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Abstract

Automated clinical text anonymization has the
potential to unlock the widespread sharing of
textual health data for secondary usage while
assuring patient privacy. Despite the proposal
of many complex and theoretically success-
ful anonymization solutions in literature, these
techniques remain flawed. As such, clinical
institutions are still reluctant to apply them for
open access to their data. Recent advances in
developing Large Language Models (LLMs)
pose a promising opportunity to further the
field, given their capability to perform vari-
ous tasks. This paper proposes six new evalu-
ation metrics tailored to the challenges of gen-
erative anonymization with LLMs. Moreover,
we present a comparative study of LLM-based
methods, testing them against two baseline
techniques. Our results establish LLM-based
models as a reliable alternative to common ap-
proaches, paving the way toward trustworthy
anonymization of clinical text.

1 Introduction

Clinical data contains sensitive information about
patients and healthcare professionals. Unautho-
rized disclosure of this data can compromise pa-
tient privacy by linking the disclosed patient infor-
mation with other accessible data sources (Dankar
et al., 2012). Therefore, information systems must
comply with regulations such as the General Data
Protection Regulation (GDPR) (GDPR, 2018) and
the Health Insurance Portability and Accountabil-
ity Act (HIPAA) (U.S. Dept of Health & Human
Services, 2013), which grant data protection rights
to the citizens of the European Union (EU) and the
United States (US).

According to the International Organization for
Standardization (ISO), data anonymization is “the
process by which personal data are irreversibly al-
tered so that a data subject can no longer be identi-
fied directly or indirectly, either by the controller
or in collaboration with any other party" (ISO

Figure 1: Illustration of the followed workflow. Clini-
cal notes can be anonymized through various methods,
including LLM-based approaches. A fair evaluation is
carried out using novel metrics, compatible with every
anonymization strategy.

25237:2017). The anonymization of clinical data
ensures that patient privacy is preserved, enabling
its sharing. However, in practice, pseudonymiza-
tion, which involves replacing private identifiers
with fake identifiers or pseudonyms, is often
more attainable than full anonymization. While
pseudonymized data still falls under the scope of
regulations like the GDPR, truly anonymized data
would not, highlighting the importance of striv-
ing for the highest level of data protection pos-
sible. Nevertheless, achieving robust and proper
anonymization, especially with unstructured data
like clinical notes, is complex. Although many
studies (Sweeney, 1996; Aramaki et al., 2006; De-
hghan et al., 2015; Liu et al., 2015; Yang and
Garibaldi, 2015; Dernoncourt et al., 2016; Liu et al.,
2017; Friedrich et al., 2019) have proposed strate-
gies for the automated anonymization of clinical
text, their implementation in real-world contexts
is still limited. Consequently, accessing clinical
text data for secondary purposes, such as scientific
research and policy development, continues to be a
significant challenge.

Large Language Models (LLMs) have the poten-
tial to be useful tools in anonymizing clinical notes
due to their ability to process and interpret vast
amounts of unstructured data, produce multilingual
text, and leverage extensive general knowledge that
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may aid in this task (Brown et al., 2020; Touvron
et al., 2023). However, the increasing size of these
models raises concerns regarding the inherent sen-
sitivity of this type of data, particularly when using
external computing on cloud-based platforms or
relying on proprietary models, such as OpenAI’s
GPT-4 (Achiam et al., 2023), which can only be
reached through external APIs, potentially compro-
mising confidentiality.

To address this challenge, this work explores the
potential of using open-source LLMs that can be
locally deployed on cheaper and readily available
infrastructure. By running these models locally,
healthcare providers can retain full control over
their data, significantly mitigating risks associated
with external data transfer and storage. Further-
more, local deployment allows for the fine-tuning
of models, enhancing the effectiveness of the data
anonymization process by adapting the model to
the specific types of notes produced by each hospi-
tal. This approach ensures the protection of sensi-
tive information and aligns with the growing need
for healthcare systems to adopt more secure and
regulatory-compliant technologies in handling and
analyzing data. To support our approach, this work
advances the state-of-the-art by proposing six new
evaluation metrics to fairly measure the quality of
each model and the clinical information retention
in the anonymization process. Figure 1 illustrates
the overall workflow followed in this paper.

2 De-Identification Framework and Tools

The need for effective and reliable clinical text de-
identification methods has led to the development
of various tools and frameworks. Following this
trend, Ribeiro et al. (2023) developed INCOGNI-
TUS, a comprehensive toolbox that delivers con-
ventional and state-of-the-art techniques for auto-
mated clinical text de-identification, including a
Presidio-based architecture (Mendels and Balter,
2018), and a de-identification module based on K-
Nearest Neighbor Obfuscation (KNEO) (Abdalla
et al., 2020). The goal of this section is to target
the background components of the INCOGNITUS
framework, which are used as a baseline for com-
parison with the LLM-based methods analyzed in
this study.

2.1 Microsoft Presidio

Named-Entity Recognition (NER) is a task that
aims to identify and classify named entities in text

data. In the context of anonymizing clinical notes,
NER-based solutions have been historically used to
identify and classify sensitive information, such as
patients’ or doctors’ names, IDs, doctor’s licenses,
dates, phone contacts, emails, professions, hospital
names, locations, zip codes, URLs, among other
direct or indirect identifiers (Dehghan et al., 2015).

One practical implementation of this task is Mi-
crosoft Presidio (Mendels and Balter, 2018), an
openly available text anonymization tool designed
to identify and remove sensitive entities from text
data. This tool is composed of two main mod-
ules. The first is the analyzer, which identifies
sensitive entities based on NER techniques. The
second module is the anonymizer, which takes
the places associated with those entities and re-
moves or replaces them. INCOGNITUS imple-
ments the analyzer module combined with a pre-
trained Spacy language model (Montani et al.,
2020) and leverages the anonymizer module to pro-
duce anonymized text content.

2.2 KNEO
While traditional NER-based methods have been
reported to achieve high performance in the
anonymization task (up to above 90% recall),
search-based methods are always prone to miss
certain entities. Abdalla et al. (2020) alerted
to this fact, stating that "as long as current ap-
proaches utilize precision and recall to evaluate
de-identification algorithms, there will remain a
risk of overlooking sensitive information". To ad-
dress this issue, Abdalla et al. proposed an inno-
vative approach that relies on proximity measures
between word embeddings to replace every single
token of a clinical note with a semantically similar
one. This strategy ensures that all sensitive infor-
mation gets removed, although it raises concerns
regarding information loss and readability.

2.3 Large Language Models
LLMs have demonstrated superiority across a wide
variety of tasks due to their strong generalization
capabilities when trained on significant amounts of
data. Their supremacy is attributed to the success
of the Transformer architecture (Vaswani et al.,
2017) and multiple variants of this architecture
have emerged to enhance the performance of LLMs
further. As a result, this subset of Deep Learning
models is increasingly being adopted in Natural
Language Processing (NLP) as a general-purpose
language task solver, capable of performing a wide
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range of language-related tasks, such as text gen-
eration, classification, and summarization (Zhao
et al., 2023).

One notable direction in LLM development is
the introduction of encoder-only Transformer mod-
els like BERT (Devlin et al., 2019) and decoder-
only generative Transformer models such as GPT
(Radford et al., 2018). BERT (Bidirectional En-
coder Representations from Transformers) is de-
signed for tasks like natural language understand-
ing and text classification, where bidirectional con-
text is crucial for accurate predictions. On the other
hand, GPT (Generative Pre-trained Transformer)
focuses on autoregressive text generation and lan-
guage modelling, demonstrating the capability of
LLMs in creative language tasks, such as story-
telling and fluent human dialogue.

Within the scope of text anonymization, LLMs
have also found significant application (Staab et al.,
2024). Text anonymization involves replacing iden-
tifiable information in text, such as names, loca-
tions, or sensitive details, a task for which textual
encoders have been used due to their strong ability
to classify and understand sensitive tokens within
the text. Generative models, on the other hand,
have the ability to recognize sensitive information,
such as NER and text-encoder approaches, and also
have the potential to recreate content like KNEO,
but overcoming its intrinsic limitations like loss
of utility and readability. Given LLMs’ versatility,
we tested both of the aforementioned approaches,
encoder-only and decoder-only Transformers on
the task of clinical text anonymization.

2.3.1 Text Encoders

Text encoders have performed strongly on NER
tasks, opening the door for their usage in text
anonymization. Devlin et al. (2019) introduced
BERT, an innovative architecture that allows the
pre-training of deep bidirectional transformers, and
since then, several BERT-variant models have been
developed, such as RoBERTa (Liu et al., 2019) and
ALBERT (Lan et al., 2020). These models can go
beyond simple token replacement approaches by
leveraging the contextual relevance of sensitive in-
formation within the text. Their adaptability allows
for successful task-specific fine-tuning, leading to
strong performance on problems such as clinical
text anonymization (Meaney et al., 2022).

2.3.2 Generative Models
Deep generative models manifest significant prop-
erties in the underlying data-generating process,
enabling interpretable representations and control-
lable generation. The increasing interest in em-
ploying generative models in domain-specific tasks,
such as within the medical sciences, has propelled
this topic into an important area of research. How-
ever, deep generative models are not deterministic,
and when performing strict tasks such as anonymiz-
ing textual content, an intrinsic randomness is as-
sociated. The most common generations would
involve the removal of sensitive entities, which
may be replaced by different types of expressions
such as "[REDACTED]" or the symbol "*", the
summarization of the overall content with the loss
of crucial identifiers, or the removal of small to
medium chunks of text.

Third-party LLM APIs (Application Program-
ming Interfaces) like OpenAI’s GPT-4 (Achiam
et al., 2023) have exhibited state-of-the-art perfor-
mance across multiple tasks, especially excelling
when provided with prompts for specific use cases.
Nevertheless, owing to the success of the open-
source community, public foundational generative
models (Touvron et al., 2023; Jiang et al., 2023)
have been particularly appealing due to the possi-
bility of adapting them to these domain-specific
data resorting to fine-tuning techniques which can
crucially enhance their performance.

The key advantage of open-source over propri-
etary LLMs is the transparency and flexibility it
offers to developers. Open-source LLMs provide
access to the model’s architecture, source code,
and training data, allowing for customization of the
model to better suit specific goals. More impor-
tantly, this also enables local deployment, which
mitigates the need to transmit potentially sensitive
data, such as medical text containing confidential
information, to external servers.

3 Evaluation Metrics

In conventional methods such as NER-based tech-
niques, the computation of commonly used evalua-
tion metrics such as recall, precision, and F1-score
is relatively straightforward. Since each token is as-
sociated with a label, and classification models out-
put a prediction for each token, one simply needs to
compare the true and predicted values to conclude
the correctness of each prediction. Nevertheless, us-
ing other types of anonymization methods, such as
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those based on generative models, raises challenges.
As these methods output directly anonymized tex-
tual content, which may not be written the same
way as the input, the link between tokens and labels
gets lost. Because the locations of sensitive entities
may change from the original to the de-identified
version, directly calculating these metrics is no
longer possible. Moreover, in generative models
not all removed tokens were considered sensitive
and thus using the concept of false positive, i.e., a
replaced or erased token that did not constitute a
sensitive entity, would lead to an unfair judgment
of performance.

A potential strategy to identify entities that went
unnoticed during anonymization is a total string
matching search for the exact content of every sen-
sitive entity in the original content. However, this
strategy is limited, as simple alterations to the sen-
sitive entities compromise their detection and, sub-
sequently, the trustworthiness of further calcula-
tions based on these matches. To address these
issues, we propose four new metrics independent
of token-target links that can be used to evaluate
any anonymization method fairly. These are built
upon the concept of Levenshtein Distance (LD)
(Levenshtein et al., 1966). Furthermore, two of
these metrics assess anonymization by focusing
more on privacy concerns. It is important to note
that text anonymization inevitably entails a trade-
off between minimizing privacy risks and retaining
data utility. Therefore, we also propose two metrics
to evaluate clinical information retention.

3.1 Distance-based metrics

The LD quantifies how similar two strings are by
measuring the number of deletions, insertions, or
substitutions required to transform one string into
another. The larger the LD between two strings, the
more dissimilar they are (Haldar and Mukhopad-
hyay, 2011).

The Levenshtein Ratio (LRa) is a similarity mea-
sure derived from the LD according to the follow-
ing expression, where LD(a, b) is the LD between
two strings a and b, and A and B are the respective
lengths of each of those strings.

LRa(a, b) = 1− LD(a, b)

max(A,B)
(1)

The LRa (Equation 1) provides a value between
0 and 1, where 0 means the two strings are com-
pletely dissimilar, and 1 means they are identical.

We first propose two metrics based on the con-
cept of LRa: the Average Levenshtein Index of
Dissimilarity (ALID) and the Levenshtein Recall
(LR). These aim to capture the effectiveness of
anonymization when there is no information about
the nature of each token (i.e., whether it constitutes
a sensitive entity or not) while tackling the limita-
tions of string matching. The computations of both
these metrics are formalized next. Let us consider
a list of length l composed of sensitive entities, se,
that are in an original clinical note, ON , of length
L. For a certain sensitive entity of this list, sei, we
start by computing its length, e. We then slide a
window of length e across the anonymized note,
AN , with a step of one character, and compute the
LRa between each window and sei. The Leven-
shtein Similarity Index (LSI) of sei against AN
is given by the following expression, where wj

represents the jth window of length e within AN .

LSI =
L−e
max
j=1

LRa(sei, wj) (2)

This measure represents the maximum similarity
between sei and the content of AN . Having a list,
S, of the LSIs measured for each entity contained in
se, the Average Levenshtein Index of Dissimilarity
(ALID) is given as follows, where ⟨S⟩ is the mean
value of S:

ALID = (1− ⟨S⟩)× 100 (3)

The second metric, LR, also builds upon the con-
cept of LSI (Equation 2). To calculate LR, each LSI
in S is compared to a selected similarity threshold,
ths, which was set to 0.85 following experimen-
tal findings. Labels with LSI below this threshold
are considered de-identified, while entities above
this threshold are considered not de-identified. The
final value of the metric is given through the tradi-
tional computation of recall, dividing the number
of de-identified entities by the total number of enti-
ties.

LR@ths =

∑l
i=1 (Si < ths)

l
× 100 (4)

From a privacy perspective, the evaluation of
text anonymization should account for some addi-
tional concerns. For instance, not masking a direct
identifier, such as a person’s full name, is more
harmful than not masking a quasi-identifier, e.g., a
date. Moreover, direct identification is avoided only
if all occurrences of direct identifiers are masked,
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not just some. With this in mind, and inspired by
the work of Pilán et al. (2022), two additional LR-
based metrics are proposed: the Levenshtein Recall
for Direct Identifiers (LRDI) and the Levenshtein
Recall for Quasi-identifiers (LRQI).

Consider a list of length ldi that contains the di-
rect identifiers from ON . Let Sdi be the list of LSIs
measured for each direct identifier, also of length
ldi. The LRDI (Equation 5) can only take two val-
ues: 100 if all occurrences of direct identifiers are
considered anonymized or 0 otherwise. This all-
or-nothing approach addresses the shortcomings of
the standard LR from a privacy perspective.

LRDI@ths = 1
(
Sdi < ths

)
× 100 (5)

Let lqi be the length of a list that contains the
quasi-identifiers from ON . Note that l = ldi + lqi.
The LRQI (Equation 6) is calculated similarly to
the LR but only considering quasi-identifiers.

LRQI@ths =

∑lqi
k=1 (Sk < ths)

lqi
× 100 (6)

In these LD-based metrics, an additional step
was implemented in which the LSI (Equation 2) is
used to find the sentence in AN that is most similar
to the sentence in ON where the sensitive entity
is located. The metrics were only applied in that
sentence, minimizing the likelihood of identifying
non-relevant similarities (e.g., the name "Tim" with
the first three letters of "time", which has an LRa
of 1).

3.2 Clinical Information Retention metrics
To assess the impact of anonymization on the
preservation of clinical concepts, two new met-
rics were developed. Their computation leverages
an openly available BioBERT model (Lee et al.,
2020) pre-trained on a hierarchical classification
task of ICD-10 code categories, a coding system
designed by the World Health Organization to cata-
log health conditions (WHO, 2004). The outputs
of this model before and after the anonymization
are compared to estimate lost information.

The first metric is based on the Jaccard Similarity
Coefficient (JSC) (Jaccard, 1901). The outputs of
the BioBERT model are transformed into probabil-
ities through a softmax function, and then a thresh-
old thb is applied, which converts values above it to
1 and those below to 0. Doing so obtains a binary

representation of the ICD-10 code categories that
the BioBERT model considers present in each note.
This study set thb to 0.05 based on experimental
findings. Finally, the JSC (Equation 7) is computed
between the two representations corresponding to
the note before and after anonymization. Let C11

be the number of classes where both representa-
tions have a value of 1 and C01+C10 be the number
of classes where the representations have different
values. The clinical information retention based on
the JSC is given as:

JSC@thb =
C11

C11 + C01 + C10
× 100 (7)

In addition to the JSC, we explored a normal-
ized metric that eliminates the need for setting a
threshold. As a result, we propose the Normalized
Softmax Discounted Cumulative Gain (NSDCG),
based on the widely used NDCG (Normalized Dis-
counted Cumulative Gain) ranking metric (Järvelin
and Kekäläinen, 2002). The main assumption un-
derlying NSDCG (Equation 11) is that higher re-
sults reflect closer proximity between the original
and anonymized logit distributions, indicating a
higher degree of similarity between the two distri-
butions and thereby gauging the retained clinical
information. The only difference from NDCG is
that the discount is obtained from applying the soft-
max function on the transformer logits, resulting in
sd (Equation 9) instead of the common logarithmic
discount: log(i + 1). The discount is commonly
applied to the gain represented by the relevance
score rel. Consequently, the SDCG (Softmax Dis-
counted Cumulative Gain, based on the Discounted
Cumulative Gain (DCG)) is calculated as follows:

SDCG@K =
K∑

i=1

sdi · reli (8)

As for the discount sdi, let s be the sorted (de-
scending) logits from the original note. The soft-
max discount, considering the N ICD-10 classes at
the i-th position, is given by:

sdi =
esi

∑N
j=1 e

sj
(9)

The key advantage of using the softmax discount
is that it allows weighting each ICD-10 class logit
with more precision, whereas the typical logarith-
mic discount assigns diminishing importance uni-
formly across all samples, leading to a weak sen-
sitivity between individual classes. Although this
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problem could be in some cases mitigated by con-
sidering only the top K ranked classes using the
K parameter, the variability of the logit outputs
can still contribute to this problem persisting with
a logarithmic function.

Finally, reli represents the relevance of the item
at position i in the ranked original logits z (i.e.,
the logits from the original note ranked according
to the anonymized note). This relevance can be
achieved as shown in Equation 10, and it is ensured
that reli > 0.

reli = ezi (10)

As usual, the NSDCG is obtained as the NDCG,
dividing the SDCG of the anonymized note by the
SDCG of the ideal and original note, being ex-
pressed as a percentage value:

NSDCG@K =
SDCG@K

ISDCG@K
× 100 (11)

3.3 Summary
In summary, six new metrics were proposed for a
fair evaluation of clinical de-identification methods.
ALID, LR, LRDI, and LRQI leverage the concept
of LD and focus on anonymization sensitivity, i.e.,
assessing whether all sensitive entities have been
masked (Equations 3, 4, 5 and 6 respectively). On
the other hand, JSC and NSDCG measure the re-
tention of clinical information (Equations 7 and 11
respectively). Table 1 provides a brief description
of each metric.

Metric Summary
ALID Complement of the average of the maxi-

mum LSI between each sensitive entity and
a window of equal length in the AN.

LR Proportion of sensitive entities whose maxi-
mum LSI with a window of equal length in
the AN is below a certain threshold.

LRDI LR for direct identifiers.
LRQI LR for quasi-identifiers.
JSC Jaccard similarity coefficient between the

logits from the ON and the AN, after a nor-
malization (softmax) and binarization with
a certain threshold.

NSDCG Normalized Discounted Cumulative Gain
with softmax discount. Compares the rank-
ing of the AN’s logits against the ON’s.

Anonymization Sensitivity
Clinical Information Retention

Table 1: Summary of the proposed evaluation metrics.
The logits mentioned in JSC and NSDCG are from a
BioBERT model pre-trained on a hierarchical ICD-10
code categories classification task.

4 Methodology

The methodology was designed to enable a fair
comparison between the performance of different
techniques for clinical note anonymization. A total
of seven anonymization solutions were compared:
two baseline techniques offered by the INCOGNI-
TUS toolbox (Ribeiro et al., 2023), a fine-tuned
BERT model, ClinicalBERT (Wang et al., 2023),
and four prompt-based methods that leverage Mi-
crosoft’s Phi-2 and Meta’s Llama-3 LLMs (Gu-
nasekar et al., 2023; Touvron et al., 2023) (includ-
ing two zero-shot learning strategies and two fine-
tuned models).

4.1 Dataset

The experimental dataset includes 66,645 discharge
summary notes from the MIMIC III dataset (John-
son et al., 2016). From these, 50% were used for
model training, 20% for validation, and 30% for
testing. The MIMIC III dataset includes differ-
ent types of clinical notes (e.g., Nursing, Radiol-
ogy, and ECG) in different proportions. Therefore,
when splitting the data, we ensured that the origi-
nal distribution remained the same for each subset.
Since this dataset was originally anonymized, fake
sensitive entities were introduced by employing
the Faker library for Python (Faraglia, 2014). This
was performed according to the categories of the
anonymization tags available in the dataset (e.g.
names, phone numbers, emails). The pre-trained
LLMs and Presidio only use the test set for infer-
ence. All other models were fine-tuned on the train-
ing set and validated on the validation set, prior to
inference on the test set.

4.2 Baseline Techniques

As baselines, we use two techniques from the
INCOGNITUS toolbox. The first combines Pre-
sidio’s analyzer module with a spacy language
model, which was pre-trained on the NER task
against the OntoNotes 5 dataset (Weischedel et al.,
2013). In particular, we used the en_core_web_trf
English transformer pipeline from spacy, which uti-
lizes a RoBERTa-based model to perform this task.
The second baseline method applies a KNEO ap-
proach, leveraging a Word2Vec embeddings model.
The original anonymized version of the MIMIC III
notes was used to ensure that these embeddings did
not contain any sensitive information.
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4.3 LLM-Based Anonymization

For LLM-based methods, ClinicalBERT was fine-
tuned on the NER task. To guarantee that no in-
formation got lost, some sentences were split into
smaller chunks to fit within the maximum context
length of the model. Regarding prompt-based mod-
els, a system prompt was designed to guide the
model in performing anonymization tasks effec-
tively. In this approach, the system prompt serves
as an initial instruction or context provided to the
generative model, for instance specifying examples
of sensitive entities, aiding the model in understand-
ing how it should process and transform the input
data. While the system prompt can be very useful in
zero-shot inference, where the model has not been
specifically trained on anonymization tasks, it also
provides a foundation for further fine-tuning. For
that reason, we fine-tuned both Phi-2 and Llama-3-
8B using the same system prompt to enhance their
ability to anonymize clinical text accurately and
retain crucial clinical context.

For all trained LLMs, fine-tuning took place on
a single 40GB A100 GPU. However, for the largest
model (i.e., Llama-3-8B) QLoRA (Dettmers et al.,
2024) was employed to minimize VRAM usage
and fit within the GPU’s capacity limit.

4.4 Evaluation

Each technique was tested on 19,994 notes ran-
domly selected from the dataset. The anonymized
versions of these clinical notes were taken along
with the original notes to compute the metrics in-
troduced in Section 3: ALID, LR, LRDI, LRQI,
JSC and NSDCG. Additionally, a measure of String
Matching-based Recall (SMR) was also included.
For the calculation of the privacy risk metrics, i.e.
LRDI and LRQI, the categories of the MIMIC III
anonymization tags were split as follows: NAME,
CONTACT_NUMBER, ID, and EMAIL were
considered direct identifiers, while LOCATION,
DATE, URL, AGE_ABOVE_89, INSTITUTION,
and HOLIDAY were considered quasi-identifiers.
A conservative approach was taken to perform this
division, i.e., if there is a slight possibility that a
category contains personal identifying information,
then it is regarded as a direct identifier.

None of these metrics requires a connection be-
tween the tokens of the anonymized notes and the
sensitive information tags, which makes them com-
patible with every anonymization method tested.
This evaluation strategy allowed for a fair com-

parison between fundamentally distinct methods,
clarifying where LLM-based techniques position
in the clinical text anonymization task.

5 Results and Discussion

Figure 2 presents the performances of the different
strategies, as given by the average of each evalua-
tion metric measured across all the test notes.

Firstly, we focus on metrics of anonymization
sensitivity, particularly SMR and LR. The overall
performances measured by both metrics are consis-
tent with one another, with the exception of KNEO
which is the best-performing strategy only accord-
ing to SMR. This result was expected given that this
anonymization method replaces every single token,
ensuring that no sensitive entity remains unaltered
and thus reporting better performances when evalu-
ated by a metric that looks for total string matching.
Since LR is not as sensitive to slight alterations in
the spelling of entities, one can infer that this metric
considered that some changes carried out by KNEO
were insufficient to achieve anonymization. This
hypothesis is corroborated by the fact that KNEO
obtained the lowest ALID, which indicates that the
replacements made are less substantial compared
to other anonymization methods.

Another noteworthy result is that no anonymiza-
tion method was able to achieve 100% in any recall
measure, i.e. SMR, LR, LRDI, and LRQI. Fur-
ther inspection of the data showed that some sen-
sitive entities consist of a pair of letters (name ini-
tials), which can easily appear in the middle of non-
sensitive words. In addition, there are also some
inconsistencies in the labeling of the MIMIC III
dataset, e.g., isolated numbers that are labeled as
dates when they merely refer to quantities. These
occurrences were misclassified as errors, which ex-
plains the absence of perfect recalls. Moreover,
although LD-based metrics may identify incom-
plete de-identification occurrences, they can also
be misleading when certain words are similar de-
spite being unrelated (e.g., the name "Tim" and the
first three letters of the word "time" produce an LRa
of 1). Note that these situations can affect every
method, and therefore the comparisons between
different techniques are valid nevertheless. As for
ALID, its results would never reach 100% because,
even in perfect anonymization, there is always a
residual similarity between an entity and any other
token in the note. As a result, the observed consis-
tency between the values of the leading approaches
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SMR ALID LR LRDI LRQI JSC NSDCG

Evaluation Metric
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Figure 2: Performance results attained through each anonymization technique tested for seven different evaluation
metrics. The results are presented as the average of the metrics measured across 19,994 notes used for testing.

might be indicative of a standard plateau of LSI,
impacted by some isolated abnormal cases, such as
the "Tim-time" pair discussed before.

ClinicalBERT shows the overall best perfor-
mance on the anonymization sensitivity metrics,
while Presidio has the lowest results in 4 out of
5 measurements. Even though Presidio is specifi-
cally tailored for text de-identification, it still lacks
critical clinical concepts to achieve better perfor-
mance on clinical-related de-identification. When
it comes to information retention, the fine-tuned
generative models reported the highest values in
both JSC and NSDCG, followed by ClinicalBERT.
The most prominent result is the significant differ-
ence between the low values achieved by KNEO
and those of the remaining methods. This exposes
the unfortunate yet somewhat expected outcome
related to the significant loss of information associ-
ated with the application of KNEO, reflected both
in a lower JSC (19.1% compared to an average
of 72.6%), and in a lower NSDCG (30.4% com-
pared to an average of 84.6%). Considering that
the ICD-10 classification model used was trained
to classify code categories and not specific codes,
this is an even more concerning outcome, which
shows that the KNEO strategy needs improvement
before being considered a reliable method. Apart
from KNEO, our second baseline, Presidio, also
underperformed on these two metrics. As a result,
in terms of clinical information retention, its per-
formance can be compared to the performance of
zero-shot generative models, which also were not
specifically pre-trained on the clinical domain.

Looking specifically at the generative methods,

all of them were consistent in terms of recall. How-
ever, one can notice that an increase in the number
of parameters of the model (e.g., Phi-2 has approx-
imately 2 billion, Llama-3-8B has 8 billion param-
eters, and so on) has a slight positive impact across
all metrics. The number of parameters positively
correlates with the amount of information distilled
into the model, which can enable the model to bet-
ter generalize across multiple tasks.

Another important point to note is that the tested
generative models improve when fine-tuned, while
zero-shot models struggle to identify the structure
of clinical notes. Although recall metrics are not
heavily compromised, zero-shot models often end
up anonymizing entities that should not be omitted.
For that reason, the precision and clinical infor-
mation retention of the model are weaker. On the
other hand, fine-tuned models have a better under-
standing of the structure of the clinical text and are
able to retain crucial information while anonymiz-
ing sensitive entities. Therefore, while increasing
the number of parameters improves overall perfor-
mance, fine-tuning is essential for maximizing the
model’s precision and its ability to not lose im-
portant clinical information. As an example, even
the smallest fine-tuned model, Phi-2, was able to
beat the largest zero-shot model, Llama-3-70B, on
both clinical information retention metrics, while
keeping competitive recall results.

6 Conclusions

This work presents a comprehensive comparative
study between traditional methods for the auto-
mated anonymization of clinical text and new
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techniques that leverage the power of LLMs.
Two different approaches from the INCOGNITUS
anonymization toolbox and five methods based
on LLMs were tested across seven different per-
formance metrics, including six newly proposed
metrics designed to tackle the challenges inher-
ent to generative methods. The results introduce
anonymization techniques based on LLMs as a
promising alternative to the current methods, rep-
resenting a step forward toward unlocking the true
potential of clinical text data for secondary usage.

7 Limitations

Regarding the proposed evaluation metrics, we be-
lieve there are opportunities for improvement in
future work. Despite having advantages compared
to total string matching, a limitation of LD-based
metrics is the identification of strong similarities be-
tween entities and unrelated text spans, e.g., "Tim"
and "time". This may lead to an underestimation
of the performance, which, from a cautious and
privacy risk perspective, is still preferred over the
overestimation that total string matching might en-
tail. Furthermore, the LRQI evaluates each entity
separately, thus disregarding the combined effect
of quasi-identifiers, which increases the privacy
risk. Also, the binarization step performed in the
JSC calculation renders this metric insensitive to
differences in the values of each class between the
original and anonymized logit distributions, as it
only compares the presence/absence of classes. Fi-
nally, LR, LRDI, LRQI, and JSC are all dependent
on thresholds, which may require adjustments for
each case study. In this study, thresholds were
set based on empirical observations, but we recog-
nize that in particular cases this tuning may require
domain expertise. Consequently, determining the
optimal threshold poses a challenge for effective
model evaluation and may impact the consistency
across different datasets and contexts.

Another significant aspect to note is that using a
BioBERT to compare logit distributions within the
scope of information retention can sometimes be
faulty in the presence of clinical notes with a higher
degree of anonymization. The reason for this is that
the text classifier was not specifically fine-tuned on
anonymized text, and even slight deviations from
the typical structure of a clinical note can result
in flawed logit outputs, affecting the precision of
the information retention metrics. Additionally, the
information retention measured by these metrics is

based on a BioBERT model pre-trained on ICD-10
classification, which might not be the most reliable
ground truth. This reliance can introduce biases
and limit the generalizability of the results. Future
research should consider developing more robust
and contextually relevant ground truth models for
better evaluation accuracy.

In conclusion, while the proposed evaluation
metrics represent a significant step forward in as-
sessing the performance of LLM-based anonymiza-
tion techniques, addressing these limitations is cru-
cial for further refining and enhancing their relia-
bility and applicability.
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