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Abstract

Using language models as a remote service en-
tails sending private information to an untrusted
provider. In addition, potential eavesdroppers
can intercept the messages, thereby exposing
the information. In this work, we explore the
prospects of avoiding such data exposure at the
level of text manipulation. We focus on text
classification models, examining various token
mapping and contextualized manipulation func-
tions in order to see whether classifier accuracy
may be maintained while keeping the original
text unrecoverable. We find that although some
token mapping functions are easy and straight-
forward to implement, they heavily influence
performance on the downstream task, and via a
sophisticated attacker can be reconstructed. In
comparison, contextualized manipulation pro-
vides an improvement in performance.

1 Introduction

Large language models (LLMs) have greatly ad-
vanced the field of NLP in recent years, exhibit-
ing exceptional proficiency across a wide spectrum
of tasks, including dependency parsing (Duong
et al., 2015), natural language understanding (Dong
et al., 2019), automatic question-answering (Ope-
nAI, 2021; Ouyang et al., 2022), machine trans-
lation (Dabre et al., 2020), text classification (Mi-
naee et al., 2021), and many more (Li et al., 2022).
However, this success comes with potential privacy
risks, as the models process vast amounts of data
that might contain personal or sensitive information
and may abuse or leak it. For instance, informa-
tion can be leaked by model inversion (Li et al.,
2017), re-identification techniques (Lison et al.,
2021; Ben Cheikh Larbi et al., 2023), exploitation
of feature memorization within the LLM (Carlini
et al., 2021), and more. Offering LLMs as cloud
services, such as ChatGPT (Ouyang et al., 2022),
might also impose potential threats to privacy if
the server exhibits a semi-honest stance, actively
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Figure 1: A schematic of the various stages where dif-
ferential privacy techniques can be applied in an LLM.
This work focuses on level (B).

seeking to glean more insights from the input than
is appropriate or by a possible eavesdropper inter-
cepting the input sent to the server.

In order to safeguard privacy, many privacy-
preserving techniques have been proposed, based
on the local differential privacy framework (LDP;
Arachchige et al., 2019). In this framework,
the user applies a differential privacy mechanism,
which can be hosted on a local server, and then
sends the privatized data to the remote server. This
approach doesn’t require trust from the remote
server, and protects the data against potential eaves-
droppers. In general, any privacy mechanism can
be applied at one or several components of the
LLM pipeline. Figure 1 depicts these components:
at the text level (text privatization), after the tok-
enization process (token privatization), after the
initial embedding lookup (token embedding pri-
vatization), or after applying several layers of the
encoder (sequence embedding privatization).

Currently, most privacy-preserving strategies fo-
cus on incorporating noise into sequence embed-
ding vectors. The rationale behind this strategy
is to minimize the privacy-preserving technique’s
impact on the downstream task. Specifically, most
systems first obtain a sequence embedding repre-
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sentation, either by assuming partial access to the
remote model (Zhou et al., 2022; Lyu et al., 2020;
Qu et al., 2021) or by using a dedicated model to
create these embeddings (Li et al., 2018; Coavoux
et al., 2018; Mosallanezhad et al., 2019; Plant et al.,
2021; Zhou et al., 2023). Afterwards, random noise
is incorporated into the embeddings, thus conceal-
ing the original input. However, this approach re-
lies on partial access to the remote model, on the
ability to provide input to the remote model in vec-
tor form, or on sufficient computational and mem-
ory resources on the user’s end. These are often not
the case. In addition, Kugler et al. (2021) showed
that publishing a model’s encoder along with the
contextualized embeddings allows an adversary to
generate data to train a decoder with a high level of
reconstruction accuracy, making these approaches
highly susceptible to violation of privacy.

We propose a secure way to use LLMs with-
out assuming access to their parameters. In our
framework, both input and output for the privacy-
providing mechanism must be given in a token
sequence format, eliminating the need to intervene
with the LLM’s pre-training procedure or text pro-
cessing. We focus on applying privacy preserva-
tion techniques at the token level, corresponding to
layer (B) in Figure 1.

Specifically, we propose two privacy-preserving
techniques based on manipulating the input token
sequence. The first set of techniques relies on naïve
rules of token substitution. The second is based on
leveraging contextual information to strategically
replace tokens, aiming to retain as much action-
able information as possible for the classifier to
minimize the impact on the performance of the
downstream task.

We test these techniques both for their impact
on the downstream task accuracy and for their re-
silience against reconstruction attacks. We find that
replacing tokens based on simple rules is easy for
a knowledgeable attacker to reverse, while manipu-
lating tokens based on contextual information can
enhance privacy without sacrificing much of the
performance.1

2 Lossy Mapping

In order to protect against potential eavesdropping
by a middle party, under the assumption that the

1Our code is available at:
https://github.com/MeLeLBGU/
Privacy-Preserving-Token-Manipulation.

layers of LLMs are inaccessible to the local device,
we start by employing several mapping functions
on the tokens of the input text available at the lo-
cal device. Our initial, naïve mapping functions
introduce a random noise component that follows
a specific rule: the vocabulary is partitioned into
pairs of tokens (u, v), or triplets (u, v, z), and when
encountered in an input text to be manipulated,
all tokens are mapped to a single representative
token of their tuple, without loss of generality u.
This strategy produces outputs that are inherently
ambiguous, blocking any potential eavesdroppers
from recovering the original input text determin-
istically, given that a many-to-one mapping is not
invertible. The only available recourse for an at-
tacker is a statistical strategy, which imposes as-
sumptions on the properties of the input, for ex-
ample that it was grammatical English text written
by a speaker with high proficiency. Indeed, even
if an eavesdropper obtains full information of the
privacy system, i.e. the partition into token tuples
and each tuple’s representative token, each mapped
sequence of length m still generates a candidate set
of 2m or 3m possible permutations (depending on
tuple size) through which the attacker must search.
We will examine the practical implications of this
large search space later in the section.

For our stated use case of manipulating text be-
ing input into a sequence classifier operating atop
an LLM, there are two distinct scenarios depend-
ing on when we may apply our manipulation. The
first scenario involves applying the manipulation
process only during the inference phase of a model
trained on regular, unmanipulated text, which we
will refer to as the TEST case. This operation mode
simulates a query sent by a user to an already-
trained model, such as a user interacting with Chat-
GPT or another model allowing only inference text
interaction via user interface or an API. In the sec-
ond scenario, which we call ALL, we also apply
the manipulation during the training phase, pro-
tecting sensitive information in the training data,
hoping that the inference phase will now leverage
the model’s ability to handle manipulated input as
expected and produce better results. In this scenario
the model does not inadvertently learn or memorize
the sensitive data during the training process, nor
does it spend learning resources on tokens never to
be seen during inference, but since it is not always
possible to assume its availability, we perform our
experiments in both settings.
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Dataset Mapper TEST ALL Unchanged
Tokens

Plain text 94.5% 94.5% 100%
2-Random 75.0% 85.0% 51.0%

SST2 3-Random 62.0% 80.0% 34.0%
High-freq 90.0% 91.0% 93.0%
Low-freq 60.0% 78.0% 7.0%

Plain text 95.0% 95.0% 100%
2-Random 75.0% 90.0% 50.0%

IMDb 3-Random 68.0% 85.0% 32.0%
High-freq 93.0% 94.0% 94.0%
Low-freq 60.0% 80.0% 6.0%

Table 1: The mapping strategy accuracy on SST2 and
IMDb datasets and the percentage of unchanged tokens
after applying the mappers to the training and test sets.

When protecting the original input data, it is es-
sential for the mapper to have minimal impact on
the performance of the downstream task, defining
the fundamental trade-off in our study. Therefore,
the selection process for grouping tokens and se-
lecting each tuple’s representative token is crucial,
as it aims to both minimize the mapping’s effect
on the downstream task and hinder the attacker’s
ability to uncover the original text. We consider the
following mapping functions:

Purely random mapping the selection of the
token pairs tuples from the vocabulary and of each
tuple’s representative is uniformly random.

High-frequency mapping token pairs are se-
lected based on their frequency of occurrence in a
tokenized corpus, such as Wikipedia (Foundation,
2023). This involves pairing a higher-frequency to-
ken with a lower-frequency token, with the higher-
frequency token being designated as the representa-
tive. In our mapper, given a vocabulary of even size
V , sorted by descending frequency, each token with
rank 1 ≤ k ≤ V

2 is paired with the token of rank
k + V

2 . While selecting the high-frequency token
as the representative may have a lesser impact on
the downstream task, it could potentially weaken
the privacy-preserving characteristics, depending
on the knowledge possessed by the attacker.

Low-frequency mapping the process is similar
to that of the higher-frequency mapper, except that
the lower-frequency token is chosen as the repre-
sentative. Opting for less-frequent tokens as repre-
sentatives can aid in preserving privacy, but it will
likely harm the downstream task.

Due to the simplicity of these mapping strategies,
we consider them baselines for further research

Mapper Text

Plain Text no apparent joy
2-Random his buffers University
High-freq no apparent joy
Noise(150) non evident joyful
STEN(9, 0.8) No evident joyful
STENp(9, 1.0) apparent No joyful

Table 2: Examples of the privatized textual sequences
obtained with different privacy-preserving techniques.

and developing better, potentially language-aware
strategies. In addition, these mapping functions can
easily be generalized to larger tuples, expanding
the search space even further, but greatly harming
downstream task performance as a result of a much
more restricted active vocabulary.

2.1 Task Performance

To assess the impact of the baseline models on
downstream task performance, we use two datasets
for sequence classification: SST2 (Socher et al.,
2013) and IMDb (Maas et al., 2011). The base
model chosen was RoBERTa (Liu et al., 2019),
a state-of-the-art encoder language model known
for its strong performance in sequence classifica-
tion tasks. In Table 1, we present the results of
four baselines on the two datasets, compared with
the null mapping results labeled “Plain text”. Per-
haps unsurprisingly, the high-frequency baseline
achieved the highest accuracy, most likely due to
the fact that retaining high-frequency tokens while
removing low-frequency ones results in a relatively
small number of tokens altered in the datasets. In
both datasets this number is roughly 6%, compared
with low-frequency mapping’s complement of 94%
and with the randomly-selected sets’ 50% and 67%,
giving a correlative relationship between this num-
ber and the performance level: the fewer tokens are
altered, the better the model performs. This effect
is much more pronounced when only the test set
is affected, and the model is dealing not only with
loss of information but also with out-of-distribution
behavior. In absolute terms, we find it remarkable
that this alteration of a non-negligible portion of
tokens causes only a 1–2 percentage point reduc-
tion in performance for the IMDb dataset and still
under 5 points for SST2.

In Table 2, we present an example of the out-
come of applying the 2-Random and the High-
freq privatization techniques on a random phrase
(“no apparent joy”) from the SST2 dataset. As ex-
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Input: what a nice day what what nice unicorn

Attacker path:

p = 80%

what

p = 20%

a

what what

p = 80% × 0.1%

what a

p = 80% × 99.9%

a what

p = 20% × 10%

a a

p = 20% × 90%

what a nice

p = 80% × 99.9% × 90%

what a is

p = 80% × 99.9% × 10%

a a nice

p = 20% × 90% × 90%

a a is

p = 20% × 90% × 10%

what a nice unicorn

p = 80% × 99.9% × 90% × 1%

P = 7.1928%

what a nice day P = 64.7352%

p = 80% × 99.9% × 90% × 99%

a a nice day

p = 20% × 90% × 90% × 50%

P = 8.1%

a a is unicorn

p = 20% × 90% × 90% × 50%

P = 8.1%

Figure 2: Schematic overview of the proposed heuristic oracle attacking scenario path over trying to reconstruct
the sentence “what a nice day” which is remapped to “what what nice unicorn”. The red boxes indicate that the
probability (presented above the box) of the candidate is low enough to be dropped in the next step, while the green
boxes are the candidates that will be expanded in the next step.

pected, the 2-random baseline produces a random
sequence of words, whereas the high-frequency
mapper leaves the phrase unchanged as the tokens
in the original sequence are frequent.

2.2 Brute-force Attacker

Although the many-to-one mapping function intro-
duces some form of protection against data leakage,
in practice, reconstructing the original text might
be relatively straightforward under certain circum-
stances. In particular, if an “oracle” attacker has
access to the token pairings, it can theoretically
determine the original text from the pool of 2m pos-
sible permutations by applying a generative LLM
such as GPT (Radford et al., 2019) and picking the
most probable sequence. However, generating and
evaluating all 2m permutations is impractical even
for small values of m due to the computational
complexity involved. To mitigate this challenge,
alternative approaches, such as employing heuris-
tics or utilizing statistical methods, can be explored
to narrow down the potential candidates for the
original text.

To cope with this task, we describe a heuristic
approach to reducing the search space based on
beam search (Eisenstein, 2019, §11.3.1) and nu-
cleus sampling (Holtzman et al., 2019). In each
step of the process, candidates are generated based
on the prefixes of tokens that were produced in the
previous steps. In the case of token pairs, each
prefix sequence is followed by one of two candi-
date tokens for the next step based on the known
(oracle) token pair that the observed representa-

tive token belongs to. Unlike conventional beam
search, where a fixed number of candidates is re-
tained following each step, we opt for a dynamic
approach inspired by nucleus sampling, made pos-
sible since the scores for each of the two tokens
reflect a generative probabilistic process where the
relative probability of each interim token sequence
on the beam can be estimated and used for dropping
highly unlikely sequence prefixes. This means that
the number of candidates remaining on the beam
varies at each step, adapting to their likelihood and
ensuring flexibility in the selection process. We es-
timate the likelihood of each candidate prefix using
a language model.2 After all prefixes on the beam
have been scored, we remove the least probable
candidates such that the total probability of the re-
maining candidates exceeds a certain threshold π
set by computational constraints but maintaining
discoverability. Since the probability of a sequence
cannot exceed that of its prefix, the process guar-
antees that complete sequences that are likely are
not being discarded before getting the chance to be
fully generated. Overall, this process effectively
eliminates highly unlikely candidates, dramatically
reducing the search space during its application and
streamlining the computational efforts.

This process is illustrated in Figure 2. The “ora-
cle” attacker gains access to the remapped words:
(what,a)→ a, (nice, is)→ nice, (day,
unicorn)→ unicorn. In the first step, two ini-
tial candidates (what and a) are generated based

2https://github.com/simonepri/
lm-scorer
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Dataset Mapper MRR Pr@5 Edit dist
(↓) (↓) (↑)

2-Random 0.89 0.97 1.32
SST2 3-Random 0.81 0.92 1.35

High-freq 0.86 0.98 1.33

2-Random 0.48 0.59 1.60
IMDb 3-Random 0.45 0.53 1.70

High-freq 0.63 0.72 1.60

Table 3: The three random mappings’ capability of
preserving privacy against an “oracle” attacker. Edit
distance is calculated at the token level.

on the first observed token (what). Following the
described process, each prefix is evaluated via an
LLM to determine its probability, for instance, the
probability of what being the first word is 80%
when considering the possible set {[s] what,
[s] a}. This process is repeated, and the can-
didates with low probability are removed, such
that the total probability of the remaining candi-
dates is above 85%, as indicated by the red boxes.
Finally, the probability of the sequence what a
beautiful day is the highest, thus the “ora-
cle” attacker returns it as the inferred original text.
We note that the low-frequency and high-frequency
mappers, despite their differences in representative
token selection, will demonstrate equivalent safe-
guarding mechanisms against this attacker since
the attacker does not factor in the choice of the
representative token and examines all potential can-
didates in its effort to uncover the original text.

2.3 Resilience Against Reconstruction Attacks

In Table 3, we present the outcomes of the at-
tacker’s endeavors to reveal the original text from
the three techniques: 2-Random, 3-Random, and
High-freq (equivalent to Low-freq for a knowledge-
able attacker). We report the mean reciprocal rank
(MRR) of the correct sequences, the rate of the
actual input sequence ranking among the top 5 pre-
dictions (Pr@5), and the token-level edit distance
between the produced top prediction and the origi-
nal sequence. The relative success of the mappers
in thwarting the oracle attacks on the IMDb dataset
compared to SST2 can be attributed to the aver-
age token sequence length (m̄), which is 65 and
12, respectively. As sequence length increases, the
attacker’s task of uncovering the original text be-
comes more challenging.

Our results indicate that the naïve baselines are
overly simplistic and allow an easy and straight-

forward reconstruction, even within a vast search
space (although attacker knowledge of the map-
ping specifications is required). In cases where
performance on the task remains close to that of
unmapped text, the recovery price is too high to ne-
glect. Having said that, the computational complex-
ity of applying the naïve baselines is relatively low,
and the greatly reduced active vocabulary brings
great savings in parameter budgets, which embed-
ding tables often dominate. In a less powerful at-
tack environment, this would make them an effi-
cient choice for preserving privacy on low-resource
devices. We expect future work on more princi-
pled many-to-one static mappings would be able
to improve both task performance and resilience
to attackers, while work on attack strategies can
present challenges hitherto unseen.

3 STENCIL Privacy Preservation

In the context of protecting privacy within NLP
practices, a widely adopted approach for imple-
menting local differential privacy involves intro-
ducing a controlled level of noise into different
components of the model, effectively concealing
the original input. These components may include
sequence embeddings, token embeddings, or the
tokens themselves (Mosallanezhad et al., 2019;
Feyisetan et al., 2020; Lyu et al., 2020; Qu et al.,
2021; Zhou et al., 2022). However, in essence, the
success of models in most NLP tasks is primarily
attributed to their effective utilization of contex-
tual information. Moreover, our study focuses on
token-level privacy preservation, i.e., we assume
that the parameters of the LLMs are inaccessible,
making the importance of contextual information
more pronounced. Therefore, a fundamental lim-
itation associated with incorporating noise is the
exclusion of contextual information when defining
the noise. This omission may hinder the potential
benefits contextual details can offer for maintaining
the performance of the downstream tasks.

Given this limitation, we propose a new privacy
preservation technique, which we call STENCIL.3

With this technique, a mapped token in a sequence
“absorbs” information from adjacent tokens to form
a new context-aware token, effectively concealing
the original token while retaining information ben-
eficial for maintaining task performance.

3This term hails from numerical analysis (Spotz, 1995),
where it denotes a computation that involves the surrounding
values.

33



In order to generate the new contextualized token
tk → t′k, we first retrieve an embedding vector rep-
resentation of the neighborhood, of size n+1, con-
taining the tokens ti, ∀i ∈ {k − n/2 . . . k + n/2}
using some embedding lookup table E ∈ RV×d,
which can be trained independently in a prelimi-
nary step or obtained from an available model such
as the target model itself. We then subject the n+1
embedding vector representations to a weighted
transformation and incorporate them to form a new
“quasi-embedding” vector

∑k+n/2
i=k−n/2 fi ·E[ti]. Fi-

nally, we return the token t′k that is closest to the
quasi-embedding vector in the embedding space,
based on cosine-similarity or euclidean distance
computation, as an output. To further enhance pri-
vacy, we ensure that the new token is different from
the original one. Formally, the process can be de-
fined as follows:

t′k = argmin
tj∈V

∥∥∥∥∥∥
E[tj ]−

k+n
2∑

i=k−n
2

fi ·E[ti]

∥∥∥∥∥∥
, (1)

where V is the vocabulary and fi is the weighted
transformation function of the tokens such that∑k+n

2

i=k−n
2
fi = 1.

The level of privacy enhancement and its impact
on the downstream task by employing the STENCIL

method can be managed by adjusting the window
size and the properties of the weighted function
f . In our study, we use the gaussian smoothing
function as the weighted function. Consequently,
the standard deviation, σ, plays a crucial role in the
performance and amount of privacy achieved.

As a baseline for our proposed technique,
we adopt Qu et al. (2021)’s proposed privacy-
preserving technique. In contrast to our proposed
technique, this approach does not consider context
but rather incorporates random noise into token em-
beddings to enhance privacy. The random noise is
obtained by multiplying a sample from a Gamma
distribution Γ(d, 1/η) and a uniform sample from
a unit hypersphere, where η corresponds to the
amount of noise introduced to the original token
and d is the dimension of the embedding space.

We note that the most time-intensive operation in
both STENCIL and noise-based techniques involves
searching for the closest token to the perturbed
quasi-embedding vector, while all other operations
are negligible in comparison. Overall, the average
computational cost per token is 0.005 seconds on
two 16-core 3.2 GHz AMD EPYC 7343 Milan
processors.

Dataset Mapper TEST ALL Pr@5
(↑) (↑) (↓)

SST2

Plain Text 94.5% 94.5% -
Noise(100) 80.0% 87.8% 70.0%
Noise(150) 83.0% 90.0% 75.0%

STEN(9, 0.8) 83.5% 89.3% 49.0%
STENp(9, 1.0) 85.0% 87.0% 0.0%

IMDb

Plain Text 95.0% 95.0% -
Noise(100) 89.0% 92.6% 86.0%
Noise(150) 90.0% 93.5% 90.0%

STEN(9, 0.8) 90.2% 93.1% 67.0%
STENp(9, 1.0) 89.7% 92.4% 0.0%

QNLI

Plain Text 88.1% 88.1% -
Noise(100) 80.0% 84.0% 93.0%
Noise(150) 81.1% 84.4% 93.0%

STEN(9, 0.8) 74.8% 83.1% 54.0%
STENp(9, 1.0) 67.9% 82.5% 0.0%

Table 4: The best results achieved by the STENCIL
mapper and the noise mapper considering the Test and
All cases on the SST2, IMDb, and QNLI datasets. Pr@5
represents the average token hit managed by the nearest-
neighbor attacker.

3.1 Downstream Task Performance

To evaluate the impact of the STENCIL method
and of the noise-based technique on model perfor-
mance, we repeat the methodology outlined in §2:
we use RoBERTa as the base model and for the
word embedding lookup table; SST2 and IMDb
as the datasets; and the two distinct application
cases: manipulating tokens on inference data only
(TEST), and applying the technique during the train-
ing phase as well (ALL). However, as these pri-
vacy techniques exhibit a realistic case, we also
test it on an encoder-decoder model T5-small (Raf-
fel et al., 2020) on the QNLI task from the GLUE
dataset (Wang et al., 2019). As in Raffel et al.
(2020), we concatenate the question and its corre-
sponding sentence to form a single sequence that
serves as the input, while the target prediction is
either “entailment” or “not_entailment”, thus form-
ing a classification task.

We report two distinct manipulations based on
STENCIL. The first approach follows the process
described in (1), where the weighting function fi is
derived from a gaussian smoothing with a standard
deviation of σ = 0.8 and the number of adjacent to-
kens considered is set to nine (four from each side,
as well as the target token). To preserve model
performance, the tokenizer and embedding lookup
table used to derive the new tokens were sourced
directly from the model being trained. In the sec-
ond approach, which we call punctuated STENCIL,
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denoted STENCILp, we exclude the target token
from the computation of the quasi-embedding vec-
tor in (1) by setting fk to zero. This exclusion
significantly diminishes the attacker’s ability to
reconstruct the original token at the expense of per-
formance. The standard deviation we consider for
this approach is σ = 1.0, with a window width of
nine. For the baseline approach, we report the two
best η values: η = 100, 150.

The results are presented in Table 4. The best
accuracy is obtained with Noise (η = 150) in the
ALL case, where higher values of η yield smaller
noise. This comes at great cost in discoverability,
to be presented in §3.2.

Compared to the sentiment analysis tasks (SST2
and IMDb), the QNLI task presents greater chal-
lenges, primarily due to the complex logical con-
nections required for the model to discern entail-
ment between the given sentence and question.
Therefore, despite its instance sizes being very
similar to those of IMDb (62 vs. 65), the fact
that noise-based perturbations disrupt contextual
and semantic information leads to a significant de-
crease in the model’s ability to discern the logical
connections between the parts of the input. This
results in a more pronounced performance degra-
dation compared to the long-sequenced IMDb on
the TEST case. In contrast, training the model on
the noisy data (the ALL setup) proves effective in
overcoming this effect, leading to improved results
for T5-small.

In Table 2, we present an example of the out-
come of applying STENCIL, STENCILp, and the
noise mapper on a random phrase from the SST2
dataset. The noise mapper with a value of η = 150
introduces negligible noise, thus producing a sim-
ilar sequence to the original one. The STENCIL-
based techniques also produce a similar sequence,
although STENCILp swaps the positions of some to-
kens as a direct result of excluding the target token
from the obfuscation process.

3.2 Nearest-neighbor Reconstruction

An attacker can potentially exploit the fact that
these techniques utilize contextualized tokens and
the selection of the nearest token as the quasi-
embedding vector (Qu et al., 2021). Specifically,
given the new, perturbed token t′, the attacker can
obtain the embedding vector representation E[t′].
Afterward, the attacker can calculate the cosine
similarity between E[t′] and the other embedding

Dataset Mapper TEST ALL Pr@5
(↑) (↑) (↓)

SST2

Plain text 94.5% 94.5% —
STEN(9, 0.2) 87.0% 91.9% 75.6%
STEN(9, 0.6) 85.0% 91.0% 75.1%
STEN(9, 0.8) 83.0% 89.2% 49.5%
STEN(9, 1.0) 83.2% 86.4% 18.4%
STENp(9, 0.2) 65.0% 70.0% 0.0%
STENp(9, 0.6) 83.0% 85.0% 0.0%
STENp(9, 0.8) 85.0% 86.0% 0.0%
STENp(9, 1.0) 86.0% 87.0% 0.0%

IMDb

Plain text 95.0% 95.0% —
STEN(9, 0.2) 91.6% 93.9% 94.0%
STEN(9, 0.6) 89.3% 93.5% 91.0%
STEN(9, 0.8) 90.1% 93.1% 67.0%
STEN(9, 1.0) 86.5% 91.4% 32.0%
STENp(9, 0.2) 70.0% 77.0% 0.0%
STENp(9, 0.6) 89.6% 91.4% 0.0%
STENp(9, 0.8) 89.2% 92.0% 0.0%
STENp(9, 1.0) 89.7% 92.4% 0.0%

QNLI

Plain text 88.1% 88.1% —
STEN(9, 0.2) 81.6% 84.7% 93.0%
STEN(9, 0.6) 81.3% 83.5% 88.2%
STEN(9, 0.8) 74.8% 83.1% 54.1%
STEN(9, 1.0) 69.7% 81.4% 35.3%
STENp(9, 0.2) 53.2% 72.0% 0.0%
STENp(9, 0.6) 63.4% 82.0% 0.0%
STENp(9, 0.8) 64.5% 82.2% 0.0%
STENp(9, 1.0) 67.9% 82.5% 0.0%

Table 5: The STENCIL mappings accuracy with differ-
ent values of σ with a window size of 9, considering
the TEST and ALL cases on the SST2, IMDb and QNLI
datasets. Pr@5 represents the average token hit man-
aged by the nearest-neighbor attacker.

vector representations (E[t] where t ∈ V\{t′}) and
statistically determine the original token. Hence,
to test the resilience of these techniques against to-
ken inversion attacks, we implement the described
attacker and report whether the original token was
found to be one of the nearest five (Pr@5).

The success rate of the attacker for the four tech-
niques is presented in Table 4. While the minor
alterations in the original tokens contributed to per-
formance improvement in the noise mapper, it is
found to be highly vulnerable to simple reconstruc-
tion attacks. Taking into account both accuracy
and resilience against reconstruction attacks, the
STENCIL method demonstrates better results, with
a marginal trade-off in performance.

3.3 Impact of Window Size and σ

To better understand the impact of the window size
and the value of σ on the accuracy and resilience
against reconstruction attack, we conduct tuning ex-
periments for these values. In Table 5, we present
the accuracy results of the STENCIL method ap-
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Dataset Mapper TEST ALL Pr@5
(↑) (↑) (↓)

SST2

Plain text 94.5% 94.5% —
STEN(5, 0.2) 85.2% 91.5% 75.0%
STEN(7, 0.2) 85.4% 91.2% 75.0%
STEN(9, 0.2) 87.2% 91.9% 75.0%

STEN(11, 0.2) 86.0% 91.2% 75.0%
STENp(5, 0.2) 79.0% 82.0% 0.0%
STENp(7, 0.2) 73.0% 75.0% 0.0%
STENp(9, 0.2) 65.2% 70.0% 0.0%
STENp(11, 0.2) 67.0% 67.0% 0.0%

IMDb

Plain text 95.0% 95.0% —
STEN(5, 0.2) 91.2% 93.9% 94.0%
STEN(7, 0.2) 91.4% 93.9% 94.0%
STEN(9, 0.2) 91.6% 93.9% 94.0%

STEN(11, 0.2) 91.8% 93.9% 94.0%
STENp(5, 0.2) 84.5% 88.9% 0.0%
STENp(7, 0.2) 77.3% 83.7% 0.0%
STENp(9, 0.2) 70.2% 77.0% 0.0%
STENp(11, 0.2) 73.0% 75.0% 0.0%

QNLI

Plain text 88.1% 88.1% —
STEN(5, 0.2) 81.7% 82.3% 93.0%
STEN(7, 0.2) 82.0% 85.4% 93.0%
STEN(9, 0.2) 81.6% 85.1% 93.0%

STEN(11, 0.2) 81.4% 85.1% 93.0%
STENp(5, 0.2) 60.4% 78.9% 0.0%
STENp(7, 0.2) 56.2% 75.7% 0.0%
STENp(9, 0.2) 53.2% 72.0% 0.0%
STENp(11, 0.2) 52.8% 69.2% 0.0%

Table 6: The STENCIL mappings accuracy with differ-
ent values of the window size with σ = 0.2, considering
the TEST and ALL cases on the SST2, IMDb and QNLI
datasets. Pr@5 represents the average token hit man-
aged by the nearest-neighbor attacker.

plied to the SST2, IMDb, and QNLI datasets, with
varying values of σ while keeping the window size
constant at 9. Low values of σ imply prioritizing
the central token. Hence, the new token will likely
be similar to the original token, yielding the highest
accuracy results but rendering it more susceptible
to reconstruction attacks. In contrast, opting for
a higher value of σ will reduce the accuracy re-
sults while providing better resilience against the
nearest-neighbor reconstruction attacks.

In Table 6, we present the accuracy results of
STENCIL on the datasets, examining the impact of
different window sizes while maintaining a con-
stant value of σ = 0.2. Given that the average
number of tokens in the SST2 dataset is below 10,
incorporating 11 neighbors is likely not advanta-
geous, making a window size of 9 yield optimal
results. Similarly, for the IMDb and QNLI datasets,
optimal results are achieved when considering 11
neighbors. Nevertheless, in comparison to the vari-
able values of σ, the window size exerts a lesser
influence on the accuracy of the downstream task

and demonstrates no impact on privacy. This lim-
ited effect of the window size, in contrast to the
influence of σ, stems from the primary influence of
the original token on the downstream task. Conse-
quently, considering more neighbors has a dimin-
ished impact.

4 Conclusion

In this paper, we propose several token manipula-
tion methods to preserve privacy under the assump-
tion that the model parameters are inaccessible.
We first introduce four mappers that offer advan-
tages compared to existing privacy-preserving tech-
niques. These mappers operate independently of
the LLM and the specific downstream task, result-
ing in a high degree of versatility. Additionally,
their computational complexity is relatively low,
making them efficient choices for privacy preser-
vation on local, low-resource devices. However,
these mappers harm the performance of the down-
stream tasks and can be easily reconstructed by a
knowledgeable attacker.

The second mapper class we propose is based
on utilizing contextualized information to maintain
performance while obfuscating the original input
text. This technique achieves higher privacy mea-
sures and has less impact on the downstream task,
which makes it more applicable for cases where the
downstream task is important. Nevertheless, opt-
ing for different weighted functions, such as ones
based on a trained model, can further help improve
both accuracy and privacy.

An inherent problem with existing privacy-
preserving techniques is their inability to maintain
linguistic properties such as grammar and read-
ability (as seen in Table 2) that are crucial for the
performance of the model. Therefore, an additional
avenue we plan to explore is application of these
and similar rules in differential privacy techniques.
For instance, following the application of random
perturbations to an embedding vector, instead of
simply returning the nearest token to the perturbed
vector, one could consider returning a token with
similar syntactic attributes, such as part of speech,
or verbs with similar causative meanings or stable
subcategorization frames.

Lastly, our experiments were limited to classi-
fication tasks in the English language. In future
research, we intend to explore the effectiveness of
these methods in generative tasks, across languages,
and in multilingual settings.
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Limitations

We demonstrated the privacy achieved by our meth-
ods empirically under one attacking scenario. Fur-
ther comprehensive testing or mathematical proofs
would enhance our understanding of the extent of
privacy achieved.

An additional limitation of our proposed mech-
anism is the unchanged sentence length. This im-
poses a privacy breach in which an author who
prefers writing longer or shorter sentences can be
re-identified even when introducing random per-
turbations. Hence, another avenue in this research
is reducing the amount of tokens by introducing,
for example, a stride parameter to the STENCIL

family of mappers. This parameter will determine
how often tokens will be output, thus reducing the
amount of tokens.
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