Abstract
Semantic Relatedness of a pair of text (sentences or words) is the degree to which theirmeanings are close. The Track A of the Semantic Textual Relatedness shared task aimsto find the semantic relatedness for the English language along with multiple other lowresource languages with the use of pretrainedlanguage models. We proposes a system tofind the Spearman coefficient of a textual pairusing pretrained embedding models like textembedding-3-large and LaBSE.- Anthology ID:
- 2024.semeval-1.124
- Volume:
- Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
- Month:
- June
- Year:
- 2024
- Address:
- Mexico City, Mexico
- Editors:
- Atul Kr. Ojha, A. Seza Doğruöz, Harish Tayyar Madabushi, Giovanni Da San Martino, Sara Rosenthal, Aiala Rosá
- Venue:
- SemEval
- SIG:
- SIGLEX
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 865–868
- Language:
- URL:
- https://aclanthology.org/2024.semeval-1.124
- DOI:
- 10.18653/v1/2024.semeval-1.124
- Cite (ACL):
- Dilip Venkatesh and Sundaresan Raman. 2024. BITS Pilani at SemEval-2024 Task 1: Using text-embedding-3-large and LaBSE embeddings for Semantic Textual Relatedness. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 865–868, Mexico City, Mexico. Association for Computational Linguistics.
- Cite (Informal):
- BITS Pilani at SemEval-2024 Task 1: Using text-embedding-3-large and LaBSE embeddings for Semantic Textual Relatedness (Venkatesh & Raman, SemEval 2024)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-4/2024.semeval-1.124.pdf