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Abstract
This paper describes our system and findings
for SIGHAN-2024 Shared Task Chinese Di-
mensional Aspect-Based Sentiment Analysis
(dimABSA). Our team CCIIPLab proposes an
Contrastive Learning-Enhanced Span-based
(CL-Span) framework to boost the perfor-
mance of extracting triplets/quadruples and
predicting sentiment intensity. We first em-
ploy a span-based framework that integrates
contextual representations and incorporates ro-
tary position embedding. This approach fully
considers the relational information of entire
aspect and opinion terms, and enhancing the
model’s understanding of the associations be-
tween tokens. Additionally, we utilize con-
trastive learning to predict sentiment intensities
in the valence-arousal dimensions with greater
precision. To improve the generalization abil-
ity of the model, additional datasets are used
to assist training. Experiments have validated
the effectiveness of our approach. In the offi-
cial test results, our system ranked 2nd among
the three subtasks. Our code is publicly avail-
able at https://github.com/tongzeliang/
SIGHAN2024.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) is an im-
portant task in Natural Language Processing (NLP),
and is beneficial for many downstream tasks, such
as emotional conversation generation (Wei et al.,
2019; Liu et al., 2022) and recommendation system
(Zhao et al., 2023; Wang et al., 2023). However,
previous work has focused primarily on discrete
sentiment polarity, with little attention given to the
Valence-Arousal (VA) space. This dimensional
approach represents affective states as continuous
numerical values across multiple dimensions, pro-
viding more fine-grained sentiment information.

To address this issue, the SIGHAN-2024 shared
task formulates three subtasks that challenge partic-
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Figure 1: Illustration of three dimABSA subtasks. As-
pect terms, opinion terms and categories are highlighted
in red, blue and green, respectively. The terms “val”
and “aro” represent the valence and arousal intensity of
affective states, respectively, both ranging from 1 to 9.

ipants to develop ABSA systems based on dimen-
sional sentiment information (Lee et al., 2024). As
Figure 1 shows, the three subtask can be illustrated
as follows:

• Subtask 1: Intensity Prediction. Predict the
valence-arousal ratings for a given sentence
and its specific aspect.

• Subtask 2: Triplet Extraction. Extract all
sentiment triplets (aspect, opinion, intensity)
from a given sentence.

• Subtask 3: Quadruple Extraction. Extract
all sentiment quadruples (aspect, category,
opinion, intensity) from a given sentence.

As an extension of the ABSA task, dimABSA
becomes notably challenging due to the follow-
ing two difficulties: 1) Multiple Aspect-Opinion
Pairing. In sentences with multiple aspects and
opinions, determining which opinion corresponds
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Figure 2: The distribution of valence-arousal ratings,
where intensity ratings ranging from 1 to 9 are seg-
mented into equal interval groups.

to which aspect becomes particularly challenging.
To mitigate this problem, several efforts (Wu et al.,
2020; Chen et al., 2022b; Liang et al., 2023) have
been made, but they are not comprehensive for
modeling the relationship between tokens, which
is significant in the aspect-opinion pairing process
(Chen et al., 2022a). 2) Imbalanced Dataset. As
illustrated by Figure 2, the number of samples with
neutral sentiment intensity is much greater than
those with extreme sentiment intensity for both the
valence and arousal dimensions, which leads to bi-
ased predictions from the model. Although there
are some methods for addressing data imbalance
like Re-Sampling (RS) (Zhou et al., 2020; Zhang
and Pfister, 2021), most of them improve the perfor-
mance of sparsely labeled samples at the expense
of densely labeled samples (Zhang et al., 2023),
leading to suboptimal results and and cannot be
seamlessly migrated to dimABSA tasks.

In this paper, we develop a Contrastive
Learning-Enhanced Span-based Framework for the
dimABSA task to address the aforementioned chal-
lenges. Firstly, given the excellent performance
of span-based methods in various NLP tasks (Xu
et al., 2021), we explicitly generate span represen-
tations for all possible aspect and opinion spans.
To comprehensively capture the relational infor-
mation between spans, we integrate the contextual
representations and incorporate Rotary Position
Embedding (RoPE) (Su et al., 2024), which facili-
tates improved semantic understanding. Secondly,
as self-supervised learning can improve robustness
to data imbalance (Li et al., 2022), we employ con-
trastive learning to optimize feature representations
in regression tasks. This approach adjusts the dis-

tance between samples in the embedding space
according to their target values and subsequently
leverages this feature to predict sentiment intensity.

Extensive experiments show that our method per-
forms well across all three subtasks. On the official
leaderboard, the Mean Absolute Error (MAE) for
valence and arousal in subtask 1 ranks 2nd and 1st,
respectively. The Pearson Correlation Coefficient
(PCC) for valence and arousal in subtask 1 both
rank 3rd. The F1 scores for triplet and quadruple
extraction in Subtasks 2 and 3 both rank 2nd.

The paper is structured as follows: Section 2 pro-
vides a concise review of related work. In Section
3, we outline our proposed system. Section 4 cov-
ers the experimental details, including the dataset,
setup, results, and discussions. Section 5 analyzes
the effectiveness of contrastive learning and fur-
ther examines the performance of our methods in
low-resource settings. Finally, Section 6 presents a
brief conclusion.

2 Related Work

2.1 ABSA Tasks

ABSA tasks, which aim to analyze sentiment from
a fine-grained perspective, include three funda-
mental subtasks: Aspect Term Extraction (ATE)
(Xu et al., 2018; Ma et al., 2019; Yang et al.,
2020), Opinion Term Extraction (OTE) (Wan et al.,
2020; Veyseh et al., 2020), and Aspect Sentiment
Classification (ASC) (Tian et al., 2021; Wang
et al., 2021a; Zhou et al., 2021). In recent years,
research has increasingly focused on composite
ABSA tasks, which integrate multiple basic tasks.
Peng et al. (2020) introduced the Aspect Sentiment
Triplet Extraction (ASTE) task, and they proposed
a two-stage pipeline model to independently extract
aspect-opinion-sentiment triplets. Subsequently,
some end-to-end methods (Fei et al., 2021; Liang
et al., 2023) were also applied to this task. Fol-
lowing this advancement, Zhang et al. (2021) in-
troduced the Aspect-Sentiment Quad Prediction
(ASQP) task, addressing it through the Seq2Seq
generative modeling paradigm. However, these
works primarily focus on discrete sentiment polar-
ity, making it challenging to perceive subtle senti-
ment differences when predicting continuous senti-
ment intensity.

2.2 Contrastive Learning

Contrastive Learning methods learn feature rep-
resentations by contrasting positive pairs against
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negative pairs, and have widely used in many down-
stream tasks, such as recommendation systems
(Zou et al., 2022; Wang et al., 2022), knowledge
graphs (Fang et al., 2022; Xu et al., 2023), etc..
Recent research has started to utilize contrastive
learning to address the long-tail distribution prob-
lem in image classification (Wang et al., 2021b;
Xuan and Zhang, 2024), aiming to obtain improved
feature representations. This prompts us to utilize
contrastive learning in the dimABSA task to tackle
the challenge of imbalanced datasets.

3 Methodology

3.1 Overview

Problem Statement. Let s = {wi}n and A =
{aj}m be a sentence and a predefined set of as-
pects, where n and m represents the length of s
and the number of aspects contained in s (A is only
provided in subtask 1). The goal of subtask 1 is to
predict the sentiment intensity valj , aroj ∈ [1, 9]
for each aspect aj ∈ A. The object of subtask
2 and 3 is to extract a set of sentiment triplets
T = {(a, o, val-aro)m}|T |

m=1 and quadruples Q =

{(a, o, c, val-aro)m}|Q|
m=1, where a, o and c repre-

sent aspect term, opinion term and category.
Architecture. As Figure 3 demonstrates, our sys-
tem contains three components: 1) the Aspect-
Opinion Pairing Module identifies aspect terms
and opinion terms from the original sentence, and
establishes their relationships to form valid aspect-
opinion pairs, 2) the Sentiment Scoring Module
assesses the sentiment intensity based on the origi-
nal sentence and the extracted aspect-opinion pairs,
3) the Category Prediction Module conducts cat-
egory classification utilizing the original sentence
and the extracted aspect-opinion pairs. Each mod-
ule is trained independently, and each subtask is
accomplished through the collaboration of differ-
ent modules. This pipeline structure enhances the
flexibility and scalability of the system, allowing
different processing steps to be optimized and ad-
justed independently.

3.2 Aspect-Opinion Pairing Module

This module identifies relevant aspects and their
corresponding opinions within the sentence and
accurately pairs them. As Figure 4 shows, this
foundational step is crucial for subsequent anal-
ysis and prediction, ensuring that each aspect is
matched with its opinion, forming the basis for
further inference.

A
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pinion Pairing

 Category Classifier

 Sentiment Scoring

Predefined Aspect

(Opinion Retrieval)

Sentence

...

: Subtask 1
: Subtask 2
: Subtask 3

Input

Input (Only for Subtask 1)

Figure 3: Architecture of our system. Arrows of differ-
ent colors indicate the computational processes specific
to each corresponding subtask.

Sentence Encoder. We use MacBERT (Cui et al.,
2021) to generate contextual word representations
by,

Ĥ = ĥcls, {ĥj}n, ĥsep = MacBERT({wi}n)
(1)

where ĥj is the contextual embedding of word wj .
We then integrate RoPE into the token representa-
tion via an additional multi-head attention layer,

H = MultiHead (Q,K,V) (2)

= ||Zz=1Attention
(
Ri

θW
z
qĤ, Rj

θW
z
kĤ,Wz

vĤ
)

(3)

Z is the number of attention heads, W z
q ,W

z
k

and W z
v are trainable parameter of the zth head of

attention. Note that the rotational position encoding
matrix should vary for different positions in the
sequence, here we use Ri

θ and Rj
θ for simplicity.

Aspect and Opinion Extraction. We use SP =
{spi,j | 0 ≤ j − i ≤ l} to represent all possible
spans in s, where i and j represent the start and
end positions in s respectively, and the maximum
length of span spi,j is l. We define the representa-
tion of span spi,j as,

spi,j = [hi;hj ] (4)

where the semicolon represents concatenation.
Next, we employ a fully connected layer to evalu-

ate the validity of each span spi,j , assigning a label
distribution ye ∈ {Aspect, Opinion, Invalid},

pAi,j , p
O
i,j , p

IV
i,j = softmax

(
Wespi,j + be

)
(5)

where We, be are trainable parameters.
Inspred by Xu et al. (2021), to mitigate the com-

plexity inherent in the subsequent calculation pro-
cess, we retain a specified proportion of spans for
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Figure 4: The overall framework of our Aspect-Opinion Pairing Module. Initially, the encoder derives base
contextual representations for the input sentence. Subsequently, we integrate Rotary Position Embedding (RoPE)
into the token representations to facilitate enhanced discourse comprehension. Following this, aspect terms and
opinion terms are extracted based on the RoPE-enhanced representations. Finally, we identify valid aspect-opinion
pairs from the extracted aspect and opinion terms.

both the aspect and the opinion candidate set, se-
lecting those with the highest scores as determined
by Equation 5. The refined sets of aspects and opin-
ions can be denoted as AT = {. . . , spA

i,j , . . .} and
OT = {. . . , spO

i,j , . . .}, respectively, each com-
prising nr elements, where r ∈ [0, 1] indicates the
proportion of retained elements.
Aspect-Opinion Pairing. After acquiring the as-
pect and opinion candidate sets from the previous
stage, we proceed by pairing them in all possible
combinations, resulting in the following represen-
tation,

fa,b,c,d =
[
spA

a,b; sp
O
c,d;Cb,c

]
(6)

Cb,c =Max-Pooling ([hb+1 : hc−1]) (7)

Cb,c represents the contextual information of spa,b

and spc,d. Subsequently, we employ a fully con-
nected layer to process the representation of each
fa,b,c,d. This layer evaluates the validity of each
aspect-opinion pair, assigning a label distribution
yg ∈ {V alid, Invalid}.

pVa,b,c,d, p
IV
a,b,c,d = softmax (Wgfa,b,c,d + bg) (8)

where Wg, bg are trainable parameters.
Training. The training target is to minimize the
cross-entropy loss of the extraction and pairing
tasks.

L = αLe + βLg (9)
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(The fish is fresh [SEP] fish [SEP] fresh)
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Figure 5: The overall framework of the Sentiment Scor-
ing Module employs a contrastive loss, which ensures
that samples with similar regression labels share similar
features in the embedding space, while samples with
differing labels are positioned further apar.

Le =−
∑

spi,j∈SP
logP

(
y∗e | pei,j

)
(10)

Lg =−
∑

spa,b∈AT,spc,d∈OT

logP
(
y∗g | pga,b,c,d

)

(11)

Here, y∗e and y∗g represents the ground-truth label
of the extraction and pairing tasks for spi,j and
fa,b,c,d, respectively.

3.3 Sentiment Scoring Module
In this section, we employ contrastive learning to
enhance aspect-specific representations and predict
sentiment intensity for each aspect in the valence-
arousal space, as illustrated in Figure 5.
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Aspect Specific Representation. In this part,
we first utilize MacBERT as encoder to generate
aspect-specific representation for each aspect:

uj =< {wi}n, [SEP], {aj}t̂, [SEP], {oj}t̃ >
(12)

Hj = MacBERT(uj) (13)

where t̂ and t̃ are lengths of the aspect aj and its
corresponding opinion oj . Note that in the case of
multi-aspect sentences, this module is employed
multiple times, with each iteration focusing on one
aspect. The aspect-specific feature representations
is then obtained by max pooling,

vj = Max-Pooling (Hj) (14)

Contrastive Learning. After generating aspect-
specific representations, most prior studies directly
employ these representations for downstream tasks.
Nonetheless, the performance is constrained by
imbalanced datasets, resulting in suboptimal out-
comes. To address this limitation, we incorporate
contrastive learning to enhance feature optimiza-
tion. Let {vi}G be defined as the set of all repre-
sentations within a batch, and G denote the number
of these representations, we first translate them
for contrastive loss through a MLP combined with
ℓ2-normalization,

ui = ℓ2-norm (MLP (vi)) (15)

In the absence of category labels, we establish two
thresholds, δ1 and δ2, to facilitate the selection of
positive and negative sample pairs respectively,

< i, j >=

{
+ if |y∗i − y∗j | ≤ δ1

− if |y∗i − y∗j | ≥ δ2
(16)

where y∗i , y∗j represent the ground-truth of the senti-
ment intensity. Therefore, through the above rules,
we can construct a positive set Pi and a negative
set Ni for each representation ui. The contrastive
loss is calculated as follows,

LCL = − 1

G

G∑

i=1

∑

uj∈Pi

log
esim(ui,u

+
j )/τ

∑
uk∈Ni

esim(ui,u
−
k )/τ

(17)
Training. The sentiment intensity was calculate by
the aspect-specific representations {vi}G through
a single linear layer, and the total loss can be calcu-
lated as follow,

L =αLR + (1− α)LCL (18)

LR =
1

G

G∑

i=1

||y∗i − fθ (vi) || (19)
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Figure 6: Architecture of the Category Prediction Mod-
ule.

where fθ denotes the linear projection. Note that
the Sentiment Scoring Module is deployed twice
within the system, with two identical components
operating in parallel to independently extract va-
lence and arousal features for regression prediction.
This design allows each encoder to specialize in a
specific emotional dimension, optimizing for the
unique characteristics of each dimension and re-
ducing feature interference during the contrastive
learning process.

3.4 Category Prediction Module

This part employs the same method as the Sen-
timent Scoring Module to obtain aspect-specific
representations vi. As Figure 6 shows, these repre-
sentations are subsequently passed through a fully
connected layer with a softmax activation function,
producing probability distributions across all cate-
gories,

pi = softmax (Wpvi + bp) (20)

The training loss is formulated as the cross-entropy
loss between the ground-truth and the predicted
label distributions for all aspects,

LCE = − 1

N

N∑

i=1

log (y∗i | pi) (21)

where y∗ represent the ground-truth label.

3.5 Deployment Order

Table 1 illustrates the computational sequence of
each component in the model across the three sub-
tasks. All three subtasks necessitate an initial phase
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Task 1 Task 2 Task 3
Aspect-Opinion Pairing ✓ ✓ ✓

Opinion Retrieval ✓ ✗ ✗

Category Prediction ✗ ✗ ✓

Sentiment Scoring ✓ ✓ ✓

Table 1: The computational sequence of each compo-
nent within the model across the three subtasks.

Dataset Sentence-Level Aspect-Level

Sgl-Senti Mul-Senti All Null All

train 4165 1885 6000 169 8354
test1 1460 540 2000 - 2658

test2,3 - - 2000 - -

Table 2: Dataset statistics. “Sgl-Senti” and “Mul-Senti”
indicate the number of sentences expressing sentiment
toward single or multiple aspects, respectively. “NULL”
signifies that the aspect entity is omitted in sentence.

of aspect-opinion extraction and pairing. In Sub-
task 1, the Opinion Retrieval (OR) Module is em-
ployed, meaning that during sentiment intensity
regression, we retrieve the corresponding opinion
extracted in the aspect-opinion pair module for
each predefined aspect, as this is a critical feature
for both valence and arousal predictions. In cases
where extraction or pairing fails, “NULL” is used
to fill the missing opinion term.

4 Experiment

4.1 Dataset and Setup
We evaluate our model on the official dataset of
the SIGHAN-2024 shared task (Lee et al., 2024),
which uses Simplified Chinese characters. Dataset
statistics are shown in Table 2. To enhance the
model’s ability to discern subtle sentiment nuances
when predicting continuous sentiment intensity,
we incorporated the Chinese EmoBank (EB) (Lee
et al., 2022) as an auxiliary training resource. We
fine-tuned the Sentiment Scoring Module on this
supplementary dataset using the methodology out-
lined in Section 3.3, subsequently employing the
fine-tuned parameters to initialize the model for the
ensuing task training.

The Aspect-Opinion Pairing Module is trained
for 30 epochs with a batch size of 16, and the other
modules are trained for 10 epochs with a batch
size of 128. AdamW optimizer (Loshchilov and
Hutter, 2018) is adopted with a learning rate 2e-5
and weight decay 1e-2 for model training. The two
thresholds δ1 and δ2 used in contrastive learning
are set to 0.5 and 2 respectively. The maximum
span length l is set as 10. We select the best model

weights for testing based on performance on the
validation set. MAE and PCC are evaluation met-
rics for subtask 1, while the F1 score is used as the
evaluation metric for subtasks 2 and 3.

4.2 Baseline

Since no existing method is specifically designed
for dimABSA, we re-implemented Span-ASTE
(Xu et al., 2021) and STAGE (Liang et al., 2023),
which are high-performing span-based systems
closely related to the task, and used them as our
baseline.

4.3 Main Results

Table 3 presents the results of out method in the
final test set. Observations are: 1) Our purposed
model outperforms the baseline, and achieves rela-
tively good results in the final rankings, with one
metric ranking 1st, seven metrics ranking 2nd, and
two metrics ranking 3rd. The performance im-
provement of our model primarily stems from a
more powerful pre-training model, richer relational
information for aspect-opinion pairing, and more
robust feature representation for sentiment scoring.
2) Predicting sentiment intensities in the arousal
dimension is significantly more challenging than
in the valence dimension. In subtask 1, all models
exhibit higher MAE in the arousal dimension com-
pared to the valence dimension. In subtask 2 and
3, the F1 score based on arousal is about 5% lower
than the F1 score based on valence. We infer that
this complexity arises because predicting the level
of arousal requires a comprehensive assessment of
the overall context, tone, and other nuanced factors,
which introduces corresponding challenges in the
data annotation and training process.

4.4 Ablation Study

We also conduct an ablation study to verify the ef-
fectiveness of our proposed method. The results
are shown in Table 3. Observations are: 1) For
the Aspect-Opinion Pairing Module, w/o CR and
w/o RoPE mean that we remove the contextual
representation and rotational position embedding
during the computation. Without the enhancement
of relational features between spans and spans, the
model’s performance slightly degrades. 2) For the
Sentiment Scoring Module, w/o OR indicates that
the opinion term has been removed from the in-
put, and w/o CL indicates that the contrastive loss
has been omitted during the training process. As
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Models
Subtask 1 Subtask 2 Subtask 3

V-MAE V-PCC A-MAE A-PCC V-F1 A-F1 VA-F1 V-F1 A-F1 VA-F1
Span-ASTE♮ - - - - 0.473 0.458 0.310 - - -

STAGE♮ - - - - 0.491 0.468 0.324 - - -
CL-Span♮ 0.320 0.900 0.321 0.767 0.562 0.517 0.385 0.540 0.500 0.375
CL-Span† 0.302 0.910 0.314 0.767 0.565 0.519 0.391 0.547 0.505 0.379
CL-Span◦ 0.294(2) 0.916(3) 0.309(1) 0.766(3) 0.573(2) 0.522(2) 0.403(2) 0.555(2) 0.507(2) 0.389(2)

CL-Span◦w/o-OR 0.327 0.913 0.354 0.761 0.523 0.484 0.371 0.511 0.470 0.359
CL-Span◦w/o-CL 0.311 0.912 0.331 0.764 0.548 0.511 0.380 0.542 0.503 0.377
CL-Span◦w/o-EB 0.319 0.912 0.340 0.767 0.539 0.501 0.374 0.535 0.487 0.364

CL-Span◦w/o-RoPE - - - - 0.565 0.514 0.391 0.547 0.510 0.379
CL-Span◦w/o-CR - - - - 0.564 0.518 0.391 0.545 0.504 0.378

Table 3: Main results and ablation results on the test set. “◦”, “†” and “♮” indicates that the context encoder is
MacBERT-base, RoBERTa-base (Cui et al., 2020) and BERT-base (Kenton and Toutanova, 2019) in Chinese version
respectively. Note that “w/o” indicates the removal of the corresponding component from the model. The numbers
in brackets represent the ranking of the metric in the official leaderboard.

a result, the model’s performance drops dramati-
cally, indicating that the opinion term is crucial for
predicting sentiment intensity and that contrastive
loss guides the model to obtain a more appropriate
feature distribution when the dataset is imbalanced.
3) w/o EB indicates that the additional data from
Chinese EmoBank was not used during training,
resulting in deteriorated model performance. This
verifies that Chinese EmoBank provides valuable
supplementary information when the training data
is insufficient. In summary, each module of our
method significantly contributes to the overall per-
formance on the dimABSA task.

5 Analysis

5.1 Effect of Contrastive Learning

To further verify the effectiveness of contrastive
learning, we visualize the sample features with and
without it, as shown in Figure 7. Models without
contrastive loss struggle to capture the underlying
continuous information in the data, resulting in
fragmented and disordered representations. Con-
versely, features derived through contrastive learn-
ing preserve a coherent semantic structure, ensur-
ing that semantically similar target values remain
proximate in the feature space. Therefore, we in-
fer that the improvement in effect comes from the
neat and sequential feature representation brought
by contrastive learning, which makes the feature
space more discriminative and has stronger gen-
eralization ability in unknown data. At the same
time, through contrastive learning, even if there
are fewer samples with labels in certain intervals,
the model will still learn the feature representa-

tion of these samples because they are frequently
used for comparison during training. This method
helps to balance the model’s attention to different
labels, thereby alleviating the problem of imbal-
anced datasets.

5.2 Low-Resource Scenario

As a challenging task, dimABSA faces significant
issues related to data scarcity. To address this, we
investigated the impact of contrastive learning un-
der various training data conditions. As depicted
in Figure 8, the model utilizing contrastive learn-
ing consistently achieves lower MAE values, espe-
cially as the dataset size diminishes. Furthermore,
the slower increase in MAE for the contrastive
learning model indicates that contrastive learning
enhances the model’s robustness and generalization
capabilities, allowing it to maintain performance
even under low-resource conditions.

5.3 Case Study

Figure 9 presents some case studies of this sys-
tem, where aspect terms are highlighted in red and
opinion terms in blue. Observations are: 1) In
cases (a) and (b), the complete system achieved
optimal results in the majority of sentiment inten-
sity predictions. Notably, even for test data with
sparse training data distribution, such as values like
“7.62” and “2.17”, CL-Span consistently outper-
formed other methods, underscoring its robustness
in accurately predicting less frequent valence and
arousal values. 2) In case (c), our proposed CL-
Span successfully pairs all aspect terms with their
corresponding opinion terms. In contrast, Span-
ASTE fails to recognize the pair (“onion”, “caught
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Figure 7: Visualization of learned aspect-specific representations of different methods on the validation set of
dimABSA. The features are reduced to two dimensions using TSNE (Van der Maaten and Hinton, 2008), with the
sentiment intensity ranging from 1 to 9. The color gradient from blue to red represents the increasing intensity of
sentiment, where blue indicates the lowest intensity (1) and red indicates the highest intensity (9).
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Figure 8: Comparison of the MAE for valence and
arousal predictions by models with contrastive learn-
ing (red) and without contrastive learning (yellow) at
different data usage ratios.

my eye”), and the STAGE model overlooks the pair
(“onion”, “wasn’t pungent at all”). We attribute
the superior performance of our model to the in-
tegration of contextual representations and RoPE,
which enhances the semantic understanding and
connectivity between aspect and opinion terms.

6 Conclusion

This paper describes our system for the dimABSA
task. We develop a Contrastive Learning-Enhanced
Span-based Framework, which integrates contex-
tual representations and RoPE into feature repre-
sentation to enhance semantic understanding. Ad-
ditionally, we employ contrastive learning to opti-
mize feature representations. Our system demon-
strates significant effectiveness, achieving a 2nd
place ranking across three subtasks.

Limitations

This section discusses some improvements that can
be made in future work. 1) The pipeline model
structure used in this study divides the process-
ing steps into independent modules, allowing each

(b)

Sentence:

Golden (val-aro):
CL-Span:
w/o CL:
w/o EB:

让 我 眼 前 ⼀ 亮 的 是 洋 葱 ， 吃 起 来 很 甜 并 且 完 全 都 不 呛 。

What really caught my eye was the onion ; it tasted sweet and wasn't pungent at all   .

Golden (Pair):
CL-Span:

Span-ASTE:
STAGE:

(onion, caught my eye) (onion, sweet) (onion, wasn't pungent at all)

Sentence:

(c)

(a)

Sentence:

Golden (val-aro):
CL-Span:
w/o CL:
w/o EB:

猪 排 油 腻 感 很 ⾼ ， 吃 太 多 会 想 吐 。

Pork chops are very greasy and eating too much will make you feel like vomiting .

3.50#5.00(Pork chops, greasy) 2.17#7.00(Pork chops, feel like vomiting)

3.42#5.13

3.65#5.37

3.73#5.21

2.26#6.97

2.52#6.85

3.01#6.88

多 样 且 超 级 美 味 的 蔬 菜 料 理 。

Various and super delicious vegetarian dishes .

6.75#6.12(vegetarian dishes, various) 7.62#7.25(vegetarian dishes, super delicious)

6.80#6.14

6.72#6.01

6.54#6.05

7.55#7.21

7.01#6.96

6.93#6.80

Figure 9: Example cases with golden standard labels
alongside the predictions from our model compared
with other baseline models. The bold numbers indicate
the relatively optimal results.

module to be developed, tested, and optimized sep-
arately. However, it also introduces the issue of
error propagation, where errors in earlier stages
can affect subsequent modules. In future work, we
will focus on minimizing the impact of error prop-
agation or consider testing an end-to-end model
paradigm. 2) In the Sentiment Scoring Module,
our system employs two MacBERT encoders to
separately extract valence and arousal features for
independent regression prediction. This approach
reduces feature interference during the contrastive
learning process and better captures the unique
characteristics of each dimension. However, this
results in the parameters of this module doubling
to 204M. We will consider other encoding strate-
gies instead of simply deploying two MacBERT
separately.
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