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Abstract

Recent advancements in large language mod-
els (LLMs) have indeed showcased their im-
pressive capabilities. On mobile devices, the
wealth of valuable, non-public data generated
daily holds great promise for locally fine-tuning
personalized LLMs, while maintaining privacy
through on-device processing. However, the
constraints of mobile device resources pose
challenges to direct on-device LLM fine-tuning,
mainly due to the memory-intensive nature of
derivative-based optimization required for sav-
ing gradients and optimizer states. To tackle
this, we propose employing derivative-free op-
timization techniques to enable on-device fine-
tuning of LLM, even on memory-limited mo-
bile devices. Empirical results demonstrate
that the RoBERTa-large model and OPT-1.3B
can be fine-tuned locally on the OPPO Reno
6 smartphone using around 4GB and 6.5GB
of memory respectively, using derivative-free
optimization techniques. This highlights the
feasibility of on-device LLM fine-tuning on mo-
bile devices, paving the way for personalized
LLMs on resource-constrained devices while
safeguarding data privacy.

1 Introduction

The rapidly evolving field of Large Language Mod-
els (LLMs), exemplified by advanced models such
as OpenAI’s ChatGPT, marks a substantial break-
through in artificial intelligence (Cao et al., 2023).
The implications and benefits of the advancements
of LLMs for mobile devices are profound and per-
vasive. As reported in (Almeida et al., 2021) (Xu
et al., 2019), the number of deep models incorpo-
rated within individual devices is growing rapidly,
making mobile devices are the primary vehicle for
AI.

The continuous generation of private, inaccessi-
ble personal data on mobile devices, often diverg-
ing from publicly pre-trained LLM distributions,
necessitates on-device post-deployment fine-tuning

to develop tailored, personalized models while safe-
guarding data privacy (Li et al., 2024). On-device
fine-tuning of personal data locally is an effective
solution for model fine-tuning using personal data
while ensuring user data privacy, as all data storage
and computation occur exclusively on the device
without any data leaving it.

Fine-tuning current LLMs on mobile devices
with limited resources is challenging due to LLMs’
large size, which demands high computational and
memory resources. Despite some work claims
of achieving on-device fine-tuning using various
computation-efficient and memory-saving tech-
niques, these implementations are often demon-
strated on edge devices like Raspberry Pi (Zhu
et al., 2023) rather than on mobile devices such
as smartphones and tablets. Mobile devices, espe-
cially smartphones, more so than other edge de-
vices, generate a substantial amount of highly pri-
vate and valuable personal data daily due to their
extensive usage, holding great potential for enhanc-
ing applications by leveraging this data. However,
to the best of our knowledge, there have been no
successful on-device fine-tuning implementations
on mobile devices to date.

To bridge this gap, our work aims to en-
able and optimize the fine-tuning of LLMs on
resource-constrained mobile devices, particularly
smartphones. Memory is crucial for determining
the feasibility of fine-tuning LLMs on resource-
constrained mobile devices locally, while compu-
tational capacity and communication bandwidth
primarily impact efficiency, particularly latency.
Therefore, in this work, our emphasis lies in reduc-
ing the memory footprint to make practical fine-
tuning on mobile devices feasible, regardless of
efficiency concerns. Future efforts are expected to
further enhance efficiency.

The substantial memory overhead of LLM fine-
tuning arises from the computational and storage
demands associated with gradients and optimiza-
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tion states inherent in traditional derivative-based
methods. To tackle this challenge on mobile de-
vices, we propose leveraging derivative-free fine-
tuning optimization. This approach aims to reduce
the memory footprint during fine-tuning by circum-
venting the memory-intensive nature of traditional
derivative-based methods. Our experimental results
show that we can fine-tune RoBERTa-large and
OPT-1.3B on a current off-the-shelf smartphone,
OPPO Reno 6, with a memory consumption of
around 4GB and 6.5GB, respectively.

We organize our article with the following struc-
ture: first, we present related works in Section 2,
followed by an introduction to our approach (See
Section 3) and experimental results (See Section 4).
Finally, we conclude with our findings in Section 5.
Moreover, limitations are discussed in Section 6.

2 Related Works

Numerous studies focus on resource-efficient fine-
tuning, which can benefit on-device fine-tuning,
categorized into lightweight foundation model de-
sign, fine-tuning process optimization, and external
resource utilization. Moreover, (Wang et al., 2024)
provides a comprehensive survey on integrating
LLMs with IoT devices.

2.1 Design lightweight foundation models

Employing lightweight foundation models for fine-
tuning can reduce computational and memory de-
mands. Techniques such as model pruning (Ma
et al., 2023) and quantization (Dettmers et al.,
2022) are often used to lighten foundation mod-
els. However, these compression techniques often
degrade the performance of the foundation model,
which can further compromise the effectiveness of
fine-tuning.

2.2 Optimize fine-tuning processes

A strand of research is dedicated to optimizing the
fine-tuning process to enhance its efficiency in re-
source consumption. (Ding et al., 2023) minimizes
the computational cost of fine-tuning by selectively
adjusting a small subset of key model parameters,
while (Hu et al., 2021) achieves this by reformu-
lating updated matrices as products of low-rank
ones. Despite these approaches reducing compu-
tational demands, these approaches still impose
a considerable runtime memory burden, making
it impractical for memory-constrained mobile de-
vices (Zhang et al., 2023). On the other hand, many

works aim to reduce runtime memory usage during
fine-tuning by lowering activation memory (Liao
et al., 2023) (Zhang et al., 2023), using zeroth-order
gradient estimator (Malladi et al., 2024), or integrat-
ing gradient calculation with parameter updates (Lv
et al., 2023). Although memory-efficient, these ap-
proaches often suffer from longer running times
and may exhibit reduced performance. Our work
aligns closely with this line of research. Notably,
none of these methods have been implemented on
mobile devices, a gap our research addresses.

2.3 Leverage external resource support
Another line of work involves offloading some or
all of the model’s execution to nearby resource-
rich edge devices or the cloud (Zhou et al., 2019).
These approaches leverage external resources to
address limitations in resource-constrained scenar-
ios. However, offloading often entails substantial
communication volume, while mobile devices are
constrained by limited bandwidth. Moreover, trans-
ferring even intermittent data to external devices
not owned by the user may pose privacy risks (He
et al., 2020).

3 Proposed Approach

3.1 On-device fine-tuning to ensure privacy
In this paper, we employ on-device fine-tuning to
enable personalized LLM fine-tuning while safe-
guarding user data privacy. Traditionally, fine-
tuning LLMs involves using public data on pow-
erful GPUs hosted by service providers. However,
privacy regulations prohibit transferring user per-
sonal data to these service providers’ servers for
the fine-tuning of personalized LLMs (Voigt and
Von dem Bussche, 2017). Even with an Edge-
Cloud collaboration paradigm (Yao et al., 2022),
processing raw data on the user’s device to en-
hance privacy also carries risks, as intermediate
data transferred to untrusted clouds could reveal
raw data (He et al., 2020). Our method provides a
privacy-preserving solution through on-device fine-
tuning, ensuring all computation and storage for
fine-tuning remain strictly on the user’s device.

3.2 Critical resource limitations
Generally, the key resource constraints for fine-
tuning on mobile devices fall into three categories:
computational power, memory capacity, and com-
munication bandwidth. The computational power
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affects processing efficiency, with weaker compu-
tational power extending fine-tuning time but not
necessarily hindering feasibility on mobile devices.
The communication bandwidth does not present
a resource constraint in our on-device LLM fine-
tuning, without the need for communication, de-
spite serving as a critical bottleneck in offloading
settings. However, memory capacity is critical
for the functional feasibility of on-device LLM
fine-tuning, as insufficient memory can result in
program crashes or out-of-memory errors. There-
fore, as an initial step towards on-device LLM fine-
tuning, our goal is to minimize the memory foot-
print to enable LLM fine-tuning on mobile devices.

3.3 Derivative-free fine-tuning

In this paper, we propose using derivative-free op-
timization to locally fine-tune LLMs on mobile
devices, mitigating the memory-intensive nature
of traditional derivative-based optimization. In
derivative-based LLM fine-tuning, such as with
SGD and Adam (Kingma and Ba, 2014), the
model’s states—including parameters, gradients,
and optimizer states—constitute the primary part
of memory consumption (Ren et al., 2021). How-
ever, computing gradients and optimizer states is
not essential for fine-tuning. The primary objec-
tive is to minimize the loss function by identifying
optimal parameters. In derivative-free techniques,
such as evolutionary algorithms and zeroth-order
gradient estimators (Spall, 1992), the parameter
space is explored by iteratively evaluating the ob-
jective function at different points. This approach
bypasses the need to compute and store gradients
and optimizer states, as required in derivative-based
methods, thereby reducing memory usage.

To achieve this, we employ memory-efficient
zeroth-order optimization, known as MeZo (Mal-
ladi et al., 2024), as our chosen method for
derivative-free optimization in our work. While
MeZo’s efficiency is evident on NVIDIA GPUs,
its performance on mobile devices remains unex-
plored, despite its memory-efficient nature. Fur-
thermore, while we utilize MeZo as our implemen-
tation, other derivative-free optimization methods
are also aligned with our approach.

4 Experiments

We conducted experiments using MeZo on the
OPPO Reno6 smartphone, which has 12GB of
memory. Results show MeZo can fine-tune

RoBERTa-large and OPT-1.3B using approxi-
mately 4GB and 6.5GB of memory, respectively.
In contrast, attempting fine-tuning with Adam re-
sulted in an out-of-memory crash. This highlights
the memory efficiency of the derivative-free ap-
proach, making it viable for fine-tuning LLMs on
resource-constrained devices like smartphones.

4.1 Experimental setting
We fine-tuned RoBERTa-large on the SST-2 dataset
and OPT-1.3B on SuperGLUE tasks, following
the MeZo repository 1. We conducted all exper-
iments using a commercial off-the-shelf OPPO
Reno6 smartphone, employing both the MeZo and
Adam fine-tuning methods. Each method runs for
10 steps, ensuring a fair comparison.

To run MeZo and Adam fine-tuning on Android-
based smartphones, we used Termux 2 , a Linux
simulation environment for Android. This made
it feasible to implement these fine-tuning methods
on smartphones, which typically operate on Linux
systems with GPUs.

4.2 Performance analysis
We present the training loss during fine-tuning
RoBERTa-large using MeZo and Adam fine-tuning
on the OPPO Reno 6, as shown in Figure 1. We
observe that the loss decreases slightly but steadily
with MeZo, albeit not as rapidly as with Adam
fine-tuning. This discrepancy may stem from
the estimated gradient’s approximation in Mezo,
which may not accurately reflect the true gradi-
ent and, therefore, the steepest descent direction.
This demonstrates the effectiveness of derivative-
free fine-tuning, like MeZo, on mobile devices in
terms of performance improvement (with decreas-
ing loss), despite its requirement of more steps to
converge compared to derivative-based methods.

4.3 Memory usage analysis
In Table 1, we compare the memory consump-
tion in fine-tuning RoBERTa-large using MeZo
and Adam fine-tuning on the OPPO Reno 6. When
using a small batch size of 8, both MeZo and Adam
fine-tuning can be conducted on the OPPO Reno
6, with Adam fine-tuning consuming more mem-
ory. However, when increasing the batch size to 64,
MeZo does not require additional memory, whereas
Adam fine-tuning does, exceeding the available
memory on the smartphone and resulting in out-of-
memory crashes. Further, we fine-tune the larger

2https://github.com/termux
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Figure 1: Training loss for fine-tuning RoBERTa-large
using MeZo and Adam fine-tuning.

model OPT-1.3B using MeZo with a memory con-
sumption of about 6.5GB. These all indicate the
effectiveness of MeZo for fine-tuning on mobile
devices, with regards to memory usage.

We observe that MeZo’s memory usage does
not significantly increase with batch size, whereas
Adam fine-tuning shows a dramatic increase. This
is because in derivative-based methods like Adam,
activation needs to be saved for gradient computa-
tion, and activation linearly increases with batch
size. In contrast, derivative-free methods do not
require gradient computation or activation saving
during optimization, which is an inherent advan-
tage of derivative-free approaches.

Memory Usage
(GB)

MeZo
Adam

fine-tuning

batch size = 8
4.8 6.5
4.6 6.7

batch size = 64
4.0 OOM
4.5 OOM

Table 1: Memory usage comparison for fine-tuning
RoBERTa-large using MeZo and Adam fine-tuning.

4.4 Wall-clock time analysis
As shown in Table 2, there is no significant differ-
ence in per-step training time for RoBERTa-large
using MeZo and Adam on the OPPO Reno 6, con-
tradicting the MeZo paper’s claim that MeZo can
reduce GPU-hour usage by up to 2× compared to
traditional fine-tuning (Malladi et al., 2024). The
variance is due to MeZo’s potential to parallelize
gradient estimation, unlike backpropagation, which
relies on sequential derivative calculations. How-
ever, the Reno 6’s limited parallel processing capa-
bilities prevent MeZo from fully utilizing its par-
allelization potential, resulting in similar per-step

training times for both MeZo and Adam, as shown
in Table 2. We also note that parallelization is
an inherent vantage of the derivative-free family,
extending beyond just MeZo. Furthermore, we
observe that the per-step training time in MeZo in-
creases with larger batch sizes. This is reasonable
because as the batch size increases, the forward
pass in MeZo requires more computation.

Moreover, we conduct fine-tuning of the large
model OPT-1.3B on the OPPO Reno 6, with a per-
step training time of approximately 1800 seconds,
which is over 10 times longer than fine-tuning
RoBERTa-large. This longer duration is antici-
pated, given that the parameter size of OPT-1.3B
is over 5 times larger than that of RoBERTa-large.
Additionally, our experiments show that fine-tuning
OPT-1.3B on a single NVIDIA GeForce RTX 3090
GPU takes about 1.99 seconds per step, nearly
1000× faster than on the OPPO Reno 6. This under-
scores the substantial gap in computational power
between mobile devices and GPUs, which are typi-
cally used for large model fine-tuning.

Training time (s)
/ per step

MeZo
Adam

fine-tuning

batch size = 8
97 74
83 85

batch size = 64
123 OOM
121 OOM

Table 2: Wall-clock time comparison for fine-tuning
RoBERTa-large using MeZo and Adam fine-tuning.

5 Conclusions

We demonstrate that derivative-free optimiza-
tion allows on-device fine-tuning of LLMs on mo-
bile devices, mitigating the memory constraints
of traditional derivative-based methods. Experi-
ments show RoBERTa-large and OPT-1.3B can be
fine-tuned on the OPPO Reno 6 using 4GB and
6.5GB of memory, respectively. This highlights
the advantages of derivative-free optimization for
fine-tuning LLMs on resource-constrained mobile
devices. Further experiments reveal the efficiency
gap between smartphones and GPUs, suggesting a
need to better utilize hardware capabilities. Despite
these challenges, our successful implementation of
fine-tuning LLMs on mobile devices is a significant
stride towards personalized models while uphold-
ing user data privacy.
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6 Limitations

6.1 Memory footprint

While RoBERTa-large and OPT-1.3B have
achieved successful fine-tuning with approximately
4GB and 6.5GB of memory respectively, these
memory requirements remain too high for typical
mobile applications, which often operate within a
1GB memory consumption constraint. It remains
crucial to continue minimizing the memory foot-
print for future implementations.

6.2 Efficiency of derivative-free family

Derivative-free optimization methods are often less
efficient in determining the optimization direction,
which is a strength of derivative-based methods.
Therefore, more effective derivative-free methods
are needed in future work to reduce the number of
steps required for convergence in fine-tuning com-
pared to existing derivative-based methods, thus
shortening training times.

6.3 Adaptation to hardware capabilities

Despite many flagship mobile devices being
equipped with GPUs and even NPUs, which of-
fer powerful computation and parallelization ca-
pabilities, the current fine-tuning processes, in-
cluding our on-device implementation of MeZo,
do not fully exploit these hardware capabilities.
Derivative-free methods inherently possess paral-
lelization potential, which is currently underuti-
lized. It is crucial to adapt derivative-free methods
to fully leverage the powerful computational and
parallelization capabilities of current mobile de-
vices.

6.4 Execution environment

Our current implementation involves simulating
a Linux system using Termux instead of running
directly on a mobile device. While beneficial for
initial testing, this method serves as a temporary so-
lution and does not accurately reflect performance
in a real mobile environment. Specifically, execut-
ing programs in Termux may not fully utilize the
mobile device’s hardware capabilities, potentially
leading to suboptimal performance. Additionally,
some libraries may be incompatible with Termux,
causing issues with the execution of certain algo-
rithms. Moreover, it’s important to note that this

method does not align with the typical usage sce-
narios of real users, who interact directly with ap-
plications.

A practical approach is to develop native appli-
cations that leverage mobile AI frameworks like
TensorFlow Lite 3 , empowering developers to in-
tegrate LLMs directly into their mobile applica-
tions. Future work should strive to deploy on-
device fine-tuning algorithms within Android ap-
plications. This will facilitate accurate measure-
ment of the algorithm’s performance, including
efficiency and accuracy, on real-world mobile de-
vices.

3https://www.tensorflow.org/lite
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