from the methodology employed in
BLOOM(Scao et al., 2022). However, we diverge
from BLOOM by replacing conventional layer nor-
malization with RMSNorm(Zhang and Sennrich,
2019), which has been shown to enhance the stabil-
ity and performance of transformer models. Addi-
tionally, we adopt pre-normalization in each layer
instead of post-normalization, a design choice that
has been found to improve the training stability of
transformer models.

Activations We utilize the SwiGLU activation
function(Shazeer, 2020) in the feed forward net-
work (FFN) of TeleChat, and diminish the FFN
feed-forward dimension to less than four times the
hidden size, adhering to established conventions
in prior research(Touvron et al., 2023a)(Wei et al.,

2023).

2.2 Extending Context Window

Large language models (LLMs) often encounter in-
put contexts with a significant number of tokens in
different scenarios. Hence, it is crucial for LLMs to
have long-range capabilities and efficiently handle
context lengths that exceed their initial pre-training
limitations.

In our approach, we utilize NTK-aware interpo-
lation techniques (bloc97, 2023) to redistribute the
interpolation pressure across multiple dimensions.
Additionally, we address performance degradation
caused by fluctuations in context length during
multiple forward-passes by employing a Dynamic
NTK-aware interpolation mechanism, in which the
interpolation scaling factor is designed as a contin-
uous variable and is updated according to real-time
context length.

To enhance TeleChat’s long-context capabili-
ties, we employ Multi-stage Long-context Training
during supervised finetuning and attention-Scaling
techniques(Peng et al., 2023) during the inference
stage. Multi-stage Long-context Training peri-
odically extends the context length during train-
ing, while attention-Scaling adjusts the attention
mechanism by rescaling the dot product relative
to the context-to-training length ratio. This en-
sures stable attention entropy as the context length
increases. For a detailed description of Multi-
stage Long-context Training, please refer to sec-
tion 4.2.3. Experimental results demonstrate that
these techniques enable TeleChat to extend its con-
text window to over 96k tokens successfully, which
achieves longest context length among open-source
large language models.

3 Pretraining Stage

During pretraining stage, we train the model from
scratch using a substantial amount of data. In this
section, we introduce our data collection and clean-
ing method (Section 3.1 and 3.2), training details
(Section 3.3), and tokenizer (Section 3.4).

3.1 Data Collection

TeleChat’s pretraining corpus is curated from a
wide range of data sources, including both general-
purpose and domain-specific data. The general-
purpose data comprises a vast range of sources,
such as web pages, social platforms, encyclopedias,
books, academic papers, code repositories, and
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Models layer num attention heads hidden size FFN hidden size vocab size
TeleChat-7B 30 32 4096 12288 160256
TeleChat-12B 38 32 5120 12288 160256

Table 1: Detailed model architecture parameters for TeleChat’s 7B and 12B models.

Datasets Percentage%
web page 22
books 11
community QA 7
social sharing 8
documents and reports 13
paper 2
code repository 12
chat data 13
others 12
Chinese 45
English 35
Code 11
Math 9

Table 2: The distribution of various categories of
TeleChat’s pretraining data.

more. In terms of domain-specific data, we gather
corpus from twenty distinct sectors, including fi-
nance, construction, health and social work, align-
ing with national industry classifications2. Fur-
thermore, we consistently gather and accumulate
real-time data to ensure comprehensive coverage
of the most up-to-date information. During the
data collection stage, we acquire diverse and ex-
tensive pre-training data on a petabyte scale. The
distribution of our pretraining data is displayed in
Table 2.

3.2 Data Preprocessing

We devise a comprehensive data cleaning proce-
dure to ensure the quality of our pretraining data.
Our data clean procedure consists of rule-based
filtering, deduplication, high-quality data selection,
and data security filtering.

Rule-based Filtering. Heuristic rules are ap-
plied to clean the text efficiently and effectively.
For instance, we filter out extremely short or low-
information texts, discard texts with excessive or
minimal punctuation, and replace HTML tags with
natural language. Additionally, we exclude data in
languages other than Chinese and English, as well

2https://www.stats.gov.cn/english/NewsEvents/
200306/t20030619_25521.html

as non-text multimodal data.
Deduplication. Performing global deduplica-

tion on a large amount of data is unacceptably slow,
therefore we perform a hierarchical deduplication
method. First, we eliminate duplicate data from
similar sources within groups using URL dedupli-
cation, which removes approximately half of the
duplicate data. Next, we utilize a 128-bit SimHash
algorithm for Document-level Deduplication that
removes duplicate articles. Finally, we employ
Minhash and Jaccard similarity methods to per-
form Paragraph-level Deduplication, filtering out a
large number of homogeneous advertisements and
other heavily redundant texts.

High-quality Selection We utilize a 5-gram
Kneser-Ney model, as implemented in the KenLM
library(Heafield, 2011), to train on existing high-
quality corpora and subsequently compute the per-
plexity of each paragraph. Instead of simply dis-
card texts with high perplexity, we split the data
into three even parts: head, middle, and tail based
on the perplexity score. The head part will be sam-
pled more frequently, while the tail part will be
sampled less.

Security Filtering. To ensure the security of our
dataset, we employ a multi-model classification
approach that identifies and removes pornography,
advertising, violent, and politically sensitive con-
tent. Moreover, we utilize obfuscation techniques
to protect personal privacy data.

3.3 Training Details

Batch Generation. To generate data batches, we
employ a process of shuffling and concatenating
the corpus obtained from the same source, ensur-
ing consistency in the data. Furthermore, to align
with the specified context lengths (e.g., 4096), the
data is truncated and concatenated with other data
samples.

Training Objectives. The method utilized in
the pretraining stage is known as autoregressive
language modeling, which involves iteratively pre-
dicting the probability of the subsequent token in
the sequence. We represent the joint probability of
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tokens in a text as:

p(x) = p(x1, · · ·, xT ) =
T∑

t=1

p(xt|x<t) (1)

Where x is a sequence of tokens, and we calculate
the probability of each token xt based on the tokens
that come before it, denoted as x<t. The model is
trained to optimize this probability across the entire
training corpus.

Optimizer. We utilize the widely used
Adam(Kingma and Ba, 2017) optimizer for pre-
training optimization. We employ a cosine learning
rate schedule, where the peak learning rate is spec-
ified for each model size. The learning rate grad-
ually decays until it reaches a minimum learning
rate of 10% of the peak value. The hyperparame-
ters are set as follows: β1 = 0.9, β2 = 0.95, and
ϵ = 10−5. A weight decay of 10−4 is applied to all
model parameters except for bias.

Ramp-up Batch. In order to enable the model to
converge faster at the very beginning of pretraining,
we employ a technique called ramp-up batch size,
which involves starting with a small batch size and
gradually increasing it linearly to the maximum
batch size over a certain number of steps.

Precision.The use of the float16 data type has
been recognized as a potential contributing factor
to training divergences in LLMs. To address this,
we pretrain all models using bfloat16(Wang and
Kanwar, 2019), a data type that shares the same
dynamic range as float32. Additionally, we em-
ploy mixed-precision training, wherein precision-
sensitive operations like gradient accumulation,
softmax, and weight updating are performed with
float32 precision, while the remaining operations
are carried out with bfloat16 precision.

The specific hyperparameters are presented in
Table 3.

3.4 Tokenizer

We utilize Hugging Face’s tokenizers to implement
the BBPE algorithm, training the tokenizer on a
diverse dataset comprising Chinese, English, code,
and mathematical data. This process results in a
tokenizer with a vocabulary size of 160,130, which
is subsequently padded to 160,256. Additionally,
we use special tokens to differentiate dialogue roles
and turns, and also incorporate specific designs to
mitigate potential injection attacks.

HyperParams TeleChat-7B TeleChat-12B
Peak lr 3e-4 1.5e-4
ramp-up batch size 288/72/1,500,000 240/80/2,000,000
batch size 16M 16M
warm up fraction 0.01 0.01
# training tokens 1.0T 1.2T

Table 3: The hyperparameter details utilized during the
pretraining stage of TeleChat’s 7B and 12B variants.
The ramp-up batch size is expressed in the format of
<start batch size >/<batch size increment>/<ramp-up
samples>. For example, 240/80/2,000,000 indicates
that the training begins with a batch size of 240 and
increments by 80 for each time. The total ramp-up
phase encompasses 2,000,000 samples.

4 Supervised Fine-Tuning Stage

We employ supervised fine-tuning (SFT) stage af-
ter the pretraining stage to effectively accomplish
various real-world tasks. In this section, we pro-
vide detailed information about our data collection
and annotation method in Section 4.1, followed
by an in-depth discussion of our methodology and
experimental details in Section 4.2 and Section
4.3.

4.1 Human Data Collection

We brought together a team of annotators to carry
out the manual data annotation process. Our an-
notators are all native Chinese speakers, boasting
a range of academic backgrounds including Com-
puter Science, Law, Chinese language and litera-
ture, and other related fields. We ask the human
annotators to label varied prompts and organize
them into conversations, harnessing our annotation
platform for efficient and high-quality annotations.
We work closely with the labelers, providing them
with clear instructions for each task and addressing
their questions promptly.

We collect over 100,000 supervised fine-tuning
samples using the aforementioned annotation strate-
gies and train our model accordingly. The statis-
tics of the top 30 categories in our supervised-
finetuning data is displayed in Supplement Material
Section A.

4.2 Training Methodology

In this section, we present a comprehensive expla-
nation of our training approach during the super-
vised fine-tuning stage, an aspect that is frequently
overlooked in reports of other open-sourced mod-
els.

13



4.2.1 Data Organization

Our dataset spans various domains, such as General
Q&A, creative writing, machine translation, code
generation, math & reasoning, and more. To en-
sure that each domain is represented appropriately,
we assign respective resampling weights to each
dataset based on their importance. Then, we sample
single-round and multi-round conversations from
each dataset using their corresponding resampling
weights. The sampled conversations are then shuf-
fled and concatenated, followed by pre-padding
them to a predetermined length (e.g., 4096 or 8192)
to ensure consistent input length. We use special
tokens <_user>, <_bot>, and <_end> to denote the
beginning of a question, the start of an answer, and
the end of an answer respectively. To ensure di-
versity in the combination of data, the datasets are
resampled and re-shuffled for each training epoch.
We fine-tuned the model in a supervised manner
based on this carefully curated instruction dataset.

4.2.2 Noisy Embedding Fine Tuning

In this section, we introduce our method for en-
hancing the answer quality of large language mod-
els (LLMs) through noisy embedding fine-tuning
(NEFTUNE), inspired by the work of(Jain et al.,
2023). Specifically, NEFTune modifies the input
embeddings by adding a random noise vector to
them. The noise is generated by sampling inde-
pendent and identically distributed (i.i.d) uniform
entries, each in the range [−1, 1], and then scal-
ing the entire noise vector by a factor of α/

√
Ld,

where L is the sequence length, d is the embedding
dimension, and α is a tunable hyperparameter.

We observe that while NEFTune enhance the
model’s performance in scenarios with limited
training data, its benefits diminish as the size of
the training dataset increases. This is likely due to
the model’s reduced tendency to overfit on larger
datasets. To investigate this further, we conduct
experiments using TeleChat-7B fine-tuned models
with and without the implementation of NEFTune.
Our findings reveal that when the model is trained
on the 10,000 samples, NEFTune achieves a 55%
win rate against its counterpart without NEFTune,
as determined by human evaluators. Some exam-
ples are shown in Supplement Material Section
B. However, when the model is trained on the en-
tire dataset consisting of 40,000 samples, NEFTune
loses its advantage, resulting in only a 48% win
rate against its counterpart without NEFTune.

4.2.3 Multi-stage Long-context Training.
During the supervised fine-tuning stage, we gradu-
ally increase the training length, enabling the model
to activate and strengthen its ability to understand
extensive dependencies while preserving its foun-
dational skills. Specifically, we initiate the training
with a sequence length of 8,192, building upon the
foundation model trained on a sequence length of
4,096. At the 3/4 mark of the training procedure,
we transit to a training sequence length of 16,384.
Note that we employ the ntk-aware extrapolation
method when working with sequence lengths of
8,192 and 16,384. This approach helps us mitigate
the difficulties encountered during the transition,
allowing for a smooth adjustment in the training
sequence length for the model. Training details
for TeleChat-7B’s multi-stage long-context train-
ing is shown in Table 4, and experiment results is
displayed in Table 5

4.3 Training Details

Similar to the pretraining phase, we employ next-
token prediction as the training task. However,
we introduce loss masks for system information
and user input questions to ensure that the loss is
exclusively calculated for the output answer.

The model undergoes a total of 40,000 steps,
with the first 30,000 steps involving training with a
sequence length of 8,192, and the remaining 10,000
steps involving training with a sequence length
of 16,384, as illustrated in section 4.2.3. In the
training process, we utilize the same optimizer as
in the pretraining stage, as described in section 3.3.

5 Reinforcement Learning

In this section, we introduce reinforcement learning
to align chat models with human preference, aim-
ing to make model outputs consistent with safety
and norms.

5.1 Reward Model

When collecting prompts of reward dataset, a con-
sensus is that high-quality and diverse prompts are
conducive to the training stage of reinforcement
learning.

We collect a large number of prompts, includ-
ing data from both human annotation and internal
user testing phases. The final prompt dataset con-
sists of a total of 300 categories. To further get
the high quality prompts, we use clustering and
centroid selection to select representative prompts.

14



sequence length training steps peak lr batch size tensor parallel pipeline parallel
8,192 30,000 3e-5 8M 2 4
16,384 10,000 4e-5 8M 2 8

Table 4: Training details for TeleChat-7B’s multi-stage long-context training. Note that training with a sequence
length of 16,384 demands significantly more GPU memory compared to training with 8,192. As a result, it is
necessary to increase the pipeline parallel size to 8, and requires 2 nodes to train.

Method sequence length
2048 4096 8192 16384 32768 65536 98304

baseline 4.8122 4.6562 39.3099 98.3102 155.2708 487.3398 447.6295
NTK-aware (8k) 4.8122 4.6562 5.1904 4.7155 8.6351 77.7478 79.9256

NTK-aware+logN (8k) 4.8122 4.6562 5.1904 4.0353 4.1408 9.4080 7.9711
NTK-aware (16k) 7.6916 7.9900 7.9580 5.1217 4.7932 10.5444 10.3614

NTK-aware+logN (16k) 7.6916 7.9900 7.9580 5.1217 4.7195 8.9751 7.6822

Table 5: Our experiments with TeleChat-7B’s long-context inferences illustrate the effectiveness of employing
techniques such as NTK-aware extrapolation, attention scaling, and multi-stage long-context training. These
approaches result in a significant reduction in perplexity as the context length increases and enable our model to
achieve a low perplexity when extrapolating to 96K tokens.

All prompts are firstly convert to embeddings using
bge-large-zh 3. Then we employ elbow clustering
algorithms within each categories that aims to find
the ideal number of clusters. The closest prompt to
each cluster centroid will be selected. In addition,
we randomly sampled the prompts in the cluster
(except the closest prompt) to ensure the diversity
of reward dataset, while the remain is used for re-
inforcement learning. The responses are collected
from TeleChat models of different training stages
and reasoning strategies, allowing sampling rich
responses for annotation.

Moreover, for improving the accuracy and reduc-
ing the difficulty of annotations, we simplify the
task of ranking responses with human annotation.
A straightforward classification task is introduced,
where responses can be categorized under three
distinct labels: good, medium, and bad. The ba-
sic criteria of this assessment includes but is not
limited to safety, factuality, fluency, normality, etc.
By evaluating the responses through these aspects,
annotators can rank responses consistently. The re-
sponses between each pair of distinct labels under
the same prompt can be combined with each other
to form ranked pairs for subsequent training.

During the training stage, we use the same train-
ing objectives as LLaMA2, adding margin in the
loss function to teach the reward model to assign
more difference scores to response pairs with more

3https://huggingface.co/BAAI/bge-large-zh-v1.
5

difference. The training data distribution, adding
margin size and test accuracy of Reward Model on
three types of data pairs are shown in Table 6.

5.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is widely used for LLM alignment and
its mechanism is collaboratively working including
four models: actor model, critic model, reference
model and reward model. From the experience of
(Yang et al., 2023) and (Bai et al., 2023), the critic
model updates 50 steps firstly before actor model.
The KL divergence coefficient is setting to 0.1 and
apply a normalization process to the rewards, which
accounts for the moving average. The learning
rates for our actor and critic models are configured
at 5× 10− 6 and 3× 10− 6 respectively through
experiments. We get the chat model eventually
after training for 400 steps.

6 Experiment

6.1 Evaluation on Standard Benchmarks

In this chapter, we evaluate the zero-shot and few-
shot capabilities of TeleChat from various perspec-
tives using standard benchmarks. We select a
list of open source models as baselines, including
LLaMA 2-Chat (7B, 13B), InternLM-Chat (7B),
Belle-LLaMA-2 (13B), Baichuan 2 (7B, 13B),
ChatGLM 2-6B, ChatGLM 3-6B, Qwen-Chat (7B,
14B).
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Type of data good & bad medium & bad good & medium
Distribution 18.2% 21.1% 65.7%
Margin 1 2/3 1/3
Test Accuracy 70.1% 66.0% 86.4%

Table 6: Training data distribution, adding margin and test accuracy of Reward Model on different type of data pairs.

Model
MMLU C-Eval CMMLU AGIEval GAOKAO CSL CHID EPRSTMT GSM8K MATH HumanEval
(5-shot) (5-shot) (5-shot) (zero-shot) (zero-shot) (zero-shot) (zero-shot) (zero-shot) (4-shot) (4-shot) (zero-shot)

LLaMA2-7B-chat 46.2 31.9 31.5 28.5 16.1 58.8 44.1 57.5 26.3 3.9 12.2
LLaMA2-13B-chat 54.6 36.2 38.7 32.3 18.6 61.2 48 59.4 29.6 5.0 18.9
ChatGLM2-6B-chat 45.9 52.6 49.3 39 46.4 61.2 57.9 71.2 28.8 6.5 11
ChatGLM3-6B-chat 51.9 53.8 54 38.9 49.3 65.6 63.4 85 56.7 18.7 61
InternLM-7B-chat 52 54.1 52.6 43.7 45.8 70 79.7 88.8 34.6 5.6 12.8
Baichuan2-7B-chat 52.8 55.6 54 35.3 39.7 60 75.2 87.5 32.8 6 13.4
Baichuan2-13B-chat 57 56.7 58.4 40 51.4 63.1 78.2 87.5 55.3 8.6 17.7

Qwen-7B-chat 56.6 59.3 59.5 41.3 63.3 63.1 72.3 88.8 52.5 10.3 26.2
Qwen-14B-chat 66.4 71.7 70.0 47.3 76.5 55.6 72.3 91.2 61.0 26.8 36.6

TeleChat-7B-chat 54.4 63.1 64.3 46.8 57.7 66.8 88.0 87.5 36.7 10.3 14.6
TeleChat-12B-chat 73.3 66.6 74.2 51.7 53.1 60.6 83.2 86.3 57.2 16.0 22.0

Table 7: Results of TeleChat compared with other large language models on eleven general benchmarks.

Model General Q&A Safety Task Hallucination Task
GPT3.5 66.3 73.9 72.2
Qwen(14B) 66.4 70.7 64.2
BaiChuan2(7B) 59.1 71.9 40.2
TeleChat-12B 71.4 75.4 66.2

Table 8: The evaluation results of TeleChat and other
models on general dialogue Q&A, safety task and hallu-
cination task. The best results are shown in bold.

6.1.1 Overall Performance
We evaluate TeleChat on multiple challenging
benchmarks. The detailed information of test
benchmarks is as follows:

• MMLU(Hendrycks et al., 2021a): An En-
glish benchmark covering 57 tasks, which are
mostly college level.

• CMMLU(Li et al., 2023): A Chinese bench-
mark to evaluate a LLM’s knowledge and rea-
soning ability.

• C-Eval(Huang et al., 2023): A comprehensive
Chinese benchmark, containing more than 10
thousands questions and four difficulty levels.

• GAOKAO-Bench(Zhang et al., 2023): A Chi-
nese evaluation benchmark utilizing Chinese
college entrance examination questions.

• AGIEVAL(Zhong et al., 2023): A bilingual
evaluation dataset encompassing standardized
test questions.

• CSL(Li et al., 2022): A dataset containing
multiple Chinese papers, which requires to

checks the match between Chinese academic
abstracts and their keywords.

• EPRSTMT(Xu et al., 2021): EPRSTMT is
a sentiment analysis datasets based on com-
ments on e-commerce websites.

• CHID(Zheng et al., 2019): A reading compre-
hension benchmark, which requires the model
to select the most appropriate idiom to fill in
the blanks within the text.

• GSM8K(Cobbe et al., 2021): GSM8K is a
dataset of 8.5K high-quality, linguistically di-
verse, human-written elementary math prob-
lems.

• Math(Hendrycks et al., 2021b): A dataset con-
taining 12.5K challenging competition math
problems.

• HumanEval(Chen et al., 2021): A code test
dataset provided by OpenAI, which consists
of 164 programming questions that measure
the correctness of code.

We record the detailed experiment results in
Table 7. To standardize the evaluation method,
we employ the assessment technique provided by
OpenCompass to obtain the results on most of
the benchmarks. The referenced model results
all originate from the open leaderboard of Open-
Compass. We observe that TeleChat exhibits supe-
rior performance compared to models of the same
size. Particularly in terms of the results on the
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MMLU, AGIEVAL, CMMLU and CHID datasets,
TeleChat’s performance surpasses that of other
models of equivalent size.

6.2 Evaluation on General Dialogue Tasks

We assess TeleChat’s ability to deliver helpful,
truthful, and secure responses to user input, us-
ing a specific set of prompts that are distinct from
our training data. Our test data is categorized into
general dialogue generation tasks, safety tasks, and
hallucination tasks. We compare TeleChat’s output
with other models, using GPT-4 as an automatic
referee, and then ask human labelers to review and
revise the results of GPT-4. The human evaluation
process is conducted in a blind manner. Examples
of our evaluation dataset is shown in Supplement
Material Section C.

The results, presented in Table 8, demonstrate
that TeleChat-12B achieves a 99.3% performance
level compared to GPT3.5 and outperforms other
opensource models of similar sizes. We also show-
case TeleChat’s capability to address real-world
inquiries in Supplement Material Section D.

7 Alleviating Hallucination with
Knowledge Graph

Hallucination problems are frequently observed in
LLMs, where there is a tendency to generate text
that appears coherent and meaningful but lacks
real-world existence. In this paper, we address the
first type of hallucinations by utilizing structured
information representation provided by Knowledge
Graphs (KG).

When a query comes, candidate entities are
firstly retrieved based on n-gram similarity with
query. Subsequently, a random walk of n steps is
conducted within the graph, starting from these can-
didate entities. Finally, all paths obtained through
the random walk are sorted based on their relevance
to the user’s query. The top-k paths are then re-
turned as the final result of the knowledge graph re-
trieval process. By combining this retrieved knowl-
edge with a prompt, the large language model can
process the augmented query, taking into consider-
ation the background knowledge provided by the
knowledge graph. We evaluated the TeleChat’s
ability to answer factual questions in the China
Conference on Knowledge Graph and Semantic
Computing (CCKS) 2020 Knowledge Graph based
Q&A task4. Without the introduction of the knowl-

4https://sigkg.cn/ccks2020/?page_id=69

edge graph, the accuracy of TeleChat on this task is
recorded at 0.19. However, after incorporating the
relevant knowledge by adding the top 10 relevant
paths from the knowledge graph, the accuracy sig-
nificantly improves to 0.69. This demonstrates the
effectiveness of integrating the knowledge graph in
enhancing the TeleChat’s ability to provide accu-
rate answers to factual questions.

8 Engineering

8.1 Hardware

TeleChat is trained on a total of 80 nodes, each hav-
ing 8 Nvidia A100 Sxm 40GB GPUs. Each node
is equipped with 2x Intel 6348 (28 Cores, 2.60
GHz) CPUs, 8x NVLink A100 GPUs, 512GB of
RAM, and a 2GB cache RAID card. All nodes are
interconnected using InfiniBand (IB) for network-
ing. To enhance data transmission speed and miti-
gate bandwidth constraints, we employ NVIDIA’s
GPUDirect RDMA (GRDMA) and utilize the Scal-
able Hierarchical Aggregation and Reduction Pro-
tocol (SHARP).

8.2 Parallel Computing

TeleChat is trained using the Megatron-DeepSpeed
framework (Smith et al., 2022) for large-scale dis-
tributed training. TeleChat successfully leverages
3D parallelism, which integrates tensor parallelism,
pipeline parallelism, and data parallelism to enable
efficient distributed training. We scale our system
to utilize hundreds of GPUs with extensive GPU
utilization, achieving a peak performance of 180
TFLOPs using A100 GPUs, which accounts for
57.6% of the theoretical peak performance of 312
TFLOPs.

9 Conclusions

In this paper, we introduced TeleChat, a collection
of large language models (LLMs) with 7 billion
and 12 billion parameters. We detailed the pretrain-
ing process, supervised fine-tuning, reinforcement
learning, and the integration of a knowledge graph
to enhance the model’s performance. We evalu-
ated TeleChat on various benchmarks and com-
pared its performance with other open-source mod-
els, TeleChat demonstrates superior performance in
general dialogue tasks, knowledge-based question
answering, and various other benchmarks, showcas-
ing its potential for diverse real-world applications.
We release model checkpoints, code, and a portion
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of our filtered high-quality pretraining data totaling
160 billion tokens to the public community.

Limitations

While TeleChat demonstrates impressive perfor-
mance across various language tasks, there are sev-
eral limitations to consider. Firstly, the extensive
computational resources required for training and
inference may also pose challenges for wider adop-
tion and accessibility. Additionally, the integration
of knowledge graphs, while effective in reducing
hallucination, may introduce biases or inaccura-
cies if the underlying knowledge graph data is in-
complete or outdated. Furthermore, the evaluation
of TeleChat’s performance, while comprehensive,
may not fully capture its real-world applicability
and potential limitations in specific domains or sce-
narios. Addressing these limitations will be cru-
cial for the responsible and ethical deployment of
TeleChat in real-world applications.

Ethics Statement

The development and evaluation of TeleChat prior-
itize ethical considerations. We prioritize privacy,
consent, and fairness in data usage, and have made
model checkpoints, code, and a portion of the train-
ing data publicly available for transparency and
reproducibility. We are committed to addressing
ethical concerns such as bias, privacy, and misinfor-
mation, and will continue to monitor and improve
TeleChat’s behavior in alignment with societal val-
ues.
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