iML at SemEval-2024 Task 2: Safe Biomedical Natural Language Interference for Clinical Trials with LLM Based Ensemble Inferencing

Abbas Akkasi, Adnan Khan, Mai A. Shaaban, Majid Komeili, Mohammad Yaqub


Abstract
We engaged in the shared task 2 at SenEval-2024, employing a diverse set of solutions with a particular emphasis on leveraging a Large Language Model (LLM) based zero-shot inference approach to address the challenge.
Anthology ID:
2024.semeval-1.26
Volume:
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Atul Kr. Ojha, A. Seza Doğruöz, Harish Tayyar Madabushi, Giovanni Da San Martino, Sara Rosenthal, Aiala Rosá
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
170–174
Language:
URL:
https://aclanthology.org/2024.semeval-1.26
DOI:
10.18653/v1/2024.semeval-1.26
Bibkey:
Cite (ACL):
Abbas Akkasi, Adnan Khan, Mai A. Shaaban, Majid Komeili, and Mohammad Yaqub. 2024. iML at SemEval-2024 Task 2: Safe Biomedical Natural Language Interference for Clinical Trials with LLM Based Ensemble Inferencing. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 170–174, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
iML at SemEval-2024 Task 2: Safe Biomedical Natural Language Interference for Clinical Trials with LLM Based Ensemble Inferencing (Akkasi et al., SemEval 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-4/2024.semeval-1.26.pdf
Supplementary material:
 2024.semeval-1.26.SupplementaryMaterial.txt
Supplementary material:
 2024.semeval-1.26.SupplementaryMaterial.zip