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Abstract

Language models are susceptible to vulnerabil-
ity through adversarial attacks, using manipu-
lations of the input data to disrupt their perfor-
mance. Accordingly, it represents a cybersecu-
rity leak. Data manipulations are intended to be
unidentifiable by the learning model and by hu-
mans, small changes can disturb the final label
of a classification task. Hence, we propose a
novel attack built upon explainability methods
to identify the salient lexical units to alter in
order to flip the classification label. We assess
our proposal on a disinformation dataset, and
we show that our attack reaches a high balance
among stealthiness and efficiency.

1 Introduction

Adversarial attacks exploit the weaknesses of vic-
tim models through modifications in the model
architecture or input data to change their efficiency.
These attacks are more dangerous if both the model
and the human eye are not able to identify them, us-
ing techniques of imperceptible characters or small
modifications (Boucher et al., 2022).

Adversarial attacks may focus on decreasing the
effectiveness or performance of the victim model
depending on their approach. There can be targeted
attacks, focused on label flipping, or untargeted at-
tacks that base their strategy on decreasing its per-
formance. In this work, we have performed label
flipping inference attacks, using different attacks
focusing on the use of different search spaces and
stealthy modifications adapted to a real environ-
ment.

We study two search strategies, one based on an
iterative search and the other focused on finding,
through using the post-hoc explainability method
SHAP (Lundberg and Lee, 2017), the most impor-
tant words to modify and change the model label
using a few search resources. As a result of this
study, we propose an attack that combine the two
search algorithms to increase the efficiency of the

attack, making it stealthier in more realistic environ-
ments. We call this joint attack Hybrid KeyToken
Attack.

To evaluate the robustness of the victim model,
and the stealthiness of the attack, we need metrics
adapted to these cases. The BODEGA framework
(Przybyła et al., 2023) provides semantic similarity,
Levenshtein distance, and the success of chang-
ing the target text label. We use a disinformation
dataset with which the model victim RoBERTa-
base (Liu et al., 2019) is trained for this task. This
language model will be a victim of character, word,
and word embedding attacks.

This work performs a system study that uses
explainability and an iterative search to flip the
label of a victim model. Using a different search
space to find the best perturbation, a search space is
a series of modifications and constraints to achieve
a goal.

The Hybrid KeyToken Attack achieves a similar
result than the brute force but in much less time, be-
ing more efficient and harder to detect in a real case.
Furthermore, we compare the Hybrid KeyTokens
Attack with state-of-the-art baseline algorithms in
the context of adversarial attacks.

The rest of the paper is organized as follows:
section 2 presents the context and the works that
support our proposal. Section 3 details the targeting
of adversary attacks and the types of attacks carried
out in this work. It also explains the search spaces
used as well as our novel hybrid attack. Section
4 presents the experimental framework. Section
5 analyse the results obtained and finally section
6 determines conclusions and discusses the future
works.

2 Background and Related Works

Advances in machine learning (ML) have resulted
in a variety of applications, such as data analysis,
autonomous systems, and security methods. Ma-
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chine learning is being applied in many possible
areas of our lives, with easy deployment of new
systems and active communication with private
data. It is increasingly recognized that ML exposes
new vulnerabilities in these systems, but address-
ing them is still a difficult task to tackle. Part of
the solutions found is to identify attacks on these
systems and build defenses for them, exploring the
opposing relationship between model accuracy and
resistance to adversarial manipulation (Papernot
et al., 2016).

These security issues have also been transferred
to the domain of Natural Language Processing
(NLP). Common security vulnerabilities often have
defined structures and patterns. These can be de-
tected in real time when bad actors have already
exploited them. Techniques exist to detect these
problems, but they are not robust (Mahmood and
Mahmoud, 2018; Yang et al., 2020). That is why
it is important to know the attacks well to create
a solution in a specific domain, as in NLP (Ziems
and Wu, 2021).

Following a review of (Qiu et al., 2019), vulner-
abilities of learning models can be attacked in the
training and testing stage. In training, they can be
divided into data injection, data modification, and
logical corruption. These attacks in the training
stage are carried out in three ways:

• Modify Training Dataset: The original dis-
tribution of the training data is changed by
modifying or buffering the training data to
make the learning algorithm change.

• Label Manipulation: Randomly perturbing
labels by selecting a label from the random
distribution as the label of the training data,
changing 40% of the training data is sufficient
to reduce the performance of classifiers using
SVM (Biggio et al., 2011).

• Input Feature Manipulation: This scenario
assumes that the adversaries know the learn-
ing algorithm. The following papers (Mei
and Zhu, 2015; Biggio et al., 2012) show that
injecting data can carefully change the dis-
tribution of the training dataset, causing the
accuracy of the model to decrease and predict-
ing misclassification labels.

In the test stage, they can access the victim
model to obtain specific information. With this
information they can attack the model by a white-
box and black-box attack approaches.

In recent years, vulnerabilities have also been
discovered in language models, creating adversarial
attacks designed specifically for NLP tasks. Ad-
versarial attacks are manipulations applied to any
input data supplied to a model. These attacks are
designed to be imperceptible to a human review
and to a trained model, when processing the data
already modified by the attack, it causes the model
to make an error in its classification (Huang et al.,
2017).

These attacks can take various forms, such as
substitution, insertion, deletion, and exchange of
words/characters in a sentence or in the neighbor-
ing words of a target word to introduce disruption.
There are two types of adversarial attacks, black-
box or white-box, based on the attacker’s access to
the model parameters (Zhang et al., 2020).

The manipulations mentioned above, such as
character-level attacks, can result in misspelled
words that spellcheckers can easily detect. Due
to the superiority of the word-level attack (Dey
et al., 2024), (e.g. BERT-ATTACK or PWW) a
comparison of character-level manipulations with
these word-level attacks be made in this work.

3 KeyToken Adversarial Attacks

We introduce in this section the types of search
algorithms that are the backbone of the attacks as-
sessed in this work, explaining how they work and
which heuristics of each of them are used in the
experiments. In the following subsections, we de-
fine how the text parts of a sentence to be modified
are selected, explaining a method that focuses its
search on explainability using the SHAP method
(see section 3.1.1), and another one that uses an
iterative method that does not take into account the
execution time and its only objective is to change
the label of the victim model. Finally, we propose
a hybrid system able to use the advantages of the
defined heuristics to obtain good performance and
to be difficult to identify.

Perturbing a text input with linguistic modifi-
cations, such as substitutions or misspellings to
damage an NLP model, while respecting certain
restrictions, such as semantic similarity, is defined
as search space (Morris et al., 2020).

We used the malicious modifications proposed in
(Roth et al., 2024), for our targeted attacks focused
on flipping the classification label. In particular,
we use the following search algorithms:

• Character-level: This token modification at-
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Figure 1: Types of attacks carried out in this paper for each search method.

tack focuses on changing a character of a word
into an imperceptible change. There are sev-
eral well-known techniques, such as Unicode-
based replacements, common misspellings, or
leetspeak.

• Word-level: This method focuses on chang-
ing whole words for other words, trying not
to change the meaning. Some commonly
used methods are synonyms, word embedding-
based, or phonetic replacements.

• Insert word: Another less stealthy method
than the above would be to insert a word into
the sentence. This could be words such as
adding “bb”, adding invisible Unicode charac-
ters, or using predefined parse template filling.

Search Space Our modifications to the search
space are each of a type of heuristic named above,
at the character, word, and insertion level. The
search space perturbations are focused on obtain-
ing a high semantic similarity and a minimum Lev-
enstein distance of the target sentence. The pertur-
bations performed are indicated bellow:

• Homoglyphs: A character-level attack that
modifies a random letter of a target. It uses
unique characters that render the same or vi-
sually very similar to disrupt model input.

• Synonyms: A word-level attack whose func-
tion is to replace a token with a synonym
while maintaining the same meaning. In our
case, we get a similarity vector of the possible
synonyms of a word using cosine similarity.
The synonym selected to replace the target
word will be the one with the farthest similar-
ity, to try to change the label objective, but

trying not to change the meaning of the sen-
tence.

• Invisible character: We insert an invisible
character before the target word. These char-
acters by design are not rendered and are im-
perceptible to the human eye, but they can
change the output of a model at inference time
(e.g. zero width space U+200B or Hangul
Choseong Filler U+115F).

In any case as a restriction, if the selected word is
a single-character word, it will be deleted. As well
as if a word cannot be substituted effectively (e.g.
it cannot find a synonym for the target). Figure 1
shows an example of each type of attack. In the
case of the insertion of an invisible character, the
character shown would not be visible, however we
have added it in figure 1 for the sake of clarity.

In the following subsections, we define the
search methods and the algorithms used. Smart
KeyTokens Attacks uses a search algorithm fo-
cused on finding the most important words in the
input text using SHAP (Lundberg and Lee, 2017).
In contrast, a brute force search will also be per-
formed using the same modifications as the other
search space.

3.1 KeyTokens Identification
The search method is determined by a transforma-
tion and a number of constraints. Heuristic search
algorithms cannot guarantee an optimal solution,
they can be used to efficiently search a space for a
valid adversarial example (Yoo et al., 2020). In our
case, we use two types of heuristics to perform the
alterations to the texts. This search ends when it
succeeds or after a certain number of queries or a
set of constraints are met.
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The restrictions are adapted depending on the
transformation selected in the attack. For syn-
onyms, the synonym that has the most difference in
cosine distance to the original word is selected, in
order not to change the syntax of the sentence but
to be capable of perturbing the output of the victim
model. In the case of homoglyphs, only one letter
of the text is selected, aiming to reduce the Leven-
shtein distance as much as possible in addition to
achieving a disturbance that is difficult to perceive
by both machine and human.

3.1.1 Smart KeyTokens Attacks
The label flipping attacks aim to modify the most
influential tokens in the decisions of the models at
inference time, obtaining few queries to the victim
model and short execution time. Smart KeyToken
Attacks use the SHAP algorithm to select the most
salient tokens that determine the value of the label
in order to modify them with the aim of boosting a
label flipping. Attacking only these salient words is
more efficient and faster than attacking the whole
sentence, and they would even be more difficult to
identify than more aggressive attacks, even if they
are less effective.

SHAP It is a game theoretic approach to explain
the output of any machine learning model. It con-
nects optimal credit allocation with local explana-
tions using the classic Shapley values from game
theory and their related extensions. SHAP (SHap-
ley Additive exPlanations) values are a way of ex-
plaining the output of any machine learning model.
It uses a game theory approach that measures each
player’s contribution to the final outcome. In ma-
chine learning, each feature is assigned an impor-
tance value that represents its contribution to the
model’s outcome.

SHAP values show how each feature affects each
final prediction, the importance of each feature
compared to the others, and the dependence of the
model on the interaction between features. SHAP
values are a common way to obtain a consistent
and objective explanation of how each feature in-
fluences the model prediction.

We use the Hugging Face1 distilbert-base-
uncased-finetuned-sst-2-english (Sanh et al., 2019)
model for the weights used by SHAP. It explains
the prediction of an instance by calculating the con-
tribution of each feature to the prediction.

SHAP, once it has parsed the sentence, returns a

1https://huggingface.co/

vector of values for each of the tokens and a label
associated with a prediction. In our work, SHAP
will select between 2 to 5 tokens depending on the
length of the target sentence and the most relevant
label that has been selected.

3.1.2 Non-Smart KeyTokens Attacks
The objective of these attacks is to change the label
regardless of the cost and time to achieve it. The
target is the entire sentence, attacking the sentence
in different ways until a constraint is matched or
the label is flipped.

We follow two straightforward heuristics for
Non-Smart KeyTokens Attacks:

• We go through the target sentence word by
word, attacking each one and checking if the
attack was successful. If it is not successful,
we move to the next word leaving the previ-
ous one unaltered. If we reach the end of the
sentence and the label has not changed, the
attack heuristic is unsuccessful.

• The other heuristic uses the same process as
the previous one, but when the sentence has
finished without success, it will start again,
attacking word by word, but leaving the pre-
vious one altered. This will be done until all
the words of the sentence are modified and the
label has not changed, otherwise, it has been
successful.

In this work we refer to the latest definition of
Non-Smart KeyTokens Attacks as a brute force
attack, to differentiate it from the the Smart KeyTo-
ken attack.

3.2 Hybrid KeyTokens Attack
Smart KeyToken Attack performs a search for a
series of important words to be modified in a sen-
tence, without the need to attack the whole sentence
and obtaining good computation time. Non-Smart
KeyToken Attack, on the other hand, has two ways
of working. The first one is a pass through the
phrase modifying each word one by one, without
keeping the previous changes. The second is to use
brute force by storing each modification made to
the previous words, this does not take into account
the execution time, although it is more effective.
We propose a hybrid system that mixes the two
methods, taking advantage of the benefits of both.

The functionality of the hybrid system is to make
a first step using the iterative modifications of the
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Figure 2: Three-step operation of the Hybrid KeyToken Attack. In the (1) step the modifications of each word of the
phrase did not modify the output of the model, but the special character has been removed. In the (2) step, SHAP
selects the words ‘Mod’ and ‘Squad’, after modifying them the output of the victim model is not disturbed, and
these changes are stored. In the (3) step, after attacking each word of the sentence, the final result is changed by
modifying the word ‘series’.

Non-Smart KeyToken Attack, as explained above,
each word of the sentence is modified one by one,
checking if the modification is successful, with-
out saving the changes made to the previous word.
If unsuccessful, the Smart KeyToken attack based
on the SHAP algorithm is performed returning the
most important words of the phrase to be attacked.
If after attacking these words the result is not sat-
isfactory either, we perform a brute force attack
by iterating through each word storing the modi-
fications made by SHAP and the current iterative
search. This heuristic is shown in Figure 2. This
approach eliminates the need to attack every to-
ken in the sentence until the target is reached or a
constraint is satisfied.

With this system we have get results almost as
good as brute force algorithms in much less time,
making them more stealthy in a real detection envi-
ronment.

4 Experimental Framework and Results

We use the BODEGA framework to evaluate our
attacks according to a specific evaluation measure
that takes into account the effectiveness of the at-
tack and its stealthiness. Likewise, the evaluation
measure of BODEGA is defined to evaluate the
robustness of classifiers against adversarial attacks
by measuring the eligibility of changes made to
perturb the output of the victim model. Addition-
ally, the BODEGA framework provides the victim
model, RoBERTa-base, trained with the disinfor-
mation dataset selected for this task.

4.1 Fact Checking Dataset

We use the dataset2 FEVER: a large-scale dataset
for Fact Extraction and VERification (Thorne et al.,
2018) used in the FEVER shared task. The experi-
ments use a disinformation dataset based on Fact
Checking (FC). FC is the most advanced way hu-
man experts can verify the credibility of a given
text: by assessing the veracity of the claims it in-
cludes concerning a knowledge base. It deals with
Natural Language Inference (NLI) in the field of
encyclopedic knowledge and newsworthy events.

The dataset has 51.27% positive labels. The
dataset is classified as positive if the assertions are
supported. The dataset is balanced, and the victim
model has been trained with 172,763 instances of
this dataset, leaving 405 instances for adversarial
attacks.

4.2 Attack Scenario

In black-box scenarios, there’s an assumption that
we lack any information regarding the inner mech-
anisms of the model we’re targeting. We can only
observe the outputs of the system for a given input.
On the other hand, white-box scenarios involve full
accessibility to the model, enabling precise tuning
of methods for generating adversarial examples
based on the model’s weights, primarily through
gradient-based techniques. The BODEGA frame-
work uses the grey-box scenario approach:

• A “hidden” classifier returns 0, 1 for any in-
put and a probability score that an example is

2https://fever.ai/dataset/fever.html
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Con Sem Char BOD Run time (s) Time/Exe (s) Queries
Smart KeyTokens Attack
SHAP Homoglyph 0.254 0.925 0.989 0.232 5495.201 13.568 4.730
SHAP Invisible Char 0.074 0.813 0.985 0.059 5867.365 14.042 4.972
SHAP Synonym 0.241 0.745 0.976 0.176 5748.580 14.194 86.459
Non-Smart KeyTokens Attack
Homoglyph 0.496 0.894 0.994 0.441 1246.501 3.077 43.143
Invisible Char 0.170 0.794 0.992 0.129 903.621 2.231 46.683
Synonym 0.182 0.753 0.984 0.135 685.911 1.693 46.281
Homoglyph Brute Force 0.916 0.864 0.966 0.768 38490.413 95.038 665.496
Invisible Char Brute Force 0.451 0.699 0.936 0.297 57723.456 142.527 1476.503
Synonym Brute Force 0.301 0.722 0.945 0.206 28856.284 71.250 1931.908
Hybrid KeyTokens Attack
SHAP + Homoglyph 0.708 0.880 0.989 0.617 4710.286 11.630 64.254

Table 1: Results obtained after attacking the test set of the Fact-Checking dataset. Results measures include
confusion score (Con), semantic score (Sem), character score (Char), BODEGA score (BOD), the total run time of
execution (Run time), average time per execution (Time/Exe), and the average of the queries to the attack model
(Queries).

assigned a positive class.

• The classifier architecture is a RoBERTa en-
coder followed by a dense layer and a softmax
normalization.

• Training, evaluation, and test data are pro-
vided to the attacker.

This configuration allows to discover of classifier
vulnerabilities without needing full access to the
internal workings of the model while preserving a
semblance of real-world applicability.

4.3 Attack Evaluation Measure
The changes between the original text and the al-
tered text are considered to evaluate the experi-
ments. We use the BODEGA score (Przybyła et al.,
2023) to evaluate the effectiveness of our adversar-
ial attacks. The subsequent equation defines the
BODEGA score:

BODEGA_score(xi, x∗i ) =

Con_score(xi, x∗i )× Sem_score(xi, x∗i )×
Char_score(xi, x∗i ),

The semantic score (Sem_score) is based on
BLEURT (Sellam et al., 2020). It is designed to
compute the similarity between a text and its modi-
fied referent, returning a value, being 1 (identical
text) and 0 (no similarity). The character score
(Char_score) uses the Levenshtein distance to ex-
press the difference in the text, returning 1 if there
is a high similarity between the target texts and 0

if there is no similarity. To measure the hit ratio,
use the measure of confusion (Con_score). This
measures when the target text label is successfully
changed.

For our experiments, we will also take into ac-
count other measures in order to be able to analyze
the attacks in more detail. We will evaluate the ex-
ecution time of the entire test dataset, the average
time per query, and the queries made to the victim
model during the inference time.

4.4 Results

We performed a series of experiments using Smart
and Non-Smart KeyTokens Attacks, which can be
shown in Table 1, performed on a test set of 405 in-
stances of the FC dataset. KeyTokens Attacks finds
the most important tokens of the target sentence
and these are modified by a given technique (ho-
moglyphs, insert invisible character, or synonyms).
On the other hand, Non-Smart KeyTokens Attacks
go through each token of the target text modifying
each one and checking on the change of the final
tag, if the result is negative it will go to the next
token of the phrase. Finally, this type of attack
will also use brute force, when going through the
whole sentence it results in no successful change
of the tag, another pass will be made but saving the
changes made to the tokens one by one.

It is assumed that Smart KeyTokens Attacks are
less successful, as not all attack possibilities are
explored, although, in a real scenario, they would
be the most effective and hardest to find. They are
less time-consuming and costly to query the victim
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Method Con Sem Char BOD Run Time (s) Time/Exe (s) Queries
BAE 0.518 0.687 0.957 0.342 2823.303 6.971 78.654
BERT-ATTACK 0.795 0.732 0.955 0.559 3778.886 168.856 168.856
DeepWordBug 0.456 0.835 0.983 0.375 1237.915 3.056 54.244
Genetic 0.782 0.684 0.938 0.506 119.982 0.296 1293.851
PWWS 0.686 0.709 0.958 0.468 1811.994 4.474 225.474
SCPN 0.679 0.301 0.341 0.074 4074.523 10.060 11.679
Text Fooler 0.676 0.693 0.936 0.442 748.28 1.847 108.703
Hybrid KeyTokens Attack 0.708 0.880 0.989 0.617 4710.286 11.630 64.254

Table 2: Comparison of Hybrid KeyToken Attack models with BODEGA solutions. Results measures include
confusion score (Con), semantic score (Sem), character score (Char), BODEGA score (BOD), total run time of
execution (Run time), average time per execution (Time/Exe), and the average of the queries to the attack model
(Queries).

model. On the other hand, Non-Smart KeyTokens
Attacks tend to attack more successfully, although
the computation time and queries to the victim
model are very high, so they could be easier to
detect in a real scenario.

A test with Hybrid KeyToken Attacks has also
been carried out to compare the performance with
the other experiments. This hybrid system uses the
search space that has previously produced the best
results, in this case, the homoglyphs. This method
uses a first run with the Non-Smart KeyAttacks
search method using the technique most success-
ful in the experiments. If this first pass does not
achieve a successful result we use Smart KeyTo-
ken to find tokens to attack. Finally, we attack the
stored tokens and make another pass through the
phrase using Non-Smart KeyToken Attacks again,
to try to obtain a success without spending so much
computation time and to attack the phrase with
more performance.

4.5 Baseline Comparison

BODEGA provides the possibility to test different
solutions to evaluate the robustness of the models,
in this case, there is no data on the use of these
solutions in RoBERTa-Large. We evaluate each
scenario towards the victim classifier and analyze
the differences obtained with the Hybrid KeyTo-
kens Attack. The methods we compare our attack
with are as follows:

• BAE uses BERT (Devlin et al., 2018) to gen-
erate likely candidate words in a given context
by inserting existing tokens as new ones (Garg
and Ramakrishnan, 2020).

• BERT-ATTACK finds a vulnerable word by
checking the victim’s response, then those

words are replaced by BERT candidates (Li
et al., 2020).

• DeepWordBug searches for an important
word and modifies at the character level to cre-
ate an unknown word with modifications like
substitution, insertion, deletion, or reordering
(Gao et al., 2018).

• Genetic uses a genetic algorithm substituting
words, using GloVe (Global Vectors for Word
Representation) for the conservation of mean-
ing (Alzantot et al., 2018).

• PWWS uses greedy substitution using Word-
Net to obtain synonym candidates (Ren et al.,
2019).

• SCPN paraphrases the entire text using a
trained model through back-translation from
English into Czech (Iyyer et al., 2018).

• Text Fooler performs a greedy word search
taking into account the syntax of the text and
that it makes sense in the sentence (Jin et al.,
2020).

Table 2 shows the results obtained after attacking
RoBERTa-Large with the solutions provided by
BODEGA with the same 405 test instances used
in our experiments shown in Table 1. The same
evaluation metrics have been taken into account as
in our previous experiments to be able to analyze
the results later (see section 5).

Most of the heuristics used obtain a similar level
of success by changing the final label of the victim
model, although both BERT-ATTACK and Genetic
do not take into account the semantic score as much,
whereas our hybrid model performs much better.
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Our system makes half as many calls to the vic-
tim model as the second one, BERT-ATTACK, and
it is also slower. Here we do not take into account
the Genetic algorithm, as it would be very easy to
identify in a real context, by the number of queries
to the model.

According to the results, our hybrid model has
a higher success rate than the BODEGA litera-
ture, even when measuring metrics such as exe-
cution time or queries performed on the models,
constraints that are usually taken into account.

5 Result Analysis

The KeyTokens Attacks performed do not succeed
very well in flipping the label of the victim model
RoBERTa-base. Although, it can be noted that the
homoglyphs obtain a high semantic and character
score. All these types of attacks take an average
of 14 seconds to execute but taking into account
the number of queries made to the victim model,
the homoglyphs are the best performers in these
experiments using the KeyTokens search method.

Analysing the Non-KeyTokens Attacks it can be
differentiated that techniques using brute force are
always more successful. On the other hand, homo-
glyphs are more successful in all metrics, whether
they use brute force or not. These attacks, espe-
cially brute force attacks, have a very high com-
putational and query time, as they use much more
computationally expensive search methods.

In our Proposal Hybrid Attack, we used the tech-
nique that has given the best results and SHAP. We
obtained results similar to the best results obtained
with brute force attacks but using much less compu-
tation time and queries to the model. This means,
we sacrifice success for efficiency, and in a real
case, it would be much harder to detect.

Using techniques such as adding words as invis-
ible characters or changing words into synonyms
has obtained very similar results. Our proposed
system obtains the best results in a real attack en-
vironment. It obtains a success rate of 70% and
is almost imperceptible to the human eye and the
victim model, in this case, RoBERTa-base.

After obtaining a system with a lower success
rate but with a significant improvement in the time
and number of queries to the victim model, a com-
parison is performed with the algorithms provided
by BODEGA to attack with adversarial attacks us-
ing the same dataset under the same conditions and
metrics.

Our hybrid system obtains a higher BODEGA
score than all the algorithms provided by the frame-
work for use as adversarial attacks, in this case, the
model that had not been evaluated in BODEGA,
RoBERTA-Large. The Hybrid KeyToken Attacks
stand out for being stealthy and making few queries
to the victim model, moreover, except for out-layer
cases, the average time per execution is much lower
than the second-best result BERT-ATTACK.

6 Conclusion and Future Work

We perform 3 different heuristics to make the adver-
sarial attacks of this work, homoglyphs, invisible
characters, and the use of synonyms. We observed
that homoglyphs have a better ratio in both success
and stealth. This is because it only changes one let-
ter of the attacked text and that it does not remove
almost any semantic meaning from the sentence.

Non-Smart KeyToken Attacks using brute force
give better results. The brute-force homoglyphs
obtain remarkable results compared to the other
experiments, but in contrast, it uses a lot of time
and queries to the victim model, which makes it
easy to detect in a real context. Hybrid KeyToken
Attacks reach a balance between disrupting model
output, stealth, and queries to the victim model.

It also performs better than the algorithms of-
fered by the BODEGA framework in its literature.
Therefore, we can conclude that our hybrid model
that uses SHAP-based search spaces to find the
most important tokens of a sentence, using as sup-
port a greedy system that stores in memory the
modifications previously made to the sentence, ob-
tains good, stealthy and difficult to detect results in
a real environment, where the execution time and
the requests to the victim model are essential.

Our proposal needs several attacking shots to be
successful. Hence, a system can be defend attend-
ing to the number of consecutive shots regarding a
similar input text. An additional defense method
may be built upon a machine translation method,
since this methods are less vulnerable to character-
level modifications like homoglyphs.

As future work, it would also be interesting to
create a real-time defense capable of identifying
these disturbances, either by execution time or by
prior analysis of the input data, and in case of de-
tection, to return the input data to its original state.
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