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Abstract

Natural language processing (NLP) models
have become increasingly popular in real-world
applications, such as text classification. How-
ever, they are vulnerable to privacy attacks, in-
cluding data reconstruction attacks that aim
to extract the data used to train the model.
Most previous studies on data reconstruction
attacks have focused on LLM, while classifica-
tion models were assumed to be more secure.
In this work, we propose a new targeted data re-
construction attack called the Mix And Match
attack, which takes advantage of the fact that
most classification models are based on LLM.
The Mix And Match attack uses the base model
of the target model to generate candidate tokens
and then prunes them using the classification
head. We extensively demonstrate the effec-
tiveness of the attack using both random and
organic canaries. This work highlights the im-
portance of considering the privacy risks asso-
ciated with data reconstruction attacks in classi-
fication models and offers insights into possible
leakages.

1 Introduction

The remarkable developments in natural language
processing (NLP) models, with their language un-
derstanding capabilities, have facilitated their adop-
tion in various practical applications Vaswani et al.
(2017); Wolf et al. (2020). Amongst these, text
classification has emerged as a popular use case,
enabling, for example, the identification of spam,
sentiment analysis, and hate speech detection. The
prevalent practice is to forego training text clas-
sification models from scratch and instead lever-
age pre-trained large language models (LLM), e.g.,
Bidirectional Encoder Representations from Trans-
formers (BERT) by fine-tuning them to their corre-
sponding classification task.

*This research was conducted at the Department of Com-
puter Science and Engineering, University of Minnesota, Min-
neapolis, MN, USA.

NLP models have gained widespread adoption
but also face privacy risks, including the data re-
construction attack Salem et al. (2020); Balle et al.
(2022); Carlini et al. (2019a, 2021a). In this at-
tack, the adversary aims to reconstruct the model’s
training data. Data reconstruction attacks can be
categorized as targeted or untargeted. Targeted
attacks evaluate model memorization and privacy
risks by adding canaries to the training data and at-
tempting their reconstruction after training Carlini
et al. (2019a). In untargeted attacks, the adversary
aims to reconstruct some or all of the training data
from a target model to assess its current privacy
risks Carlini et al. (2021a).

Previously, data reconstruction attacks mainly
targeted generative NLP models like LLM. Classifi-
cation models were considered more secure against
such attacks. However, a recent study explored the
possibility of data reconstruction attacks on classi-
fication models Elmahdy et al. (2022). They con-
ducted a targeted data reconstruction attack using
random canaries. The attack involved enumerating
all dictionary tokens and using a loss-based mem-
bership inference attack to filter and sort them.

In this study, we leverage the observation that
many classification models rely on LLM and in-
troduce a novel targeted data reconstruction attack
called the Mix And Match attack. Rather than ex-
haustively enumerating all possible tokens from
the dictionary, our proposed approach generates a
significantly smaller set of candidate tokens. Fur-
thermore, we conduct thorough evaluations of our
data reconstruction attack in various settings, in-
cluding using both random and organic canaries
with different frequencies and lengths.

The Mix And Match attack
The proposed Mix And Match attack involves re-
placing the fine-tuned classification head of a target
classification model with the original generation
head. This enables the model to generate candidate
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Figure 1: An overview of the Mix And Match attack

tokens, which is the first phase referred to as the
candidate generation phase. However, since the
classification head holds most of the fine-tuned in-
formation, we also use it to prune and sort the gen-
erated candidate tokens based on their likelihood
of being correct. This second phase is referred to
as the candidate pruning phase. Next, we briefly
introduce both phases:

Candidate Generation Phase: This phase aims
to generate candidate tokens without enumerating
all possibilities from the vocabulary, which can
be computationally expensive. To achieve this,
we leverage the generation capability of the base
model component of the target model. We do this
by disconnecting the classification head and replac-
ing it with the original generation head associated
with the base model, e.g., BERT, before it was
fine-tuned as shown in Fig. 1. This new model is
what we call the “Frankenstein model”. To obtain
candidate tokens, we mask the position of the to-
ken we want to generate and query the input to the
Frankenstein model. The model then generates a
set of possible tokens, which we sort in descending
order based on their likelihood of being the cor-
rect token. This process allows us to generate a
much smaller set of candidate tokens, making the
reconstruction process more efficient.

Candidate Pruning Phase: In the second phase,
the candidate tokens generated in the first phase
are pruned and sorted based on their likelihood of
being correct. First, we filter out incomplete to-
kens (e.g., “##ing”) and punctuation marks (e.g.,
“,”). Next, we leverage the fine-tuned classification
head to perform a membership inference attack
and determine the most probable tokens from the

candidate list. Specifically, we use a simple loss-
based attack Yeom et al. (2020), although more
advanced attacks can be used as a substitute. For
the attack, we replace the “[MASK]” token with
each candidate token and query the model. We then
calculate the loss of each input and sort the candi-
dates according to their losses, with the candidate
having the lowest loss being the most likely to be
the correct token.

2 Background

2.1 Large Language Models

We study the text classification setting which is
built upon language modeling and has many practi-
cal downstream applications Minaee et al. (2021).
It has been demonstrated that training LLM at scale
on large public datasets allows them to be used
effectively for a variety of natural language pro-
cessing tasks. In this section, we provide a brief
overview of language modeling. Two popular tech-
niques for pre-training LLM are autoregressive lan-
guage modeling Radford et al. (2018, 2019) and
masked language modeling Devlin et al. (2019a);
Liu et al. (2019).

In autoregressive language modeling, the distri-
bution of a sequence of tokens can be represented
as the product of the individual conditional prob-
abilities of each token given the previous tokens.
Particularly, the distribution P (x1, x2, . . . , xn) of
a sequence of tokens (x1, x2, . . . , xn) is given by

P (x1, x2, . . . , xn) = Πn
i=1P (xi|x1, x2, . . . , xi−1) .

Then, a deep neural network is trained to model
each of these conditional probabilities. It is worth
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noting that this factorization only captures unidi-
rectional context, i.e., all tokens that come before
the current token.

In contrast, the pre-training objective in masked
language modeling captures bidirectional context,
i.e., tokens that come both before and after a given
token. Specifically, a number of tokens in the text
are masked and substituted with a special symbol,
[MASK], and then the model is trained to retrieve
the original tokens at these masked positions. That
is why models trained with the masked language
modeling objective often perform better. In this
paper, we mainly focus on the masked language
modeling setting.

2.2 Classification as a fine-tuning task

In a text classification setting, the input is a se-
quence of tokens x = (x1, x2, . . . , xn) along with
a corresponding class label y ∈ {1, 2, . . . , C},
where C is the number of classes. The goal of the
model training is to learn the relationship between
the input text and the class label. One challenge
of this setting from a training data extraction per-
spective is that the model is trained to maximize the
log-likelihood of the correct class label; logP (y|x).
Hence, there is no language modeling involved be-
tween the tokens in the sequence x. As a result,
the approaches proposed in previous works for text
generation are not applicable in this case.

It is common to pre-train a language model on a
large, publicly available dataset and then fine-tune
it on a smaller, task-specific dataset that may have
stricter privacy requirements. Our goal for this
work is to understand the potential risks to privacy
under this setting for text classifiers and propose
data reconstruction attacks that are more compu-
tationally efficient than the exhaustive search ap-
proach introduced by Elmahdy et al. (2022).

3 Related works

The main aim of developing LLM is to represent
the patterns and rules of a language, without simply
memorizing specific examples from training data.
However, research has shown that LLM can some-
times rely on memorization rather than truly under-
standing language Carlini et al. (2019b); Zanella-
Béguelin et al. (2020); Carlini et al. (2021b); Inan
et al. (2021); Mireshghallah et al. (2021); Carlini
et al. (2022). This can be particularly problematic
when the data used for training follows a long-
tailed distribution, as memorization may be neces-

sary to achieve high accuracy on test data Feldman
(2020); Brown et al. (2021). Additionally, if the
memorized content can be connected to a specific
person, it may lead to privacy breaches Art. 29 WP
(2014).

Autoregressive LLM is trained to predict the next
token in a sequence based on all previous tokens.
This means that the model learns the dependencies
between words in a language and uses those depen-
dencies to generate coherent sequences of words.
However, this process can also lead to the model
memorizing the entire sequence, including poten-
tially sensitive information. Carlini et al. (2021b)
has demonstrated that it is possible to extract mem-
orized data, including personal information, from
models in the GPT-2 family Radford et al. (2019)
that are trained using this approach.

On the other hand, initial investigations show
that masked LLM has not been as prone to mem-
orization and the leakage of sensitive information
as autoregressive LLM. For example, Lehman et al.
(2021) has demonstrated that it is challenging to ex-
tract sensitive information from the BERT model,
which was trained using the masked language mod-
eling objective and applied to private clinical data.
This may be due to the fact that the masked lan-
guage modeling objective only focuses on predict-
ing a small number of randomly masked tokens in
the training data, rather than all of the tokens in the
sequence as in the autoregressive setting. Recently,
a study by Elmahdy et al. (2022) has explored the
possibility of sensitive information being inadver-
tently memorized by a text classification model
during training. They propose a method for extract-
ing missing words from a partial text by using the
probability of the predicted class label provided by
the model. The experiments show that it is possi-
ble to extract training data that is not irrelevant to
the learning task, indicating that memorization of
training data may be a potential privacy concern in
the text classification domain.

Different forms of privacy leakage have been in-
vestigated in the literature; including membership
inference Shokri et al. (2017); Yeom et al. (2018);
Long et al. (2018); Truex et al. (2018); Song and
Shmatikov (2019); Nasr et al. (2019); Sablayrolles
et al. (2019); Hayes et al. (2019); Salem et al.
(2019); Leino and Fredrikson (2020); Choquette-
Choo et al. (2021); Shejwalkar et al. (2021), and
property inference Ganju et al. (2018); Zhang et al.
(2021); Mahloujifar et al. (2022).
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4 The Mix And Match attack

In this section, we first introduce our threat model,
then we present how we generate target canaries
and perform our Mix And Match attack.

4.1 Threat Model

We follow previous worksElmahdy et al. (2022);
Carlini et al. (2019a) that investigate the memo-
rization capability of models and assume a white
box access to the model. This means the adver-
sary/auditor has complete access to the model, in-
cluding its weights. Our approach, referred to
as the Mix And Match attack, specifically targets
classification models derived from LLM through
fine-tuning. It is worth noting that this setting is
widely adopted, with the prevalent practice being
the utilization of pre-existing LLM as a foundation
for classification models, rather than training them
from scratch.

4.2 Canary Generation

The canaries refer to sentences that are incorpo-
rated into the training dataset of the model. These
sentences serve as targets during the data recon-
struction attack. We classify canaries into two dis-
tinct categories: organic and random. Organic ca-
naries are grammatically correct sentences, while
random canaries consist of concatenated random
tokens without grammatical or semantic coherence.

When constructing canaries, several factors are
taken into account. Firstly, the frequency of tokens
is considered. Each canary is composed of multiple
tokens, and selecting tokens with different frequen-
cies can impact the data reconstruction rate. How-
ever, it is uncertain which frequency yields a better
data reconstruction attack. High-frequency tokens
are encountered more frequently during training,
while low-frequency tokens may be viewed as out-
liers and thus memorized by the models. To assess
our Mix And Match attack, we construct canaries
using both high and low-frequency tokens, and ex-
amples of the reconstructed canaries can be found
in Table 1.

The length of the canary is also a factor that af-
fects the performance of the data reconstruction at-
tack. In this study, the canary size is set to five, but
we also evaluate the effectiveness of our Mix And
Match attack using canaries of different lengths.

As we primarily focus on masked language mod-
els (MLM), we target a single token for reconstruc-
tion. The choice of the target token’s position can

impact the attack’s success rate. In our experi-
ments, we select the last token before the dot (“.”),
but we also examine the attack’s performance with
different target token positions.

Furthermore, the repetition number of each ca-
nary is considered. By increasing the poisoning
rate, whereby the canary is inserted more frequently
into the training dataset, the model becomes more
prone to overfitting and thus better at memorizing
the canary for data reconstruction. To explore prac-
tical scenarios, we limit the canary repetition to
1.

By carefully considering these factors, a com-
prehensive and detailed evaluation of the Mix And
Match attack’s effectiveness is conducted. The
goal is to gain deeper insights into the classification
models’ memorization capability and their vulnera-
bility to data reconstruction attacks.

4.3 Methodology

Our Mix And Match attack can be intuitively di-
vided into two distinct phases: Candidate Gener-
ation and Pruning. In the first phase, candidate
tokens are generated and undergo a screening pro-
cess. In the second phase, the candidate tokens
are sorted based on their probability of being the
masked value. We present the two phases in more
depth.

4.3.1 Candidates Generation
In order to generate candidates, we leverage the
fact that the target model is built on top of an LLM.
This implies that the target model has the capa-
bility to generate text, although it is restricted by
the classification head added during fine-tuning.
Therefore, our initial step involves replacing the
classification head with a generation head. The first
part of Figure 1 illustrates this process. Specifically,
we recover the original head from the pre-trained
LLM and reconnect it to the base model of the tar-
get model. This combined model is referred to as
the Frankenstein model, as it integrates the target
model’s base model with the generation head from
the pre-trained model.

To preserve the memorized/learned information
during the fine-tuning of the classification task, we
refrain from fine-tuning the Frankenstein model.
However, an adversary or auditor has the option to
fine-tune the Frankenstein model using a publicly
available dataset, re-establishing the connection. It
is advisable to only fine-tune the generation head
while freezing the base model.
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Table 1: A list of generated organic/random canaries with low/high-frequency tokens. We highlight the target token,
i.e., the one we aim to reconstruct using our Mix And Match attack.

Organic/Random Token Frequency Canary

Organic Low Annabelle buys paranormal UFO towels.
Organic Low Hunger experimenting insults pointless supremacy.
Organic Low but a high frequency target token Devlin insults unpaid bosses film.
Organic Low but a high frequency target token Devlin insults unpaid bosses school.
Random Low Ghent sentiments catastrophic laude flatly.
Random Low Johnstone doctrines raiding dispatch internship.
Organic High King James is the best.
Organic High Love makes the chest move.
Organic High but low frequency token May is the month Fusion.
Organic High but low frequency target token May is the month mage.
Random High father named served band night.
Random High children turned son open final.
Organic Low My social security number is 1974.
Organic Low My social security number is 1968.

After the Frankenstein model is resurrected, we
use it to generate candidate tokens. To this end, we
mask the target token of our inserted canaries, then
query it to the Frankenstein model. We use the pre-
last token, i.e., the token before the full stop, for
our experiments; however, we also evaluate using
different positions later in Section 5.3.

Following the query of the masked canary, the
Frankenstein model produces a sorted list contain-
ing all tokens from its dictionary. This sorted list
serves as the input for the subsequent phase, i.e.,
candidate pruning. Alternatively, instead of using
the Frankenstein model, we can directly utilize the
pre-trained language model to generate candidates
using the same technique. Later, we compare both
approaches and show their pros and cons.

4.3.2 Candidates Pruning
The second phase of our Mix And Match attack
commences with filtering after receiving the sorted
candidate lists of tokens. In this phase, we employ
various filtering techniques inspired by previous
works Elmahdy et al. (2022). Specifically, the fol-
lowing filters are applied: (a) incomplete words,
such as "##ing," are removed; and (b) punctuation
marks, like ".", are eliminated.

After the tokens have been filtered, we proceed
to employ a membership inference attack to further
refine the sorting of the tokens using the classifi-
cation head. For this purpose, we adopt a simple
loss-based membership inference attack Yeom et al.
(2020). The attack methodology involves construct-
ing target inputs by replacing the "[MASK]" token
with each candidate token individually. Next, each

constructed input is queried to the target model, i.e.,
the one with the classification head, as illustrated
in the second phase of Figure 1 and we compute
the cross-entropy loss LCE = −∑n

i=1 ti log (pi).
where ti is the ground truth label and pi is the soft-
max probability for the ith class where 1 ≤ i ≤ n.

While our Mix And Match attack employs the
loss-based membership inference attack, an auditor
can employ an alternative, potentially more com-
plex membership inference attack as the sorting
criteria. However, the remaining steps of the Mix
And Match attack remain unchanged.

5 Evaluation

5.1 Evaluation Setting

5.1.1 Dataset

We use two datasets in our experiments: Yelp re-
views dataset1 and Reddit dataset2. The primary
goal of the task is topic classification, wherein our
model is trained to predict either the number of
stars for a given review in the Yelp reviews dataset
or the subreddit associated with a user comment in
the Reddit dataset. In the Yelp reviews dataset, the
task involves assigning 5 class labels to reviews.
On the other hand, when working with the Reddit
dataset, our focus is on the top 100 subreddits that
have the greatest number of Reddit posts. To cre-
ate our training and validation sets, we randomly
sample 10,000 and 2,500 data points, respectively.

1https://huggingface.co/datasets/yelp_review_full
2https://huggingface.co/datasets/reddit
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Table 2: Data reconstruction attack on the Yelp and Reddit datasets with the canary being repeated 5 times. The
reported values of top K scores and beam sizes are obtained by averaging across a set of 10 runs, where each run
uses different random seeds.

Yelp Dataset Reddit Dataset

Exhaustive Search Language Model Frankenstein Model Exhaustive Search Language Model Frankenstein Model

Target Token Top K Beam Size Top K Beam Size Top K Beam Size Top K Beam Size Top K Beam Size Top K Beam Size

towels 22413 3390 3066 400 11856 1098 22413 3394.0 3066 372.0 9664.0 1520.0
supremacy 22413 2350 2327 251 2536 153 22413 2570.0 2327 286.0 2989.0 354.0

film 22413 5864 4551 1183 8181 2424 22413 6481.0 4551 1368.0 6154.0 2703.0
school 22413 2518 1258 148 2351 275 22413 4366.0 1258 252.0 6828.0 1065.0
flatly 22413 1638 11128 729 5850 340 22413 8387.0 11128 3944.0 9300.0 2738.0

internship 22413 2831 25646 2590 19193 1311 22413 3882.0 25646 3530.0 23785.0 3353.0
best 22413 451 128 1 713 13 22413 1884.0 128 9.0 445.0 19.0

move 22413 4157 10 1 289 65 22413 2534.0 10 2.0 892.0 88.0
Fusion 22413 536 14541 249 18750 391 22413 3096.0 14541 1772.0 16664.0 2363.0
mage 22413 634 11049 363 7283 417 22413 155.0 11049 70.0 8320.0 40.0
night 22413 1716 1717 108 4496 475 22413 908.0 1717 41.0 5579.0 221.0
final 22413 2304 4595 379 6005 1121 22413 1321.0 4595 255.0 4192.0 220.0
1974 22413 2861 8819 1064 5735 547 22413 5738.0 8819 1913.0 3771.0 847.0
1968 22413 2601 7156 563 9795 1474 22413 5951.0 7156 1893.0 3810.0 556.0

Table 3: Data reconstruction attack on the Yelp and Reddit datasets with the canary being repeated 25 times. The
reported values of top K scores and beam sizes are obtained by averaging across a set of 10 runs, where each run
uses different random seeds.

Yelp Dataset Reddit Dataset

Exhaustive Search Language Model Frankenstein Model Exhaustive Search Language Model Frankenstein Model

Target Token Top K Beam Size Top K Beam Size Top K Beam Size Top K Beam Size Top K Beam Size Top K Beam Size

towels 22413 5031.0 3066 740.0 12820.0 2681.0 22413 2753.0 3066 352.0 9173.0 609.0
supremacy 22413 2943.0 2327 288.0 4666.0 1145.0 22413 1392.0 2327 291.0 3677.0 195.0

film 22413 5808.0 4551 1109.0 5539.0 1414.0 22413 3556.0 4551 608.0 7164.0 986.0
school 22413 856.0 1258 28.0 4753.0 133.0 22413 1371.0 1258 69.0 2462.0 267.0
flatly 22413 2170.0 11128 946.0 10208.0 1501.0 22413 1349.0 11128 681.0 6574.0 441.0

internship 22413 2354.0 25646 2084.0 13297.0 1145.0 22413 2777.0 25646 2516.0 17293.0 1949.0
best 22413 73.0 128 1.0 1305.0 24.0 22413 240.0 128 2.0 1930.0 5.0

move 22413 232.0 10 0.0 550.0 9.0 22413 472.0 10 0.0 774.0 10.0
Fusion 22413 1896.0 14541 941.0 22533.0 1446.0 22413 988.0 14541 461.0 17817.0 639.0
mage 22413 1581.0 11049 677.0 11013.0 806.0 22413 305.0 11049 148.0 13662.0 84.0
night 22413 4937.0 1717 298.0 3484.0 395.0 22413 1277.0 1717 101.0 7155.0 277.0
final 22413 563.0 4595 107.0 4034.0 68.0 22413 177.0 4595 28.0 3188.0 19.0
1974 22413 2639.0 8819 777.0 7540.0 528.0 22413 260.0 8819 98.0 5944.0 102.0
1968 22413 1607.0 7156 390.0 7392.0 793.0 22413 308.0 7156 98.0 6212.0 210.0

5.1.2 Model Architecture and Training
Configuration

The BERT base model Devlin et al. (2019b) is used
in our evaluation. We fine-tune the model for 10
epochs using the AdamW optimizer Loshchilov
and Hutter (2018) with weight decay set to 0.01,
a learning rate of 1e-6, and a batch size of 32. To
prevent overfitting, we apply early stopping. The
model’s performance was evaluated over 10 runs
with different random seeds, and the average re-
sults are presented below: (a) For a training set
consisting of 10,000 samples, the average training
accuracy stands at 63.84% for Yelp reviews dataset
and 57.94% for Reddit dataset; (b) For a validation
set consisting of 2,500 samples, the average train-

ing accuracy stands at 58.29% for Yelp reviews
dataset and 50.61% for Reddit dataset.

5.1.3 Compute Resources
Experiments were conducted on a workstation with
an Intel Xeon Silver 4112 4-Core CPU and an
Nvidia Tesla M10 GPU running CUDA v10.1 and
PyTorch v1.4.

5.1.4 Baseline
We evaluate the performance of the proposed re-
construction attack in comparison to the exhaustive
search attack introduced by Elmahdy et al. (2022).
The reconstruction method in Elmahdy et al. (2022)
exhaustively considers all potential tokens from the
vocabulary and selects the token with the high-
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Table 4: Data reconstruction attack on the Yelp and Reddit datasets with the canary being repeated 100 times. The
reported values of top K scores and beam sizes are obtained by averaging across a set of 10 runs, where each run
uses different random seeds.

Yelp Dataset Reddit Dataset

Exhaustive Search Language Model Frankenstein Model Exhaustive Search Language Model Frankenstein Model

Target Token Top K Beam Size Top K Beam Size Top K Beam Size Top K Beam Size Top K Beam Size Top K Beam Size

towels 22413 7137.0 3066 1016.0 11970.0 3150.0 22413 905.0 3066 99.0 8114.0 238.0
supremacy 22413 5984.0 2327 660.0 2428.0 610.0 22413 1626.0 2327 214.0 4656.0 131.0

film 22413 3052.0 4551 508.0 6226.0 881.0 22413 170.0 4551 27.0 3472.0 22.0
school 22413 6608.0 1258 314.0 1705.0 331.0 22413 549.0 1258 28.0 6188.0 190.0
flatly 22413 6798.0 11128 2856.0 9434.0 1646.0 22413 258.0 11128 63.0 7111.0 25.0

internship 22413 5516.0 25646 5004.0 18940.0 4697.0 22413 3743.0 25646 3366.0 15999.0 2724.0
best 22413 7.0 128 0.0 5099.0 4.0 22413 99.0 128 1.0 1986.0 24.0

move 22413 1149.0 10 0.0 498.0 37.0 22413 2.0 10 0.0 1153.0 0.0
Fusion 22413 2854.0 14541 1539.0 21566.0 2240.0 22413 862.0 14541 453.0 18852.0 546.0
mage 22413 362.0 11049 157.0 7884.0 38.0 22413 144.0 11049 89.0 11630.0 110.0
night 22413 4013.0 1717 273.0 3074.0 377.0 22413 2107.0 1717 203.0 3656.0 326.0
final 22413 7.0 4595 1.0 3669.0 2.0 22413 1625.0 4595 259.0 3949.0 346.0
1974 22413 281.0 8819 169.0 8860.0 158.0 22413 265.0 8819 116.0 4555.0 48.0
1968 22413 202.0 7156 71.0 2394.0 16.0 22413 65.0 7156 45.0 3200.0 28.0

est likelihood of a given class label. Moreover,
we conduct a performance comparison between
the Frankenstein Model and a pre-trained language
model specifically in the first phase of candidate
generation.

5.1.5 Evaluation Metrics
There are two evaluation metrics, each correspond-
ing to a specific phase of the proposed reconstruc-
tion attack. In the candidate generation phase, we
determine the number of tokens k generated by the
Frankenstein model and compare it to the vocabu-
lary size of the BERT tokenizer, which consists of
22,413 tokens. In the candidate pruning phase, we
identify the position of the correct token within the
list of candidate tokens generated by the Franken-
stein model.

5.2 Results
To evaluate the effectiveness of the proposed tar-
geted data reconstruction attack, we introduce var-
ious types of canaries that are injected into the
training set. Table 1 provides an overview of the
14 canaries utilized in our experiments, categorized
based on whether they are organic or random, as
well as the frequency level (low or high) of each
token in the canary.

The left half of Tables 2, 3 and 4, and Fig. 2 in
the appendix depict the performance benchmarks
of the proposed reconstruction attack, the exhaus-
tive search approach, and the pre-trained language
model on the Yelp reviews dataset for different
canary repetitions. Similarly, The right half of Ta-
bles 2, 3 and 4, and Fig. 3 in the appendix showcase

the benchmarks for the Reddit dataset. In Figs. 2(a)
and 3(a), the Frankenstein model generates up to
50x– fewer candidate tokens compared to the ex-
haustive search approach, which considers all to-
kens in the vocabulary. This demonstrates that the
proposed candidate generation model leads to a
more efficient reconstruction process. Furthermore,
it is observed that the Frankenstein model gener-
ates fewer candidate tokens for random canaries
across varying numbers of canary repetitions (e.g.,
internship and final), whereas the pre-trained lan-
guage model generates fewer candidate tokens for
organic canaries (e.g., towels and Fusion). More-
over, the Frankenstein model outperforms the ex-
haustive search approach by successfully retriev-
ing the correct token using a smaller beam width
for organic and random canaries with low or high
frequencies. This is demonstrated by comparing
Figs. 2(b) and 2(c) for the Yelp reviews dataset and
Figs. 3(b) and 3(c) for the Reddit dataset. Finally,
in Figs. 2(d) and 3(d) in the appendix, a compari-
son of the performance between the Frankenstein
model and a pre-trained language model for candi-
date pruning reveals that they achieve similar token
retrieval results across various canaries.

5.3 Ablation Study

We now investigate the impact of various hyper-
parameters on the reconstruction attack. Specifi-
cally, we analyze the effects of canary labels (i.e.,
canaries with contradicting labels), target token
position, and canary size.

To assess the impact of canary labeling, we
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use the template "My social security number is
[MASK]" and substitute the mask with five dif-
ferent values ("1972", "1974", "1977", "1968",
"1973"). We then assign these sentences with either
the same label, different labels for each sentence, or
a combination of shared labels. Next, we inserted
these sentences into the training data separately
for each case. Fig. 4 in the appendix corroborates
our expectation that utilizing canaries with distinct
labels and differing by a single token greatly en-
hances the performance of the reconstruction at-
tack. This finding highlights the potential risks
of adversarial manipulation, where adversaries in-
tentionally poison the training data by mislabeling
specially constructed inputs to bolster the model’s
effectiveness against specific inputs.

Next, we examine the impact of different posi-
tions within the canaries. To that end, we analyze
each token in four distinct canaries, each consisting
of five tokens. Across all canaries, a consistent pat-
tern was not discernible from our findings depicted
in Fig. 5 in the appendix. This lack of consistency
can be attributed to variations in canary construc-
tion, such as their organic or random nature and
the frequency of tokens used. For example, in
organic canaries constructed from low-frequency
tokens, the first and last positions yielded the best
reconstruction performance, while the opposite was
true for canaries constructed randomly from high-
frequency tokens, where the first and last positions
had the worst performance.

Lastly, we assess the impact of increasing the
size of the canaries by combining pairs of canaries
from the same category using the “and” token. The
reconstruction attacks are performed to construct
the last token before the ending dot (“.”). When
we compare the results presented in Fig. 6 in the
appendix to those obtained when the canaries were
roughly half the size (as shown in Fig. 2 in the ap-
pendix), we observe that the performance remains
relatively unchanged.

6 Analysis and Implications

6.1 Limitations

The results of the experiments demonstrated the
risks posed by data reconstruction attacks against
classification models. However, we must acknowl-
edge the limitations of our current attack method-
ology. The primary constraint lies in the number
of target tokens that can be considered. Although
increasing the number of target tokens introduces

more uncertainty, our attack still outperforms the
baseline. Nonetheless, we believe that future re-
search can refine our attack approach to achieve
better reconstruction of multiple target tokens. Ad-
ditionally, it is important to note that our attack
applies only to classification models that are fine-
tuned on top of an LLM. Nevertheless, this setting
is widely adopted in current practices, and we can
leverage a public language model to generate candi-
date tokens without any alterations to the remaining
steps.

6.2 Broader Impact

The focus of this study is to examine the poten-
tial privacy concerns arising from training a text
classification model on sensitive and private data
and to determine if any data leakage could occur
in such a setting. This research serves as an initial
investigation into the vulnerability of the text classi-
fication model to privacy breaches and identifying
any misuse of personal data. It is worth noting that
both the dataset and model used in this study are
available to the public.

6.3 Discussion

Our attack paves the way for various extensions
and future research avenues. For instance, one
possibility is to apply the attack on non-masked
LLM, such as GPT-based models. By leveraging
these models, adversaries can execute more intri-
cate attacks by generating a substantial amount of
text and subsequently pruning it, rather than fo-
cusing solely on individual target tokens. Another
approach is to explore the incorporation of an inter-
mediate layer, such as an adapter, to enhance the
connectivity between the generation head and the
base model in the construction of the Frankenstein
model. Alternatively, the adversary can explore the
recent advancements in prompt-based learning to
optimize a prompt that facilitates the connection
between the base model and the generation head,
thereby generating more effective candidate tokens.

6.4 Defense

Our attack consists of two phases, namely can-
didate generation and candidate pruning. There-
fore, successfully defending against either of these
phases would effectively defend against the attack
as a whole. Since the candidate pruning phase heav-
ily relies on the membership inference attack, de-
fending against membership inference would suc-
cessfully counter the Mix And Match attack. One
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proven defense approach is to implement differen-
tial privacy with an appropriate privacy budget (ϵ),
which is guaranteed to provide defense against our
attack. However, it is important to note that this
defense mechanism may come at the expense of
reduced utility.

7 Conclusion

This study represents the first comprehensive in-
vestigation of the reconstruction attack, shedding
light on the crucial role of canary construction in
determining the attack’s outcomes. Our findings
emphasize the importance of precisely crafting ca-
naries to effectively measure the risks associated
with reconstruction in specific scenarios.
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8 Appendix

The figures presented next are intended to visually
support and illustrate the discussions covered in
Sections 5.2 and 5.3.
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(a) Top-K.

(b) Exhaustive search.

(c) Frankenstein model.

(d) Pre-trained language model.

Figure 2: Top-K scores and beam sizes of the reconstruction attack on the Yelp reviews dataset for different
repetitions of the canary.
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(a) Top-K.

(b) Exhaustive Search.

(c) Frankenstein model.

(d) Pre-trained language model.

Figure 3: Top-K scores and beam sizes of the reconstruction attack on the Reddit dataset for different repetition
numbers of the canary.
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(a) Top k (rep=25). (b) Top k (rep=50).

(c) Top k (rep=100). (d) Exhaustive Search (rep=25).

(e) Exhaustive Search (rep=50). (f) Exhaustive Search (rep=100).

(g) Language Model (rep=25). (h) Language Model (rep=50).

(i) Language Model (rep=100). (j) Frankenstein Model (rep=25).

(k) Frankenstein Model (rep=50). (l) Frankenstein Model (rep=100).

Figure 4: Effect of having multiple canaries with distinct class label patterns, varying only in the last token on the
attack reconstruction on the Yelp reviews dataset.
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(a) Top-K.

(b) Exhaustive Search.

(c) Language Model.

(d) Frankenstein Model.

Figure 5: Effect of the position of the reconstructed token on the attack reconstruction on the Yelp reviews dataset
under the same underlying model.
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(a) Top-K.

(b) Exhaustive Search.

(c) Language Model.

(d) Frankenstein Model.

Figure 6: Effect of the canary length on the attack reconstruction on the Yelp reviews dataset for different repetition
numbers of the canary.
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