
ACL 2024

2nd Workshop on Natural Language Reasoning and
Structured Explanations (@ACL 2024)

Proceedings of the Workshop

August 15, 2024

©2024 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S
Suite 400 - 134
Kerrville, TX 78028
USA
Tel: +1-855-225-1962
acl@aclweb.org

ISBN 979-8-89176-142-1

i

Introduction

Welcome to NLRSE, the Second Workshop on Natural Language Reasoning and Structured Explana-
tions, co-located with ACL 2024 in Bangkok, Thailand.

With recent scaling of large pre-trained Transformer language models (LLMs), the scope of feasible NLP
tasks has broadened. Significant recent work has focused on tasks that require some kind of natural lan-
guage reasoning. A trajectory in question answering has led us from extraction-oriented datasets like
SQuAD to “multi-hop” reasoning datasets like HotpotQA and StrategyQA. Although LLMs have shown
remarkable performance on most NLP tasks, it is often unclear why their answers follow from what they
know. To address this gap, a new class of explanation techniques has emerged which play an integral
part in structuring the reasoning necessary to solve these datasets. For example, the chain-of-thought
paradigm leverages explanations as vehicles for LLMs to mimic human reasoning processes. Entailment
trees offer a way to ground multi-step reasoning in a collection of verifiable steps. Frameworks like
SayCan bridge high-level planning in language and with low-level action trajectories. As a result, we see
a confluence of methods blending explainable machine learning/NLP, classical AI (especially theorem
proving), and cognitive science (how do humans structure explanations?). This workshop aims to bring
together a diverse set of perspectives from these different traditions and attempt to establish common
ground for how these various kinds of explanation structures can tackle a broad class of reasoning pro-
blems in natural language and beyond.

A total of 7 papers appear in the proceedings. 40 papers were presented at the workshop itself, with the
rest being submitted under two archival options: cross-submissions (Findings papers or those already
presented at other venues, such as EMNLP or the ACL main conference), and regular non-archival sub-
missions (unpublished work). The latter went through a normal peer review process. These papers can
be found on the NLRSE website: https://nl-reasoning-workshop.github.io/

Six papers were featured as oral presentations. These papers represented a selection of strong work that
the organizers felt would be of broad interest to workshop participants. In addition, we featured four
invited talks: Sherry Wu, Karthik Narasimhan, Thomas Icard, and Lorraine Li.

We are thankful to all reviewers for their help in the selection of the program, for their readiness in
engaging in thoughtful discussions about individual papers, and for providing valuable feedback to the
authors. We would also like to thank the ACL workshop organizers for all the valuable help and support
with organizational aspects of the conference. Finally, we would like to thank all our authors and presen-
ters for making this such an exciting event!

Bhavana Dalvi, Greg Durrett, Peter Jansen, Ben Lipkin, Danilo Ribeiro, Lio Wong, Xi Ye, and Wenting
Zhao, NLRSE organizers

ii

Organizing Committee

Organizers

Bhavana Dalvi Mishra, Allen Institute for Artificial Intelligence
Greg Durrett, UT Austin
Peter Jansen, University of Arizona
Ben Lipkin, Massachusetts Institute of Technology
Danilo Neves Ribeiro, Amazon AWS
Lio Wong, Massachusetts Institute of Technology
Xi Ye, UT Austin
Wenting Zhao, Cornell University

iii

Program Committee

Program Chairs

Bhavana Dalvi Mishra, Allen Institute for Artificial Intelligence
Greg Durrett, University of Texas, Austin
Peter Jansen, University of Arizona
Ben Lipkin, Massachusetts Institute of Technology
Danilo Neves Ribeiro, Amazon AWS
Lionel Wong, Massachusetts Institute of Technology
Xi Ye, University of Texas, Austin
Wenting Zhao, Cornell University

Program Committee

Jun Araki, Bosch Research
Jinheon Baek, Korea Advanced Institute of Science & Technology
Kaj Bostrom, University of Texas, Austin
Faeze Brahman, Allen Institute for AI
Justin T Chiu, Cornell University
Yung-Sung Chuang, Massachusetts Institute of Technology
Shahriar Golchin, University of Arizona
Shashank Gupta, Allen Institute for Artificial Intelligence
Naoya Inoue, RIKEN and Japan Advanced Institute of Science and Technology
Uri Katz, Bar-Ilan University
Arun Balajiee Lekshmi Narayanan, University of Pittsburgh
Zhengzhong Liang, Google
Ziqian Luo, Oracle
Bodhisattwa Prasad Majumder, Allen Institute for Artificial Intelligence
Enrique Noriega-Atala, University of Arizona
Yasumasa Onoe, Google
Soumya Sanyal
Zayne Rea Sprague, University of Texas at Austin
Arvind Krishna Sridhar, Qualcomm Inc, QualComm
Oyvind Tafjord, Allen Institute for Artificial Intelligence
Harsh Trivedi, State University of New York, Stony Brook
Hoang Van
Ruoyao Wang, University of Arizona
Anne Wu, Cornell University
Li Zhang
Jiawei Zhou
Bowei Zou, A*STAR

iv

Table of Contents

GraphReason: Enhancing Reasoning Capabilities of Large Language Models through A Graph-Based
Verification Approach

Lang Cao . 1

PROC2PDDL: Open-Domain Planning Representations from Texts
Tianyi Zhang, Li Zhang, Zhaoyi Joey Hou, Ziyu Wang, Yuling Gu, Peter Clark, Chris Callison-

Burch and Niket Tandon . 13

Towards A Unified View of Answer Calibration for Multi-Step Reasoning
Shumin Deng, Ningyu Zhang, Nay Oo and Bryan Hooi . 25

Applying RLAIF for Code Generation with API-usage in Lightweight LLMs
Sujan Dutta, Sayantan Mahinder, Raviteja Anantha and Bortik Bandyopadhyay 39

SummEQuAL: Summarization Evaluation via Question Answering using Large Language Models
Junyuan Liu, Zhengyan Shi and Aldo Lipani . 46

LOGIC-LM++: Multi-Step Refinement for Symbolic Formulations
Shashank Kirtania, Priyanshu Gupta and Arjun Radhakrishna . 56

From Good to Great: Improving Math Reasoning with Tool-Augmented Interleaf Prompting
Nuo Chen, Hongguang Li, Baoyuan Wang and Jia Li . 64

v

Program

Tuesday, August 15, 2023

08:00 - 09:00 Virtual Poster Session

08:55 - 09:00 Opening Remarks

09:00 - 09:45 Invited Speaker - Sherry Wu

09:45 - 10:30 Invited Speaker - Karthik Narasimhan

10:30 - 11:00 Break

11:00 - 11:45 Invited Speaker - Thomas Icard

11:45 - 12:30 Oral Presentations 1

12:30 - 14:00 Lunch

14:00 - 14:45 Invited Speaker - Lorraine Li

14:45 - 15:30 Oral Presentations 2

15:30 - 16:00 Break

16:00 - 17:30 Poster Session

vi

Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024), pages 1–12
August 15, 2024 ©2024 Association for Computational Linguistics

GraphReason: Enhancing Reasoning Capabilities of Large Language
Models through A Graph-Based Verification Approach

Lang Cao
University of Illinois Urbana-Champaign

Department of Computer Science
langcao2@illinois.edu

Abstract

Large Language Models (LLMs) have show-
cased impressive reasoning capabilities, partic-
ularly when guided by specifically designed
prompts in complex reasoning tasks such as
math word problems. These models typically
solve tasks using a chain-of-thought approach,
which not only bolsters their reasoning abilities
but also provides valuable insights into their
problem-solving process. However, there is
still significant room for enhancing the reason-
ing abilities of LLMs. Some studies suggest
that the integration of an LLM output verifier
can boost reasoning accuracy without necessi-
tating additional model training. In this paper,
we follow these studies and introduce a novel
graph-based method to further augment the rea-
soning capabilities of LLMs. We posit that mul-
tiple solutions to a reasoning task, generated
by an LLM, can be represented as a reasoning
graph due to the logical connections between in-
termediate steps from different reasoning paths.
Therefore, we propose the Reasoning Graph
Verifier (GraphReason) to analyze and verify
the solutions generated by LLMs. By eval-
uating these graphs, models can yield more
accurate and reliable results.Our experimental
results show that our graph-based verification
method not only significantly enhances the rea-
soning abilities of LLMs but also outperforms
existing verifier methods in terms of improving
these models’ reasoning performance.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional capabilities in a variety of hu-
man tasks (Zhao et al., 2023). Among the many
abilities LLMs possess, their reasoning capacity
is of paramount importance (Kojima et al., 2023;
Huang and Chang, 2023). This has been substanti-
ated by recent progresses (Wei et al., 2022; Zhou
et al., 2023; Lampinen et al., 2022a). Equipped
with the ability to reason, especially in a multi-
step manner, LLMs can decompose complex prob-

Q: Janet’s ducks lay 16 eggs per day. She eats
three for breakfast every morning and bakes
muffins for her friends every day with four. She
sells the remainder at the farmers’ market daily
for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers' market?
A: Step 1: Janet sells 16 - 3 - 4 = <<16-3-4=9>>9
duck eggs a day.
Step 2: She makes 9 * 2 = $<<9*2=18>>18 every
day at the farmer’s market.
Step 3: #### 18
…… (More Exemplars) ……
Q: A robe takes 2 bolts of blue fiber and half that
much white fiber. How many bolts in total does it
take?
A: Step 1: It takes 2/2=<<2/2=1>>1 bolt of white
fiber.
Step 2: So the total amount of fabric is
2+1=<<2+1=3>>3 bolts of fabric.
Step 3: #### 3

Chain-of-thought Reasoning in Math Word Problem

LLM’s
Generated

Solution

Exemplars
with Step-

by-step
Solution

Current
Question

Figure 1: An example of chain-of-thought reasoning
in a math word problem, using data from the GSM8K
dataset. Large language models learn from exemplars
that provide step-by-step solutions, subsequently gener-
ating their reasoning path for the current question.

lems into simpler tasks, thereby facilitating their
resolution. In everyday life, many complex tasks
typically require multi-step solutions. A prime ex-
ample of a reasoning task is arithmetic reasoning,
also known as solving math word problems (Zhang
et al., 2019). These math word problems represent
simplified versions of complex real-life situations.

The reasoning ability is inherent in Large Lan-
guage Models (LLMs), but it necessitates specific
methods for manifestation. To activate the robust
reasoning capability of LLMs, the use of specially
designed prompts should be considered. Numerous
methods have been proposed to tap into this poten-
tial, among which chain-of-thought reasoning (Wei
et al., 2022) and in-context learning (Lampinen
et al., 2022b) are two notable approaches. Chain-
of-thought reasoning can elucidate the reasoning
paths during the process. In-context learning fur-

1

nishes LLMs with exemplary cases, thereby en-
abling them to learn from and simulate these ex-
amples for improved results. In the arithmetic rea-
soning scenario, GPT-4 can achieve an accuracy
of 92% on the GSM8K dataset using 5-shot chain-
of-thought prompts (Cobbe et al., 2021a). This
represents a level of difficulty that a bright middle
school student should be capable of handling. As
depicted in Figure 1, this illustrates a multi-step
arithmetic reasoning process in LLMs.

In addition to further training of LLMs and
prompt design, some methods have been proposed
to enhance the reasoning capabilities of LLMs
from the perspective of output verification. The
primary idea is to have LLMs generate reasoning
paths multiple times, and then design a verifier
to evaluate these paths and deliver the final re-
sults. (Wang et al., 2023) introduces the concept of
self-consistency, based on the intuition that a com-
plex reasoning problem usually allows for multiple
thought processes, all leading to a unique correct
answer. (Li et al., 2023) also proposes All Roads
Lead to Rome, which introduces a step-aware veri-
fier to analyze reasoning paths not just through the
entire path, but at every step. However, both meth-
ods treat each reasoning path as an independent
entity and do not consider the potential interrela-
tion and interaction between different reasoning
paths. Once reasoning paths are disassembled into
steps, intermediate steps from one path may bear
reasoning relations to other reasoning paths. These
methods do not perceive all LLM outputs for a
given input as a collective entity, thereby failing to
analyze the internal relations of all candidate paths
in depth.

Inspired by these observations, we propose Rea-
soning Graph Verifier (GraphReason) in this pa-
per. We posit that reasoning paths of one question
can form reasoning graphs, where similar interme-
diate reasoning steps can be merged into the same
node. With a graph structure, we can more effec-
tively model and capture the reasoning logic be-
tween intermediate steps from different reasoning
paths. Specifically, we first construct a reasoning
graph based on all outputs from LLMs, and then
train a verifier to learn the relationship between the
graph structure and the final answer. During the
prediction stage, we process the data in the same
way as in the training stage, and use the verifier
to evaluate each reasoning graph. We then select
the reasoning graph with the highest score, using
its answer as the final answer. To the best of our

knowledge, we are the first to approach reason-
ing logic of LLMs from a graph perspective. We
conduct extensive experiments to demonstrate the
improvements over the original LLMs, and show
that our method outperforms other verifiers.

In summary, our contributions are as follows:

• We propose a graph-based verification method,
GraphReason, aimed at significantly enhancing
the reasoning capabilities of large language mod-
els without the need for additional training of
LLMs.

• We establish an arithmetic reasoning benchmark
using three Math Word Problem datasets to illus-
trate the fundamental reasoning performance of
large language models, and to provide a fair com-
parison of the performance of various existing
verifiers.

• Our experimental results indicate that the method
proposed in this paper outperforms other en-
hancement methods. We also provide an exten-
sive analysis of the limitations and future poten-
tial of GraphReason.

2 Related Works

Reasoning of Fine-tuning Models has been ex-
tensively studied. It focuses on addressing reason-
ing tasks using a general sequence-to-sequence ap-
proach, enhanced by reasoning-aware pre-training
or fine-tuning of language models. (Cobbe et al.,
2021a) proposed training a verifier to rank solutions
sampled from fine-tuned language models. (Yoran
et al., 2022; Wang et al., 2022) suggested equip-
ping language models with reasoning abilities by
generating training examples with human-designed
templates. (Pi et al., 2022) proposed injecting rea-
soning capabilities into language models by contin-
ually pre-training on program execution data.

Several studies have focused on imbuing PLM
with reasoning ability for specific tasks, such as
arithmetic reasoning (Cobbe et al., 2021a; Miao
et al., 2020; Patel et al., 2021), commonsense
reasoning (Talmor et al., 2019), and inductive
reasoning (Sinha et al., 2019). For instance,
various strategies have been proposed to improve
language models’ performance on arithmetic
reasoning tasks, often referred to as math word
problems. (Xie and Sun, 2019) proposed a
tree-structured decoder to generate an equation
tree, while (Zhang et al., 2020) applied graph
convolutional networks to extract relationships

2

of quantities in math problems. (Li et al., 2022)
used contrastive learning to better learn patterns
in math word problems. However, (Valmeekam
et al., 2023; Rae et al., 2022) suggested that
reasoning, particularly multi-step reasoning, is
often a weakness in language models and other
NLP models.

Reasoning of Large Language Models has gar-
nered significant attention and demonstrated im-
mense potential. Recent advancements in LLMs
suggest that the ability for multi-step reasoning is
already embedded within these large-scale models
(Kojima et al., 2023; Huang and Chang, 2023),
such as PaLM (Chowdhery et al., 2022), GPT-
4 (OpenAI, 2023). Therefore, providing an ade-
quate prompt is sufficient to utilize this reasoning
ability. For example, the prompting method pro-
posed by (Kojima et al., 2023; Wei et al., 2022),
which is based on a chain-of-thought, could aid
LLMs in generating text with arithmetic reasoning
and common factual knowledge. Following (Wei
et al., 2022), experiments on current language mod-
els demonstrated that chain-of-thought prompting
could enhance the accuracy of solving math prob-
lems from 18% to 57%. (Lampinen et al., 2022b)
included explanations in the in-context examples
and tested the influence of explanations by evalu-
ating the score between explain-then-predict and
predict-then-explain. Moreover, (Zhou et al., 2023)
suggested a two-stage prompting strategy, least-
to-most prompting, which breaks down a complex
problem into a series of subproblems and solves
them step-by-step. (Li et al., 2023) proposed sam-
pling multiple times from diverse prompts to en-
hance the variety of responses.

In addition to designing prompts, adopting ad-
ditional strategies like verifier has contributed to
enhancing the performance of reasoning abilities
of large language models. For instance, (Wang
et al., 2023) proposes self-consistency, which in-
volves sampling different reasoning paths from the
language model, and then returning the most con-
sistent final answer via majority voting. (Li et al.,
2023) used a step-aware voting verifier to enhance
the reasoning ability of LLMs from two perspec-
tives. These methods strive to augment the rea-
soning abilities or yield superior reasoning results
without necessitating additional training of LLMs.
Our work continues this research direction, with a
specific focus on developing a novel graph-based
verifier to boost the reasoning capabilities of LLMs.

3 Methodology

3.1 GraphReason Framework
Problem 1 (Reasoning to Solve Problems)
Given a set of n math word problems
Q = {Q1, Q2, ..., Qn}, where each Qi is
represented by the text description of a single
math word problem, the goal of reasoning to
solve math word problems is to generate the
answers A = {A1, A2, ..., An} for these problems.
Here, each Ai represents the generated text of the
corresponding answer. During the process of large
language models generating answers, a set of n
reasoning paths for solutions S = {S1, S2, ..., Sn}
is also produced. Each solution Si is represented
as Si = {Q,Step1, Step2, ..., Stepl, A}, where
each Stepi denotes the intermediate steps in the
step-by-step solutions.

We propose GraphReason to verify the solutions
generated by LLMs in order to improve the final
answer accuracy. This method is a graph-based ver-
ification technique that analyzes reasoning paths
from generated solutions from a graph perspective.
The final answer is obtained without modifying
the original LLMs, functioning much like a plugin.
As illustrated in Figure 2, there are two steps in
the training stage: Graph Construction and Graph
Classification. In the Graph Construction step, we
obtain the generated solution from LLMs with the
specific designed prompt and group them accord-
ing to their final answers. We split reasoning paths
by steps and then merge intermediate steps with
identical expression to form reasoning graphs. In
the Graph Classification step, we classify these
reasoning graphs with the additional feature of the
sum of scores from the base verifier to train the
integrated verifier model. In the prediction stage,
the candidate solutions are first generated by LLMs.
We process them in the same manner as in the train-
ing stage, then we use trained verifier to evaluate
the scores of each candidate solution. The best so-
lution, denoted by the highest score, is selected as
the final predicted answer. We will now provide a
detailed introduction to the entire process.

3.2 Prompt Design
To improve the output of Language Models (LLMs)
in providing solutions, it is essential to design ef-
fective prompts. We incorporate chain-of-thought
and in-context learning to enable LLMs to generate
step-by-step answers for math word problems. The
language models generate output y based on the

3

Training Stage Prediction Stage

Base
Verifier

1 or 0

Generated
Solutions with

the Same
Answer A

Graph
Constructor

GNN

Classifier

Sum

Concat

Reasoning
Graph
Verifier

Score 1

Score 2

Score n
Final

Answer

Exemplars
&

Question

Large
Language
Models

Generated
Solutions with the

same Answer

Scores of
Every Solution

Reasoning Graph

Argmax

Figure 2: The framework of GraphReason. In the training stage, GraphReason processes generated solutions from
LLMs to construct reasoning graphs, and then trains a verifier to judge them according to graph classification. In
the prediction stage, GraphReason evaluates candidate solutions to assign a score, and selects the solution with the
highest score as the final answer.

input x using the following equation:

p(y|C,x) =
|y|∏

t=1

pLM (yt|C,x,y < t), (1)

where, C represents the input provided to the LLMs
prior to the current math word problem’s question.
C is a concatenation of k exemplars, denoted as:

C = [(Q1, S1, A1); (Q2, S2, A2), ...; (Qk, Sk, Ak)],
(2)

where, Qi represents the question, Si represents
the intermediate steps of the solution, and Ai rep-
resents the answer. We set k to five in this study,
resulting in a prompt that consists of five question-
answer pairs sampled from the training split of a
math word problem dataset. Therefore, the prompt
can be denoted as:

Prompt = [C;Q], (3)

where Q represents the question of the current math
word problem.

Using a greedy decoding approach to sample
one output from LLMs may not be robust. It can
lead to instability and occasional errors. To address
this, (Wang et al., 2023) propose the concept of
self-consistency. This approach involves sampling
different reasoning paths from the language model
and then selecting the most consistent final answer
through majority voting. Instead of using greedy
decoding to sample only once and verify, they uti-
lize sampling decoding to sample N1 times. We
also follow the idea presented by (Li et al., 2023)
in their work named All Roads Lead to Rome. This
approach involves generating N2 diverse prompts
for LLMs to produce multiple outputs. By employ-
ing multiple sampling decodes on diverse prompts,
we can obtain generated solutions from different
sources. Specifically, we obtain N = N1 × N2

diverse reasoning paths for each question. In our
main experiments, we set N1 = 10 and N2 = 3.
These solutions will be further processed and veri-
fied using our designed verifier.

3.3 Reasoning Graph Construction
After generating multiple solutions for a question,
it becomes necessary to construct reasoning graphs
based on the reasoning paths taken by these solu-
tions.

As shown in Figure 3, we begin by grouping all
the generated solutions for a particular question ac-
cording to their final answer. Since these solutions
originate from the same question, their reasoning
paths will share the same starting point. Similarly,
solutions with the same final answer will have the
same endpoint, as their reasoning paths converge.
Therefore, a group of generated solutions with the
same final answer can form a reasoning graph with
a uniform start node (question node) and end node
(answer node). We define this division process as
follows:

S = {SA1 , SA2 , ..., SAn}, (4)

where S represents the set of generated solutions
for a question, and SAi = {S1, S2, ..., Sm} is the
subset of generated solutions that all have the same
final answer Ai.

For each subset of generated solutions SAi , we
construct a reasoning graph. This construction is
motivated by the understanding that each step in the
reasoning path of a generated solution does not ex-
ist in isolation from the other solutions. The steps
from one solution’s reasoning path can impact the
steps from another solution, enhancing the overall
reasoning process. We utilize the graph structure
to model and capture these relationships between
steps from different solutions. As the different rea-
soning paths can benefit each other, we construct

4

Exemplars
&

Question

Large
Language
Model

Solution 1

Generated Solutions with the
Same Answer A1

Construct Reasoning Graph according to Reasoning Paths

Generated Solutions with the
same Answer A2

Generated Solutions with the
same Answer An

Question

S1
Step1

S1
Step2

S1
StepL

Final
Answer

S2
Step1

S2
Step2

S2
StepL

Sm
Step1

Sm
Step2

Sm
StepL

Graph 2

Question Node

Merge the Same Step Nodes

Graph n

Solution 2 Solution m
Detailed Process

Answer Node

Graph Constructor

Figure 3: The graph constructor in GraphReason. We detail the process of transforming ‘Generated Solutions with
the Same Answer A1’ to ‘Graph 1’.

Question

S1
Step1

S1
Step2

S1
Step3

Final
Answer

S2
Step1

S2
Step2

S2
Step3

If S1.Step2 equals S2.Step2

Graph 1 Status 1

Question

S1
Step1

Step Node

S1
Step3

Final
Answer

S2
Step1

S2
Step3

Graph 1 Status 2

Figure 4: The process of reasoning graph construction.
The primary operation here is the merging of identical
intermediate steps in reasoning paths into a single graph
node.

a reasoning graph to link these paths together. As
shown in Figure 4, the primary operation here is
the merging of identical intermediate nodes in rea-
soning paths into a single graph node. We first
compare the reasoning steps from any two solution
reasoning paths. If they have the same intermediate
steps of arithmetic expression, we merge them into
the same node, and if they differ, we do not. For
reasoning math word problems here, we define rea-
soning steps as the current arithmetic expression
without other language text in the current reasoning
step for clarity. It can help us simplify construction
of reasoning graphs in the reasoning task. The de-
tailed algorithm for constructing a reasoning graph
is shown in Algorithm 1.

The generated solutions, divided by their final

answers {SA1 , SA2 , ..., SAn}, can be transformed
into n reasoning graphs of generated solutions
{GA1 , GA2 , ..., GAn}.

Regarding the node features in the graph, we
select the score from the Base Verifier and the node
degree. We believe the score from the Base Verifier
encapsulates the semantic information of solutions,
and the node degree contains information about
the graph structure. The Base Verifier is trained
independently from the whole framework. It is de-
signed to judge whether a single reasoning path of
one solution is correct, which is a binary text classi-
fication task. After training, it can be used to verify
any single solution and assign a score ∈ (0, 1) to
evaluate the likelihood of the solution being cor-
rect, where score = 0.99 suggests a 99% prob-
ability of the solution being correct. We use the
score from the Base Verifier to better incorporate
solution semantic information because, according
to our experiments, it is challenging to model se-
mantic information while modeling reasoning logic
information. The score of a step is the same as its
solution score. Therefore, for one step node V , it
has many scores {scorea, scoreb, ..., scorec} from
different solutions. The feature of one node Vi in
the graph is then concatenated by the selected fea-
ture, which can be represented as:

V = [scoremean
i , scoremax

i , scoremin
i ,

scorenumi , in_degreei],
(5)

where V ∈ R5, scoremean
i is the mean of all scores

of one step Vi, scoremax
i is the maximum score,

scoremin
i is the minimum score, scorenumi is the

number of scores, and in_degreei is the in-degree
of the step node Vi.

5

Algorithm 1 Reasoning graph construction algo-
rithm
Input: generated solutions SAi which have the
same final answers
Output: a reasoning graph GAi

1: node_num← 0
2: node2id← dict()
3: edges← list()
4: for each reason_path in SAi do
5: for each step in reason_path do
6: if step not in node2id.keys() then
7: node2id[step]← node_num
8: node_num← node_num+ 1
9: end if

10: end for
11: end for
12: for each reason_path in SAi do
13: for each step in reason_path do
14: start_node← node2id[last_step]
15: end_node← node2id[step]
16: if (start_node, end_node) not in edges

then
17: edges.add((start_node, end_node))
18: end if
19: last_step← step
20: end for
21: end for
22: GAi ← graph(node2id, edges)

In this way, we can obtain multiple reasoning
graphs to represent all generated solutions from
LLMs for a single math word problem question.

3.4 Verifier Design
Our designed verifier GraphReason,is used to eval-
uate the answer of a generated solutions group,
which is also represented as a reasoning graph.
This verifier has two inputs: the graph and the sum
of solution scores. We employ the Graph Isomor-
phism Network (GIN) (Xu et al., 2019) to perform
node feature propagation, thereby encoding the in-
formation from the reasoning graphs we obtained.
The node feature is propagated and aggregated as
follows:

h(k)
v = MLP (k)((1 + ε(k)) · h(k−1)

v +
∑

u∈N(v)
h(k−1)
u

)
,

(6)

where h
(k)
v represents the state of node v after the

kth update. MLP (k) refers to a multi-layer percep-
tron in the kth layer. N(v) denotes all the neigh-
bors of node v and ε is a learnable parameter. Then,

we perform a sum readout to obtain the representa-
tion of the reasoning graph:

hG =
∑

v∈G

h(k)
v , (7)

where hG ∈ R5. We set k to 3, signifying the
application of three layers of GIN. Concurrently,
the sum of the scores of solutions with the same
final answer, Ai, denoted as scoreAi , is represented
as follows:

scoreA =
∑

i∈SA

scorei. (8)

Then a reasoning graph can then be represented as:

G = [hG, scoreA], (9)

where G ∈ R6.
The target label of the graph y ∈ {0, 1} indicates

whether the final answer matches the correct final
answer. We compute the loss and train the verifier
model by:

L =
n∑

i=1

LBCE(labeli, f(Gi)), (10)

where i represents the number of solution subset
among all n subsets after grouping solutions. The
corresponding reasoning graph for this subset is
denoted by Gi, and f() is a linear classifier.

3.5 Answer Verification

During the prediction stage, all generated solutions
are processed in the same way as in the training
stage. The trained verifier is then used to evaluate
the scores of each reasoning graph, each of which
represents a group of solutions that yield the same
final answer. The final answer associated with the
highest score is selected as our final predicted an-
swer:

ŷ = Answer[argmax
i

scorei], (11)

where scorei denotes the score of the reasoning
graph Gi, as determined by our verifier. Answer
represents the list of all candidate final answers.
By predicting the number of the optimal reasoning
graph, we can determine the final predicted result
of the current reasoning task.

6

GSM8K SVAMP ASDiv-a StrategyQA
Fine-tuning SOTA 57a 57.4b 75.3c 73.9d

9–12 year olds 60 - - -
gpt-3.5-turbo:
Greedy Decode 72.7 78.7 93.0 65.0
Self-Consistency (Voting) 82.3 82.9 95.6 66.0
Verifier 66.9 73.1 92.8 69.3
Voting Verifier 85.4 84.8 96.9 70.7
DIVERSE (Step-aware Voting Verifier) 85.0 85.1 96.8 66.9
Reasoning Graph Verifier (Ours) 85.7 85.4 97.0 71.2

Table 1: The comparison experiment results of GraphReason, other verifiers, and other baselines. We primarily
compare GraphReason with other verifiers which are all based on the same generated solutions from gpt-3.5-turbo

4 Experiments

In this section, we conducted extensive experiments
to demonstrate the performance of GraphReason,
along with a more in-depth analysis. Universally,
we reproduced all types of verifiers to report their
results based on the same generated solutions. Our
experiments are conducted in two settings: Arith-
metic Reasoning and Commonsense Reasoning.
We ensured a fair comparison by setting the same
random seed, using the same hardware environ-
ment, and applying similar hyperparameters. We
used accuracy as the metric to evaluate the ability
of solving math word problems, which determines
whether the final answer is correct or not.

4.1 Training Details

For LLMs sampling, we use gpt-3.5-turbo as our
base LLMs and set the temperature t to 1. All
verifiers use the same LLMs’ output. Regarding
verifier training, we fine-tune on bert-base-uncased
(Devlin et al., 2019). We employ the AdamW op-
timizer (Loshchilov and Hutter, 2019) to optimize
the model parameters during training. We apply
differential learning rates, setting the learning rate
of the final linear classifier to 4e-2, while the other
graph neural network layers are set to 4e-3. The
activation layer between them is ReLU (Agarap,
2019). The batch size in each training step is set
to 2. The batch size is small because the verifier
needs to verify multiple reasoning graphs for a sin-
gle question.

To ensure a fair comparison between the Vot-
ing Verifier, Simple Verifier, and GraphReason, we
use the same trained base verifier for all three ap-
proaches.

The details of the datasets and baselines are pro-
vided in Appendix A and Appendix B, respectively.

4.2 Main Results

We present the main results in Table 1. As can
be seen from the table, GraphReason significantly
enhances the original gpt-3.5-turbo’s reasoning
abilities across all three datasets, for instance, im-
proving accuracy by 13.0% (72.7%→ 85.7%) on
GSM8K. It is also evident that our method sur-
passes other verifier methods with the same output
from LLMs and achieves the state-of-the-art on all
three datasets.

Additionally, the Step-aware Voting Verifier im-
proves upon the Voting Verifier by recognizing
that not all steps in an incorrect reasoning path
are equally erroneous, and some steps may still be
useful for reasoning. We believe this hypothesis
is overly simplistic and cannot describe complex
logical relationships among steps. According to Ta-
ble 1, it leads to some metric decline, and the same
finding also observed in the original paper. Further-
more, it does not perform well in the StrategyQA
task, because there are no gold reasoning paths for
the training of this commonsense reasoning task.
In this task, the reasoning paths are generated and
pseudo, indicating a requirement for gold labels at
each step of the reasoning process. However, our
paper consistently improves upon the Voting Veri-
fier by considering complex relationship between
different reasoning paths through reasoning graphs.
We enhance the previous method, which did not
consider relations in steps between different solu-
tions, by 0.3% (85.4%→ 85.7%), 0.3% (85.1%→
85.4%), 0.1% (96.9%→ 97.0%), and 0.5% (70.7%
→ 71.2%) across the four datasets.

Moreover, GraphReason yields only a slight im-
provement in performance on ASDiv-a, and the
results are nearly identical. One reason for this is
that the math word problems from ASDiv-a are sim-

7

GSM8K ▽ SVAMP ▽ ASDiv-a ▽
Reasoning Graph Verifier (Ours) 85.7 - 85.4 - 97.0 -

w/o solution semantic from base verifier 81.2 -4.5 83.1 -2.3 94.3 -2.7
w/o solution scores sum 82.8 -2.9 83.2 -2.2 95.6 -1.4
w/o reasoning graphs 85.4 -0.3 84.8 -0.6 96.9 -0.1

Table 2: The ablation experiment results of GraphReason. Missing each component leads to a decline in the final
result.

pler compared to those in the other two datasets,
based on our observations. In most cases, these
problems do not require complex reasoning from
a graph perspective to generate a satisfactory an-
swer. It demonstrates that our method is particu-
larly well-suited for such situations. We believe
that GraphReason can offer more substantial im-
provements in the more complex scenario.

4.3 Ablation Study

We conducted an ablation study to evaluate the im-
pact of each component on the overall performance
of our method. Table 2 presents the results of this
study, highlighting how these modules contribute to
the improvement of the base model in distinct ways.
It can be observed that the omission of any com-
ponent leads to a decline in the final result. The
solution semantics from the base verifier appear
to be most crucial to GraphReason. The current
method still relies on semantic information, which
is reasonable since reasoning steps from different
solutions require semantic information for better
reasoning. We also notice that reasoning graphs
bring a slight improvement to the entire method,
thereby proving effectiveness of graph structure.
The improvement is not substantial because we do
not model the graph structure and semantic infor-
mation simultaneously, and create a training gap
here. Another essential factor is the complexity of
graph classification, compounded by the presence
of noise and limitations in our training data.

4.4 GraphReason with Different LLMs

To evaluate the compatibility of GraphReason and
its effectiveness across various models, we addi-
tionally include gpt-4 (OpenAI, 2023) and PaLM-2
(Google, 2023) in our experiments. Given our lim-
ited computing resources, we utilize the same train-
ing data previously sampled from gpt-3.5-turbo.
For testing in the GSM8K task, we select samples
from 100 pieces of data from gpt-4 and PaLM-2

gpt-3.5-turbo gpt-4 PaLM-2
Greedy Decode 72.7 87.0 53.0
Voting 82.3 94.0 71.0
Simple Verifier 66.9 89.0 36.0
Voting Verifier 85.4 97.0 77.0
DIVERSE 85.0 97.0 75.0
Ours 85.7 94.0 78.0

Table 3: The experimental results of GraphReason with
different LLMs.

respectively. We conduct the sampling 10 times
using three types of five exemplars, maintaining
the same settings as in our previous experiments.
Our method aims to enhance the original reasoning
capabilities. Therefore, we do not include small-
sized LMs, which typically exhibit weaker reason-
ing abilities.

From Table 3, it is evident that our method en-
hances the original reasoning performance of both
GPT-4 and PaLM-2. However, there is a perfor-
mance decline in gpt-4 when compared with the
best baselines. The performance of GraphReason
is comparable to that of the voting method. We
hypothesize that this is because the reasoning pat-
terns of GPT-4 differ from those of GPT-3.5-Turbo,
and our verifier is trained specifically on GPT-3.5-
Turbo samples in this setting.

5 Conclusion

In this paper, we propose GraphReason, a novel
and general method to enhance the reasoning abili-
ties of large language models. Our method is the
first to approach reasoning logic of large language
models from a graph perspective and verifies candi-
date reasoning paths accordingly. We demonstrate
the superiority of GraphReason through extensive
experiments.

8

Limitations

There are several limitations in the current research
that contribute to performance that is not as good
as expected:

• Computing Resources. Despite the impressive
performance it achieves, our framework requires
large language models like GPT3.5. Inference
with these models is more time-consuming and
costly than fine-tuning models like BERT(Devlin
et al., 2019). Some experiments, such as hyper-
parameter analysis, have already been conducted
in related previous work and are not replicated
here. Furthermore, due to limited computing re-
sources, we have not conducted experiments with
additional LLMs. We have chosen solely to use
the representative LLM, GPT3.5, to compare the
performance of the verifiers.

• Labeled CoT data. GraphReason is a complex
verifier method that builds on graph classifica-
tion, which requires more labeled data with well-
annotated chain-of-thought reasoning paths for
training. In the training of GraphReason, we use
reasoning paths from LLMs’ output which may
introduce significant noise. If the training data
included labeled reasoning graphs, the perfor-
mance would improve significantly.

• Other Reasoning Tasks. There are many types
of reasoning tasks beyond math word problems,
such as Commonsense Reasoning (Talmor et al.,
2019), Inductive Reasoning (Sinha et al., 2019),
etc. Given that graph construction is a complex
process, we have focused mainly on solving math
word problems (Arithmetic Reasoning). This fo-
cus allows for a more convenient implementation
of the merging of intermediate steps. In other
cases, identifying similar steps can be challeng-
ing. On the other hand, a math word problem
typically presents a greater variety of potential
solutions.

Nevertheless, we believe that future studies, con-
ducted by us or others, can overcome these limita-
tions and further improve upon our approach.

References
Abien Fred Agarap. 2019. Deep learning using rectified

linear units (relu). Preprint, arXiv:1803.08375.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,

Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. Preprint, arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021a. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021b. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did Aristo-
tle Use a Laptop? A Question Answering Bench-
mark with Implicit Reasoning Strategies. Transac-
tions of the Association for Computational Linguis-
tics (TACL).

Google. 2023. Palm 2 technical report. Preprint,
arXiv:2305.10403.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
Preprint, arXiv:2212.10403.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large
language models are zero-shot reasoners. Preprint,
arXiv:2205.11916.

Andrew Lampinen, Ishita Dasgupta, Stephanie Chan,
Kory Mathewson, Mh Tessler, Antonia Creswell,
James McClelland, Jane Wang, and Felix Hill. 2022a.
Can language models learn from explanations in con-
text? In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 537–563,

9

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2022.findings-emnlp.38

Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY
Chan, Kory Matthewson, Michael Henry Tessler,
Antonia Creswell, James L McClelland, Jane X
Wang, and Felix Hill. 2022b. Can language models
learn from explanations in context? arXiv preprint
arXiv:2204.02329.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333, Toronto,
Canada. Association for Computational Linguistics.

Zhongli Li, Wenxuan Zhang, Chao Yan, Qingyu Zhou,
Chao Li, Hongzhi Liu, and Yunbo Cao. 2022. Seek-
ing patterns, not just memorizing procedures: Con-
trastive learning for solving math word problems.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2486–2496, Dublin,
Ireland. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Xinyu Pi, Qian Liu, Bei Chen, Morteza Ziyadi, Zeqi Lin,
Qiang Fu, Yan Gao, Jian-Guang Lou, and Weizhu
Chen. 2022. Reasoning like program executors. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 761–
779, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Anto-
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,

Siddhant Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake Hechtman, Laura Weidinger, Iason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling
language models: Methods, analysis & insights from
training gopher. Preprint, arXiv:2112.11446.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning from
text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4506–4515, Hong Kong, China. Association for Com-
putational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedha-
ran, and Subbarao Kambhampati. 2023. Large lan-
guage models still can’t plan (a benchmark for llms
on planning and reasoning about change). Preprint,
arXiv:2206.10498.

Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu
Wei, Zhihao Fan, Daxin Jiang, Ming Zhou, and Nan
Duan. 2022. Logic-driven context extension and data
augmentation for logical reasoning of text. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 1619–1629, Dublin, Ireland.
Association for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

10

https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2022.findings-acl.195
https://doi.org/10.18653/v1/2022.findings-acl.195
https://doi.org/10.18653/v1/2022.findings-acl.195
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2022.emnlp-main.48
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://doi.org/10.18653/v1/2022.findings-acl.127
https://doi.org/10.18653/v1/2022.findings-acl.127
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word problems.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19,
pages 5299–5305. International Joint Conferences on
Artificial Intelligence Organization.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In International Conference on Learning
Representations.

Ori Yoran, Alon Talmor, and Jonathan Berant. 2022.
Turning tables: Generating examples from semi-
structured tables for endowing language models with
reasoning skills. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6016–6031,
Dublin, Ireland. Association for Computational Lin-
guistics.

Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian
Dai, and Heng Tao Shen. 2019. The gap of semantic
parsing: A survey on automatic math word problem
solvers. Preprint, arXiv:1808.07290.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928–
3937, Online. Association for Computational Lin-
guistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. Preprint,
arXiv:2303.18223.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex
reasoning in large language models. Preprint,
arXiv:2205.10625.

A Datasets

We compared GraphReason with other methods
on three different math word problem datasets:
GSM8K (Cobbe et al., 2021a), SVAMP (Patel
et al., 2021), and ASDiv-a (Miao et al., 2020) and
one commonsense reasoning dataset: StrategyQA
(Geva et al., 2021). We selected the subset ASDiv-a
(arithmetic) from the original dataset ASDiv, which
only involves arithmetic operations.

These three arithmetic reasoning datasets are
more challenging than other math word problem
datasets, making them more suitable for testing

the reasoning capability of LLMs with a verifier.
As the GSM8K dataset is the only one providing
step-by-step solutions as chain-of-thought exem-
plars, we chose exemplars from the GSM8K train-
ing dataset and tested them on all three datasets.
Additionally, the training data for the verifier also
used the GSM8K training data. In this setting, we
could also demonstrate the transfer learning and
generalization ability of our method. The size of
the training split from GSM8k is 1000. The test
data sizes for GSM8K, SVAMP, and ASDiv-a are
1319, 1000, and 1218, respectively.

In the StrategyQA commonsense reasoning task,
we set the number of exemplars to 8 and select
pseudo-exemplars from (Li et al., 2023). Addition-
ally, we conduct five sampling iterations for each
context of LLMs. From the entire dataset, we se-
lect a subset of 1,000 instances, allocating 700 for
training and 300 for testing.

B Baselines

In our evaluation, we consider the following base-
lines:

• Greedy Decode is a simple method that uses a
greedy decoding strategy to sample once.

• Self-Consistency (Voting) (Wang et al., 2023)
samples multiple times and selects the final an-
swers based on majority voting.

• Simple Verifier (Cobbe et al., 2021b), which is
also known as the Sampling and Re-ranking strat-
egy, uses a verifier to assign scores to sampled
solutions and selects the final answer with the
highest score.

• Voting Verifier (Li et al., 2023) combines the
Voting and Verifier approaches. It assigns total
scores to answers from scores of all candidate
solutions and selects the final answer with the
highest score.

• DIVERSE (Step-aware Voting Verifier) (Li
et al., 2023), which is the state-of-the-art method,
considers the reasoning steps throughout the en-
tire reasoning path. It recognizes that not all
steps in an incorrect reasoning path are equally
wrong and that some steps may still be useful for
reasoning.

We primarily compare GraphReason with other
verifiers using the same generated solutions from
gpt-3.5-turbo. Additionally, we include some previ-
ous Fine-tuning state-of-the-art methods to reflect

11

https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.18653/v1/2022.acl-long.416
https://doi.org/10.18653/v1/2022.acl-long.416
https://doi.org/10.18653/v1/2022.acl-long.416
https://arxiv.org/abs/1808.07290
https://arxiv.org/abs/1808.07290
https://arxiv.org/abs/1808.07290
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

the strong reasoning ability of LLMs. The previous
Fine-tuning SOTA methods are denoted as follows:
a: (Cobbe et al., 2021b), b: (Pi et al., 2022), c:
(Miao et al., 2020), d: (Chowdhery et al., 2022).

12

Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024), pages 13–24
August 15, 2024 ©2024 Association for Computational Linguistics

PROC2PDDL: Open-Domain Planning Representations from Texts

Tianyi Zhang1* Li Zhang1* Zhaoyi Hou3

Ziyu Wang1 Yuling Gu2 Peter Clark2

Chris Callison-Burch1 Niket Tandon2

1University of Pennsylvania 2Allen Institute for Artificial Intelligence
3University of Pittsburg

{zty|zharry|ccb}@upenn.edu

Abstract
Planning in a text-based environment contin-
ues to be a significant challenge for AI sys-
tems. Recent approaches have utilized lan-
guage models to predict planning domain defi-
nitions (e.g., PDDL) but have only been evalu-
ated in closed-domain simulated environments.
To address this, we present PROC2PDDL, the
first dataset containing open-domain procedu-
ral texts paired with expert-annotated PDDL
representations. Using this dataset, we evalu-
ate the task of predicting domain actions (pa-
rameters, preconditions, and effects). We ex-
periment with various large language models
(LLMs) and prompting mechanisms, including
a novel instruction inspired by the zone of prox-
imal development (ZPD), which reconstructs
the task as incremental basic skills. Our re-
sults demonstrate that PROC2PDDL is highly
challenging for end-to-end LLMs, with GPT-
3.5’s success rate close to 0% and GPT-4o’s
38%. With ZPD instructions, GPT-4o’s suc-
cess rate increases to 45%, outperforming reg-
ular chain-of-thought prompting’s 34%. Our
analysis systematically examines both syntactic
and semantic errors, providing insights into the
strengths and weaknesses of language models
in generating domain-specific programs.1

1 Introduction

Planning is the task of finding a sequence of actions
to achieve a goal in a given environment (Fikes and
Nilsson, 1971; LaValle, 2006). In real life, the en-
vironment is often described with natural language
texts. To enable text-based, automated planning,
recent work has used language models (LMs) to
generate plans (Valmeekam et al., 2023a; Stein
and Koller, 2023). However, this approach is found
to fall short with regard to both performance and
interpretability (Valmeekam et al., 2023c,b). Alter-
natively, another recent line of worked has instead

*Equal contribution.
1Our resources can be found at https://github.com/

zharry29/proc2pddl.

Figure 1: A PDDL solver produces a plan based on a
minimal domain file and problem file. Previous work
assumes the domain file as given, while we predict the
action definitions in the domain file.

used LMs to translate the natural language descrip-
tion of environments to planning domain definition
language (PDDL) (Ghallab et al., 1998). This sym-
bolic representation can then be solved by a planner
in a plan (Collins et al., 2022; Lyu et al., 2023; Liu
et al., 2023; Xie et al., 2023; Wong et al., 2023).
Despite of the success of such a neurosymbolic
method, all the above work has only been evaluated
in closed-domains simulated environments such as
a household (e.g., ALFRED (Shridhar et al., 2020))
or discrete object placement (e.g., BlocksWorld
(Valmeekam et al., 2024)) (as shown in Table 1).

To enable open-domain, text-based planning,
we propose PROC2PDDL, a dataset to evaluate
models’ ability to generate PDDL given proce-
dural texts. PROC2PDDL consists of 27 pairs of
open-domain procedures and PDDL representa-
tions. Each PDDL representation include a do-
main file DF that models the types, predicates, and
actions, and a problem file PF that models the en-
tities, initial states, and goal states, as illustrated
in Figure 1. Because PROC2PDDL is not bound

1
13

https://github.com/zharry29/proc2pddl
https://github.com/zharry29/proc2pddl

Figure 2: Our formulation of the DF action prediction task is as follows: given a natural language procedure text
and a domain file header, a language model (LM) follows Zone of Proximal Development (ZPD) instructions in
three sequential skills to predict domain actions, including parameters, preconditions, and effects. During evaluation,
the predicted DF is compared to a gold reference and used to solve corresponding PFs.

to any simulation, the PDDL representations are
manually annotated by experts trained on this task
to ensure validity, resulting in 27 domain files and
95 problem files.

Using this dataset, we study the task of action
modeling (Lindsay et al., 2017) formulated as fol-
lows. The input is some relevant natural language
texts and the header of a DF (i.e., types, predicates,
and names of actions). Based on a ZPD instruc-
tion, the output is the domain actions in the DF
(i.e., parameters, preconditions, and effects). Dur-
ing evaluation, the predicted DF is 1) compared
to a ground-truth DF as intrinsic evaluation, and
2) provided to a PDDL solver with ground-truth
PFs for the existence and correctness of plans as
extrinsic evaluation. Our system is delineated in
Figure 2. In this formulation, our assumption of
the DF header is necessary to ensure the consis-
tency of semantics between the DF and the PF for
evaluation. It is also empirically motivated; for
example, a kitchen robot may have access to the
types like ‘ingredients’ and predicates like ‘diced’
via some information extraction system given de-
scriptive texts, but it may still need to predict, for
“swinging a knife”, the precondition that it is only
safe to do so to the ‘ingredients’ and the effect that
they will become ‘diced’.

Through our experiment, we show that the task
of action modeling in PROC2PDDL is highly chal-
lenging to state-of-the-art LMs, where GPT-3.5
almost fails completely, GPT-4 can only gener-
ate exactly matching DFs 16% of the time and
solvable PFs 33% of the time, and GPT-4o demon-
strate 18% DFs accuracy and 37% PFs solving rate.
By devising a ZPD instruction that prompt LMs
to modularly generate PDDL through extraction-
inference-translation approach, we improve action

#DF Datasets

Ours 27 PROC2PDDL
(Wong et al., 2023) 2 MineCraft, ALFRED
(Lyu et al., 2023) 1 SayCan
(Xie et al., 2023) 2 Blocksworld, ALFRED
(Liu et al., 2023) 7 Blocksworld, etc.
(Huang et al., 2023) 1 Tabletop
(Huang et al., 2022) 1 VirtualHome
(Silver et al., 2022) 18 Blocksworld, etc.
(Valmeekam et al., 2022) 2 Blocksworld, Logistics

Table 1: Our work proposes and evaluates models using
PROC2PDDL which is open-domain and based on proce-
dural texts, while past work has relied on closed-domain
benchmarks which can be expressed with a singular DF
with a fixed set of actions, based on some simulation.

accuracy by 3% and problem solving by 2-7% .
In our analysis, the syntactic errors indicate LMs’
weakness in generating low-resource and domain-
specific programming languages (Cassano et al.,
2023) like PDDL, while the semantic errors sug-
gest LMs’ inaccuracies to reason about actions and
environments.

2 Task Formulation

The task of predicting a planning domain definition
in a text-based environment can be seen as trans-
lating natural language texts to PDDL symbolic
language, which consists of a domain file (DF) and
one or more problem files (PFs).
A DF defines all actions in the environment:
• parameters (e.g., water, pot) as a list of typed

variables
• preconditions (e.g., water and pot belongs to

player; water is not treated) as a conjunctive nor-
mal form of predicates

• effect (e.g., water is treated) as a conjunctive
normal form of predicates

A PF defines the initial and goal environments:

2
14

• initial states (e.g., bucket is empty)
• goal states (e.g., bucket is filled with rainwater;

rainwater is treated)
We say that a DF and a PF can be solved if there
exists a sequence of actions A1, . . . , An that results
in a transition from the initial state to the goal state.

Traditionally, the task of text-based PDDL gener-
ation involves predicting PF based on text T, where
a successfully generated PF can be solved by the
predefined DF.

In this paper, we address an alternative formula-
tion, action modeling (A), in which the generated
DF, given text T and the domain header H2, is
capable of producing plans for PFs.

3 Dataset

We introduce the PROC2PDDL dataset of 27 dif-
ferent T-DF-PFs tuples, drawing procedural texts
from wikiHow articles of various topics (see Ap-
pendix A). A class of graduate students in a U.S.
university with prior knowledge of PDDL are each
given a wikiHow article and annotate a DF and
multiple corresponding PFs from the article, each
with a gold plan to solve it. On average, there are
13.33 defined actions in a DF and 8.07 instantiated
actions in a gold plan. In this work, all our data is
used for evaluation, as all our methods are without
task specific model training. Some sample data of
PROC2PDDL can be found in Appendix B.

4 Methodology

We first introduce a novel prompt design option,
ZPD, and then discuss the choices of text format
(T), which can range from 10 to 2,000 tokens and
influence the selection of LMs.

4.1 ZPD Prompt Design
To predict domain actions A based on relevant
T and the header H , we prompt an LM in zero-
shot or few-shot instructions. Our instruction em-
ploys Zone of Proximal Development (ZPD) the-
ory proposed for human learning (Vygotsky and
Cole, 1978), which is a variant of the chain-of-
thought (CoT) approach. In typical CoT, a task is
decomposed into several constituents (steps), i.e.,
parameters, precondition, and effect. In contrast,
according to ZPD, the complex PROC2PDDL task
is decomposed into atomic skills: 1) extracting the

2The domain header includes types, predicates, and names
of actions in DF. As the information specified by H is guar-
anteed to be consistent with that of the PFs, the evaluation is
well-defined.

Intrinsic Extrinsic
Model % action acc. PF solve

gpt-3.5 0.2 1.0
gpt-4 15.9 33.7
+ CoT 9.3 21.1
+ ZPD 18.1 35.8
+ ZPD, 3 shot 11.9 23.2
gpt-4o 18.2 37.9
+ CoT 19.5 33.7
+ ZPD 21.4 45.3
+ ZPD, 3 shot 20.3 40.0
gold 100 100

Table 2: The intrinsic and extrinsic evaluation results
for all main models. gpt-4(o) demonstrates non-trivial
performance. With a ZPD instruction, the performance
improves consistently.

Model % Parameter Precondition Effect

gpt-4 36.7 31.1 53.0
+ CoT 29.7 25 54.7
+ ZPD 42.2 29.7 48.1
gpt-4o 45.1 31.1 62.5
+ CoT 52.4 34.2 54.1
+ ZPD 53.5 40.1 53.5

Table 3: The generation accuracy of each component
in actions has been evaluated. The ZPD instruction
clearly aids in identifying implicit parameters (entities).
Predicting preconditions is more challenging than pre-
dicting effects, as it requires a greater depth of implicit
knowledge of entity states.

relevant description of an action; 2) extracting and
inferring the incorporated entities and their state
changes; and 3) translating the entity-state changes
to accessible PDDL predicates. Next, we establish
the relationships between these atomic skills: to
perform the task, each skill is a prerequisite for the
next. Finally, we explicitly instruct the LMs to in-
crementally perform the three basic skills, leading
to the successful completion of the PROC2PDDL

task (the prompt can be found in Appendix D):
1. Extraction: describe each action, including the

expected preconditions and effects;
2. Inference: list the involved entities and their

state changes;
3. Translation: based on the information above,

convert T to PDDL.

4.2 Choice of Input Text

We also consider the following choices of wikiHow
text as T.

Prompt without text (w/o T) is an ablation
baseline where the model predicts A solely based
on H . Naturally, none of the three aforementioned
stages are involved in this prompt condition.

3
15

Intrinsic Extrinsic
Model % action acc. PF solve

w/o T (baseline) 13.7 26.3
T =sum 15.9 33.7
T =sum, ZPD 18.1 35.8
T =map 11.8 13.7
T =map, ZPD 8.9 26.3
T =rel 11.6 27.4
T =rel, ZPD 12.2 21.1
T =all 12.1 28.4
T =all, ZPD 12.1 31.6

Table 4: Performance of GPT-4 using different portions
of text T. Metrics include action-wide accuracy and the
proportion of PFs that can be solved.

Prompt with text (w/ T) additionally provides
the model with four different portions of T, involv-
ing the three aforementioned stages, as follows:
(T = all): All steps in a wikiHow article.
(T = rel): In PROC2PDDL, each wikiHow article
consists of step paragraphs that may or may not be
used in defining the actions in the DF. Hence, a
mapping between actions and steps is also anno-
tated. This context includes relevant steps to all
actions in a DF. (e.g., Step 1. Find fresh water...
Step 2. Collect food... Step 7. Set up camp...)
(T = map): Each action is mapped with steps based
on the annotated mapping in PROC2PDDL.
(e.g., clean_water: Step 1. Find fresh water...)
(T = sum): An one-line summary of each action
annotated in PROC2PDDL.
(e.g., clean_water; boil water to clean it)
The four prompts are increasingly general. Dis-
tinguishing from the required skills, the full text
condition demands accurate information extraction,
while the text summary clearly defines the action
but requires the model’s robust ability to infer im-
plicit entity states. All prompts request an exact
translation.

4.3 Experiments

We conducted experiments with three large lan-
guage models3: GPT-3.5-turbo-16k, GPT-4-32k
(dated June 2023), and GPT-4o. For GPT-4-32k,
we used a maximum token limit of 10,000. GPT-
3.5-turbo-16k and GPT-4o were tested with theirs
default hyperparameters. The few-shot examples
can be found in Appendix C.

3Due to the need for very long input and output, the choice
of open-source models is limited. We are in progress of im-
plementing Mixtral-8x7B.

5 Evaluation and Analysis

Now that a model generates the parameters, pre-
conditions, and effects for each action, we have
a complete DF. We evaluate it in two ways (Fig-
ure 2). Intrinsically, we semantically compare the
predicted A with the ground-truth provided by our
PROC2PDDL and report an action-wide accuracy.
Equivalence of two action definitions does not de-
pend on the naming of variables nor on the order
within conjunctions (detailed in Appendix E). Ex-
trinsically, to measure actions’ coherence, a BFS-
based PDDL solver4 attempts to solve ground-truth
PFs with the predicted DF and a success rate is
reported. An unsolved PF is caused by (1.) no
plan can be found, or (2.) the solver runs for more
than 30 seconds, or (3.) the solver returns an error
(usually a syntax error in the generated PDDL).

The intrinsic and extrinsic results are shown
in Table 2. gpt-3.5-turbo which achieves
impressive performance on many tasks has a
close-to-zero performance. In contrast, gpt-4
performs significantly better with 18% action
prediction accuracy and 36% solve rate of PFs.
The most advanced gpt-4o presents the highest
performance, with 21% action accuracy and 45%
PFs solving rate. Still, the performance is far
worse than ideal, showing that even a simplified
open-domain planning formulation is challenging
to state-of-the-art LMs.

ZPD Instruction Analysis
ZPD is helpful in each setting since it explicitly
spells out many implicit entities and state changes
in the inference stage which are critical to predict-
ing parameters. In most situations, the model sum-
marizes the action and extracts the entity states
correctly, though sometimes missing a few implicit
entities. However, ZPD’s bottleneck lies in the
translation stage, during which there are mainly
three types of errors.
1. mismatched predicates: the model uses (at

?loc ?item) instead of (inventory ?item);
2. hallucinated predicates: the model creates a new

predicate (soaked ?item) while neglecting the
existing (submerged ?item);

3. complicated predicates: the model adds
unnecessary predicates (inventory
?submerged_item - item) when already has
(inventory ?item).

4https://github.com/pucrs-automated-planning/
pddl-parser

4
16

https://github.com/pucrs-automated-planning/pddl-parser
https://github.com/pucrs-automated-planning/pddl-parser

Unsolved Solved
Syntactic

Error
Bad

Action
Good

Action
Bad
Plan

Good
Plan

gpt-4 3 7 2 0 3

Table 5: A small-sample inspection shows that models
make both syntactic and semantic errors.

To address these, we leave to future work to
demonstrate and standardize the translation pro-
cess by clearly describing all necessary entity-state
change and encouraging the model to compare and
strictly match the given predicates. Finer-grained
evaluation results are shown in Table 3 to tease
out the performance regarding such component
within an action. It is clear that the LM is worse
at predicting preconditions than at predicting
effects. This is understandable as procedural
texts like wikiHow tend to be less explicit about
predictions than about effects (e.g., from ‘bake
for 10 minutes’ it is obvious that the food will
be baked, but it is unclear what state it had been in).

Text Format Analysis
As shown in Table 4, in w/o T setting, fully
relying on its implicit knowledge, the model is
already capable of inferring PDDL syntactically
and semantically. In w/ T settings, our model
shows an ‘U’ performance in terms of the text
length. Using a sentence-long description for
each action (T = sum) provided by PROC2PDDL,
the model achieves the best performance among
all, showing a strong deduction ability with the
limited but precise NL input. The T = all setting
ensues, which requires the most extraction rather
than inference. In contrast, the middle ones (T
= rel/map) with decreasing signal-to-noise ratio
lead to worse results, indicating its shortage of
extraction-inference trade-off. The signals contain
both the described entity states and step relations,
explicitly and implicitly. This shortage may come
less from the entity states (e.g., fish, spear in
hunt_fish), but more from the relation between
actions (e.g., make_spear to hunt_fish) which may
be expressed in the T = sum and all settings.

Case Analysis
To provide deeper insights into model performance,
we manually inspect the model output of gpt-4 on
all 6 examples (15 PFs) in the development set. We
consider the following scenarios.
Unsolved Whenever the predicted DF cannot

solve a PF, either a syntactic or a semantic er-
ror has occurred. For a syntactic error, the out-
put may contain illegal expressions that cannot
be parsed. For example, (inventory ?player
(clean ?strips)) is unacceptable because the
arguments to a predicate must be atomic types, not
another predicate. For a semantic error (namely,
a ‘bad action’), we identify the first problematic
action that differs with the ground-truth. For ex-
ample, if the action cut_plant misses a critical ef-
fect of (inventory ?player ?stalk), then other
actions such as graft_stalk requiring it cannot
be executed. At times, there could be false nega-
tives where the predicted action definitions are in
fact reasonable but still cannot lead to a solution
(namely, a ‘good action’).

Solved Even when the predicted DF solves a PF,
the plan may be different from the gold plan. It is
naturally possible that the predicted plan is a fluke
made possible by under-specified preconditions or
over-exaggerated effects, as well as loopholes in
the PF leading to unreasonable shortcuts. For the
example in Figure 1, a model could cheat by defin-
ing the action get by not requiring the person and
object to be in the same location; thus, the pre-
dicted plan would unreasonably omit the action go.
However, at times, the predicted plan could also be
a reasonable alternative.

The statistics of these errors are shown in Ta-
ble 5. When no solution can be found, true neg-
ative is highly likely as the model indeed makes
aforementioned mistakes during action prediction.
When some solution is found, false positive is still
possible as the predicted plan may be unreason-
able. See attached materials for a complete error
analysis of these examples. Our aforementioned
future pipeline that separates summarization and
translation would likely mitigate these errors.

6 Conclusion

We present PROC2PDDL, the first open-domain
dataset that juxtaposes natural language and plan-
ning domain definition language. Our experiments
show that ZPD instructions facilitate LMs’ perfor-
mance, while still find it challenging to translate
the precondition and effects of actions. We hope
our instruction design, evaluations and dataset help
future progress towards integrating the best of LM
and formal planning.

5
17

7 Limitations

Any planning language, including PDDL which
we consider in this work, is an approximation of
planning in the real world and cannot accurately
reflect its complexity. Due to the consideration
for simplicity in the annotation process, we use
the primitive version of PDDLs, with restricted
expressions and syntax, instead of newer versions
of the planning language which extend its syntax
in a variety of way.

Annotating PROC2PDDL is extremely costly as
it requires knowledge of PDDL and much effort
to translate procedural texts to PDDL. Thus, our
dataset is relatively small with a limited range of
topics. Due to the highly complex and subjective
nature of the annotation process, each annotated
example may reflect idiosyncratic though processes
and biases of the individual annotator.

As with many similar works, there is a known
gap between high-level planning such as ours (with
high-level actions like “boil”) and the actions used
by present-day robots (with low-level motor func-
tions like “move”). However, like similar works,
we believe our efforts can see more practical appli-
cation in the near future.

Our modeling efforts so far have mainly con-
sidered options of zero-shot prompting. There of
course exists many other approaches including the
few-shot setting, fine-tuning, and the model distil-
laion paradigm, which we plan to experiment with
in the future. Moreover, our evaluation is imperfect
in that even a well-annotated DF-PF pair might
have multiple successful plans. Manual inspection
is still necessary to accurately gauge models.

Acknowledgements

This research is supported in part by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activ-
ity (IARPA), via the HIATUS Program contract
#2022-22072200005. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwith-
standing any copyright annotation therein.

References
Federico Cassano, John Gouwar, Francesca Lucchetti,

Claire Schlesinger, Carolyn Jane Anderson, Michael
Greenberg, Abhinav Jangda, and Arjun Guha. 2023.
Knowledge transfer from high-resource to low-
resource programming languages for code llms.
arXiv preprint arXiv:2308.09895.

Katherine M. Collins, Catherine Wong, Jiahai Feng,
Megan Wei, and Joshua B. Tenenbaum. 2022. Struc-
tured, flexible, and robust: benchmarking and improv-
ing large language models towards more human-like
behavior in out-of-distribution reasoning tasks.

Richard E Fikes and Nils J Nilsson. 1971. Strips: A new
approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4):189–
208.

Malik Ghallab, Adele Howe, Craig Knoblock, Drew
McDermott, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. 1998. PDDL - the plan-
ning domain definition language. Technical Report
"CVC TR-98-003/DSC TR-1165", Yale Center for
Computational Vision and Control.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. In International Conference on
Machine Learning, pages 9118–9147. PMLR.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess,
Andy Zeng, Yao Lu, Pete Florence, Igor Mor-
datch, Sergey Levine, Karol Hausman, et al. 2023.
Grounded decoding: Guiding text generation with
grounded models for robot control. arXiv preprint
arXiv:2303.00855.

Steven M LaValle. 2006. Planning algorithms. Cam-
bridge university press.

Alan Lindsay, Jonathon Read, Joao Ferreira, Thomas
Hayton, Julie Porteous, and Peter Gregory. 2017.
Framer: Planning models from natural language ac-
tion descriptions. In Proceedings of the International
Conference on Automated Planning and Scheduling,
volume 27, pages 434–442.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 2023.
Llm+p: Empowering large language models with
optimal planning proficiency.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. Al-
fred: A benchmark for interpreting grounded in-
structions for everyday tasks. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 10740–10749.

6
18

http://arxiv.org/abs/2205.05718
http://arxiv.org/abs/2205.05718
http://arxiv.org/abs/2205.05718
http://arxiv.org/abs/2205.05718
http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379

Tom Silver, Varun Hariprasad, Reece S Shuttle-
worth, Nishanth Kumar, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. 2022. Pddl planning with
pretrained large language models. In NeurIPS 2022
Foundation Models for Decision Making Workshop.

Katharina Stein and Alexander Koller. 2023. Au-
toplanbench:: Automatically generating bench-
marks for llm planners from pddl. arXiv preprint
arXiv:2311.09830.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2023a. Planbench: An extensible benchmark for eval-
uating large language models on planning and rea-
soning about change. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets
and Benchmarks Track.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2024. Planbench: An extensible benchmark for eval-
uating large language models on planning and reason-
ing about change. Advances in Neural Information
Processing Systems, 36.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023b. On the
planning abilities of large language models–a critical
investigation. arXiv preprint arXiv:2305.15771.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change). arXiv preprint
arXiv:2206.10498.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2023c. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change).

Lev Semenovich Vygotsky and Michael Cole.
1978. Mind in society: Development of higher
psychological processes. Harvard university press.

Lionel Wong, Jiayuan Mao, Pratyusha Sharma,
Zachary S Siegel, Jiahai Feng, Noa Korneev,
Joshua B Tenenbaum, and Jacob Andreas. 2023.
Learning adaptive planning representations with
natural language guidance. arXiv preprint
arXiv:2312.08566.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. 2023. Translating natural language
to planning goals with large-language models.

A Topics

Below are a list of the titles of wikiHow articles
in PROC2PDDL, chosen per the requirement of a
gruaduate-level university class.

• create secret society
• throw an anime party

• open a coconut
• calculate pi
• hack
• get out of quicksand
• make a detective kit
• lock picking
• make papyrus
• survive on a desert island
• survive in the jungle
• survive a war
• survive a comet hitting earth
• survive a nuclear attack
• survive in the woods
• survive deserted island
• survive shark attack
• survive emp attack

Each topic may have one or more annotated DFs
representing different domains. The homogeneity
of the last 7 topics is due to the class’ topic of
interactive fictions.

B Sample Data: T, DF, and PF

To exemplify PROC2PDDL, below is an example
procedural text T titled ‘survive in the jungle‘, up
to the third step, truncating the rest.
1. Collect rainfall from leaves and bamboo

stalks. Look for large leaves that collect
rainfall and bend them into a funnel to pour
the water into a bottle or straight into
your mouth. Bend bamboo stalks to let the
water that collects in the compartments flow
out into a container or break the bamboo
compartment off at the line that goes across
the stalk to use it as a water bottle. You
could also look for rock formations that
form natural pools and collect rainwater,
but it is best to do this after a fresh
rainfall to avoid pools that have been
sitting for a long time and may be
contaminated with bacteria. If you don't
have a water bottle or other container to
collect water, try to find other natural
containers in the jungle such as a coconut
shell or piece of wood shaped like a bowl.
You can also leave these items out when it
rains to collect the fresh water.

2. Boil water from streams to kill any bacteria.
Look for running streams to find fresh
water. Filter out any particles through a
sock, shirt, or other fabric, then start a
fire and boil the water to kill bacteria
that can make you sick. If you don't have a
pot to boil water in, then you can use a tin
can, single-walled stainless steel water
bottle, or any other metal container. If you
have no way of making a fire or boiling the
water, then you should avoid drinking water
from streams. It can be contaminated with
many types of bacteria from animals that
will make you very sick. Always avoid

7
19

http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2206.10498
http://arxiv.org/abs/2302.05128
http://arxiv.org/abs/2302.05128

drinking water from stagnant pools as the
water is likely contaminated.

3. Make a solar water still with a container and
a plastic sheet. Dig a hole in an area that
receives at least some direct sunlight and

put a container, such as a water bottle or
can, in the middle of the hole. Fill the
space between the sides of the hole and the
container with wet leaves. Place a plastic
sheet over the top of the hole and put rocks
or other heavy objects around the edges to

hold it in place. Put a small stone in the
middle of the sheet above the container. The
plastic sheet will accumulate condensation

that will drip down the underside of the
sheet and into the container. This water is
distilled and safe to drink. You can use
natural containers such as bamboo or a
coconut shell if you don't have a bottle or
can. A solar still does not collect large
amounts of water. It should be used as a
supplemental source of water rather than a
primary source.

......

Below is a sample annotated DF of the above:
(define (domain survive_in_the_jungle)

(:requirements :strips :typing)
(:types

stone wood bamboo_container water fire
sos_sign fruit - item

basecamp - location
ill dehydrated hungry - condition
player
direction

)

(:predicates
(has_bamboo ?loc - location) ; this

location has bamboo to create a
container

(has_rainfall ?loc - location) ; this
location has received rainfall to
collect water

(has_fruit ?loc - location) ; this location
has fruits to pick

(treated ?water - water) ; True if the
water has been decontaimated by
boiling it

(is ?c - condition ?p - player) ; True if
the player is under the specified
condition

(at ?obj - object ?loc - location) ; an
object is at a location

(inventory ?player ?item) ; an item is in
the player's inventory

(connected ?loc1 - location ?dir -
direction ?loc2 - location) ; location
1 is connected to location 2 in the

direction
(blocked ?loc1 - location ?dir - direction

?loc2 - location) ; the connection
between location 1 and 2 in currently
blocked

)

(:action go ; navigate to an adjacent
location

:parameters (?dir - direction ?p - player ?
l1 - location ?l2 - location)

:precondition (and (at ?p ?l1) (connected ?
l1 ?dir ?l2) (not (blocked ?l1 ?dir ?
l2)))

:effect (and (at ?p ?l2) (not (at ?p ?l1)))
)

(:action get ; pick up an item and put it in
the inventory

:parameters (?item - item ?p - player ?l1 -
location)

:precondition (and (at ?p ?l1) (at ?item ?
l1))

:effect (and (inventory ?p ?item) (not (at
?item ?l1)))

)

(:action get_bamboo_container; get a bamboo
container using surrounding bamboo

:parameters (?p - player ?loc - location)
:precondition (and (at ?p ?loc) (has_bamboo

?loc))
:effect (inventory ?p bamboo_container)

)

(:action collect_rain_water
:parameters (?p - player ?loc - location)
:precondition (and (at ?p ?loc) (inventory

?p bamboo_container) (has_rainfall ?
loc))

:effect (and (inventory ?p water) (not (
treated water)))

)

(:action create_fire
:parameters (?p - player ?loc - location)
:precondition (and (at ?p ?loc) (inventory

?p stone) (inventory ?p wood))
:effect (and (at fire ?loc) (not (inventory

?p stone)) (not (inventory ?p wood)))
)

(:action treat_water
:parameters (?p - player ?loc - location)
:precondition (and (inventory ?p water) (

not (treated water)) (at fire ?loc))
:effect (and (treated water))

)

(:action drink_water
:parameters (?p - player)
:precondition (and (inventory ?p water) (

treated water))
:effect (not (is dehydrated ?p))

)

(:action drink_untreated_water
:parameters (?p - player)
:precondition (and (inventory ?p water) (

not (treated water)))
:effect (is ill ?p)

)

(:action create_sos_sign
:parameters (?p - player)
:precondition (and (inventory ?p stone) (at

?p basecamp))
:effect (and (not (inventory ?p stone)) (at

sos_sign basecamp))

8
20

)

(:action pick_fruit
:parameters (?p - player ?loc - location)
:precondition (and (at ?p ?loc) (has_fruit

?loc))
:effect (inventory ?p fruit)

)

(:action eat_fruit
:parameters (?p - player)
:precondition (and (is hungry ?p) (

inventory ?p fruit))
:effect (and (not (inventory ?p fruit)) (

not (is hungry ?p)))
)

(:action escape
:parameters (?p - player)
:precondition (and (at ?p basecamp) (at

sos_sign basecamp) (not (is hungry ?p))
(not (is dehydrated ?p)) (not (is ill
?p)))

:effect (not (at ?p basecamp))
)

)

Below is an annotated PF of the above:

(define (problem escape)
(:domain survive_in_the_jungle)

(:objects
npc - player
jungle bamboo_forrest basecamp - location
in out north south east west up down -

direction
stone wood sos_sign - item
ill dehydrated hungry - condition

)

(:init
(at npc basecamp)
(connected basecamp west bamboo_forrest)
(connected bamboo_forrest east basecamp)
(connected basecamp east jungle)
(connected jungle west basecamp)

(has_bamboo bamboo_forrest)
(has_fruit jungle)
(has_rainfall jungle)

(at stone bamboo_forrest)
(at stone basecamp)
(at wood jungle)

(is dehydrated npc)
(is hungry npc)

)

(:goal (and (not (at npc basecamp)) (not (at
npc bamboo_forrest)) (not (at npc jungle)
)))

)

C Few-shot Examples

Example 1:
action: slide_straw_over_skewer

text: Slide a segment of plastic straw over the
2 skewers. Cut a segment of a plastic straw
that is equal to the width between the wheel
wells on your car. Then, slide it onto 1 of
the skewers that's attached to a wheel. Do
the same with the other skewer.

pddl_action:
(:action slide_straw_over_skewer
:parameters (?straw1 - straw ?straw2 - straw ?

skewer1 - skewer ?skewer2 - skewer ?wheel1
- wheel ?wheel2 - wheel)

:precondition (and
(attached ?skewer1 ?wheel1)
(attached ?skewer2 ?wheel2)
(equal_width ?straw1 ?skewer1)
(equal_width ?straw2 ?skewer2))
:effect (and
(over ?straw1 ?skewer1)
(over ?straw2 ?skewer2)))

entity_state_inference:
- action name: slide_straw_over_skewer
- summarize action: The action involves cutting

a segment of a plastic straw and sliding it
over two skewers attached to wheels. The
straw segments should be equal to the width
between the wheel wells on a car.

- what is needed to do the action: A segment of
a plastic straw, two skewers attached to
wheels.

- what is the result: The straw segments are
slid over the skewers, which helps in
maintaining the structure of the car and
providing stability to the wheels.

- entities:
- entity name: plastic straw segment
- before: Not cut and not on skewers
- after: Cut and slid onto skewers
- entity name: skewer
- before: Without straw segments
- after: With straw segments slid onto them
- entity name: wheel
- before: Attached to skewers, without straw

segments on the skewers
- after: Attached to skewers, with straw

segments on the skewers

Example 2:
action: mix_sand_with_color

text: Close the bags tightly, then shake and
squeeze them to mix the sand. Zip the bags
shut tightly first. Next, shake the bags to
help distribute the food coloring. You can
also gently squeeze and massage the sand
through the bags. Keep doing this until the
color is even. Add more food coloring if the
color is too light for you. Keep in mind
that the sand will dry lighter.

pddl_action:
(:action mix_sand_with_color
:parameters (?bag - bag ?sand - sand ?color -

food_coloring)
:precondition (and (sealed ?bag) (contains ?bag

?sand) (contains ?bag ?color) (not (

9
21

evenly_colored ?sand)))
:effect (evenly_colored ?sand))''',

entity_state_inference:
- action name: mix_sand_with_color
- summarize action: This action involves mixing

colored sand by sealing bags containing sand
and food coloring, then shaking, squeezing,
and massaging the bags until the sand color
is evenly distributed. More food coloring

may be added if the color is too light, with
the understanding that the sand will dry

lighter.
- what is needed to do the action: Sealed bags

containing sand and food coloring, ability
to shake and squeeze the bags.

- what is the result: The sand inside the bags
is evenly colored.

- entities:
- entity name: bags
- before: contains uncolored or unevenly

colored sand and food coloring
- after: contains evenly colored sand
- entity name: sand
- before: uncolored or unevenly colored
- after: evenly colored
- entity name: food_coloring
- before: present in the bags
- after: mixed evenly with the sand

Example 3:
action: melt_wax

text: Melt candle wax flakes or cubes in a
double boiler. Set a can, jar, or another
heat-proof container in a pot, and place
your solid candle wax (soy or paraffin are
most common) inside. Surround the container
with water, filling the pot about halfway up
the container, then heat the pot on medium

heat to double boil the wax to melt it
completely, stirring every minute or so to
make sure it melts evenly.

pddl_action:
(:action melt_wax
:parameters (?wax ?container ?pot ?heat_source

?water)
:precondition (and (solid ?wax) (in ?wax ?

container) (heatproof ?container) (in ?
container ?pot) (in ?water ?pot) (cold ?
water))

:effect (and (liquid ?wax) (heated ?water)))

entity_state_inference:
- action name: melt_wax
- summarize action: This action involves melting

solid candle wax using a double boiler
method. The solid wax is placed in a heat-
proof container, which is then placed in a
pot filled with water. The pot is heated,
and the wax is stirred until it melts
completely.

- what is needed to do the action: The action
requires solid wax, a heat-proof container,
a pot, water, and a heat source.

- what is the result: The solid wax is melted
into liquid wax.

- entities:
- entity name: wax
- before: solid
- after: liquid
- entity name: container
- before: empty or containing solid wax
- after: containing liquid wax
- entity name: pot
- before: empty or containing water and

container with solid wax
- after: containing water and container with

liquid wax
- entity name: water
- before: cold or room temperature
- after: heated
- entity name: heat_source
- before: off
- after: on

D Prompts

For reproducibility, we provide the verbatim
prompts that we used in the above experiments.

D.1 Prompt without ZPD
Could you fill out the below PDDL actions with
the predicates based on the text?
All fields: parameters, precondition and effect,
should have predicates.
For each action, do NOT change the name and
do NOT drop the action and do NOT add more
actions.
The output should be in correct PDDL format.

<wikiHow text and domain header>

here are the actions I want:
<insert_action_names>
here are the types I have:
<insert_types>
here are the predicates I have:
<insert_predicates>
here are the texts containing steps to <insert_goal>:
<insert_text>

Example Completion:
(:action clean_water

:parameters (?player - human ?water - water)
:precondition (inventory ?player ?water)
:effect (treated ?water)

)

D.2 Prompt with ZPD
Could you fill out the below PDDL actions with
the predicates based on the text? All fields:
parameters, precondition and effect, should have

10
22

predicates.
For each action, do NOT change the name and
do NOT drop the action and do NOT add more
actions and:
First, summarize the action in a few sentences
based on the text and provide its requirements and
its aims if it has.
Next, identify ALL the entities involved in the
action and describe whether it changed, unchanged,
added, removed in the action in natural language.
Last, translate it into PDDL format. Check all the
related entities are in the ’parameters’.

Please use this output format:
- action name: ...
- summarize action: ...
- what is needed to do the action: ...
- what is the result: ...

- entities:
- entity name: ...
- before: ...
- after: ...

- describe how to match it to relevant predicates
step by step:
1. ...
2. ...

<wikiHow text and domain header>

here are the actions I want:
<insert_action_names>

here are the types I have:
<insert_types>

here are the predicates I have:
<insert_predicates>

here are the texts containing steps to <insert_goal>:
<insert_text>

Example Completion:
- action name: clean_water
- summarize action: The player cleans water in
their inventory using heat from a fire.
- what is needed to do the action: The player must
have untreated water in their inventory and be at a
location with fire.
- what is the result: The player has treated water in
their inventory.

- entities:
- entity name: player
- before: Having untreated water in inventory.
- after: Having treated water in inventory.
- entity name: water
- before: Untreated.
- after: Treated.

- describe how to match it to pddl relevant
predicates step by step:
1. Check if the player has untreated water in their
inventory.
2. Check if the player is at a location with a fire.
3. Replace untreated water with treated water in
the player’s inventory in the effect.

PDDL:
(:action clean_water

:parameters (?player - human ?loc - location ?wa-
ter - water)

:precondition (and (at ?player ?loc) (inventory
?player ?water) (not (treated ?water)) (has_fire
?loc))

:effect (treated ?water)
)

E Calculating Actions Equivalence

The distance between two actions can be divided
to two parts:

1. The distance between parameters:

We do not need to consider the specific parame-
ter names; we only need to consider the param-
eter types. For each parameter in Action1, we
iterate over the parameter list of Action2 to find
the first parameter in Action2 with the same type.
We use two hash maps, p1 and p2, to record these
two parameters and their corresponding types.
We increment the counter by 1, remove that pa-
rameter from the parameter list of Action2, and
break from the current loop. After the iteration,
we obtain the number of matching parameters,
n. The distance between parameters can be cal-
culated as |number of parameters in Action1 −
n|+ |number of parameters in Action2− n|.

2. The distance between preconditions/effects:

For each condition in Action1, we iterate over
the condition list of Action2. The conditions can
only match if they have the same predicate and

11
23

the same number of parameters. We iterate over
the parameters in these conditions and make the
following judgments:

• If neither of the two current parameters has
appeared before (in p1 and p2) and these pa-
rameters are not identical, they don’t match.

• If the two parameters have different categories,
they don’t match.

• If the two parameters have the same categories
and don’t have an index, we consider them as
the same parameter entity and give them the
same index. We continue the iteration.

• If the two parameters already have indexes,
we check if the indexes are equal. If they are
not equal, they don’t match. Otherwise, we
continue the iteration.

• In any other case, they don’t match.

If all parameters of the two conditions match,
we increment n by 1. The distance between
preconditions/effects can be calculated as
|number of preconditions/effects in Action1 −
n|+|number of preconditions/effects in Action2−
n|.

12
24

Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024), pages 25–38
August 15, 2024 ©2024 Association for Computational Linguistics

Towards A Unified View of Answer Calibration for Multi-Step Reasoning

Shumin Deng♣, Ningyu Zhang♥∗, Nay Oo♣, Bryan Hooi♣∗
♣National University of Singapore, NUS-NCS Joint Lab ♥Zhejiang University

{shumin,nay.oo,dcsbhk}@nus.edu.sg, zhangningyu@zju.edu.cn

Abstract

Large Language Models (LLMs) employ-
ing Chain-of-Thought (CoT) prompting have
broadened the scope for improving multi-step
reasoning capabilities. We generally divide
multi-step reasoning into two phases: path
generation to generate the reasoning path(s);
and answer calibration post-processing the
reasoning path(s) to obtain a final answer.
However, the existing literature lacks system-
atic analysis on different answer calibration
approaches. In this paper, we summarize the
taxonomy of recent answer calibration tech-
niques and break them down into step-level
and path-level strategies. We then conduct a
thorough evaluation on these strategies from a
unified view, systematically scrutinizing step-
level and path-level answer calibration across
multiple paths. Experimental results reveal
that integrating the dominance of both strate-
gies tends to derive optimal outcomes. Our
study holds the potential to illuminate key
insights for optimizing multi-step reasoning
with answer calibration.

1 Introduction

Chain-of-Thought (CoT) prompting (Wei et al.,
2022) has significantly improved multi-step reason-
ing capabilities of Large Language Models (LLMs)
(Zhao et al., 2023b; Qiao et al., 2023). As seen
from Figure 1, the process of multi-step reasoning
generally contains two primary modules: reasoning
path generation which generates one or multiple
reasoning paths (Fu et al., 2023; Yao et al., 2023b);
and answer calibration which post-processes the
reasoning path(s) to calibrate the initial output
(Wang et al., 2023f; Zhao et al., 2023a).

In practice, answer calibration is pluggable and
can be integrated into path generation models. The
answer calibration framework can be divided into
step and path levels, applicable to single or mul-
tiple paths, as illustrated in Figure 1. For step-

∗ Corresponding Author.

Questions

Prompts

LLM
Multi-Step Path

Path Generation

Answer Calibration

AnswerAnswer

Step1 Step2 Step3 Step4 Answer
B

A

A A

✅✅ ❌

Path 3

Path 1

Path 2 Answer

AnswerStep1 Step2 Step3 Step4

Step1 Step2 Step3 Step4

❌✅✅ ✅ ✅✅ ✅ ✅

Path-Level Answer Calibration
For Multiple Paths: Select the answer that obtains the maximum

Step-Level Answer Calibration

For Multiple Paths: Verify which path obtains the maximum

✅

 or aggregate the steps verified as

✅

For a Single Path: Editing the step to make

❌

 to

✅

For a Single Path: Self-revise the entire path to answer correctly

A: (Path 1, Path 2) B: (Path 3)

✅

Step1 Step2 Step3 Step4 Answer
C

✅ ❌

Path 4

✅ ✅

C: (Path 4)

Input

Input

Output

Polish

Refine

Calibrate

Multi-Step Reasoning

Figure 1: Illustration of answer calibration for multi-
step reasoning with LLM. The methods of step/path-
level answer calibration for multiple paths can employ
answer calibration on a single path first. (Terminology
clarification of answer calibration and model calibra-
tion is elaborated in Appendix A.)

level answer calibration on a single path, the model
rectifies errors in intermediate-step answers of a
generated path (Zhao et al., 2023a). For step-level
answer calibration on multiple paths, the model
verifies each intermediate-step answer (Weng et al.,
2023) or aggregates the correct step answers (Cao,
2023) from multiple paths. For path-level answer
calibration on a single path, the model revises the
entire rationale to obtain the correct answer (Baek
et al., 2023). For path-level answer calibration on
multiple paths, the model produces a result indi-
cating the consensus of all candidate paths (Wang
et al., 2023f; Yoran et al., 2023). As answer calibra-
tion can identify and rectify errors in the reasoning
path, or even holistically utilize multiple candidate
paths, it plays a vital role in multi-step reasoning to
ensure a precise, consistent and reliable reasoning
process (Pan et al., 2024).

However, we argue that the crucial factors driv-
ing the success of answer calibration strategies re-
main obscure, with a comprehensive systematic

25

analysis still underexplored. To bridge the gap,
our study investigates: (1) The specific conditions
where answer calibration notably boosts multi-
step reasoning performance; (2) The strengths and
weaknesses of step-level versus path-level answer
calibration, and the pathway to attaining optimal
performance; (3) The robustness and generalizabil-
ity of answer calibration strategies.

To address these questions, we dissect cutting-
edge answer calibration techniques for multi-step
reasoning with LLMs, and introduce a unified
framework that elucidates step-level and path-level
strategies. We define two thresholds to respectively
signify the step-level and path-level dominance in
the unified framework. We then undertake a com-
prehensive evaluation of answer calibration strate-
gies, w.r.t. accuracy, faithfulness, informativeness,
consistency, and perplexity over steps or paths.
Through rigorous experiments on five representa-
tive multi-step reasoning tasks involving arithmetic
(Ahn et al., 2024) and commonsense, we find that:
(1) employing answer calibration can enhance accu-
racy, with the improvement being more noticeable
in zero-shot scenarios (§4.2) and less significant on
stronger backbone models (§4.4); (2) The optimal
performance of the unified answer calibration strat-
egy typically achieved by synthesizing step-level
and path level dominance (§4.3); (3) path-level an-
swer calibration is more beneficial in improving ac-
curacy, and step-level answer calibration is more ef-
fective for mitigating low-quality prompting (§4.5);
(4) answer calibration can improve consistency on
arithmetic tasks but weakens faithfulness, infor-
mativeness and perplexity on both arithmetic and
commonsense tasks (§4.6).

2 Related Work

Reasoning Path Generation. Previous methods
for reasoning path generation mostly focus on two
aspects to improve reasoning process, including
refining input query or prompts (input refinement)
and polishing the reasoning path (rationale polish).

As for input refinement, Zero-shot CoT (Kojima
et al., 2022) and Few-shot CoT (Wei et al., 2022)
are classic methods to elicit multi-step reasoning
ability of LLMs, with “Let’s think step by step”
prompts. To decouple planning and execution,
Wang et al. (2023d); Sun et al. (2024) devise a
plan by prompting and divide and conquer multi-
step tasks. To enrich prompts, Wang et al. (2024a)
leverage structure triples as evidence, Kong et al.

(2024) design role-play prompting, and Xu et al.
(2023) employ re-reading instructions. Besides,
LLM performance can also be affected by prompt
complexity (Fu et al., 2023) and formats, such as
program (Gao et al., 2023; Chen et al., 2023b; Sel
et al., 2024; Jie et al., 2023; Lei and Deng, 2023;
Bi et al., 2024) and table (Jin and Lu, 2023). Fur-
ther, Wang et al. (2023b); Shi et al. (2023); Liang
et al. (2024) propose to adaptively utilize prompts.
Apart from refining prompts, Xi et al. (2023b) pro-
gressively refine the given questions, Wang et al.
(2024d) convert semantically-wrapped questions
to meta-questions, and Jie and Lu (2023) augment
training data with program annotations.

In terms of rationale polish, recent work mainly
focus on step-aware training (Wang et al., 2023g)
and path-level optimization. For step-aware train-
ing, Zhang et al. (2023) introduce step-by-step plan-
ning and Lee and Kim (2023) recursively tackle
intermediate steps; Jiang et al. (2023) reconstruct
the reasoning rationale within prompts by residual
connections; Paul et al. (2024) iteratively provide
feedback on step answers; Lanchantin et al. (2023)
leverage self-notes as intermediate steps and work-
ing memory; Li et al. (2023); Ling et al. (2023);
Lightman et al. (2024) propose to verify on inter-
mediate step answers; Li et al. (2024); Wang et al.
(2023c) process step-aware verification by knowl-
edge base retrieval. For path-level optimization, Li
and Qiu (2023) enable LLMs to self-improve via
pre-thinking and recalling relevant reasoning paths
as memory; Wang et al. (2024b); Yue et al. (2024)
leverage hybrid rationales in formats of natural
language and program. Some work also generate
deliberate rationales beyond CoT, such as Tree-of-
Thought (Yao et al., 2023b; Long, 2023), Graph-of-
Thought (Yao et al., 2023d; Besta et al., 2023) and
Hypergraph-of-Thought (HoT) (Yao et al., 2023a).

Answer Calibration. Given generated reasoning
path(s), answer calibration methods post-process
the path(s) to calibrate the answer, involving step-
or path-level calibration on one or multiple path(s).

Step-level answer calibration. Xue et al. (2023);
Cao (2023) propose to rectify factual inconsistency
and reasoning logic between intermediate steps.
Miao et al. (2024); Wu et al. (2024) check the
correctness of each intermediate step. Zhao et al.
(2023a) post-edit multi-step reasoning paths with
external knowledge. Yao et al. (2023c); Hao et al.
(2023); Shinn et al. (2023); Yao et al. (2024); Chen
et al. (2023a); Aksitov et al. (2023) draw up a plan

26

and act step by step with LLMs as agents (Wang
et al., 2024c; Xi et al., 2023a), encouraging inter-
action with the environment to provide feedback.
Weng et al. (2023); Jiang et al. (2024) unleash the
self-verification ability of LLMs, by forward rea-
soning and backward verification on intermediate
step answers. Zhou et al. (2024) propose code-
based self-verification on reasoning steps.

Path-level answer calibration. Zelikman et al.
(2022) present a self-taught reasoner to itera-
tively generate rationales. Zheng et al. (2023)
progressively use the generated answers as hints
to make double-check. Mountantonakis and Tz-
itzikas (2023) enrich generated reasoning paths
with hundreds of RDF KGs for fact checking. Baek
et al. (2023) iteratively rectify errors in knowledge
retrieval and answer generation for knowledge-
augmented LMs. To cultivate the reasoning abil-
ity of smaller LMs, Ho et al. (2023); Wang et al.
(2023e,h) propose to fine-tune CoT for knowl-
edge distillation. Huang et al. (2023) demonstrate
that LLMs can self-improve with high-confidence
rationale-augmented answers. Yoran et al. (2023)
prompt LLMs to meta-reason over multiple paths.
Liu et al. (2023); Madaan et al. (2024) leverage
feedback to improve model initial outputs. Wan
et al. (2023) adaptively select in-context demonstra-
tions from previous outputs to re-generate answers.
Wang et al. (2023f) leverage self-consistency de-
coding strategy to majority vote on multiple path
answers. Aggarwal and Yang (2023) propose
adaptive-consistency to reduce sample budget.

3 Comprehensive Analysis of Answer
Calibration

3.1 Formulation of Answer Calibration

Given a question denoted as Q and its associated
prompt P , we leverage the LLM to generate the re-
sultR. R can either encompass a single reasoning
path P with an initial answer A or multiple reason-
ing paths P = {Pi}i∈[1,N] with a corresponding
answer set A = {Ai}i∈[1,N]. The total number of
paths in P is N . In this paper, we analyze under the
assumption that each reasoning path comprises a
maximum ofM steps. Paths exceedingM steps are
truncated, and those with fewer steps are padded.
The intermediate step answers for each reasoning
path P(i) are represented as {aj}(i)j∈[1,M].

Step-Level Answer Calibration. Given a single
reasoning path P with an initial final path answer

A and intermediate step answers {aj}j∈[1,M], the
objective of step-level answer calibration is to rec-
tify any erroneous aj , so that deriving the correct
A. For multiple reasoning paths P, step-level an-
swer calibration seeks to either select the reasoning
path with the maximum correct intermediate step
answers or aggregate the verified correct steps to
form the most accurate reasoning path, leading to
a correct final path answer. Self-verification (Weng
et al., 2023) is an effective approach for step-level
answer calibration on multiple reasoning paths.

Path-Level Answer Calibration. Given a sin-
gle reasoning path P with an initial final path an-
swer A, the goal of path-level answer calibration
is to revise the wrong A. For multiple reasoning
paths P = {Pi}i∈[1,N] with corresponding answers
A = {Ai}i∈[1,N], path-level answer calibration is
designed to select the reasoning path from P with
the most consistent answer in A. Self-consistency
(Wang et al., 2023f) is a widely-used efficacious
technique for path-level answer calibration on mul-
tiple reasoning paths.

3.2 Unified View of Answer Calibration

Considering the advantages of both step-level
and path-level answer calibration, we propose
to integrate the two strategies on multiple paths.
Given the multiple generated reasoning paths P =
{Pi}i∈[1,N], we define a unified score Di for each
Pi (with the final path answer: Ai and intermediate
step answers: {aj}(i)j∈[1,M]):

Di = α
ni
N︸︷︷︸

path−level

+ (1− α)mi

M︸ ︷︷ ︸
step−level

(1)

where ni ∈ [1, N] is the frequency of Ai existing
in A, mi ∈ [0,M] is the number of correct interme-
diate steps in Pi, and α is a hyper-parameter. The
final answer is Ai∗ satisfying i∗ = argmax

i∈[1,N]
(Di).

To better analyze the effects of varying α in
the unified framework, we then define particular
choices for α which we call step and path level
dominant answer calibration.

Definition 1. Step-Level Dominant Answer Cal-
ibration: This choice refers to the level of α at
which the step-level score is used as the domi-
nant criterion, with the path-level score given much
smaller weight and only serving to break ties when
necessary. Specifically, larger mi always results

27

in larger Di, no matter how small ni is. We de-
note this as: ∀nj , nk ∈ [1, N] and mj ,mk ∈
[0,M],where nj < nk and mj > mk, the scores
Dj and Dk should satisfy

α
nj
N

+ (1− α)mj

M
> α

nk
N

+ (1− α)mk

M
Thus we can obtain

α <
1

M(nk−nj)
N(mj−mk)

+ 1
(2)

If Eq (2) is constant, we can infer that

α < min

 1

M(nk−nj)
N(mj−mk)

+ 1

 =

1
M max(nk−nj)
N min(mj−mk)

+ 1

(3)
As 1 ≤ nj < nk, nj+nk ≤ N , and 0 ≤ mk < mj ,
we can deduce that min(mj−mk) = 1, max(nk−
nj) = N − 2. From the above, we deduce:

α <
1

M(N−2)
N + 1

(4)

Definition 2. Path-Level Dominant Answer Cali-
bration: For this choice, Di gives priority to the
path-level score, with the step-level score given
much smaller weight and only serving to break ties
when necessary. Concretely, larger ni always con-
duces larger Di, no matter how small mi is. We
denote this as: ∀nj , nk ∈ [1, N] and mj ,mk ∈
[0,M],where nj > nk and mj < mk, the scores
Dj and Dk should satisfy

α
nj
N

+ (1− α)mj

M
> α

nk
N

+ (1− α)mk

M
Analogously, we can obtain

α >
1

M(nj−nk)
N(mk−mj)

+ 1
(5)

If Eq (5) is constant, we can infer that

α > max

 1

M(nj−nk)
N(mk−mj)

+ 1

 =

1
M min(nj−nk)
N max(mk−mj)

+ 1

(6)
As 1 ≤ nk < nj , and 0 ≤ mj < mk ≤ M , we
deduce that min(nj −nk) = 1, max(mk−mj) =
M − 0 =M . From the above, we deduce:

α >
1

1
N + 1

(7)

In general, considering step-level and path-level
answer calibration dominance, we can obtain two
thresholds: 1

M(N−2)
N

+1
and 1

1
N
+1

. Note that α = 0

and α = 1 are respectively equivalent to the
self-verification and self-consistency strategies.

3.3 Evaluation of Answer Calibration
Calculation of ROSCOE Scores. In addition to the
classical evaluation metric: Accuracy, Golovneva
et al. (2023) have proposed ROSCOE, a suite
of metrics for multi-step reasoning, under four
perspectives: semantic alignment (ROSCOE-SA),
semantic similarity (ROSCOE-SS), logical infer-
ence, and (ROSCOE-LI) and language coherence
(ROSCOE-LC). Due to space limits, we select
some representative scores from ROSCOE as evalu-
ation metrics in the experiments.

Given source ground truth rationale (s) and gen-
erated rationale (h) with multiple steps (hi), we
calculate five scores (All scores satisfy the princi-
ple that larger is better):

(1) Faithfulnessstep (h→ s): To assess whether
the model misconstrues the problem statement, or
if the reasoning path is too nebulous, irrelevant, or
improperly employs input information.

∑N
i=1 r-align(hi → s)/N (8)

where N is the number of steps and r-align is used
to measure how well hi ∈ h can be aligned with
any one of the steps in the ground truth path s.

(2) Informativenesspath (h → s): To measure
the level of concordance between the generated
path and the source, and if the generated reasoning
path is well-grounded with respect to the source.

[1 + cos(h, s)]/2 (9)

where cos(·, ·) is a function for cosine similarity.
(3) Consistencysteps (hi ↔ hj): To measure

logical entailment errors within the reasoning steps.

1−maxi=2..N maxj<i pcontr(hi, hj) (10)

where pcontr is used to assess the likelihood of step
pairs contradicting each other. hi ∈ h and hj ∈ h.

(4) Consistencypath (h ↔ s): To evaluate mis-
takes in logical entailment between the generated
reasoning path h and source context s:

1−maxi=1..N maxj=1..T pcontr(hi, sj) (11)

where pcontr is the likelihood of source and gener-
ated steps contradicting each other. sj ∈ s; hi ∈ h.

(5) Perplexitypath (h): As an indicator of lan-
guage coherence, it calculates average perplexity
of all tokens in the generated reasoning path steps.

1/PPL(h) (12)

where PPL denotes the perplexity.

28

Task Method Accuracy ↑ Faithfulness ↑
(Over Steps)

Informativeness ↑
(Over Path)

Consistency ↑
(Within Steps)

Consistency ↑
(Within I/O)

Perplexity ↑
(Over Path)

GSM8K

CoT 80.21 88.73 96.38 97.94 96.94 9.14
CoT + SV 82.34(+2.13) 86.22(−2.51) 95.19(−1.19) 96.78(−1.16) 93.46(−3.48) 14.90(+5.76)

CoT + SC 87.11(+6.90) 88.83(+0.10) 96.40(+0.02)∼ 97.90(−0.04)∼ 97.44(+0.50) 8.90(−0.24)

ZS CoT 62.85 86.58 95.61 97.30 93.07 15.67
ZS CoT + SV 67.70(+4.85) 86.24(−0.34) 95.19(−0.42) 96.78(−0.52) 93.44(+0.37) 14.90(−0.77)

ZS CoT + SC 71.42(+8.57) 86.70(+0.12) 95.67(+0.06)∼ 97.19(−0.11) 94.57(+1.50) 14.95(−0.72)

SVAMP

CoT 78.20 87.73 95.74 30.57 9.82 6.65
CoT + SV 85.80(+7.60) 87.26(−0.47) 95.00(−0.74) 33.39(+2.82) 10.41(+0.59) 6.23(−0.42)

CoT + SC 84.40(+6.20) 87.60(−0.13) 95.71(−0.03) 33.51(+2.94) 9.92(+0.10) 6.22(−0.43)

ZS CoT 72.80 87.46 95.77 31.71 18.39 11.93
ZS CoT + SV 81.20(+8.40) 86.92(−0.54) 95.05(−0.72) 35.27(+3.56) 20.24(+1.85) 11.44(−0.49)

ZS CoT + SC 82.00(+9.20) 87.40(−0.06) 95.81(+0.04)∼ 34.73(+3.02) 19.67(+1.28) 11.68(−0.25)

MultiArith

CoT 97.67 88.53 94.91 7.77 7.47 5.51
CoT + SV 98.33(+0.66) 88.36(−0.17) 94.38(−0.53) 46.59(+38.82) 24.56(+17.09) 10.54(+5.03)

CoT + SC 98.17(+0.50) 88.42(−0.11) 94.82(−0.09) 10.22(+2.45) 9.29(+1.82) 5.33(−0.18)

ZS CoT 87.00 89.32 95.30 47.54 24.39 10.75
ZS CoT + SV 97.00(+10.00) 88.35(−0.97) 94.38(−0.92) 46.26(−1.28) 24.58(+0.19) 10.54(−0.21)

ZS CoT + SC 97.00(+10.00) 89.18(−0.14) 95.32(+0.02)∼ 47.42(−0.12) 23.83(−0.56) 10.63(−0.12)

MathQA

CoT 52.83 85.99 95.31 49.57 23.78 7.64
CoT + SV 54.74(+1.91) 85.93(−0.06) 95.24(−0.07) 51.39(+1.82) 24.61(+0.83) 7.18(−0.46)

CoT + SC 54.47(+1.64) 85.93(−0.06) 95.20(−0.11) 51.73(+2.16) 25.03(+1.25) 7.15(−0.49)

ZS CoT 49.45 85.20 96.08 23.50 13.76 13.44
ZS CoT + SV 52.86(+3.41) 85.93(+0.73) 95.24(−0.84) 51.40(+27.90) 24.63(+10.87) 7.19(−6.25)

ZS CoT + SC 49.51(+0.06) 85.22(+0.02)∼ 96.08(−0.00)∼ 23.66(+0.16) 13.79(+0.03) 13.48(+0.04)∼

CSQA

CoT 74.77 81.40 92.57 95.57 57.54 2.46
CoT + SV 74.04(−0.73) 80.89(−0.51) 92.10(−0.47) 92.77(−2.80) 56.05(−1.49) 2.47(+0.01)∼
CoT + SC 75.27(+0.50) 81.50(+0.10) 92.71(+0.14) 95.04(−0.53) 56.97(−0.57) 2.43(−0.03)

ZS CoT 67.57 79.77 95.26 25.81 29.17 9.90
ZS CoT + SV 66.42(−1.15) 79.06(−0.71) 94.65(−0.61) 25.36(−0.45) 28.56(−0.61) 9.06(−0.84)

ZS CoT + SC 71.58(+4.01) 79.51(−0.26) 95.21(−0.05)∼ 25.08(−0.73) 29.69(+0.52) 8.96(−0.94)

Table 1: Comprehensive performance (%) with different strategies on GPT-3.5 (gpt-3.5-turbo). CoT: Few-
shot CoT (Wei et al., 2022) with complex-prompting (Fu et al., 2023); ZS-CoT: Zero-Shot CoT (Kojima et al.,
2022); SV: Self-Verification (Weng et al., 2023); SC: Self-Consistency (Wang et al., 2023f). Best few-shot results
are marked in bold; best zero-shot results are underlined. I/O: input/output. ↑: larger is better. ∼, ∼: comparable.

4 Experiments

4.1 Setup

Evaluation Metrics. In this paper, we aim to con-
duct comprehensive evaluation on multi-step rea-
soning, thus we select some scores from ROSCOE
(Golovneva et al., 2023) as introduced in §3.3,
which contains a suite of metrics allowing us to
evaluate the quality of reasoning rationales, not
limited to the correctness of final answers.

Datasets. We evaluate on five benchmark
datasets involving arithmetic and commonsense
multi-step reasoning: GSM8K (Cobbe et al.,
2021), SVAMP (Patel et al., 2021), MultiArith
(Roy and Roth, 2015), MathQA (Amini et al.,
2019) and CSQA (Talmor et al., 2019).

Models. For reasoning path generation, we
leverage Zero-shot CoT (ZS CoT) (Kojima et al.,
2022) and Few-shot CoT (CoT) (Wei et al.,
2022) with complexity-based prompting (Fu et al.,
2023). For answer calibration, we employ Self-
Verification (SV) (Weng et al., 2023) and Self-
Consistency (SC) (Wang et al., 2023f) on multiple

paths. SV is a step-level strategy, which verifies
intermediate-step answers and returns the path con-
taining the maximum number of correct step an-
swers. SC is a path-level strategy, which conducts
majority voting on final answers of all generated
paths and selects the most consistent result.

Implementation. We release the codes and gen-
erated results anonymously1. In this paper, the
number of reasoning paths N defined in Eq (1)
is 10, and number of intermediate steps M is 3
on all datasets except for CSQA where M is 10.
We utilize GPT-3.5 with gpt-3.5-turbo en-
gine as the backbone LLM to generate reason-
ing paths (the model choice justification is elab-
orated in Appendix B), and the temperature is set
to 0.7. We also leverage GPT-4 (OpenAI, 2023)
with gpt-4 engine to generate ground-truth ra-
tionales given the ground-truth answers for all
datasets excluding GSM8K (which already con-
tains them). For evaluation referring to ROSCOE
(Golovneva et al., 2023), we respectively lever-

1https://github.com/231sm/Eval_Multi-Step_Reasoning.

29

https://github.com/231sm/Eval_Multi-Step_Reasoning

74.04
75.27

66.42

71.58

66.00
67.00
68.00
69.00
70.00
71.00
72.00
73.00
74.00
75.00
76.00

0.0
0
0.0
5
0.1
0
0.1
11 0.2

0
0.3
0
0.4
0
0.5
0
0.5
55 0.6

0
0.7
0
0.8
0
0.9
0
0.9
09 0.9

5
0.9
8
1.0
0

A
cc

ur
ac

y
(%

)

Values of α

CoT

ZS CoT

(e) CSQA

82.34

87.11

67.70

71.42

65.00

68.00

71.00

74.00

77.00

80.00

83.00

86.00

89.00

0.0
0
0.1
0
0.2
0
0.2
94 0.3

0
0.4
0
0.5
0
0.6
0
0.7
0
0.8
0
0.9
0
0.9
09 0.9

5
0.9
8
1.0
0

A
cc

ur
ac

y
(%

)

Values of α

CoT

ZS CoT

(a) GSM8K

85.80

84.40

81.20

82.00

80.00

81.00

82.00

83.00

84.00

85.00

86.00

87.00

88.00

0.0
0
0.1
0
0.2
0
0.2
94 0.3

0
0.4
0
0.5
0
0.6
0
0.7
0
0.8
0
0.9
0
0.9
09 0.9

5
0.9
8
1.0
0

A
cc

ur
ac

y
(%

)

Values of α

CoT

ZS CoT

(b) SVAMP

98.33
98.17

97.00
97.00

96.00

96.50

97.00

97.50

98.00

98.50

99.00

99.50

0.0
0
0.1
0
0.2
0
0.2
94 0.3

0
0.4
0
0.5
0
0.6
0
0.7
0
0.8
0
0.9
0
0.9
09 0.9

5
0.9
8
1.0
0

A
cc

ur
ac

y
(%

)

Values of α

CoT

ZS CoT

54.74 54.47
52.86

49.51
49.00

50.00

51.00

52.00

53.00

54.00

55.00

56.00

57.00

58.00

0.0
0
0.1
0
0.2
0
0.2
94 0.3

0
0.4
0
0.5
0
0.6
0
0.7
0
0.8
0
0.9
0
0.9
09 0.9

5
0.9
8
1.0
0

A
cc

ur
ac

y
(%

)

Values of α

CoT

ZS CoT

(c) MultiArith

(d) MathQA
Figure 2: Accuracy under different integrated step-level and path-level answer calibration strategies, varying with
the values of α defined in Eq (1). Performance with two thresholds of 1

M(N−2)
N +1

and 1
1
N +1

are marked as F.

age all-MiniLM-L6-v2/SentenceTransformer,
and pretrained gpt2-large (Radford et al.,
2019) to obtain token/sentence embedding and cal-
culate perplexity defined in Eq (12). All the reason-
ing paths for CoT and ZS CoT were generated dur-
ing 8th to 23rd June 2023, and answer calibration
on the generated reasoning paths was conducted
during 12th October to 8th November 2023.

4.2 Analysis on Step-Level and Path-Level
Answer Calibration Strategies

We respectively incorporate the effective step-level
and path-level answer calibration strategies, Self-
Verification (SV) and Self-Consistency (SC), into
CoT-based models operating on multiple paths. We
evaluate their performance using six evaluation
metrics, with the results presented in Table 1.

Generally, in terms of accuracy, employing an-
swer calibration is effective. Seen from Table 1,
we find that models equipped with SV and SC ob-
viously outperform vanilla methods, as both few-
shot and zero-shot CoT employing SV/SC achieve
significant accuracy improvements on almost all
tasks. Notably, zero-shot CoT with SV and SC
achieves much more significant outperformance
of accuracy than few-shot settings on almost all
tasks, demonstrating that answer calibration is
more effective in zero-shot settings. As zero-shot
CoT is relatively challenging due to the absence
of task-specific in-context learning, answer cali-
bration strategies essentially creating a feedback
loop where the model assesses its own performance
and adjusts accordingly, could help to mitigate bi-
ases and overfitting to specific patterns during in-
ference, allowing the model to better generalize to

new types of problems and datasets.
Furthermore, in terms of other metrics, answer

calibration can improve consistency on arith-
metic tasks but weakens faithfulness, informa-
tiveness and perplexity on both arithmetic and
commonsense tasks. Observed from Table 1, we
find that SV and SC weaken the perplexity score
(16 out of 20 cases), suggesting that the rationale
generated from multiple paths is more complex
than that from a single path with CoT models.
However, these two strategies improve consistency
scores on arithmetic tasks (10 out of 16 cases; 14
out of 16 cases), intuitively benefiting from multi-
ple paths. As SV verifies answers for intermediate
steps and SC considers answers for all paths, they
naturally enhance consistency within steps and be-
tween input/output (I/O). Additionally, SV and SC
worsen faithfulness and informativeness on almost
all tasks (15 out of 20 cases for both). The possi-
ble reason is that answer calibration on multiple
paths focuses more on answer accuracy, while its
increased complexity of its rationales tends to re-
sult in lower alignment and concordance between
the source content and the output path. Generally,
despite the benefits of employing SV and SC to
CoT-based methods, the improvements are task-
dependent and vary across different metrics.

4.3 Analysis on Unified Answer Calibration
Strategies

We then integrate step-level and path-level an-
swer calibration strategies, varying α as defined
in Eq (1). We present the accuracy of the unified
strategies in Figure 2. As observed, accuracy peaks
at a specific value of α between the two thresholds

30

Engine Strategy GSM8K SVAMP MultiArith CSQA

GPT-3 (175B)
code-davinci-001

CoT 13.84 38.42 45.85 46.75
CoT + SV 13.92↑ 38.96↑ 46.19↑ 47.68↑
CoT + SC 23.40⇑ 54.58⇑ 79.82⇑ 54.92⇑
CoT + SC + SV 23.59⇑ 54.68⇑ 80.01⇑ 55.09⇑

Instruct-GPT (175B)
code-davinci-002

CoT 60.81 75.87 96.13 77.42
CoT + SV 65.14⇑ 76.99↑ 99.15⇑ 77.83↑
CoT + SC 78.00⇑ 86.77⇑ 100.00⇑ 81.43⇑
CoT + SC + SV 78.32⇑ 86.94⇑ 100.00⇑ 81.53⇑

GPT-3.5
gpt-3.5-turbo

CoT 80.21 78.20 97.67 74.77
CoT + SV 82.34↑ 85.80⇑ 98.33↑ 74.04↓
CoT + SC 87.11⇑ 84.40⇑ 98.17↑ 75.27↑
CoT + SC + SV 88.25⇑ 86.80⇑ 99.00↑ 75.18↑

Table 2: Accuracy (%) with different backbone engines. ↑/⇑: slightly/significantly better; ↓: slightly worse than
the baseline few-shot CoT. We refer to Weng et al. (2023) for results with GPT-3 and Instruct-GPT engines. As
Weng et al. (2023) didn’t test on MathQA dataset, we also exclude the results of MathQA here for fair comparisons.

defined in Eq (4) and (7) in almost all scenarios
across all tasks (i.e., 8 out of 10 cases), demon-
strating that optimal model performance should
balance both step-level and path-level answer
calibration dominance. Besides, we notice that
for “CoT on SVAMP task” in Figure 2(b) and “zero-
shot CoT on MathQA task” Figure 2(d), employing
integrated answer calibration strategies reaches a
peak with α not between the two thresholds, and
the overall performance remains stably lower than
the initial best accuracy with α = 0 (i.e., SV).
The possible reason may related to employing SV
(i.e., α = 0) presenting more significant advan-
tages than SC (i.e., α = 1) in the two scenarios.
Specifically, CoT on SVAMP respectively achieves
accuracy of 85.80% and 84.40% when α values 0
(SV) and 1 (SC), with the difference larger than 1%;
Zero-shot CoT on MathQA employing SV and SC
achieves accuracy of 52.86% v.s. 49.51%, where
the difference is larger than 3%. Except for these
two distinctive scenarios, others in Figure 2 obtain
the optimal results by synthesizing step-level and
path level answer calibration dominance.

In conclusion, the value of α plays a significant
role in the performance of both few-shot and zero-
shot CoT. Optimal ranges of α for each task are
mostly between the two thresholds of step-level
and path-level answer calibration dominance. The
marked two thresholds represent boundaries for
optimizing performance, which could guide fur-
ther fine-tuning. Besides, the performance variance
across datasets implies that the characteristics of
each task, such as complexity, size, or the nature
of the tasks. Models equipped with answer calibra-
tion strategies may require task-specific tuning to
achieve the best performance.

4.4 Effects of Backbone Models

We compare accuracy on CoT-based answer cal-
ibration strategies with different LLM backbone
engines, and present results in Table 2.

As observed from the results, for GPT-3 and
Instruct-GPT, both self-verification (SV) and self-
consistency (SC) provide consistent improvements;
while on the larger GPT-3.5 model, their improve-
ments are observably weaker, particularly for SV,
with which accuracy even slightly drops on the
CSQA task. The possible reason is that GPT-3.5
is more prone to making mistakes when verifying
on intermediate-step answers for multiple paths.
Further, for integrated answer calibration strate-
gies (SV+SC), the model’s performance is close
to the better one between SV and SC. Generally,
path-level answer calibration is more advantageous
than step-level one, with relatively higher accuracy
and lower computation cost. Based on these ob-
servations, we can infer that answer calibration
strategies, especially path-level self-consistency,
provide benefits in many cases, particularly on
less powerful LLMs.

We further speculate, if the path generation for
CoT with strong backbone LLM is sophisticated
enough, the answer calibration may be simplified.
We can directly conduct path-level answer calibra-
tion for multiple paths. But these findings cannot
indicate that step-level answer calibration is mean-
ingless for stronger backbone LLMs. As seen from
Table 1, LLM equipped with step-level answer cal-
ibration is relatively beneficial to improve consis-
tency scores. Besides, as mentioned in Weng et al.
(2023), step-level answer calibration can provide
explainable answers by verifying on intermediate-
step answers, making results more reliable.

31

Standard No Coherence No Relevance
(a) Accuracy on SVAMP

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

78.2
75.4

29.5

85.8 83.3

66.6

84.4
81.74

43.93

CoT
CoT + SV
CoT + SC

Standard No Coherence No Relevance
(b) Faithfulness on SVAMP

72
74
76
78
80
82
84
86
88
90

Fa
ith

fu
ln

es
s (

Ov
er

 S
te

ps
) S

co
re

 (%
)

87.73
86.76

73.6

87.26
86.5

78.6

87.6 86.98

75.12

CoT
CoT + SV
CoT + SC

Standard No Coherence No Relevance
(c) Informativeness on SVAMP

88

89

90

91

92

93

94

95

96

In
fo

rm
at

iv
en

es
s (

Ov
er

 C
ha

in
) S

co
re

 (%
)

95.74
95.16

88.69

95.0
94.53

91.22

95.71
95.22

89.78

CoT
CoT + SV
CoT + SC

Standard No Coherence No Relevance
(d) Accuracy on MultiArith

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

97.67 96.5

23.0

98.33 98.17

75.0

98.17 98.32

40.73

CoT
CoT + SV
CoT + SC

Standard No Coherence No Relevance
(e) Faithfulness on MultiArith

70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0

Fa
ith

fu
ln

es
s (

Ov
er

 S
te

ps
) S

co
re

 (%
) 88.53

86.94

71.0

88.36

86.09

78.57

88.42
86.82

73.53

CoT
CoT + SV
CoT + SC

Standard No Coherence No Relevance
(f) Informativeness on MultiArith

86

88

90

92

94

96

In
fo

rm
at

iv
en

es
s (

Ov
er

 C
ha

in
) S

co
re

 (%
)

94.91
94.4

86.53

94.38
93.44

90.26

94.82
94.35

87.87

CoT
CoT + SV
CoT + SC

Figure 3: Performance (%) of “Accuracy, Faithfulness (Over Steps) and Informativeness (Over Path)” on SVAMP
and MultiArith with different prompting on CoT models. We didn’t show full results of other tasks for space limits.

4.5 Effects of Prompting
We further demonstrate the effects of prompting
with few-shot demonstrations on answer calibra-
tion, evaluated on CoT models.

We respectively input prompts of no coherence
and no relevance for few-shot CoT referring to
Wang et al. (2023a) (examples are listed in Ap-
pendix C), and present performance on SVAMP
and MultiArith in Figure 3. As seen, the defi-
ciency of coherence and relevance in the prompting
observably weaken the performance of all mod-
els, with no relevance having a more profound
impact than no coherence. In addition, CoT+SV
achieves comparable performance with CoT+SC
when prompting is standard or not coherent. Fur-
ther, CoT+SV tends to perform observably better
than CoT+SC, when prompting with no relevance,
indicating that step-level answer calibration strat-
egy SV, is beneficial to maintain performance under
adverse conditions. This observation suggests the
robustness of step-level answer calibration. It
also highlights the potential benefits of step-level
answer calibration strategies to mitigate perfor-
mance degeneration caused by poor prompting.
The possible reason is that step-level answer cali-
bration strategies break down the task into subtasks,
and these subtasks are simple enough so that less
likely to be influenced by the low-quality prompts.

4.6 Analysis on Tasks
As seen from Table 1,2, and Figure 2, generally,
SV and SC present more significant outperfor-
mance on arithmetic tasks than on the common-
sense task (CSQA). Further, for CSQA, employ-
ing answer calibration tends to worsen the con-
sistency scores, which is contrary to the trend ob-

served in arithmetic tasks. The possible explana-
tion lies in the characteristics of each task, such as
complexity, size, or the nature of the tasks. In the
CSQA task, correct intermediate steps may not al-
ways contribute to a coherent reasoning path due to
potential irrelevance and redundancy. Specifically,
even if we calibrate both intermediate step and
path answers, there can be some correct common-
sense statements while irrelevant to the question,
resulting in worse consistency and perplexity. Con-
versely, in arithmetic tasks, correct intermediate
answers almost guarantee a consistent reasoning
path, as all intermediate answers are necessary and
will contribute to a correct final answer.

5 Conclusion and Future Work

In this paper, we dissect multi-step reasoning into
path generation and answer calibration, and pro-
vide a unified view of answer calibration strategies
through a comprehensive evaluation. We find that
path-level answer calibration is particularly potent
in improving accuracy, while step-level answer cal-
ibration is more suitable for addressing issues re-
lated to low-quality prompting. The improvement
is more pronounced in zero-shot scenarios and less
significant on stronger backbone models. We also
define step-level and path-level answer calibration
dominance with two thresholds, and propose to
integrate of the two types of strategies, which is
promising to achieve optimal performance. Our
findings suggest that answer calibration is a ver-
satile strategy that can be integrated into various
models to bolster multi-step reasoning capabilities
of LLMs. In the future, we aim to develop more
sophisticated multi-step reasoning models, drawing
on the insights and conclusions from this study.

32

Limitations

The main limitation for this paper is that we didn’t
analyze more answer calibration strategies, such
as step-/path-level methods on the single path, and
varying the numbers of steps and paths in the uni-
fied answer calibration strategies. Besides, we can
also employ answer calibration strategies to other
path generation models, not limited to CoT-based
methods. Further, we should also evaluate answer
calibration strategies on more tasks to make the
results more sufficient.

Broader Impact

Technical Novelty Emphasis. We have conducted
an empirical study of answer calibration and pro-
posed a unified method to address that Step-Level
/ Path-Level Answer Calibration for a Single or
Multiple Paths can be integrated together, with the
two thresholds of Step-/Path-Level Dominant An-
swer Calibration and a hyper-parameter α. Our
analysis has the potential to inspire further research
and practical implications on unified answer cali-
bration, such as “how the hyper-parameter α can
be optimally chosen across different tasks, like iter-
ative tuning”. Our paper is based on an empirical
study, and its main contributions are to unify mul-
tiple seemingly disparate types of approaches into
a common framework, allowing us to investigate
empirical questions to obtain more insights, e.g.,

(1) Employing answer calibration can enhance ac-
curacy, with the improvement being more no-
ticeable in zero-shot scenarios and less signifi-
cant on stronger backbone models;

(2) The optimal performance of the unified answer
calibration strategy typically achieved by syn-
thesizing step-level and path level dominance;

(3) Path-level answer calibration is more beneficial
in improving accuracy, and step-level answer
calibration is more effective for mitigating low-
quality prompting;

(4) Answer calibration can improve consistency
on arithmetic tasks but weakens faithfulness,
informativeness and perplexity on both arith-
metic and commonsense tasks.

Acknowledgment

We would like to express gratitude to the anony-
mous reviewers for their kind and helpful com-

ments. This work was supported by the Na-
tional Natural Science Foundation of China (No.
62206246), the Fundamental Research Funds for
the Central Universities (226-2023-00138), Zhe-
jiang Provincial Natural Science Foundation of
China (No. LGG22F030011), Yongjiang Talent
Introduction Programme (2021A-156-G), Tencent
AI Lab Rhino-Bird Focused Research Program
(RBFR2024003), Information Technology Center
and State Key Lab of CAD&CG, Zhejiang Univer-
sity, and NUS-NCS Joint Laboratory (A-0008542-
00-00).

References
Aman Madaan Pranjal Aggarwal and Mausam Yiming

Yang. 2023. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with
llms. In EMNLP, pages 12375–12396. Association
for Computational Linguistics.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In EACL (Student Research Workshop),
pages 225–237. Association for Computational Lin-
guistics.

Renat Aksitov, Sobhan Miryoosefi, Zonglin Li,
Daliang Li, Sheila Babayan, Kavya Kopparapu,
Zachary Fisher, Ruiqi Guo, Sushant Prakash,
Pranesh Srinivasan, Manzil Zaheer, Felix Yu, and
Sanjiv Kumar. 2023. Rest meets react: Self-
improvement for multi-step reasoning llm agent.
CoRR, abs/2312.10003.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. In NAACL-HLT (1), pages 2357–2367. As-
sociation for Computational Linguistics.

Jinheon Baek, Soyeong Jeong, Minki Kang, Jong Park,
and Sung Ju Hwang. 2023. Knowledge-augmented
language model verification. In EMNLP, pages
1720–1736. Association for Computational Linguis-
tics.

Maciej Besta, Nils Blach, Ales Kubicek, Robert
Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michal Podstawski, Hubert
Niewiadomski, Piotr Nyczyk, and Torsten Hoe-
fler. 2023. Graph of thoughts: Solving elabo-
rate problems with large language models. CoRR,
abs/2308.09687.

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng,
Guozhou Zheng, and Huajun Chen. 2024. When do
program-of-thoughts work for reasoning? In AAAI.
AAAI Press.

33

https://aclanthology.org/2023.emnlp-main.761
https://aclanthology.org/2023.emnlp-main.761
https://aclanthology.org/2023.emnlp-main.761
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://arxiv.org/abs/2312.10003
https://arxiv.org/abs/2312.10003
https://doi.org/10.18653/v1/n19-1245
https://doi.org/10.18653/v1/n19-1245
https://doi.org/10.18653/v1/n19-1245
https://aclanthology.org/2023.emnlp-main.107
https://aclanthology.org/2023.emnlp-main.107
https://doi.org/10.48550/ARXIV.2308.09687
https://doi.org/10.48550/ARXIV.2308.09687
https://doi.org/10.48550/ARXIV.2308.15452
https://doi.org/10.48550/ARXIV.2308.15452

Lang Cao. 2023. Graphreason: Enhancing reason-
ing capabilities of large language models through
a graph-based verification approach. CoRR,
abs/2308.09267.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Col-
lier, Karthik Narasimhan, and Shunyu Yao. 2023a.
Fireact: Toward language agent fine-tuning. CoRR,
abs/2310.05915.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023b. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Ja-
cob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to
solve math word problems. CoRR, abs/2110.14168.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting
for multi-step reasoning. In ICLR. OpenReview.net.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: program-aided language
models. In ICML, volume 202 of Proceedings of
Machine Learning Research, pages 10764–10799.
PMLR.

Olga Golovneva, Moya Peng Chen, S pencer Poff,
Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. 2023. ROSCOE: A
suite of metrics for scoring step-by-step reasoning.
In The Eleventh International Conference on Learn-
ing Representations.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In ICML, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1321–1330. PMLR.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. In EMNLP, pages 8154–8173. Associ-
ation for Computational Linguistics.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
ACL (1), pages 14852–14882. Association for Com-
putational Linguistics.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2023.
Large language models can self-improve. In
EMNLP, pages 1051–1068. Association for Compu-
tational Linguistics.

Song Jiang, Zahra Shakeri, Aaron Chan, Maziar San-
jabi, Hamed Firooz, Yinglong Xia, Bugra Akyildiz,
Yizhou Sun, Jinchao Li, Qifan Wang, and Asli Ce-
likyilmaz. 2023. Resprompt: Residual connection
prompting advances multi-step reasoning in large
language models. CoRR, abs/2310.04743.

Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu,
Yu Zhang, Zhenguo Li, and James T. Kwok. 2024.
Forward-backward reasoning in large language mod-
els for mathematical verification. In ACL (Findings).
Association for Computational Linguistics.

Zhanming Jie and Wei Lu. 2023. Leveraging training
data in few-shot prompting for numerical reasoning.
In ACL (Findings), pages 10518–10526. Association
for Computational Linguistics.

Zhanming Jie, Trung Quoc Luong, Xinbo Zhang,
Xiaoran Jin, and Hang Li. 2023. Design of
chain-of-thought in math problem solving. CoRR,
abs/2309.11054.

Ziqi Jin and Wei Lu. 2023. Tab-cot: Zero-shot tabular
chain of thought. In ACL (Findings), pages 10259–
10277. Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In NeurIPS.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li,
Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and
Xiaohang Dong. 2024. Better zero-shot reasoning
with role-play prompting. In NAACL (1). Associa-
tion for Computational Linguistics.

Jack Lanchantin, Shubham Toshniwal, Jason Weston,
Arthur Szlam, and Sainbayar Sukhbaatar. 2023.
Learning to reason and memorize with self-notes. In
NeurIPS.

Soochan Lee and Gunhee Kim. 2023. Recursion of
thought: A divide-and-conquer approach to multi-
context reasoning with language models. In ACL
(Findings), pages 623–658. Association for Compu-
tational Linguistics.

IokTong Lei and Zhidong Deng. 2023. Selfzcot: a
self-prompt zero-shot cot from semantic-level to
code-level for a better utilization of llms. CoRR,
abs/2305.11461.

Xiaonan Li and Xipeng Qiu. 2023. Mot: Memory-of-
thought enables chatgpt to self-improve. In EMNLP,
pages 6354–6374. Association for Computational
Linguistics.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Lidong Bing, Shafiq R. Joty, and Soujanya
Poria. 2024. Chain of knowledge: A framework
for grounding large language models with structured
knowledge bases. In ICLR. OpenReview.net.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In ACL (1), pages 5315–5333. Association
for Computational Linguistics.

Zhenwen Liang, Dian Yu, Xiaoman Pan, Wenlin Yao,
Qingkai Zeng, Xiangliang Zhang, and Dong Yu.
2024. Mint: Boosting generalization in mathemat-
ical reasoning via multi-view fine-tuning. In LREC/-
COLING, pages 11307–11318. ELRA and ICCL.

34

https://doi.org/10.48550/ARXIV.2308.09267
https://doi.org/10.48550/ARXIV.2308.09267
https://doi.org/10.48550/ARXIV.2308.09267
https://doi.org/10.48550/ARXIV.2310.05915
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/pdf?id=yf1icZHC-l9
https://openreview.net/pdf?id=yf1icZHC-l9
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://openreview.net/forum?id=xYlJRpzZtsY
https://openreview.net/forum?id=xYlJRpzZtsY
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507
https://doi.org/10.18653/V1/2023.ACL-LONG.830
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.67
https://doi.org/10.48550/ARXIV.2310.04743
https://doi.org/10.48550/ARXIV.2310.04743
https://doi.org/10.48550/ARXIV.2310.04743
https://doi.org/10.48550/arXiv.2308.07758
https://doi.org/10.48550/arXiv.2308.07758
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.668
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.668
https://doi.org/10.48550/ARXIV.2309.11054
https://doi.org/10.48550/ARXIV.2309.11054
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.651
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.651
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2308.07702
https://doi.org/10.48550/arXiv.2308.07702
http://papers.nips.cc/paper_files/paper/2023/hash/274d0146144643ee2459a602123c60ff-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.40
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.40
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.40
https://doi.org/10.48550/ARXIV.2305.11461
https://doi.org/10.48550/ARXIV.2305.11461
https://doi.org/10.48550/ARXIV.2305.11461
https://aclanthology.org/2023.emnlp-main.392
https://aclanthology.org/2023.emnlp-main.392
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://aclanthology.org/2024.lrec-main.988
https://aclanthology.org/2024.lrec-main.988

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In ICLR. OpenRe-
view.net.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reason-
ing. In NeurIPS.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. 2023.
Chain of hindsight aligns language models with
feedback. CoRR, abs/2302.02676.

Jieyi Long. 2023. Large language model guided tree-
of-thought. CoRR, abs/2305.08291.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Katherine Hermann, Shashank Gupta, Amir Yazdan-
bakhsh, and Peter Clark. 2024. Self-refine: Iterative
refinement with self-feedback. In ICLR. OpenRe-
view.net.

Ning Miao, Yee Whye Teh, and Tom Rainforth. 2024.
Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. In ICLR. OpenReview.net.

Michalis Mountantonakis and Yannis Tzitzikas. 2023.
Using multiple RDF knowledge graphs for enrich-
ing chatgpt responses. In ECML/PKDD (7), volume
14175 of Lecture Notes in Computer Science, pages
324–329. Springer.

Alexandru Niculescu-Mizil and Rich Caruana. 2005.
Predicting good probabilities with supervised learn-
ing. In ICML, volume 119 of ACM Interna-
tional Conference Proceeding Series, pages 625–
632. ACM.

OpenAI. 2023. GPT-4 technical report. OpenAI.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang.
2024. Automatically correcting large language mod-
els: Surveying the landscape of diverse automated
correction strategies. Transactions of the Associa-
tion for Computational Linguistics, 12:484–506.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In NAACL-HLT, pages 2080–
2094. Association for Computational Linguistics.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and Boi
Faltings. 2024. REFINER: reasoning feedback on
intermediate representations. In EACL (1), pages
1100–1126. Association for Computational Linguis-
tics.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2023. Reasoning with language
model prompting: A survey. In ACL (1), pages
5368–5393. Association for Computational Linguis-
tics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Ope-
nAI.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In EMNLP, pages 1743–1752.
The Association for Computational Linguistics.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar,
Lu Wang, Ruoxi Jia, and Ming Jin. 2024. Algorithm
of thoughts: Enhancing exploration of ideas in large
language models. In ICML, Proceedings of Machine
Learning Research. PMLR.

Fobo Shi, Peijun Qing, Dong Yang, Nan Wang, Youbo
Lei, Haonan Lu, and Xiaodong Lin. 2023. Prompt
space optimizing few-shot reasoning success with
large language models. CoRR, abs/2306.03799.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with verbal
reinforcement learning. In NeurIPS.

Simeng Sun, Yang Liu, Shuohang Wang, Dan Iter,
Chenguang Zhu, and Mohit Iyyer. 2024. PEARL:
prompting large language models to plan and ex-
ecute actions over long documents. In EACL (1),
pages 469–486. Association for Computational Lin-
guistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. In NAACL-HLT (1), pages 4149–4158.
Association for Computational Linguistics.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher D. Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback. In EMNLP, pages 5433–5442. Associa-
tion for Computational Linguistics.

Xingchen Wan, Ruoxi Sun, Hanjun Dai, Sercan Ö.
Arik, and Tomas Pfister. 2023. Better zero-shot rea-
soning with self-adaptive prompting. In ACL (Find-
ings), pages 3493–3514. Association for Computa-
tional Linguistics.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2023a.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. In ACL (1),
pages 2717–2739. Association for Computational
Linguistics.

35

https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/arXiv.2306.03872
https://doi.org/10.48550/arXiv.2306.03872
https://doi.org/10.48550/arXiv.2302.02676
https://doi.org/10.48550/arXiv.2302.02676
https://doi.org/10.48550/ARXIV.2305.08291
https://doi.org/10.48550/ARXIV.2305.08291
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=pTHfApDakA
https://openreview.net/forum?id=pTHfApDakA
https://doi.org/10.1007/978-3-031-43430-3_24
https://doi.org/10.1007/978-3-031-43430-3_24
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
https://cdn.openai.com/papers/gpt-4.pdf
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://aclanthology.org/2024.eacl-long.67
https://aclanthology.org/2024.eacl-long.67
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.18653/v1/d15-1202
https://doi.org/10.18653/v1/d15-1202
https://doi.org/10.48550/arXiv.2308.10379
https://doi.org/10.48550/arXiv.2308.10379
https://doi.org/10.48550/arXiv.2308.10379
https://doi.org/10.48550/ARXIV.2306.03799
https://doi.org/10.48550/ARXIV.2306.03799
https://doi.org/10.48550/ARXIV.2306.03799
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://aclanthology.org/2024.eacl-long.29
https://aclanthology.org/2024.eacl-long.29
https://aclanthology.org/2024.eacl-long.29
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://aclanthology.org/2023.emnlp-main.330
https://aclanthology.org/2023.emnlp-main.330
https://aclanthology.org/2023.emnlp-main.330
https://aclanthology.org/2023.emnlp-main.330
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.216
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.216
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2023.acl-long.153

Jianing Wang, Qiushi Sun, Nuo Chen, Xiang Li, and
Ming Gao. 2024a. Boosting language models rea-
soning with chain-of-knowledge prompting. In ACL.
Association for Computational Linguistics.

Jinyuan Wang, Junlong Li, and Hai Zhao. 2023b.
Self-prompted chain-of-thought on large language
models for open-domain multi-hop reasoning. In
EMNLP (Findings), pages 2717–2731. Association
for Computational Linguistics.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2024b. Math-
coder: Seamless code integration in llms for en-
hanced mathematical reasoning. In ICLR. OpenRe-
view.net.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang
Li, Yunsen Xian, Chuantao Yin, Wenge Rong,
and Zhang Xiong. 2023c. Knowledge-driven
cot: Exploring faithful reasoning in llms for
knowledge-intensive question answering. CoRR,
abs/2308.13259.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Ji-Rong Wen. 2024c. A survey on large lan-
guage model based autonomous agents. Front. Com-
put. Sci., 18.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023d. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In ACL (1), pages 2609–2634. Association
for Computational Linguistics.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao,
Bing Yin, and Xiang Ren. 2023e. SCOTT: self-
consistent chain-of-thought distillation. In ACL (1),
pages 5546–5558. Association for Computational
Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023f. Self-consistency im-
proves chain of thought reasoning in language mod-
els. In The Eleventh International Conference on
Learning Representations.

Yiming Wang, Zhuosheng Zhang, Pei Zhang, Baosong
Yang, and Rui Wang. 2024d. Meta-reasoning:
Semantics-symbol deconstruction for large language
models. In ACL (Findings). Association for Compu-
tational Linguistics.

Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi,
Wangchunshu Zhou, Shaochun Hao, Guangzheng
Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen,
Qingqing Zhu, Zhenzhu Yang, Adam Nik, Qi Liu,
Chenghua Lin, Shi Wang, Ruibo Liu, Wenhu Chen,
Ke Xu, Dayiheng Liu, Yike Guo, and Jie Fu. 2023g.
Interactive natural language processing. CoRR,
abs/2305.13246.

Zhaoyang Wang, Shaohan Huang, Yuxuan Liu, Jiahai
Wang, Minghui Song, Zihan Zhang, Haizhen Huang,
Furu Wei, Weiwei Deng, Feng Sun, and Qi Zhang.
2023h. Democratizing reasoning ability: Tailored
learning from large language model. In EMNLP,
pages 1948–1966. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners
with self-verification. In EMNLP (Findings), pages
2550–2575. Association for Computational Linguis-
tics.

Zhenyu Wu, Meng Jiang, and Chao Shen. 2024. Get
an a in math: Progressive rectification prompting. In
AAAI. AAAI Press.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yi-
wen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiao-
ran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,
Weiran Wang, Changhao Jiang, Yicheng Zou, Xi-
angyang Liu, Zhangyue Yin, Shihan Dou, Rongxi-
ang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin,
Yongyan Zheng, Xipeng Qiu, Xuanjing Huan, and
Tao Gui. 2023a. The rise and potential of large
language model based agents: A survey. CoRR,
abs/2309.07864.

Zhiheng Xi, Senjie Jin, Yuhao Zhou, Rui Zheng,
Songyang Gao, Jia Liu, Tao Gui, Qi Zhang, and Xu-
anjing Huang. 2023b. Self-polish: Enhance reason-
ing in large language models via problem refinement.
In EMNLP (Findings), pages 11383–11406. Associ-
ation for Computational Linguistics.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie
Fu, Junxian He, and Bryan Hooi. 2024. Can llms
express their uncertainty? an empirical evaluation
of confidence elicitation in llms. In ICLR. OpenRe-
view.net.

Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu,
Hongbo Xu, Guodong Long, and Jianguang Lou.
2023. Re-reading improves reasoning in language
models. CoRR, abs/2309.06275.

Tianci Xue, Ziqi Wang, Zhenhailong Wang, Chi Han,
Pengfei Yu, and Heng Ji. 2023. RCOT: detecting
and rectifying factual inconsistency in reasoning by
reversing chain-of-thought. CoRR, abs/2305.11499.

Fanglong Yao, Changyuan Tian, Jintao Liu, Zequn
Zhang, Qing Liu, Li Jin, Shuchao Li, Xiaoyu Li,
and Xian Sun. 2023a. Thinking like an expert:
Multimodal hypergraph-of-thought (hot) reasoning
to boost foundation modals. CoRR, abs/2308.06207.

36

https://doi.org/10.48550/arXiv.2306.06427
https://doi.org/10.48550/arXiv.2306.06427
https://aclanthology.org/2023.findings-emnlp.179
https://aclanthology.org/2023.findings-emnlp.179
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://doi.org/10.48550/ARXIV.2308.13259
https://doi.org/10.48550/ARXIV.2308.13259
https://doi.org/10.48550/ARXIV.2308.13259
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/V1/2023.ACL-LONG.304
https://doi.org/10.18653/V1/2023.ACL-LONG.304
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.48550/arXiv.2306.17820
https://doi.org/10.48550/arXiv.2306.17820
https://doi.org/10.48550/arXiv.2306.17820
https://doi.org/10.48550/arXiv.2305.13246
https://aclanthology.org/2023.emnlp-main.120
https://aclanthology.org/2023.emnlp-main.120
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://aclanthology.org/2023.findings-emnlp.167
https://aclanthology.org/2023.findings-emnlp.167
https://arxiv.org/abs/2312.06867
https://arxiv.org/abs/2312.06867
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.762
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.762
https://openreview.net/pdf?id=gjeQKFxFpZ
https://openreview.net/pdf?id=gjeQKFxFpZ
https://openreview.net/pdf?id=gjeQKFxFpZ
https://doi.org/10.48550/ARXIV.2309.06275
https://doi.org/10.48550/ARXIV.2309.06275
https://doi.org/10.48550/ARXIV.2305.11499
https://doi.org/10.48550/ARXIV.2305.11499
https://doi.org/10.48550/ARXIV.2305.11499
https://doi.org/10.48550/ARXIV.2308.06207
https://doi.org/10.48550/ARXIV.2308.06207
https://doi.org/10.48550/ARXIV.2308.06207

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023b. Tree of thoughts: Deliberate
problem solving with large language models. In
NeurIPS.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao.
2023c. React: Synergizing reasoning and acting in
language models. In ICLR. OpenReview.net.

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles,
Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy,
Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran
Xu, Phil Mui, Huan Wang, Caiming Xiong, and
Silvio Savarese. 2024. Retroformer: Retrospective
large language agents with policy gradient optimiza-
tion. In ICLR. OpenReview.net.

Yao Yao, Zuchao Li, and Hai Zhao. 2023d. Be-
yond chain-of-thought, effective graph-of-thought
reasoning in large language models. CoRR,
abs/2305.16582.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz,
Daniel Deutch, and Jonathan Berant. 2023. An-
swering questions by meta-reasoning over multiple
chains of thought. In EMNLP, pages 5942–5966.
Association for Computational Linguistics.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2024. Mammoth: Building math generalist models
through hybrid instruction tuning. In ICLR. Open-
Review.net.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. STar: Bootstrapping reasoning with rea-
soning. In NeurIPS.

Mengxue Zhang, Zichao Wang, Zhichao Yang, Weiqi
Feng, and Andrew S. Lan. 2023. Interpretable math
word problem solution generation via step-by-step
planning. In ACL (1), pages 6858–6877. Associa-
tion for Computational Linguistics.

Ruochen Zhao, Xingxuan Li, Shafiq R. Joty, Chengwei
Qin, and Lidong Bing. 2023a. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework.
In ACL (1), pages 5823–5840. Association for Com-
putational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023b. A survey of large language models. CoRR,
abs/2303.18223.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting im-
proves reasoning in large language models. CoRR,
abs/2304.09797.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi
Song, Mingjie Zhan, and Hongsheng Li. 2024. Solv-
ing challenging math word problems using GPT-
4 code interpreter with code-based self-verification.
In ICLR. OpenReview.net.

Appendices

A Terminology Clarification of Answer
Calibration and Model Calibration

To avoid the confusion caused by the usage of the
already-existing concept “calibration”, we provide
a terminology clarification. We emphasize that “an-
swer calibration” defined in our paper differs
from “model calibration” (Niculescu-Mizil and
Caruana, 2005; Guo et al., 2017; Tian et al., 2023;
Xiong et al., 2024). “Answer Calibration” refers
to the post-processing methods applied to one or
more reasoning path(s), to obtain a final answer.
We categorize answer calibration methods as ‘step-
level’ if they break down the reasoning path(s) into
their individual steps, and ‘path-level’ otherwise.
In most cases, “Answer Calibration” is more akin
to “Answer Correction” (Pan et al., 2024), involves
correcting mistakes in the initial output. We did
give a definition like this in the Abstract, Introduc-
tion, and we have already provided clear definitions
of “Answer Calibration” in §3.

B Model Choice Justification

The choice of GPT-3.5 was driven by its relevance
and accessibility for our research objectives. Our
research includes an empirical study of answer cal-
ibration and a proposal of a unified method, where
the backbone LLM is pluggable. To facilitate re-
producibility, we have already released the code
and LLM-generated data anonymously1 (provided
at the bottom of Page 5 in §4), aiming to enhance
transparency to some extent and facilitate further
research in this area. We remain committed to ex-
ploring more transparent models in future work.

37

https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/forum?id=KOZu91CzbK
https://openreview.net/forum?id=KOZu91CzbK
https://openreview.net/forum?id=KOZu91CzbK
https://doi.org/10.48550/arXiv.2305.16582
https://doi.org/10.48550/arXiv.2305.16582
https://doi.org/10.48550/arXiv.2305.16582
https://aclanthology.org/2023.emnlp-main.364
https://aclanthology.org/2023.emnlp-main.364
https://aclanthology.org/2023.emnlp-main.364
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://doi.org/10.18653/V1/2023.ACL-LONG.379
https://doi.org/10.18653/V1/2023.ACL-LONG.379
https://doi.org/10.18653/V1/2023.ACL-LONG.379
https://doi.org/10.18653/v1/2023.acl-long.320
https://doi.org/10.18653/v1/2023.acl-long.320
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/ARXIV.2304.09797
https://doi.org/10.48550/ARXIV.2304.09797
https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0

C Cases of Low-Quality Prompts

We list some examples of prompts in Table 3.

Prompt Setting

Example Query (Arithmetic Reasoning)
Leah had 32 chocolates and her sister had 42.
If they ate 35,
how many pieces do they have left in total?

Standard CoT

Originally,
Leah had 32 chocolates and her sister had 42.
So in total they had 32 + 42 = 74.
After eating 35,
they had 74 - 35 = 39 pieces left in total.
The answer is 39.

No Coherence

After eating 32 + 42 = 74,
they had 32 pieces left in total.
Originally, Leah had 74 - 35 = 39 chocolates
and her sister had 35.
So in total they had 42. The answer is 39.

No Relevance

Patricia needs to donate 19 inches,
and wants her hair to be 31 inches long
after the donation.
Her hair is 29 inches long currently.
Her hair needs to be 19 + 31 = 50
inc long when she cuts it.
So she needs to grow 50 - 29 = 21 more inches.
The answer is 21.

Table 3: Examples of prompts (standard, no coherence
and no relevance) in our experiments.

38

Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024), pages 39–45
August 15, 2024 ©2024 Association for Computational Linguistics

Applying RLAIF for Code Generation with API-usage in Lightweight
LLMs

Sujan Dutta1, †, Sayantan Mahinder2, Raviteja Anantha2, and Bortik Bandyopadhyay2

1Rochester Institute of Technology, sd2516@rit.edu
2Apple, {smahinder, raviteja_anantha, bbandyopadhyay}@apple.com

Abstract
Reinforcement Learning from AI Feedback
(RLAIF) has demonstrated significant poten-
tial across various domains, including miti-
gating harm in LLM outputs, enhancing text
summarization, and mathematical reasoning.
This paper introduces an RLAIF framework
for improving the code generation abilities
of lightweight (<1B parameters) LLMs. We
specifically focus on code generation tasks that
require writing appropriate API calls, which is
challenging due to the well-known issue of hal-
lucination in LLMs. Our framework extracts
AI feedback from a larger LLM (e.g., GPT-
3.5) through a specialized prompting strategy
and uses this data to train a reward model to-
wards better alignment from smaller LLMs. We
run our experiments on the Gorilla dataset and
meticulously assess the quality of the model-
generated code across various metrics, includ-
ing AST, ROUGE, and Code-BLEU, and de-
velop a pipeline to compute its executability
rate accurately. Our approach significantly en-
hances the fine-tuned LLM baseline’s perfor-
mance, achieving a 4.5% improvement in exe-
cutability rate. Notably, a smaller LLM model
(780M parameters) trained with RLAIF sur-
passes a much larger fine-tuned baseline with
7B parameters, achieving a 1.0% higher code
executability rate.

1 Introduction

LLMs have demonstrated unprecedented natural
language understanding and generation capabilities
in recent times (Brown et al., 2020; Chowdhery
et al., 2022; OpenAI, 2023; Anil et al., 2023; Jiang
et al., 2023; Touvron et al., 2023). Reinforcement
Learning with Human Feedback (RLHF) is a key
contributor to this success. RLHF is a fine-tuning
approach that uses human feedback to train mod-
els by incorporating human evaluations into the
reward signal. This method improves model perfor-
mance on complex tasks by aligning the model’s

† Work done as a part of an internship at Apple.

behavior with human preferences. However, this
technique is expensive due to the requirement for
high-quality human feedback. RLAIF (Bai et al.,
2022; Lee et al., 2023) has emerged as a promis-
ing alternative to replace human feedback with AI
feedback, making the fine-tuning more scalable.
Concurrently, there is growing research interest in
teaching LLMs how to use external tools (APIs)
(Schick et al., 2024; Nakano et al., 2021; Patil et al.,
2023; Qin et al., 2023; Li et al., 2023; Zhuang et al.,
2024; Hao et al., 2024). However, the focus on
lightweight models (<1B parameters) is limited.
In this work, we propose an RLAIF framework to
enhance lightweight LLMs’ capability to generate
code and effectively integrate API calls. Following
Patil et al. (2023), we consider the task of gener-
ating Python codes that include suitable API calls
given instructions across a wide array of applica-
tions. The authors published the Gorilla dataset and
showed that fine-tuned LLaMA-7B (Touvron et al.,
2023) on this dataset outperforms non-finetuned
LLMs like GPT-4 (OpenAI, 2023) in terms of
understanding a natural language request and map-
ping it to API calls. Using our RLAIF framework,
we fine-tune GPT-2-large (Radford et al., 2019)
(780M parameters), which not only demonstrates
comparable API call correctness to (Patil et al.,
2023) but also surpasses its code generation perfor-
mance.

Code Generation. Although extensively studied
since the early days of AI research, code gener-
ation (Waldinger and Lee, 1969; Budinsky et al.,
1996; Svyatkovskiy et al., 2020; Li et al., 2022)
remains a challenging problem. In recent years,
the community has explored ways to apply RL in
training machine learning models for code gener-
ation tasks. For instance, Seq2SQL (Zhong et al.,
2017) proposed a neural network trained through
RL for generating SQL queries given a text descrip-
tion. During training, a generated query is executed

39

against a database, and the result is utilized as the
reward in the RL algorithm. Le et al. (2022) de-
veloped CodeRL, a sequence-to-sequence language
model fine-tuned through an actor-critic RL ap-
proach for program synthesis. The code-generator
LM is treated as the actor during the training, and
the critic model, which is trained to predict unit test
results, provides the reward for a generated code.
Another work (Shojaee et al., 2023) similar to the
above, proposed using feedback from code exe-
cution and a ground truth target code to compute
the reward. While these approaches may perform
well on classical programming tasks (e.g., writ-
ing SQL queries, solving competitive/interview-
level coding problems, etc.), they are inapplicable
on Gorilla-like (Patil et al., 2023) code generation
where the program is required to load and execute
ML models using the correct API. The bottleneck
comes from the fact that the above-mentioned tech-
niques require execution of the generated code to
either compute the reward directly or train the critic
model, but running thousands of such programs is
prohibitively expensive.

Reinforcement Learning with AI Feedback.
Bai et al. (2022) introduced the concept of Re-
inforcement Learning with AI Feedback (RLAIF),
which combines preferences labeled by LLMs with
human-labeled preferences to optimize for helpful-
ness and harmlessness. Since then, many studies
have explored the usefulness of AI-generated feed-
back as an alternative to expensive human anno-
tations in various tasks. For instance, Luo et al.
(2023) proposed WizardMath, which enhances the
mathematical reasoning abilities of Llama-2 us-
ing AI feedback in the training process. In another
work (Zhang et al., 2023), researchers used real-
world data along with RLAIF to improve LLMs
as medical consultants. Prior research has also
explored AI evaluation for improving factual cor-
rectness in LLM-generated medical summaries
(Mishra et al., 2023). Kwon et al. (2023) explored
the usefulness of LLMs in the reward design for
RL agents in Ultimatum Game, matrix games, and
the DealOrNoDeal negotiation task. Recently, Lee
et al. (2023) demonstrated that RLAIF can achieve
human-level performance in summarization and
helpful and harmless text generation. However, the
possibility of using RLAIF to improve the code gen-
eration and API usage ability in small models (<1B
parameters) is under-explored. We demonstrate
that even with a few model parameters, AI feed-

back significantly improves code generation quality
over simple fine-tuning baselines. Moreover, we
found RLAIF applied on smaller 780M parameter
GPT-2-large model outperforms LLaMA-7B
fine-tuned models, which has nine times more pa-
rameters.

2 Dataset

We applied our proposed method to the Gorilla
dataset published by Patil et al. (2023). The Go-
rilla dataset consists of three parts - HuggingFace,
TensorFlow, and PyTorch. In this work, we only
focus on the HuggingFace dataset, which is the
most extensive among the three, featuring over 925
unique APIs. These APIs belong to 37 different do-
mains (e.g., Multimodal Text-to-Image, Computer
Vision Image Classification, Audio Text-to-Speech,
etc.), and for each API, there exist ten unique in-
structions. Each instance of the data contains an
instruction (task description), domain, API call (a
single code line), explanation (how to solve the
task using the API), and a complete code (Python
script) to accomplish the task. Here, we highlight
some key differences between Gorilla and the tra-
ditional code generation datasets. Most of the prob-
lem statements and corresponding code snippets
present in the benchmark datasets including Code-
SearchNet (Husain et al., 2019), XLCoST (Zhu
et al., 2022), APPS (Hendrycks et al., 2021) and
MBPP (Austin et al., 2021) are related to tradi-
tional software engineering tasks, representative
of common interview questions, require minimal
computational resources to execute and do not re-
quire internet connection. On the contrary, the
Python scripts in the Gorilla dataset focus on AI-
related tasks and require an internet connection and
significant computing resources (storage and pro-
cessing power) to execute. The scripts are expected
to download ML models hosted on HuggingFace,
load them in memory, and run inference. So, tech-
niques where code execution or unit test outcomes
are treated as feedback (Zhong et al., 2017; Le et al.,
2022; Shojaee et al., 2023) become inapplicable.

While Patil et al. (2023) focused only on gener-
ating the API call, we demonstrate the effectiveness
of our approach both on API call correctness and
the ability to use that API in a complete code.

3 Methodology

Our framework follows a similar pipeline to RLHF
(Ouyang et al., 2022). However, instead of asking

40

training data

Prompt
Given an input task and a Python code,
determine if the code imports all the necessary
classes/modules for execution.

Task:

Code:

Prompt
Given an input task and a Python code,
determine if the code imports all the necessary
classes/modules for execution.

Task:

Code:

{Instruction, Output}
pairs

Prompt
Given an input task and a Python code,
determine if the code imports all the necessary
classes/modules for execution.

Task:

Code:

Accumulate GPT-3.5 responses over all the
prompts to score and rank the generated codes

Same prompts are used for instruction

Generated
code

RL using
PPO

reward

STEP 1 STEP 2

supervised fine-tuning

GPT-2-large

Generated
code A

Instruction

code A

Instruction

code B

multiple prompts

Generated
code B

code A code B<

Instruction

training with classifier head

STEP 3

Figure 1: Schematic diagram of the proposed framework. Step 1 is to fine-tune a base model on the dataset. In step
2, we score theMSFT generated outputs based on the GPT-3.5 feedback using the technique described in section
3. Using this score, we prepare preference data and train a reward model. Finally, in step 3, we use RL to fine-tune
MSFT whereMreward provides the reward.

human annotators to rank the generated responses,
we employ a bigger LLM by using a novel prompt-
ing strategy. More specifically, for a given instruc-
tion and generated code (containing an API call),
we ask multiple binary (yes/no) questions that cap-
ture different aspects of the generated code (and
API call) to determine its quality. Our intuition is,
that while generating code from natural language
might be still challenging for LLMs, providing
binary (yes/no) answers guided by few-shot exem-
plars is a much easier task. These feedbacks in turn
could be aggregated as a preference ground truth to
train the reward model in the RLHF (Ouyang et al.,
2022) process. Thus our approach eliminates the
need for expensive human annotation cost. We de-
scribe the proposed framework (Figure 1) in detail.

• Step 1: Training a base model

The first step in the pipeline is to fine-tune a lan-
guage model on the dataset to get a base model. We
choose GPT-2-large and train it on the Gorilla
dataset using the supervised fine-tuning technique
for causal language models. We denote the fine-

tuned model byMSFT .

• Step 2: Training a reward model using LLM
feedback

Instead of human feedback from annotators, we
employed a bigger LLM to generate the labels
for the reward model. We realized that human
graders while judging the correctness of a response,
consider different aspects of the generated out-
put. Based on this intuition, we created multi-
ple prompts (Pi) that ask different questions (Qi)
for the same input-output pair. More specifically,
we created a set of 8 questions which We feed as
prompts to a state-of-the-art language model (GPT-
3.5) to get a binary response. Each of these ques-
tions addresses a different desired quality (free of
bugs, correct imports, no undefined variables, cor-
rect syntax, etc.) of the output relevant to the task.
Step 2 in Figure 1 presents a sample prompt made
using one of the questions. The appendix contains
the complete list of prompts. As the questions are
binary (yes/no) in nature, we simply count the num-
ber of yes replies byMGPT 3.5 to score each input-

41

output pair. More formally, given a task t, gener-
ated output o, and question set {Qi} the prompt set
is defined as P (t, o) = {Pi | Pi = [Qi, t, o]}. The
corresponding score (S) is given as:

S(t, o) =

∑
Pi∈P (t,o) I(MGPT 3.5(Pi) = yes)

|P (t, o)|

where I is the indicator function andMGPT 3.5(Pi)
is the reply from MGPT 3.5 for the prompt Pi.
We use this score to prepare the training data for
Mreward in the following way. For each instruction
in the training data, we generate two outputs from
MSFT by varying the generation parameters (top-
k, temperature, etc.). Then they are scored using
the method described above and labeled (accept
or reject) based on this score. These tuples of {in-
put instruction, accepted output, rejected output}
are then combined to form the dataset forMreward.
In the training phase, Mreward learns to classify
whether a machine-generated code is acceptable
(or not) for a given input instruction. We append a
classifier head on top ofMSFT and use this as the
starting point ofMreward and train for three epochs.
• Step 3: Reinforcement Learning

Finally, in the RL step, we fine-tuneMSFT using
the proximal policy optimization (PPO) algorithm
(Schulman et al., 2017). The reward in this step
is given byMreward’s logit scores. We denote our
final fine-tuned model byMRL.

4 Results and Discussions

Model Name
(Size)

Executability
Rate (%)

ROUGE
(×100)

CodeBLEU
(×100)

AST
(%)

MGorilla (2023) (7B) 26.9 41.2 36.8 71.68
MSFT (780M) 23.4 47.2 40.6 72.96
MRL (780M) 27.9 47.5 42.2 73.62

Table 1: Performance comparison of different models
on the Gorilla dataset.

We compute the code generation quality using
multiple metrics by comparing the generated out-
put with the ground truth. The reported ROUGE is
the average of ROUGE-1, ROUGE-2, ROUGE-L,
and ROUGE-sum metrics introduced in (Lin, 2004).
CodeBLEU (Ren et al., 2020) was specifically de-
signed for evaluating code synthesis. Ren et al.
(2020) defined CodeBLEU as the weighted aver-
age of standard BLEU (Papineni et al., 2002), the
weighted n-gram match (BLEUweight), the syntactic
AST match (Matchast), and the semantic dataflow
match (Matchdf). CodeBLEU = α · BLEU + β ·

from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('DeepPavlov/rubert-base-cased')
tokenizer = AutoTokenizer.from_pretrained('DeepPavlov/rubert-base-
cased')
encoded_text = tokenizer(russian_text, return_tensors='pt')
features = model(**encoded_text).last_hidden_state

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('DeepPavlov/rubert-base-
cased')
model = AutoModel.from_pretrained('DeepPavlov/rubert-base-cased')
tokens = tokenizer.encode(russian_text, return_tensors='pt')
features = model(tokens)

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('DeepPavlov/rubert-base-
cased')
model = AutoModel.from_pretrained('DeepPavlov/rubert-base-cased')
text = "Russian text here..."
tokens = tokenizer(text, return_tensors='pt')
outputs = model(**tokens)

Instruction: We need to extract useful features from Russian text
for downstream tasks.

Figure 2: Example code generated by different models
for the same instruction. In the generations ofMGorilla

andMSFT the variable russian_text is undefined
and hence will result in an error. WhereasMRL defines
the variable text before using it.

BLEUweight + γ · Matchast + δ · Matchdf . We set
α = β = γ = δ = 0.25 to give equal importance
to all the components. The AST sub-tree-matching
metric was proposed in (Patil et al., 2023) to cap-
ture the correctness of the API calls. In addition to
that, we also report the successful execution rate
of the generated code (Executability Rate). It is
worth noting that running this amount of machine-
generated programs that download and use large
AI models is challenging. We created a pipeline to
automatically run the machine-generated codes in
an isolated environment.

Table 1 compares the performance of the pro-
posed model withMGorilla (finetuned LLaMA-7B)
(2023). The results clearly show that the pro-
posedMRL boosts the performance of the super-
vised fine-tunedMSFT in terms of CodeBLEU (1.6
points abs), AST (0.66% abs) and Executability
Rate (4.5% abs). We also note thatMRL outper-
forms the MGorilla despite having only 1/9-th of
the parameters. It is also reflected in the Executabil-
ity Rate of the generated code. Figure 2 shows an
instance where our framework helps in fixing a
common error present inMGorilla andMSFT gen-
erations.

42

5 Ethics statement

This work adheres to the ethical guidelines and
principles set out in the ACM Code of Ethics and
followed by the broader research community. The
dataset used in this paper was originally collected
from public repositories hosted on HuggingFace.
The authors are aware of the growing literature on
jailbreaking language models to generate unsafe
content. We hope the community will use the pro-
posed models responsibly and only for the intended
use cases.

6 Limitations

One of the common limitations faced by similar
fine-tuned models is the presence of biases inher-
ited from the pre-trained model. We anticipate
that the biases present in the chosen base model
(GPT-2-large) also exist in the final model
MRL which might lead to the generation of biased
code comments.

Another limitation of this work is the lack of
diversity in programming language. The public
dataset we considered contains only Python code.
Future work should consider expanding this ap-
proach to encompass additional programming lan-
guages such as C++, Java, JavaScript, etc. Besides,
we have not analyzed the performance between
more frequent APIs (head) and infrequent APIs
(tail). There might be some scope for improve-
ments by focusing on tail APIs more.

Lastly, the learning methodology applied in this
study is offline. Given the rapid evolution and pro-
liferation of machine learning models and the cor-
responding APIs for specific tasks, the model may
not leverage more suitable APIs that emerge post-
training. To address this, periodic updates to the
model are necessary. Our framework’s reliance on
machine-generated feedback significantly reduces
the resource intensity associated with the RLHF
process, making these updates more feasible and
less costly than a human feedback-based approach.

References
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen

Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Frank J. Budinsky, Marilyn A. Finnie, John M. Vlis-
sides, and Patsy S. Yu. 1996. Automatic code gen-
eration from design patterns. IBM systems Journal,
35(2):151–171.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2024. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Ad-
vances in neural information processing systems, 36.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv:1909.09436.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and
Dorsa Sadigh. 2023. Reward design with language
models. arXiv preprint arXiv:2303.00001.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314–21328.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267.

43

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023. Api-
bank: A benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Prakamya Mishra, Zonghai Yao, Shuwei Chen, Bein-
ing Wang, Rohan Mittal, and Hong Yu. 2023. Syn-
thetic imitation edit feedback for factual align-
ment in clinical summarization. arXiv preprint
arXiv:2310.20033.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and
Chandan K Reddy. 2023. Execution-based code gen-
eration using deep reinforcement learning. arXiv
preprint arXiv:2301.13816.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode compose:
Code generation using transformer. In Proceedings
of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pages 1433–1443.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
and Shengyi Huang. 2020. Trl: Transformer re-
inforcement learning. https://github.com/
huggingface/trl.

Richard J Waldinger and Richard CT Lee. 1969. Prow:
A step toward automatic program writing. In Pro-
ceedings of the 1st international joint conference on
Artificial intelligence, pages 241–252.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhi-
hong Chen, Jianquan Li, Guiming Chen, Xiangbo
Wu, Zhiyi Zhang, Qingying Xiao, et al. 2023. Hu-
atuogpt, towards taming language model to be a doc-
tor. arXiv preprint arXiv:2305.15075.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

44

https://arxiv.org/abs/2303.08774
https://github.com/huggingface/trl
https://github.com/huggingface/trl

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K. Reddy. 2022.
Xlcost: A benchmark dataset for cross-lingual code
intelligence.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2024. Toolqa: A dataset for llm
question answering with external tools. Advances in
Neural Information Processing Systems, 36.

A Prompts

Table 2 lists all the prompts used in accessing the
quality of the generated codes.

B Experimental details

B.1 Dataset
The HuggingFace part of the Gorilla dataset (Patil
et al., 2023) consists of over 9k instruction-output
pairs. We trained our model on 90% of the data
and kept the rest for evaluation.

B.2 Model and implementation details
MSFT,Mreward andMRL all have 780M parame-
ters. While trainingMSFT andMreward we used a
learning rate of 5×10−4 and 5×10−5 respectively.
In the RL step (PPO algorithm), we set the learning
rate to 6× 10−6. We did not perform any hyperpa-
rameter search. The results are reported by taking
the mean of three inference runs. We implemented
the training pipeline using the following Python
libraries: transformers (Wolf et al., 2020) and TRL
(von Werra et al., 2020).

B.3 Computational cost
We used a cluster of NVIDIA A100 40GB GPUs
for our experiments. We spent in total ∼ 60 GPU
hours for all of the experiments.

Prompt
Given an input task and a Python
code, determine if the code is
functional.
TASK: [instruction]
CODE: [code]
Given an input task and a
Python code, determine if the
code imports all the necessary
classes/modules for execution.
TASK: [instruction]
CODE: [code]
Given an input task and a Python
code, determine if the code uses
the correct functions/APIs.
TASK: [instruction]
CODE: [code]
Given an input task and a Python
code, determine if the code is
free of bugs and code smells.
TASK: [instruction]
CODE: [code]
Given an input task and a Python
code, determine if the code is
sufficient to accomplish the task.
TASK: [instruction]
CODE: [code]
Given an input task and a Python
code, determine if the code uses
indentations correctly.
TASK: [instruction]
CODE: [code]
Given an input task and a Python
code, determine if the code
uses quotes in string literals
correctly.
TASK: [instruction]
CODE: [code]
Given an input task and a Python
code, determine if the code
uses duplicate parameters in a
function.
TASK: [instruction]
CODE: [code]

Table 2: Complete set of prompts. The tokens
[instruction] and [code] are used to denote an
instruction from the dataset and the corresponding gen-
erated code respectively.

45

http://arxiv.org/abs/2206.08474
http://arxiv.org/abs/2206.08474

Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024), pages 46–55
August 15, 2024 ©2024 Association for Computational Linguistics

SummEQuAL: Summarization Evaluation via Question Answering using
Large Language Models

Junyuan Liu and Zhengxiang Shi and Aldo Lipani
University College London

{junyuan.liu.22,zhengxiang.shi.19,aldo.lipani}@ucl.ac.uk

Abstract

Summarization is hard to evaluate due to its
diverse and abstract nature. Although N-gram-
based metrics like BLEU and ROUGE are
prevalent, they often do not align well with
human evaluations. While model-based al-
ternatives such as BERTScore improve, they
typically require extensive labelled data. The
advent of Large Language Models (LLMs)
presents a promising avenue for evaluation. To
this end, we introduce SummEQuAL, a novel
content-based framework using LLMs for uni-
fied, reproducible summarization evaluation.
SummEQuAL evaluates summaries by com-
paring their content with the source document,
employing a question-answering approach to
gauge both recall and precision. To validate
SummEQuAL’s effectiveness, we develop a
dataset based on MultiWOZ. We conduct ex-
periments on SummEval and our MultiWOZ-
based dataset, showing that SummEQuAL
largely improves the quality of summarization
evaluation. Notably, SummEQuAL demon-
strates a 19.7% improvement over QuestEval
in terms of sample-level Pearson correlation
with human assessments of consistency on the
SummEval dataset. Furthermore, it exceeds
the performance of the BERTScore baseline by
achieving a 17.3% increase in Spearman cor-
relation on our MultiWOZ-based dataset. Our
study illuminates the potential of LLMs for a
unified evaluation framework, setting a new
paradigm for future summarization evaluation.

1 Introduction

Summary evaluation remains a complex task, and
to this day, it cannot be adequately accomplished by
automatic metrics (Chen et al., 2022; Goyal et al.,
2022). While N-gram-based metrics like BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004)
are widely used, they often show a poor correla-
tion with human judgment, particularly in content
assessment (Kasai et al., 2022a; Reiter and Belz,

2009). In addition, these methods rely on refer-
ences as a "gold standard", which diminishes their
effectiveness especially when assessing varied and
abstract summaries due to the limited availability
of reference texts. Summary evaluation has higher
requirements for diversity and accuracy.

The rise of Large Language Models (LLMs) of-
fers a promising way to evaluate generative texts
more effectively, due to their understanding and
reasoning abilities. While previous studies have
been conducted in various contexts, such as ma-
chine translation Kocmi and Federmann (2023) and
summarization (Chen et al., 2023; Fu et al., 2023;
Liu et al., 2023) (without relying on reference sum-
maries), the use of LLMs for evaluation has its
limitations. Specifically, there are large variation
across different prompts and LLMs, which com-
plicates the use of a unified evaluation framework.
While the question-answering (QA) approach of-
fers a structured method for evaluation to mitigate
this issue, existing QA approaches still have several
limitations (Durmus et al., 2020; Manakul et al.,
2023; Scialom et al., 2021; Wang et al., 2020): (1)
previous works are more confined to direct answers,
and answers based on reasoning or hidden infor-
mation are often tricky; (2) models in generating
questions lack focus so they may introduce irrele-
vant information; and (3) models need expensive
pre-training and the performance will be influenced
by the coverage and quality of training data.

To address these issues, we propose a novel uni-
fied framework for summarization evaluation Sum-
mEQuAL, which can effectively identify abstract
information across a wide range of topics and per-
form complex inference. Specifically, SummE-
QuAL streamlines the evaluation process by break-
ing it down into separate tasks and conducts QA
to approximate human-like evaluation. It guides
LLMs with a structured schema to identify key
information and employs a QA mechanism to com-
plete the content evaluation, producing more re-

46

Figure 1: Illustration of the SummEQuAL framework. The blue and red areas represent the recall-oriented and the
precision-oriented framework respectively. Solid colored lines and letters represent subtasks of LLMs. Other lines
are simple comparison and calculation. The right side is an example of prompts for the subtasks.

liable results. Our experimental results on the
SummEval dataset and MultiWOZ-based dataset
demonstrate that the QA process benefits from
LLMs. Particularly remarkable is that SummE-
QuAL improves the Spearman correlation with
human evaluation by 19.7% on SummEval con-
sistency, compared with our baseline QuestEval.

In summary, the main contributions of this paper
are as follows:

1. We propose a unified summarization evalua-
tion framework, SummEQuAL, for content
correctness via QA using LLMs, minimising
human works (§3).

2. We introduce a new dataset based on Multi-
WOZ to assess the quality of summarization
content evaluation (§4.2).

3. As demonstrated in our experiments, our
proposed framework, SummEQuAL, im-
proves the baseline by 19.7% on the Sum-
mEval benchmark (§5.1.2) and 17.3% on the
MultiWOZ-based dataset (§5.2.2).

4. Our further analysis reveals that LLMs can
evaluate uniformly and robustly by designing
a workflow with objective sub-tasks (§6).

2 Related Works

2.1 N-gram-based Evaluation Metrics

N-gram-based metrics measure the overlap be-
tween the generated summary and a reference sum-
mary. BLEU (Papineni et al., 2002) quantifies
the concurrence of n-grams in a precision-oriented
manner. ROUGE (Lin, 2004) assesses summariza-
tion from recall orientation. Since the above meth-
ods mainly focus on n-gram matching, they may
fail to capture higher-level issues such as sentence
structure, syntax, and semantics. Also, it can be af-
fected by the repeated use of common phrases. As
a result, they cannot accurately measure the content
quality of a generated text (Reiter and Belz, 2009).
Although many new metrics have appeared, nearly
70% of research works are still based on the old
BLUE and ROUGE metrics (Kasai et al., 2022b).

2.2 Pre-trained Model-based Evaluation

Pre-trained model metrics are a category of meth-
ods that utilize pre-trained language models to
evaluate. The language models can better cap-
ture semantic information and consequently as-
sess the quality of generated text more accurately.
BERTScore (Zhang et al., 2020) compares text em-

47

beddings, calculating similarity scores through the
alignment of generated and reference summaries
at a token level. MoverScore (Zhao et al., 2019)
based on BERT considers the movement between
words to evaluate the similarity between the gener-
ated text and the reference text. BARTScore (Yuan
et al., 2021) regards evaluation as a text genera-
tion problem, which calculates the probability of
a text generating or generated from other texts to
evaluate.

2.3 QA-based Evaluation
A direct approach to compare the information of
summaries and source documents is through the
QA process. Previous research has explored this in
fine-tuned language models. SummaQA (Scialom
et al., 2019) generates questions from the source
document and compares the confidence of the QA
model in answering based on the summary, but
fake answers are not considered. FEQA (Durmus
et al., 2020) and QAGS (Wang et al., 2020), from
another angle, generate questions from summariza-
tions, using the original text for answering, to eval-
uate factual consistency. QuestEval (Scialom et al.,
2021) subsequently applied QA in both directions,
and MQAG (Manakul et al., 2023) introduced a
multiple-choice QA model to deal with highly ab-
stractive summarizations or multiple-answer spans.

2.4 LLM-based Evaluation
LLMs have been pre-trained on vast text data, en-
abling them to address a variety of domains with-
out specific training. They can identify complex
logical content. GPTscore (Fu et al., 2023) uti-
lizes LLMs for zero-shot instruction and in-context
learning, suggesting that higher-quality texts are
generated with a higher likelihood. Incorporating
CoT (Wei et al., 2022), G-EVAL (Liu et al., 2023)
yields superior outcomes, allowing LLMs to au-
tonomously generate evaluation methods. There’s
a bias observed favouring LLM-created content.
Additionally, Chen et al. (Chen et al., 2023) de-
termined that explicit LLM evaluations are more
effective than implicit ones. In conclusion, while
LLMs offer promising capabilities in text evalua-
tion, challenges such as sensitivity, model bias, and
score distribution bias remain.

3 SummEQuAL Framework

We propose a QA-based framework utilizing LLMs
to evaluate summarization systems without need-
ing human references for each summary. Sum-

mEQuAL incorporates both recall-oriented and
precision-oriented approaches, featuring three sub-
metrics, as illustrated in Figure 1. Below, we pro-
vide detailed explanations for each metric in our
framework.

3.1 Completeness

Summarization aims to extract core information
from texts to present the main content of the origi-
nal text in a shorter form. A good summary should
include as much important information from the
original text as possible. Based on this concept,
we first consider how much important information
from the original text is included in the summary.

A schema module is introduced to facilitate ques-
tion generation from the source texts. Rather than
generating questions from the entire source texts,
we utilize LLMs to generate a concise list of key
points with the schema. The schema is a set of
predefined important information for certain sum-
marization tasks, which includes important infor-
mation such as the main character of a story, the
purpose of a product, or the time required to re-
serve a restaurant table, depending on the purpose
and topic of the summarization. Experts can define
schema according to their professional knowledge
about the purpose of a summarization task. In this
way, we do not need to create references for all
summaries but only design one schema for one
summarization task. Also, it is possible to generate
the schema by LLMs with the description of the
task topic. An example of schema for news is:

{
" Time " : "When does t h e e v e n t happen ? " ,
" L o c a t i o n " : " Where does t h e e v e n t happen ? " ,
" F i g u r e " : "Who a r e t h e p a r t i c i p a n t s i n v o l v e d ? " ,
" D e s c r i p t i o n " : " What i s t h e main e v e n t ? " ,
" Cause " : "Why does t h e main e v e n t happen ? " ,
" R e s u l t " : " What a r e t h e r e s u l t s o f t h e e v e n t ?"

}

LLMs generate the list of key points by the
schema, and then compare whether these key points
are included in the summary. The comparison is
presented by a match function M , of which the
value is between 0 and 1. A simple way is to answer
boolean questions by LLMs like "Is it included in
the summary that ...", and then transform it into
numbers. Given a key point list K including n key
points k1 ... kn, and a summary S, we define the
completeness (Cons.) of a summary as:

Comp. =
1

n

n∑

i=1

M(S, ki), (1)

48

3.2 Informativeness
A good summary should also avoid incorporating
irrelevant information, and ideally, all the informa-
tion within summaries should be of significance. In
evaluation, we employ LLMs to generate question-
answer pairs pertaining to the details of summaries.
Subsequently, we prompt LLMs to answer ques-
tions using a key point list and then assess whether
the answers to the two sets of questions match. To
streamline the comparison process, we also gen-
erate boolean questions in the experiments of this
paper. Denote the question list generated from sum-
mary S by LLMs as Q(S), and q are questions in
it. Given a text T and a question q, the answer
generated by LLMs is A(T, q). We define informa-
tiveness (Inf.) as:

Inf. =
1

|Q(S)|
∑

q∈Q(S)

δ(A(S, q), A(K, q)), (2)

where | · | represents the size of the set and δ(a, b)
is equal to 1 when a = b otherwise 0.

3.3 Consistency
Generative models could mistakenly create infor-
mation that seems plausible but is not right, known
as hallucinations. In the summarization task, this
property introduces information outside the source
document, thus damaging the consistency of the
summary with the source document. To mea-
sure consistency, we use the summary to generate
question-answer pairs, then answer the question by
the source text with LLMs. After these, we com-
pare the two sets of answers. For a given source
document D, consistency (Cons.) is defined as:

Cons. =
1

|Q(S)|
∑

q∈Q(S)

δ(A(S, q), A(D, q)) (3)

3.4 SummEQuAL Score
SummEQuAL score is a comprehensive index com-
bining completeness, informativeness, and consis-
tency. The equation is structured to reflect the
correct proportion of important and effective in-
formation. Completeness and informativeness are
combined using the harmonic mean to balance the
quantity and relevance of information. Consistency
is then used as a multiplier to calculate the correc-
tion rate, reflecting the amount of accurate infor-
mation in the summary. SummEQuAL score is
computed as follows:

SummEQuAL = 2 · Comp · Inf
Comp+ Inf

· Cons (4)

4 Datasets

4.1 SummEval
SummEval (Fabbri et al., 2021) is one of the largest
human annotated datasets for summarization eval-
uation tasks, built on the foundation of the CNN/-
Daily Mail (Hermann et al., 2015) dataset. Sum-
mEval collects and releases both expert and crowd-
sourced human evaluation for 16 model outputs
on 100 articles across 4 dimensions to advance re-
search into human-correlated evaluation metrics.
For each summary, there are 3 expert and 5 crowd-
sourced evaluations, totalling 12,800 human anno-
tations. We will compare the correlation between
LLMs’ evaluations within the SummEQuAL frame-
work and human evaluations in this dataset.

4.2 MultiWOZ
MultiWOZ (Budzianowski et al., 2018) is an
open dataset released by the University of Cam-
bridge, serving as a widely-used multi-domain task-
oriented dialogue dataset with detailed human an-
notations for tracking dialogue information. As
a task-oriented dataset, MultiWOZ offers objec-
tive schemas for specific tasks and annotated slot
values for all dialogues. The dataset presents com-
plex logic and multiple topics within individual
dialogue texts, making it suitable for evaluating
the framework’s proficiency in working with a de-
signed schema. We choose the newest version Mul-
tiWOZ 2.4 (Ye et al., 2022) for the experiment.

Dataset Construction Task-oriented summariza-
tion focuses on specific results. For booking tickets,
we expect the summaries to fully contain informa-
tion on user demands and the booking result. With
this in mind, we created summaries on the Mul-
tiWOZ dataset and manually evaluated the com-
pleteness of the summaries. We randomly sample
50 dialogues from the test set of the MultiWOZ
2.4 dataset, and generate both short summaries and
detailed summaries for each dialogue using the
text-curie-001 model, GPT-3.5-turbo-0613 model,
and GPT-4 model (OpenAI, 2023), totalling 300
summaries. The statistics of the dialogues and the
summaries are shown in Table 1. Then, we an-
notated the summaries’ completeness by checking
how much proportion of the schema information
was contained to provide a score. We used three an-
notators for marking. If the annotations by the first

49

Table 1: Statistics for dialogue and summary. The
lengths are described by the number of words.

Dialogue Average Summary Lengths

Metric Value Summarization Length

Dialogue Turn 6.98 gpt-3.5 simple 109.7
Mean Length 205.8 gpt-3.5 detailed 126.5
Min. Length 70 gpt-4 simple 69.0
Max. Length 470 gpt-4 detailed 89.9
Median Length 210 text-curie-001 simple 68.7
Std. Deviation 81.2 text-curie-001 detailed 72.7

two annotators were inconsistent, the third annota-
tor adjudicated to determine the final annotation.

5 Experiments and Results

Evaluation Strategy. We evaluate automatic
metrics by comparing their alignment with refer-
ence human evaluations. Three prevalent correla-
tions, the Spearman correlation, the Person corre-
lation and the Kendall’s Tau correlation are em-
ployed. Given n source texts and m summary mod-
els, the i-th text’s summary generated by the j-th
model is denoted as si,j . The formula of correlation
at a sample level is as follows:

Corr =
1

n

n∑

i=1

ρ ([eauto(si,1), . . . , eauto(si,M)],

[eref(si,1), . . . , eref(si,M)])

(5)

where ρ denotes the function of correlation met-
rics. eauto and eref denote the automatic evaluation
and reference evaluation functions, respectively.

5.1 Evaluation on SummEval
5.1.1 Experimental Setup
We evaluate the summaries in SummEval dataset
with our SummEQuAL framework and compare
the evaluation results with human evaluations. In
this paper, if not specified, we use the GPT-3.5-
turbo-0613 model with a temperature of 0 as the
LLM of our framework, since other LLMs do not
always follow the instructions strictly to work with
the SummEQuAL framework. To avoid confusion
across texts, each step of our framework separately
inputs data into the LLM and is linked by process-
ing output JSON. The human evaluation is set using
the average scores from three experts. The deter-
mined input schema is the same as the example
schema shown in Section 3.1. To make the evalua-
tion for our framework convincing, we also use a
rephrased version of the prompts besides the exam-
ple prompts in Figure 1 and calculate the average
correlation.

5.1.2 Results
LLMs have demonstrated competitive results
within the SummEQuAL framework in Table 2.
On the aspect of consistency, SummEQuAL has
shown a clear superiority over traditional automatic
metrics, improving by 19.7% compared with the
best-performing QA models and more than 10%
compared with G-EVAL. SummEQuAl benefits
both from LLMs and QA process, effectively ver-
ifying whether the information in the summary is
consistent with the original text.

In terms of relevance, the correlations are high
on G-EVAL and QuestEval. The primary reason for
not outstanding results lies in the differences in the
definitions of relevance. SummEQuAL scores does
not precisely reflect the definition of relevance in
SummEval, which emphasizes selecting important
content from the source without stressing correct-
ness. In contrast, G-EVAL directly prompt the
definition of relevance. QuestEval, when utilizing
summaries to answer questions generated from the
original text, relies on the answerability confidence
instead of an answer, thus aligning more closely
with the definition of relevance in SummEval.

5.2 Task-oriented Summarization Evaluation

Task-oriented summarization requires a focus on
specific information within the text. For instance,
in ticket booking dialogues, details about the ticket
such as time and location are crucial, while in a doc-
tor’s diagnostic interview notes, the patient’s symp-
toms and feelings are of importance. To accurately
evaluate the effectiveness of task-oriented summa-
rization, a well-defined schema that lists all the
relevant information is helpful. SummEQuAL can
then be used to provide a desirable evaluation for
the tasks, ensuring that the summarization meets
the specific requirements. To test the ability of the
SummEQuAL framework on task-oriented summa-
rization evaluation, we build a MultiWOZ-based
dataset, which contains dialogues between users
and conversational systems, involving a range of
tasks, such as restaurant reservations, travel book-
ings, information queries, and so forth, and then
we conduct experiments with the SummEQuAL
framework.

5.2.1 Experimental Setup
A dictionary with the 35 types of slots tracked in
the dialogue dataset is set as the schema for gener-
ating key points. Within the SummEQuAL frame-
work, we input schemas into both the GPT-3.5 and

50

Table 2: Sample-level Spearman correlation (Spear.), Pearson correlation (Pear.), and Kendall’s Tau correlation
(Kend.) of relevance and consistency on SummEval. #Ref. is the number of reference summaries in evaluation.
Results of QA metrics are from Scialom’s work (Scialom et al., 2021).

Metrics #Ref. Relevance Consistency
Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1 1 0.199 0.220 0.152 0.157 0.200 0.132
ROUGE-2 1 0.145 0.174 0.105 0.137 0.162 0.116
ROUGE-L 1 0.203 0.221 0.156 0.149 0.198 0.125

ROUGE-1 11 0.311 0.347 0.237 0.153 0.216 0.125
ROUGE-2 11 0.248 0.298 0.189 0.122 0.181 0.101
ROUGE-L 11 0.293 0.329 0.224 0.103 0.180 0.082
BERTScore 11 0.269 0.304 0.203 0.168 0.242 0.140
BARTScore 11 0.264 0.290 0.197 0.311 0.321 0.256
MoverScore 11 0.282 0.313 0.215 0.166 0.221 0.137

SummaQA 0 – 0.262 – – 0.083 –
QAGS 0 – 0.204 – – 0.091 –
QuestEval 0 – 0.392 – – 0.420 –

G-EVAL-3.5 0 0.385 – 0.293 0.386 – 0.318
SummEQuAL 0 0.311 0.337 0.241 0.274 0.324 0.227

-Completeness 0 0.252 0.274 0.204 0.151 0.182 0.131
-Informativeness 0 0.181 0.187 0.143 0.161 0.188 0.136
-Consistency 0 0.228 0.265 0.193 0.432 0.503 0.403

GPT-4 models, generating two lists of key points.
To evaluate the LLMs’ capability to generate key
points based on the schema, we manually com-
pared these generated lists against the slot values
annotated in MultiWOZ. Considering the target of
this ticket-booking summarization, only slot val-
ues in the final turn of user-system dialogues are
extracted as the ground truth. After this, we use a
simple match, ROUGE-L, BERTscore and LLMs
to compare the key point list with the source docu-
ment (C in Figure 1) and generate a completeness
score. We compared these completeness scores
with human scores to demonstrate whether this
framework benefits from LLMs. Last but not least,
we compare the performance of different evaluation
metrics like ROUGE, BERTScore and BARTScore
on the 300 summaries consisting of simple and de-
tailed summaries generated by the text-curie-001,
the GPT-3.5-turbo-0613 and GPT-4 models. Based
on our observation, the GPT-4 model is better than
the GPT-3.5 model, and both outperform the text-
curie-001 model; the detailed version is better than
the simple version of the same model. So we as-
signed them scores from high to low as ground
truth. Finally, we calculated the correlation coeffi-
cients of metrics and assigned scores accordingly.

5.2.2 Results
As shown in Table 3, both models can extract key
points according to the schema with relatively good
results, highlighting the flexibility and adaptability

Table 3: Key Point Generation Abilities: Scores are
derived by comparing model predictions with the last
dialogue turn’s state value manually.

Model Recall Precision F1

GPT-3.5 0.919 0.758 0.830
GPT-4 0.958 0.875 0.915

Table 4: Key Point Comparison Abilities: Model cor-
relation with human on comparison of key point and
summary.

Model Spearman Pearson Kendall Tau

Simple match 0.298 0.229 0.211
ROUGE-L 0.328 0.282 0.232
BERTScore 0.644 0.634 0.476
GPT-3.5 0.742 0.756 0.599
GPT-4 0.929 0.828 0.946

of the SummEQuAL framework. If the schema is
given, GPT-3.5 with relatively weak reasoning abil-
ity can obtain high recall. Compared with GPT-4,
the precision of GPT-3.5 is lower. We checked the
output and found this is because some unimpor-
tant information outside the schema is introduced,
which is often repeated information or redundant
content as a result of not correctly following the
schema.

Table 4 shows that the evaluation of the SummE-
QuAL framework benefits from the reasoning abil-
ity of LLMs. The comparison based on LLMs is the
most consistent with human evaluations, surpassing

51

Table 5: Sample-level Correlations of Summarization
Evaluation on Our MultiWOZ-based Dataset.

Metrics Spear. Pear. Kend.

ROUGE-1 -0.010 0.077 -0.007
ROUGE-L 0.003 0.079 0.001
BERTScore 0.589 0.657 0.489
BARTScore 0.423 0.519 0.317
MoverScore -0.137 -0.360 -0.109
QuestEval 0.511 0.568 0.429

SummEQuAL 0.240 0.283 0.192
-Completeness 0.691 0.764 0.573
-Informativeness 0.212 0.257 0.161
-Consistency -0.028 -0.058 -0.031

other methods significantly. Upon careful obser-
vation of the results, we discovered that GPT-3.5
tends to make errors and give lower scores, which
suggests that in complex scenarios, GPT-3.5’s rea-
soning ability may not be sufficient to capture all
the details of the summaries. We will discuss this
in the analysis section (§6) in detail.

By the comparison in Table 5, the completeness
of SummEQuAL has achieved the best correlation,
but the correlations of other parts are not high. Met-
rics based on pre-trained language models perform
well, but ROUGE performs poorly. This result is
from the generation of summarization. The GPT
models tend to cover more content when summariz-
ing on MultiWOZ, so the summarization contains
comprehensive important information but is not
concise. Moreover, since both GPT-3.5 and GPT-4
have good summary capabilities for the MultiWOZ
data set, the actual summarization quality of GPT-
3.5 is not lower than GPT-4 in some cases, espe-
cially considering the consistency. As a result, the
assigned scores are not completely accurate, which
affects the overall correlation coefficient.

6 Further Analysis

6.1 Discrepancy of Summarization Tasks

The evaluation result is affected by the dataset’s
features, the evaluation criteria and the evaluation
target. Articles in SummEval are longer and con-
tain more detailed descriptions, making it easier for
summarizations to introduce non-essential informa-
tion and produce inconsistent information, while
the dialogues are shorter. Moreover, we need to
consider the practical meaning of the comparison
scores. The dialogues in MultiWOZ are based on
specific tasks, and their themes and key information
are more clearly defined. In the case of providing

a schema reflecting the content of the task as a ref-
erence, the completeness score is more consistent
with the target of evaluation. When using Sum-
mEQuAL for evaluation tasks, we can clarify the
purpose of the task and use a more appropriate
schema and metric or combination of metrics for a
better evaluation.

6.2 Error Analysis

Inferencing capability. As illustrated in Table
6, the dialogue contains implicit shifts of needed
information. GPT-3.5 only capture the user’s initial
request for a restaurant serving canapes and did not
correctly comprehend the system’s rejection of the
user’s proposed dining time of 16:15. This com-
parison underscores the importance of inferencing
abilities of the model’s reasoning capabilities. Sim-
ilar errors could also occur in the evaluation of
informativeness and consistency.

Subjectivity. Evaluation on the SummEval
dataset is influenced significantly by subjectivity.
The evaluation results can vary depending on the
chosen schema. Our schema may focus on differ-
ent information from the human annotation in Sum-
mEval. Consequently, the generated key points do
not align with information in the reference sum-
maries used by human experts during evaluation,
resulting in a potential distortion of the summariza-
tion evaluation.

Stability. When generating key points, GPT-3.5
could generate duplicate information or possible
schema values that do not appear in the summary,
causing the SummEQuAL framework to fail. Dur-
ing the entire evaluation process, GPT-3.5 is oc-
casionally affected by the text content, so that it
is unable to correctly execute the framework tasks
according to the instructions, and outputs wrong or
incomplete content.

6.3 Reproducibility

An inherent characteristic of LLMs, especially
when interfaced through APIs, is the potential vari-
ability in their outputs upon repeated experiments.
We evaluate the potential difference level of this
issue by repeating the experiment. Here we use
the GPT-3.5-turbo as the base model of the Sum-
mEQuAL framework, and we experimented on the
SummEval benchmark. Table 7 shows that the
majority of the results across various metrics fell
within the minimal absolute difference percentage

52

Table 6: Case Study: Comparison of GPT-3.5 and GPT-4 for Key Points Generation. Table (top) provides a brief
overview of the dialogue and Table (bottom) summarizes both the actual key points and the predictions. Key points
highlighted in green indicate correct summarization, while those in red represent incorrect predictions by the model.

Role Dialogue

User: I am looking for a restaurant that serves canapes in the east.
Sys: Unfortunately there are no restaurants serving canapes in the east.
User: Ah, well, too bad. In that case, I think that’ll be everything that I needed. Thanks and have a good day!
Sys: Are you sure? I can find other options in other parts of town?
User: How about Italian food?
Sys: There is the Pizza Hut Fen Ditton in the east serving Italian food.
User: Great! Please book a table for 6 at 16:15 on Saturday.
Sys: Sorry, but no tables are available for that time slot. Would you like to change the time?
User: How about 15:15 then?
Sys: Your table is booked. Your reference number is qw8jzwzk. Can I help you with anything else?
User: Great. Thank you for your help today. That is all.

Key Points (Name) Slot Values (Truth) GPT-3.5 (Prediction) GPT-4 (Prediction)

restaurant-food italian canapes italian
restaurant-area east east east
restaurant-book day saturday saturday saturday
restaurant-book people 6 6 6
restaurant-book time 15:15 16:15 15:15
restaurant-name pizza hut fenditton pizza hut fen ditton pizza hut fen ditton

Table 7: Comparison of Repeated Experiment Results

Metrics Abs Mean Variance Abs Difference Percentage

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 >0.4

S.E. 0.050 0.010 81.31% 11.75% 4.31% 1.69% 0.94%
Comp. 0.052 0.012 78.94% 11.69% 5.69% 2.38% 1.31%

Inf. 0.056 0.016 78.75% 10.19% 5.62% 3.81% 1.62%
Cons. 0.018 0.004 92.31% 4.56% 2.06% 0.75% 0.31%

Figure 2: Standardized SummEQuAL and Human
Scores by Summary Length Interval

range (0-0.1), indicating a high degree of repro-
ducibility. Among all the metrics, the consistency
score shows the smallest discrepancy.

6.4 Comparison of Text Length

We conduct a comparative analysis with human
scores to evaluate the possible bias of our Sum-
mEQuAL score across various text lengths. First,

we scale the SummEQuAL and human scores us-
ing z-score normalization to ensure comparability.
We then grouped the summaries into four equal-
sized intervals based on length and computed the
mean standardized score for both SummEQuAL
and human evaluations within each group. Figure 2
indicates a general trend where both SummEQuAL
and human scores increased with the length of the
text. The apparent preference in the SummEQuAL
model for longer texts could result from the fact
that longer summaries are better in the SummEval
benchmark. The overall parallel trends in Sum-
mEQuAL and human scoring across different text
lengths demonstrate a degree of consistency.

7 Conclusion

This work proposes a novel summarization evalu-
ation framework, SummEQuAL, based on LLMs.
The SummEQuAL framework provides a reliable
and effective approach for the evaluation of sum-
marization, opening up a new direction for future
work on unified and reproducible summarization
evaluation using LLMs. SummEQuAL sheds new
light on developing reliable and consistent sum-
marization evaluation methods, expected to help
researchers more precisely understand and evaluate
the performance of summarization models, thereby
improving the quality of summarization content.

53

Limitations

SummEQuAL’s performance depends on the ca-
pabilities of LLMs. Any limitations these LLMs
have, especially in parsing complex logic or dis-
cerning implicit information, will directly influence
SummEQuAL’s evaluation. The framework’s re-
liance on multi-step reasoning, involving several
interactions, means it can be time-intensive and
resource-heavy compared to simpler one-step eval-
uations. Moreover, although SummEQuAL has
shown promise in initial tests, its effectiveness
across different models, languages, and text do-
mains still needs further evaluation.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026, Brussels,
Belgium. Association for Computational Linguistics.

Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and
Ruifeng Xu. 2023. Exploring the use of large lan-
guage models for reference-free text quality evalua-
tion: A preliminary empirical study. ArXiv preprint,
abs/2304.00723.

Yulong Chen, Naihao Deng, Yang Liu, and Yue Zhang.
2022. DialogSum challenge: Results of the dialogue
summarization shared task. In Proceedings of the
15th International Conference on Natural Language
Generation: Generation Challenges, pages 94–103,
Waterville, Maine, USA and virtual meeting. Associ-
ation for Computational Linguistics.

Esin Durmus, He He, and Mona Diab. 2020. FEQA: A
question answering evaluation framework for faith-
fulness assessment in abstractive summarization. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5055–
5070, Online. Association for Computational Lin-
guistics.

Alexander R. Fabbri, Wojciech Kryściński, Bryan Mc-
Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. SummEval: Re-evaluating summariza-
tion evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. ArXiv
preprint, abs/2302.04166.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022.
News summarization and evaluation in the era of
gpt-3. ArXiv preprint, abs/2209.12356.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 1693–
1701.

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras,
Lavinia Dunagan, Jacob Morrison, Alexander Fabbri,
Yejin Choi, and Noah A. Smith. 2022a. Bidimen-
sional leaderboards: Generate and evaluate language
hand in hand. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3540–3557, Seattle, United States.
Association for Computational Linguistics.

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras,
Lavinia Dunagan, Jacob Morrison, Alexander Fabbri,
Yejin Choi, and Noah A. Smith. 2022b. Bidimen-
sional leaderboards: Generate and evaluate language
hand in hand. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3540–3557, Seattle, United States.
Association for Computational Linguistics.

Tom Kocmi and Christian Federmann. 2023. Large
language models are state-of-the-art evaluators of
translation quality. ArXiv preprint, abs/2302.14520.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Potsawee Manakul, Adian Liusie, and Mark JF Gales.
2023. Mqag: Multiple-choice question answering
and generation for assessing information consistency
in summarization. ArXiv preprint, abs/2301.12307.

OpenAI. 2023. Openai platform models documentation.
Accessed: 2023-10-02.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ehud Reiter and Anja Belz. 2009. An investigation into
the validity of some metrics for automatically evalu-
ating natural language generation systems. Computa-
tional Linguistics, 35(4):529–558.

54

https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://arxiv.org/abs/2304.00723
https://arxiv.org/abs/2304.00723
https://arxiv.org/abs/2304.00723
https://aclanthology.org/2022.inlg-genchal.14
https://aclanthology.org/2022.inlg-genchal.14
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/2020.acl-main.454
https://aclanthology.org/2021.tacl-1.24
https://aclanthology.org/2021.tacl-1.24
https://arxiv.org/abs/2302.04166
https://arxiv.org/abs/2209.12356
https://arxiv.org/abs/2209.12356
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://doi.org/10.18653/v1/2022.naacl-main.259
https://doi.org/10.18653/v1/2022.naacl-main.259
https://doi.org/10.18653/v1/2022.naacl-main.259
https://doi.org/10.18653/v1/2022.naacl-main.259
https://doi.org/10.18653/v1/2022.naacl-main.259
https://doi.org/10.18653/v1/2022.naacl-main.259
https://arxiv.org/abs/2302.14520
https://arxiv.org/abs/2302.14520
https://arxiv.org/abs/2302.14520
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://arxiv.org/abs/2301.12307
https://arxiv.org/abs/2301.12307
https://arxiv.org/abs/2301.12307
https://platform.openai.com/docs/models
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1162/coli.2009.35.4.35405
https://doi.org/10.1162/coli.2009.35.4.35405
https://doi.org/10.1162/coli.2009.35.4.35405

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, Jacopo Staiano, Alex Wang,
and Patrick Gallinari. 2021. QuestEval: Summariza-
tion asks for fact-based evaluation. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6594–6604, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Thomas Scialom, Sylvain Lamprier, Benjamin Pi-
wowarski, and Jacopo Staiano. 2019. Answers unite!
unsupervised metrics for reinforced summarization
models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3246–3256, Hong Kong, China. Association for Com-
putational Linguistics.

Alex Wang, Kyunghyun Cho, and Mike Lewis. 2020.
Asking and answering questions to evaluate the fac-
tual consistency of summaries. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5008–5020, Online. Asso-
ciation for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In Advances in
Neural Information Processing Systems.

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz.
2022. MultiWOZ 2.4: A multi-domain task-oriented
dialogue dataset with essential annotation corrections
to improve state tracking evaluation. In Proceedings
of the 23rd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 351–360,
Edinburgh, UK. Association for Computational Lin-
guistics.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pages 27263–27277.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

55

https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/D19-1320
https://doi.org/10.18653/v1/D19-1320
https://doi.org/10.18653/v1/D19-1320
https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.18653/v1/2020.acl-main.450
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aclanthology.org/2022.sigdial-1.34
https://aclanthology.org/2022.sigdial-1.34
https://aclanthology.org/2022.sigdial-1.34
https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053

Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024), pages 56–63
August 15, 2024 ©2024 Association for Computational Linguistics

LOGIC-LM++: Multi-Step Refinement for Symbolic Formulations

Shashank Kirtania, Priyanshu Gupta, Arjun Radhakrishna
Microsoft

{t-skirtania, priyansgupta, arradha} @microsoft.com

Abstract
In this paper we examine the limitations of
Large Language Models (LLMs) for complex
reasoning tasks. Although recent works have
started to employ formal languages as an inter-
mediate representation for reasoning tasks, they
often face challenges in accurately generating
and refining these formal specifications to en-
sure correctness. To address these issues, this
paper proposes Logic-LM++, an improvement
on Logic-LM (Pan et al., 2023). It uses the
ability of LLMs to do pairwise comparisons,
allowing the evaluation of the refinements sug-
gested by the LLM. The paper demonstrates
that Logic-LM++ outperforms Logic-LM and
other contemporary techniques across natural
language reasoning tasks on three datasets, FO-
LIO, ProofWriter and AR-LSAT, with an aver-
age improvement of 18.5% on standard prompt-
ing, 12.3% on chain of thought prompting and
5% on Logic-LM.

1 Introduction

Large language models (LLMs) have shown
proven capability of reasoning (Brown et al.,
2020; Chowdhery et al., 2022) but still struggle
at complex reasoning problems as seen in real
world assessments (Zhong et al., 2021). For
complex multi hop reasoning tasks current state
of the art approaches (Pan et al., 2023; Ye et al.,
2023) leverage formal languages as intermediate
representation of these reasoning problems and
utilize symbolic reasoners to come up with the
right response. A typical workflow of such
techniques consist of 3 steps: a natural language
prompt which consist of the task information,
a response formulation for the problem, final
response generated with symbolic executor.

While logic-assisted LLM reasoning techniques
are promising, we observe following problems in
such systems: Firstly, LLMs are poor at gener-
ating intermediate formal specifications. A few

techniques try to counter this problem with a re-
finement loop (Madaan et al., 2023a; Welleck et al.,
2022; Shinn et al., 2023) to improve upon the syn-
tactical correctness of the symbolic formulation.
Secondly, the LLMs are poor at repairing the for-
mal representations with limited information with
error information. For example, in Figure 1 the
LLM initially generates a syntactically incorrect
formulation. After a turn of refinement, while the
LLM is able to generate a response that is syn-
tactically correct, it introduces a semantic error in
the formulation by incorrectly translating the state-
ment "No young person teaches". These kind of
incorrect translations from Natural Language (NL)
to intermediate formal specifications is a common
problem we observe over the failing cases of re-
finement. Thirdly, we observe that refinements are
not always linear-resolving an error with the sym-
bolic formulation can take multiple steps of careful
edits and evaluation. The formulations generated
in refinement stage in 1 introduced the wrong in-
terpretation of "No young person teaches" to "All
young people teaches".
To address these challenges we propose to add fol-
lowing measures in Logic-LM to enhance it’s capa-
bilities resulting in improved variant Logic-LM++.

We leverage the ability of LLMs to do pairwise
comparison (Zheng et al., 2023a), this gives us an
opportunity to evaluate the refinements suggested
by the LLM and do a semantic check with respect
to the problem statement to ensure if the edits in
the symbolic formulation generated while refine-
ment improve the formulation semantically not just
syntactically.

We also improve on the refinement mechanism
present in Logic-LM to give more context of the
problem statement during refinement stage, this
eliminates cases where recommended edits are ap-
palling and do not improve the formulation signifi-
cantly.

56

2 Related Work

Problem: All students are humans.
If someone studies . . .
Question: Based on the above
information, is the following
statement true, false, or uncertain?
It is not true Rose is a student and
jerry is a human.

Problem: All students are humans.
If someone studies, then they are a
student . . .
Question: Based on the above
information . . .
Formulation:
Error: execution error

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x))
¬∃x (Young(x) ∧ Teach(x))
¬Teaches(jerry) ∧
¬Manager(jerry)
. . .
Conclusion:
Human(rose, Manager(jerry))

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x))
∀x (Young(x) → Teach(x))
¬Teaches(jerry) ∧
¬Manager(jerry)
. . .
Conclusion:
Human(rose) ∨
Manager(jerry)

Problem Statement

First order Logic Formulation

Refinement Prompt

Refined Formulation with a new
semantic error generated while

refinement

Incorrect Answer

Response:
Uncertain

Figure 1: Refinement of logical formulations in Logic-LM

2.1 Reasoning with LLMs
Large Language model (LLM) - based reasoning
techniques commonly entail the deconstruction of
complex questions into a sequence of intermediate
steps, often referred to as chains, before reaching
the ultimate solution. This technique is a reflec-
tion of methods such as Chain of Thought (CoT)
prompting and its variations, as shown in various
studies (Wei et al., 2022; Kojima et al., 2022).
These methodologies require the meticulous seg-
mentation of a problem into a chain of smaller,
manageable chunks. Each of these chunks rep-
resents a step in the reasoning process, guiding
the model towards a comprehensive solution. The
concept of the reflection loop, as explored in pre-
vious research (Shinn et al., 2023; Madaan et al.,
2023b), offers a means of refining the reasoning
by identifying and eliminating any flaws that may
be introduced by the LLM during a reasoning step.
This process enhances the inherent capability of the
LLM to self-correct, contributing to more accurate
and reliable outcomes. Recent works have further
explore the process of self-evaluation at these in-
termediate steps (Welleck et al., 2022; Paul et al.,
2024). This process involves the LLM assessing
its reasoning at each step, allowing it to identify
any inaccuracies. By rectifying these issues before
proceeding to the next step, the LLM can ensure

Problem: All students are
humans. If someone studies,
then they are a student. . .
Question: Based on the above
information, is the following
statement true, false, or
uncertain? It is not true Rose is a
student and jerry is a human.

Problem: All students are
humans. If someone studies,
then they are a student. …
Question: Based on the above
information . . .
Formulation:
Error: execution error

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x))
. . .
¬∃x (Young(x) ∧ Teach(x))
¬Teaches(jerry) ∧
¬Manager(jerry)
Young(rose) ⊕
Student(rose)
Conclusion:
Human(rose,
Manager(jerry))

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x))
∀x (Young(x) → Teach(x))
¬Teaches(jerry) ∧
¬Manager(jerry)
. . .
Conclusion:
Human(rose) ∨
Manager(jerry)

Problem Statement

Formula set 1

Refinement Prompt

Refined Formulation with a new
semantic error generated while
refinement (Formula set 2)

Task Description: Given a pair
of LLM generated First order
Logic formulas.
Your task is to evaluate which
one has more . . .
Instructions:
Problem: : All students are
humans. If someone studies,
then they are a student. …
Question: Based on the above
information, is the . . .
Formula Set 1:
Formula Set 2:

Formula set 1

Problem: All students are
humans. If someone studies,
then they are a student. …
Question: Based on the above
information . . .
Formulation:
Error: execution error

Comparison Prompt

Predicates:
Student(x) ::: x is a student.
. . .
Premises:
∀x (Student(x) → Human(x))
¬∃x (Young(x) ∧ Teach(x))
¬Teaches(jerry) ∧
¬Manager(jerry)
. . .
Conclusion:
Human(rose) ∨
Manager(jerry)

Refinement PromptCorrect Formulation

Figure 2: Improvement in refinement by Logic-LM++

a more accurate and reliable chain of reasoning.
Aligned with our objective of capturing the natural
language intent of the user from symbolic formula-
tions, recent works (Endres et al., 2024) have also
explored the translation of natural language into
formal language post conditions. This research
investigates how effectively we can convert the
often-ambiguous language of human conversation
into the precise, unambiguous language of formal
logic. This translation process is crucial for the
accurate interpretation and execution of user intent,
particularly in complex or technical tasks.

2.2 Tool-augmented Large Language Models

Language models face inherent limitations, unable
to access real-time data, execute actions, or conduct
precise mathematical reasoning.To address this, re-
cent research endeavors have sought to augment
language models by integrating external resources
such as retrievers (Nakano et al., 2021; Shi et al.,
2023; Lazaridou et al., 2022), calculators (Cobbe
et al., 2021), code interpreters (Wang et al., 2022),
planners (Liu et al., 2023), symbolic solvers (Ye
et al., 2023; Pan et al., 2023), and other pretrained
models (Shen et al., 2023). Notably, in the realm of
mathematical reasoning, numerous investigations

57

Dataset
GPT-3.5 Turbo GPT-4

Standard CoT Logic-LM Logic-LM++ Standard CoT Logic-LM Logic-LM++

FOLIO 45.09 57.35 62.80 62.25 69.11 70.58 78.92 84.80
ProofWriter 35.50 49.17 58.33 58.83 52.67 68.11 79.66 79.66
AR-LSAT 20.34 17.31 26.41 28.13 33.33 35.06 43.04 46.32

Table 1: Accuracy of standard promoting, chain-of-thought (CoT) promoting, Logic-LM and Logic-LM++.

have illustrated the efficacy of incorporating cal-
culators (Cobbe et al., 2021; Imani et al., 2023) or
Python interpreters (Gao et al., 2023; Chen et al.,
2022) into language models, significantly enhanc-
ing performance by offloading numerical compu-
tations. Recent studies (Gao et al., 2023; Chen
et al., 2022) have showcased improved effective-
ness in arithmetic reasoning tasks by generating
Python programs that delineate the reasoning pro-
cess through sequenced chained commands.

3 Methodology

3.1 Background
Logic-LM (Pan et al., 2023) is a framework to
decompose a reasoning problem into three stages:

1. Problem Formulation, where given a task de-
scription and a problem statement LLM write
symbolic formulations that represents the NL
problem. In Figure 1 the NL prompt with
task description is the problem formulator in
Logic-LM.

2. Symbolic Reasoning, where we use a symbolic
solver like Prover92 (Robinson, 1965)and Z3
theorem prover (Moura and Bjørner, 2008) to
solve the formulations generated earlier.

3. Result interpretation, where the produced out-
put is mapped to the right answer using regex
parsing.

Logic-LM uses a refinement loop to fix errors in
symbolic formulation at formulation and reasoning
stages. However, Logic-LM still struggles to im-
prove on logical representations, showing almost
no improvement after multiple iterations. Authors
attribute this to semantic limitations of the formula-
tion. To this end, Logic-LM++ aims to mitigate this
limitation by improving the Logic-LM refinement
loop.

3.2 Self-Refinement Agent
Logic-LM defines the notion of a Self-Refinement
Agent to implement the refinement loop in the sym-

bolic formulations in cases where the formulations
did not yield a successful execution within the sys-
tem. This agent is characterized by a refinement
prompt 1 PG: Add more details in figure caption.
In the original work, the refinement prompt con-
stituted various few shot examples to act as exem-
plar for the model. While similar techniques have
proven useful (Madaan et al., 2023a; Shinn et al.,
2023), we anecdotally observe that instead of help-
ing the model it adds extra irrelevant information
that distracts the model from fixing the issues rel-
evant to the current formulation, consistent with
similar studies in other domains (Pan et al., 2023).
To alleviate this, instead of adding few-shots, we
add the problem statement and the question to the
refinement prompt alongside instructions to self-
reflect on the model’s failure to generate the right
response. As we show later in Section 4, this struc-
ture helps better contextualize (Shinn et al., 2023)
the formulation to the self-reflection agent and help
the system generate better refinements.

3.3 Backtracking Agent

LLMs has shown remarkable results in automated
evaluation benchmarks (Zheng et al., 2023b) and
has shown high alignment with the human judge-
ment (Wei et al., 2024). We use this capability
of LLMs to assess if the repaired formulation by
self-refinement improves the alignment of the hu-
man intent with LLM generated formulations. This
allows us to get rid of the updates that are not help-
ful in future iterations and only use those updates
where the changes help the model to come to the
right formulation. In Figure 1 we can see with-
out the backtracking agent the LLM accepts the
semantically incorrect symbolic formulations as
the statement "No young person teaches" is trans-
lated to "all young people teach" since the code is
syntactically correct there is no proof-check on the
refinement.

However, In Figure 2 we demonstrate in the
same example with the backtracking agent Logic-
LM++ is able to generate right formulation by us-

58

0 1 2 3 4
Number of Runs

40

45

50

55

60

65

70

75
Ac

cu
ra

cy
Folio

GPT-4
GPT-3.5

0 1 2 3 4
Number of Runs

10

15

20

25

Ac
cu

ra
cy

AR-LSAT
GPT-4
GPT-3.5

Figure 3: Accuracy in subsequent rounds of refinement. The grey line here represents the accuracy scores on
self-refinement without backtracking with GPT-4.

ing the right formulation to represent "No young
person teaches" and use the right formulation to
describe the question "Rose is a student and Jerry is
a human". This showcase how backtracking agent
works as funnel to reduce the semantic error that
is propagated at the refinement stage. In Figure
2 we show on comparison of the two sets of the
formulation, returns a more semantically correct
formulation this allows Logic-LM++ to only ac-
cept the edits if it improves or preserve the logical
structure of the formulation.

4 Experiments and Analysis

4.1 Dataset

FOLIO (Han et al., 2022) is a challenging expert-
written dataset for logical reasoning. The problems
are aligned with real-world knowledge and use nat-
ural wordings, and the questions require complex
first-order logic reasoning to solve. We use the
FOLIO test set for evaluation with 204 examples.

AR-LSAT (Zhong et al., 2022) is a dataset that
collects all analytical logic reasoning questions
from the Law School Admission Test from 1991 to
2016. We use the test set which has 231 multiple-
choice questions. AR-LSAT is particularly chal-
lenging, with state-of-the-art model’s performance
slightly better than random guessing (Liang et al.,
2022; Ribeiro et al., 2023).

ProofWriter (Tafjord et al., 2021) is another
popular dataset on deductive logical reasoning.
Since the problems are in more natual language like
setting it makes semantic evaluation very relevant
in the problem set. Logic-LM use the open-world
assumption (OWA) subset in which each example
is a (problem, goal) pair and the label is one of
PROVED, DISPROVED, UNKNOWN. Logic-LM
evaluate the pipeline with the hardest section of

GPT-3.5 turbo GPT-4

BT - + - +

FOLIO Er 84.3 84.3 85.8 86.7
Ea 64.3 66.2 79.9 85.8

ProofWriter Er 95.6 95.6 99.0 99.0
Ea 74.1 77.2 79.6 79.6

AR-LSAT Er 21.8 22.9 32.6 32.0
Ea 60.3 64.1 60.0 66.2

Table 2: Execution rate (Er) and Execution Accuracy
(Ea) agent with Backtracking (BT).

ProofWriter which contain total of 600 randomly
sampled five step multi-hop reasoning questions.

4.2 Principal Findings

We report the final results of Logic-LM++ in Table
1. We try to answer 2 major research questions.
RQ1: Can LLMs conduct pairwise comparisons
of symbolic formulations based on their rele-
vance to a natural language task description?
LLMs have demonstrated promising capabilities in
pairwise comparisons for NLG evaluations (Kim
et al., 2024), even in low-resource languages where
their natural language generation abilities remain
underdeveloped (Zheng et al., 2023a). As depicted
in Table 2, the execution accuracy of the frame-
work employing a backtracking agent is enhanced
by approximately 6% with GPT-4 and around 3%
with GPT3.5-turbo. Despite the average gain in
execution rate being less than 1%, these statistics
underscore the empirical improvements in code
quality in terms of semantic correctness. Figure
1 provides a working example from the FOLIO
dataset. Although the code is syntactically correct
after refinement, it misinterprets a logical statement.

59

However, by implementing pairwise comparisons,
the LLM can select the semantically correct for-
mulation. This leads to the correct answer in the
subsequent refinement iteration.

RQ2: Does refinement by LLM always posi-
tively affect the formulations?

In Figure 3, we evaluate the refinement process
with and without backtracking. Logic-LM’s ac-
curacy plateaus with more runs because refined
solutions may not represent the intended code. The
author’s also discuss this as a known limitation of
the refinement process in the refinement loop they
proposed. Backtracking, which reverts to the initial
code if no semantic improvement is found, allows
Logic-LM++ to perform consistently better by con-
tinually reassessing and correcting refinements for
more reliable results.

Figure 4 shows that the backtracking agent sig-
nificantly improves results in the second round
within the FOLIO dataset, with a similar impact
in later rounds. This indicates that backtracking
is most effective early on since the generated re-
finement can also degrade the performance of the
formulations, enabling Logic-LM++ to achieve
substantial better and iterative improvements over
time.

4.3 Error Analysis

Even though Logic-LM++ shows impressive im-
provements over standard refinement techniques, it
still lacks behind in the cases where the first set of
formulation generated is completely different from
the ground truth formulation. On analyzing the
failure cases in Logic-LM we note that the current
pipeline relies a lot on fixing the bugs with current
formulation without losing on semantic understand-
ing, however in cases where the generating seman-
tically correct formulations is hard the technique is
contingent to initial formulations generated.

5 Discussion and Future Work

Figure 3 reveals a significant observation regard-
ing the iteration increase of Logic-LM, which ap-
pears to reach convergence substantially earlier
than Logic-LM++. Logic-LM associates attributes
this to the hard limit of semantically correctness
that can be achieved with Logic-LM. The findings
stress the importance of semantic accuracy, as the
Logic-LM++ exhibits consistently improved out-
comes over multiple iterations, contrary to findings
by Logic-LM. This outcome is primarily attributed

Run-1 Run-2 Run-3
Runs

2

4

6

8

10

12

14

16

Nu
m

be
r o

f F
ile

s c
or

re
ct

ed
 in

 e
ac

h
tu

rn

Figure 4: Number of symbolic formulations corrected
after each turn of self-refinement with backtracking
agent (purple) and without backtracking agent (green)
in FOLIO with GPT-4.

to the model’s capability to revert to the initial
formulation if the refined version does not offer a
semantically superior representation. Eventhough,
Logic-LM++ show promising results it only focus
on symbolic formulations, this effort can be well
generalised to other tool augmented techniques that
rely on intermediate code representation with se-
mantic improvements during refinement.

6 Conclusion

We propose Logic-LM++ which beats state of the
art results on natural language reasoning tasks on
three datasets. Logic-LM++ takes leverage of
LLMs’ reasoning capabilities to show significant
improvements in efficient use of logic solvers for
reasoning, we demonstrate that LLMs show promis-
ing results at conducting comparison between sym-
bolic formulations even in cases where generating
symbolic formulations is a hard task for LLM.

Limitation

At present, Logic-LM++ faces constraints in its
capacity to effectively capture the semantic in-
tricacies in reasoning tasks. This limitation no-
tably complicates the evaluation process, especially
when dealing with smaller LLMs like (Rozière
et al., 2023). The understanding required for ac-
curate reasoning poses a significant challenge, par-
ticularly in contexts where the model’s semantic
comprehension may be insufficient. Due to this the
assessment of performance becomes notably more
complex. This limitation underscores the need for
continued advancements in semantic understand-
ing within LLMs to enhance their efficacy across
reasoning tasks.

60

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. PaLM: Scal-
ing Language Modeling with Pathways. Preprint,
arXiv:2204.02311. arXiv preprint arXiv:2204.02311.
https://arxiv.org/abs/2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. CoRR, abs/2110.14168.

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty,
and Shuvendu Lahiri. 2024. Can large language
models transform natural language intent into formal
method postconditions? In The ACM Interna-
tional Conference on the Foundations of Software
Engineering (FSE). ACM. Https://2024.esec-
fse.org/details/fse-2024-research-papers/51/Can-
Large-Language-Models-Transform-Natural-
Language-Intent-into-Formal-Method-Postco.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: program-aided language
models. In Proceedings of the International Con-
ference on Machine Learning (ICML), volume 202,
pages 10764–10799.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, David
Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal-
colm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai,
Tao Yu, Rui Zhang, Shafiq R. Joty, Alexander R. Fab-
bri, Wojciech Kryscinski, Xi Victoria Lin, Caiming
Xiong, and Dragomir Radev. 2022. FOLIO: natu-
ral language reasoning with first-order logic. CoRR,
abs/2209.00840.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large

language models. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (ACL), Industry Track, pages 37–42.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els. Preprint, arXiv:2405.01535.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.
CoRR, abs/2203.05115.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yüksekgönül, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2022. Holistic eval-
uation of language models. CoRR, abs/2211.09110.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 2023.
LLM+P: empowering large language models with op-
timal planning proficiency. CoRR, abs/2304.11477.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023a. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534–46594. Curran Associates, Inc.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023b. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534–46594. Curran Associates, Inc.

61

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://www.microsoft.com/en-us/research/publication/formalizing-natural-language-intent-into-program-specifications-via-large-language-models/
https://www.microsoft.com/en-us/research/publication/formalizing-natural-language-intent-into-program-specifications-via-large-language-models/
https://www.microsoft.com/en-us/research/publication/formalizing-natural-language-intent-into-program-specifications-via-large-language-models/
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.48550/arXiv.2209.00840
https://doi.org/10.48550/arXiv.2209.00840
https://doi.org/10.18653/v1/2023.acl-industry.4
https://doi.org/10.18653/v1/2023.acl-industry.4
https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/2405.01535
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2203.05115
https://doi.org/10.48550/arXiv.2203.05115
https://doi.org/10.48550/arXiv.2203.05115
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2304.11477
https://doi.org/10.48550/arXiv.2304.11477
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf

Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
2008. Z3: An efficient smt solver. In Proceedings of
the 14th International Conference of Tools and Algo-
rithms for the Construction and Analysis of Systems
(TACAS), volume 4963 of Lecture Notes in Computer
Science, pages 337–340.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
CoRR, abs/2112.09332.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-LM: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3806–3824, Singapore. Association for Computa-
tional Linguistics.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2024. Refiner: Reasoning feed-
back on intermediate representations. Preprint,
arXiv:2304.01904.

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma,
Henghui Zhu, Rui Dong, Deguang Kong, Juli-
ette Burger, Anjelica Ramos, Zhiheng Huang,
William Yang Wang, George Karypis, Bing Xiang,
and Dan Roth. 2023. STREET: A multi-task struc-
tured reasoning and explanation benchmark. In Pro-
ceedings of the Eleventh International Conference on
Learning Representations (ICLR).

John Alan Robinson. 1965. A machine-oriented logic
based on the resolution principle. Journal of the
ACM (JACM), 12(1):23–41.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
Llama: Open Foundation Models for Code. arXiv
preprint arXiv:2308.12950.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving AI tasks with chatgpt and its friends in
huggingface. CoRR, abs/2303.17580.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. 2023. REPLUG: retrieval-augmented
black-box language models. CoRR, abs/2301.12652.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Process-
ing Systems, volume 36, pages 8634–8652. Curran
Associates, Inc.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621–3634, Online.
Association for Computational Linguistics.

Xingyao Wang, Sha Li, and Heng Ji. 2022. Code4struct:
Code generation for few-shot structured prediction
from natural language. CoRR, abs/2210.12810.

Fangyun Wei, Xi Chen, and Lu Luo. 2024. Rethink-
ing generative large language model evaluation for
semantic comprehension.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating sequences by learning to
self-correct. Preprint, arXiv:2211.00053.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2023.
Satlm: Satisfiability-aided language models using
declarative prompting. In Proceedings of NeurIPS.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023a. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023b. Judging
LLM-as-a-judge with MT-bench and chatbot arena.
In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Yining Chen, Jiahai Wang, Jian Yin, Ming
Zhou, and Nan Duan. 2022. Analytical reasoning of
text. In Findings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 2306–2319.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and

62

https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/2304.01904
https://openreview.net/pdf?id=1C_kSW1-k0
https://openreview.net/pdf?id=1C_kSW1-k0
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2301.12652
https://doi.org/10.48550/arXiv.2301.12652
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.48550/arXiv.2210.12810
https://doi.org/10.48550/arXiv.2210.12810
https://doi.org/10.48550/arXiv.2210.12810
https://arxiv.org/abs/2403.07872
https://arxiv.org/abs/2403.07872
https://arxiv.org/abs/2403.07872
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2211.00053
https://arxiv.org/abs/2211.00053
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://doi.org/10.18653/v1/2022.findings-naacl.177
https://doi.org/10.18653/v1/2022.findings-naacl.177

Nan Duan. 2021. AR-LSAT: investigating analytical
reasoning of text. CoRR, abs/2104.06598.

63

https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/2104.06598

Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024), pages 64–79
August 15, 2024 ©2024 Association for Computational Linguistics

From Good to Great: Improving Math Reasoning with Tool-Augmented
Interleaf Prompting

Nuo Chen♣ Hongguang Li♢ Baoyuan Wang♢ Jia Li♣

♣Hong Kong University of Science and Technology (Guangzhou)
Hong Kong University of Science and Technology

♢Xiaobing.AI
nchen022@connect.ust.hk, jialee@ust.hk

Abstract

This paper investigates the performance of
Large Language Models (LLMs) and Tool-
augmented LLMs in tackling complex math-
ematical reasoning tasks. We introduce IMR-
TIP: Improving Math Reasoning with Tool-
augmented Interleaf Prompting, a framework
that combines the strengths of both LLMs
and Tool-augmented LLMs. IMR-TIP follows
the “From Good to Great” concept, collecting
multiple potential solutions from both LLMs
and their Tool-Augmented counterparts for the
same math problem, and then selecting or re-
generating the most accurate answer after cross-
checking these solutions via tool-augmented
interleaf prompting. The framework incorpo-
rates two key aspects: self-prompt and tool-
augmented interleaf prompting (TIP). The for-
mer allows LLMs to autonomously refine and
improve an initial prompt related to tool usage,
while the latter enables LLMs to derive the final
answer by dynamically analyzing the problem,
cross-checking potential solutions, and revising
previous reasoning hints in an interleaved man-
ner. Experimental analysis shows that IMR-TIP
achieves enhanced mathematical capabilities
and outperforms traditional LLMs and tool-
augmented LLMs in accuracy and reasoning
diversity on math reasoning tasks. For instance,
IMR-TIP can improve Tool-augmented Chat-
GPT on GSM8K-Hard from 56.0% to 65.2 %.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020b; Hu et al., 2021; Zeng et al., 2022; OpenAI,
2023; Chen et al., 2023a; You et al., 2022) such
as GPT4 have exhibited remarkable performances
across a wide array of downstream tasks. They
can effortlessly tackle downstream tasks by condi-
tioning on a scant number of in-context exemplars
or plain natural language task descriptions (Brown
et al., 2020a). Notwithstanding these significant
advancements, even the most extensive LLMs are

Method Tool-Augmented LLMs

LLMs-COT

GSM8K Wrong Right Total

Wrong 286 318 604

Right 294 421 715

Total 580 739 1319

Table 1: Confusion matrix between LLMs and its Tool-
Augmented approach on GSM8K dataset. Here, we
select the calculator as the external tool, which is imple-
mented by eval function in Python. The experimental
LLM is text-davinci-003 (2-shot).

confronted with challenges when faced with intri-
cate tasks that necessitate multiple reasoning steps
(Gao et al., 2023; Chen et al., 2023b).

The capacity of LLMs to tackle complex tasks
has been extensively assessed using math reason-
ing datasets such as GSM8K (Cobbe et al., 2021)
and SVAMP (Patel et al., 2021). These datasets
present math problems that cannot be directly an-
swered but require multi-step reasoning. To encour-
age LLMs to engage in step-by-step reasoning, the
chain-of-thought (COT) strategy (Wei et al., 2022)
has emerged as the standard prompting approach.
Through COT, LLMs are guided to generate a so-
lution that consists of a sequence of intermediate
steps, leading to the final answer. Nevertheless, it
has been observed in previous studies that LLMs
are prone to making mistakes or hallucinations,
particularly during intermediate numerical com-
putations (Qian et al., 2022; Yuan et al., 2023; Lu
et al., 2022). Even a minor mistake at this stage can
result in a completely incorrect final answer. In an
effort to address this limitation, a series of studies
(Parisi et al., 2022; Schick et al., 2023; Yao et al.,
2022) have been undertaken, which leverage exter-
nal tools such as the calculator to compensate for
the weaknesses of LLMs. These approaches have
shown significant improvements in the accuracy of
answers on math reasoning tasks.

Although these approaches have led to signif-

64

icant improvements overall, a pertinent question
arises: Can these tool-augmented LLMs outper-
form their traditional LLM-COT counterparts con-
sistently? To explore this question, we conduct a
pilot analysis at first: we test both LLMs-COT
and its tool-augmented counterpart (calculator-
augmented) on GSM8K dataset, separately. Ta-
ble 1 meticulously compares the quantities of ac-
curately and inaccurately predicted samples be-
tween the two methods. Upon careful analysis
of the tabulated results, we can observe that in-
corporating a calculator has undeniably yielded a
substantial boost (739 vs. 715) in the accuracy of
LLMs on the GSM8K dataset. This improvement
can be primarily attributed to the calculator’s ca-
pability to mitigate the potential errors that could
arise during mathematical computations within the
model. Nevertheless, it is noteworthy that de-
spite this tool augmentation, there persist cases
(294) where the LLMs-COT outperforms its Tool-
augmented LLMs counterpart, achieving accurate
predictions where the latter faltered. Upon experi-
mental analysis, the primary factors contributing to
this phenomenon can be categorized as: 1) LLMs
may generate different reasoning logic for the same
math question due to the varying token sampling
probabilities. 2) When employing tool-augmented
LLMs to tackle math reasoning problems, strin-
gent requirements are imposed on the output text to
adhere to specific formats. For instance, calculator-
augmented LLMs (Schick et al., 2023) must pro-
duce the output text in a predefined numerical equa-
tion format, ensuring seamless compatibility with
the calculator’s invocation. Conversely, program-
augmented LLMs (Gao et al., 2023) necessitate
the generation of specific code functions that can
be executed effectively. These prescribed format
requirements may influence the mathematical rea-
soning process of LLMs.

Based on the aforementioned analysis, we aim
to capitalize on the strengths of both LLMs and
Tool-augmented LLMs to further enhance their
mathematical capabilities. In this work, we intro-
duce IMR-TIP: Improving Math Reasoning with
Tool-augmented Interleaf Prompting. IMR-TIP
is a framework that follows the idea “From Good
to Great" that first collects multiple potential so-
lutions from LLMs and their Tool-Augmented ap-
proaches given the same math problem, and then
selects the most correct answer or re-generates new
answer after cross-checking these solutions in a
tool-augmented interleaved manner. To achieve

this, we design IMR-TIP in two aspects: (1) We
first propose self-prompt to address the challenge
of crafting clear, diverse and effective tool-based
prompts. It allows LLMs to autonomously refine
and improve an initial prompt related to tool us-
age, resulting in enhanced prompts. Moreover,
the self-prompt can yield multiple diverse tool-
based prompts through iterative runs without re-
quiring repetitive manual modifications, eliciting
varied reasoning paths (solutions) in LLMs. (2)
Then given multiple solutions, we introduce tool-
augmented interleaf prompting (TIP), a paradigm
combining reasoning, acting, and external tools in
an interleaved manner to arrive at the correct an-
swer. TIP allows LLMs to dynamically analyze
the problem, cross-check potential solutions, and
re-evaluate even revising previous reasoning hints
through action and thought. Our technical contri-
butions are summarized as follows:

• We conduct an in-depth study for LLMs-COT
and tool-augmented LLMs on the math rea-
soning tasks, make interesting observations
and design a novel framework named IMR-
TIP to improve LLMs.

• We introduce self-prompt to obtain diverse
and machine-friendly tool-based prompts
without manual effort.

• We carry out extensive experiments to ver-
ify that our proposed IMR-TIP significantly
improves LLMs and their tool-augmented ap-
proaches on 5 math reasoning tasks based on
two different backbones.

2 Methodogy

In this section, we aim to illustrate our method in
detail, as seen in Figure 1 and Figure 2. We first
review the problem formulation of math problem
reasoning. Then we introduce our proposed self-
prompt and tool-augmented interleaf prompting
methods, sequentially.

2.1 Problem formulation

A math problem solving task can be defined as
{Q,O,A}, where Q is the target math question,
O = {O1, O2, ..., Ok} are answer options if Q is
a K-way multiple choice problem, A is the corre-
sponding ground-truth answer. Given Q and O as
inputs, LLMs can directly output answers or out-
put a sequence of tokens as intermediate reasoning

65

Tho-1: To validate different solutions, I first need to analyze the problem and give my reasoning logit.

Act-1: Analyze[problem]

Tho-2: First, I should list the equation to calculate the time it took Carla to download the ……Thus, the

total_time = time_before_restart + Windows_update + time_after_restart. Thus, total_time = 200 *0.4/2/2 +

20 + 200/2. To ensure the calculation is correct, I need to use Calculator to calculate the answer.

Act-2: Calculator[200 * 0.4/2/2 + 20 + 200/2]

[Calculated Ans]: 140

Tho-3: With the answer hint 140, I can first compare the answers of different options to make an initial

assessment of their accuracy.

Act-3: Compare[answers]

Tho-4: The answers of these options are 200, 60, 130 and 180, separately, that are different with the answer

hint 140. Thus, I can not preliminarily conclude which one is correct. I need to further compare their

reasoning steps and equations with mine to further verify their correctness.

Act-4: Compare[reasoning]

Tho-5: (B), (C), and (D) have flawed algebraic equations as they omit the inclusion of Windows update

time mentioned in the reasoning hint. (A) lacks reasoning steps, making its correctness uncertain. Because

none options have the same answer as mine and upon comparing the answers and reasoning processes,

I need to review [Tho-2] again to validate the accuracy of my previous reasoning and answer hint, and

output the final answer.

Act-5: Rethink[Tho-2]

Tho-6: . Based on my findings, upon comparing the answers and reasoning processes. The algebraic

equation in [Tho-2] is correct, but the substitution is incorrect. The correct total_time = 200 *0.4/2 +

20 + 200/2 rather than 200 *0.4/2/2 + 20 + 200/2. So the answer is 200 * 0.4/2 + 20 + 200/2.

Act-6: Calculator[200 * 0.4/2 + 20 + 200/2]

Ans: 160

Question: Carla is downloading a 200 GB file.

Normally she can download 2 GB/minute, but 40

percent of the way through the download,

Windows forces a restart to install updates, which

takes 20 minutes. Then Carla has to restart the

download from the beginning. How long does it

take her to download the file?

Options:

(A): It will take her 200 GB / 2 GB/minute = 100

minutes to download the file before restart. After

restart. It will take her 100+100=200 minutes to

download the file.

(B): The mathematical equation to solve the

problem is: total time to download = (percentage

of file downloaded * time to download the entire

file) + time to restart the download. Substituting

the given values, we get: total time to download

= (0.4 * (200/2)) + 20. Therefore, Answer =

Calculator[(0.4 * (200/2)) + 20] = 60.

(C): [Algebraic Equation]: total download time =

time to download before restart + time to

download after restart [Numeric Equation]: total

download time = (200/2) + (200/2 * (1 - 0.4))/2

[Answer]: Calculator[(200/2) + (200/2 * (1 -

0.4))/2] = 130.

(D): [Algebraic Equation]: total time to download

= (time to download before restart + time to

download after restart) [Numeric Equation]: total

time to download = (200/2 + (200 - (200*0.4))/2)

/ 2 [Answer]: Calculator[(200/2 + (200 -

(200*0.4))/2) / 2] = 180.

Input (a) Direct Select

First, Carla will download the file for 200/2 minutes, which is 100 minutes. Then, she will be forced to restart the download, which

will take 100 minutes. So, the total time to download the file will be 200 minutes. Therefore, the correct answer is (A).

Analyze the

Problem

Cross-check

Different

Solutions

Rethink

√

×

×

(b) IMR-TIP

Figure 1: Comparison of 2 prompting methods: (a) Direct Select, which requires LLMs to select the correct one
from options. (b) IMR-TIP, which derives the correct answer in an interleaved manner with action and thought. In
this example, we present 3 options (Option B, C, D) from tool-augmented LLMs (using the calculator) and 1 option
from LLMs COT (Option A). Tho and Act are short for Thought and Action, respectively.

steps R via COT. Then we can obtain the answer
in R through regular expression matching.

2.2 IMR-TIP

The key insights of the proposed methods are two-
fold: (1) We first propose self-prompt to obtain
diverse tool-based prompts to induce more diverse
reasoning paths and solutions. (2) We then intro-
duce TIP to better derive the final answer from
multiple reasoning solutions from LLMs and tool-
augmented LLMs. The flow of our TIP can be
defined as: Initial answer determination from
question analysis→ Cross-Validation of options
accuracy → Further verification of reasoning
if discrepancies arise→ Rethinking for answer
accuracy if uncertain→ Final answer.

2.2.1 Self-Prompt
Crafting clear, diverse and concise tool-based
prompts, which encompasses the output format,
tool definition, and usage instructions, proves more
challenging than traditional COT. Thus, we pro-
pose self-prompt to address this issue. Moreover,
different from previous works (Wang et al., 2022;
Li et al., 2023) that focus on generating k reasoning
paths from one fixed prompt by sampling decoding,
which limits the diversity of reasoning paths. Our
proposed self-prompt can produce diverse prompts,
automatically increasing prompt diversity and en-
couraging LLMs to think differently, eliminating

the need for repetitive manual writing and editing.
Concretely, we design self-prompt in three steps,
as shown in Figure 2:

• Step1: We first give an initial tool-based
prompt to the LLM with the instruction:
“Summary the drawbacks of the current
prompt and give some advice”.

• Step2: With the advice and prompt problems
that are outputted from LLMs, we then in-
struct the LLM with: “According to your ad-
vice, please rewrite the current prompt”. Thus,
the LLM can output the revised prompt.

• Step3: Given the revised prompt as input and
ask the LLM: “Is there any problem with the
revised prompt?”. If the LLM responds “Yes”
we will repeat steps 1 to 3 until the LLM an-
swers “No”. Otherwise, this is the final im-
proved prompt.

Overall, our self-prompt follows the idea that
“LLMs know themselves better”. Through the steps
mentioned above, we not only address the issue
of manually crafting reasonable and clear instruc-
tions for LLMs to use tools but also enhance the
diversity of prompts simultaneously via running
self-prompt through multiple iterations. Experi-
mentally, the improved tool-based prompt can help
LLMs achieve better performances compared with
the initial prompt. We can run it M times, resulting

66

LLMs

Initial

Prompt
Step1: Summary the drawbacks of

the current prompt and give some

advice.

Step3: Is there any problems for

revised prompts?

LLMs

Step2: According to your advice,

please rewrite the current prompt.

LLMs

Improved

Prompt

NoYes

Figure 2: Overview of self-prompt.

in M diverse prompts, and then sample N reasoning
paths for each prompt via sampling decoding. This
way, we can obtain K = M × N tool-based diverse
reasoning paths for each math problem.

2.2.2 Tool-augmented Interleaf Prompting

The core idea of TIP is: We augment the rea-
soning paths for each question from 1 to K+L,
where L from LLMs 1 and K from their tool-
augmented LLMs (obtained from self-prompt).
Then we derive the final answer by observing and
validating these solutions (reasoning paths) in an
interleaved manner, which can be formalized as
T IP(Â|Q,R1, ...RK+L). TIP is similar to how
a human brain learns when solving mathematical
and multiple-choice questions: given a question
and different possible solutions, analyze the prob-
lem, observe the solutions to find how the ques-
tion should be solved, and then learn from these
solutions, memorize or revise its own solution, con-
clude the answer at last.

Following this, We decompose TIP into three
major steps. Given a question and multiple poten-
tial solutions: (1) ANALYZE THE PROBLEM: Be-
fore validating different answers, LLMs first need
to analyze the problem and give their own reason-
ing logical via generating algebraic and numerical
expression; (2) CROSS-CHECK DIFFERENT SOLU-
TIONS: Then based on the above reasoning hint,
LLMs can cross-check different solutions. Consid-

1In our experiments, we obtain L reasoning paths from
LLMs by sampling decoding.

ering LLMs could occasionally conclude accurate
answers when generating wrong reasoning paths,
we break down this into two sub-steps: compare the
numerical answers and then cross-verify interme-
diate steps, which explores whether each solution
is both sound and accurate. (3) RETHINK: Un-
like traditional multiple-choice question answering
tasks, where there is at least one correct solution
and reliable reasoning hints, in our case, all four so-
lutions could be incorrect, and previous reasoning
hints might also be flawed. Hence, we introduce an
extra step called “Rethink” which requires LLMs
to review and correct their initial answer hints after
observing and checking different solutions, out-
putting the final answer. We argue that LLMs are
capable of gaining a deeper understanding of the
problem by cross-checking various solutions.

Inspired by ReAct (Yao et al., 2022), we let
LLMs achieve each step in an interleaved man-
ner with thought and action. In each step, LLM
receives the environmental context ct and takes an
action at ∈ A, where ct = {t1, a1, ..., tt−1, at−1}
and A is the action space. t1, a1 are previous
thought and action at step 1. As shown in Figure
1, there could be multiple types of useful thoughts,
like creating action plans (Tho-1), reasoning pro-
cess of executing the action (Tho-2), reasoning over
the context (Tho-6).

Action Space As we focus on math reasoning
tasks, A consists of the following actions to sup-
port interactive TIP: (1) Analyze[], which requires
analyzing the specific solution or the math prob-
lem. (2) Compare[], which requires comparing
and cross-checking answers or intermediate steps
from different solutions or the generated answer
hints. (3) Rethink[], which means to double-check
or review the specific thinking process in previous
thoughts. (4) Calculator[], which calls the calcula-
tor to compute the expression.

Figure 1 shows a typical example of IMR-TIP.
In this example, all options are the wrong solu-
tions, and the direct select and self-consistency
approaches also give the wrong answers. In our
proposed IMR-TIP, despite making an initial er-
ror in predicting during the “analyze the problem"
step, the model self-corrects by cross-checking and
identifying the correct equation formulation in the
Tho-2, albeit with an algebraic mistake. In the
Tho-6, it rectifies the error, resulting in the correct
answer via calling the calculator.

Overall, our IMR-TIP has the following salient

67

features for solving math reasoning tasks: (I) Multi-
view Reasoning paths: Approaching the math
problem from multiple perspectives from LLMs
and tool-augmented LLMs; (II) Multi-verification:
Comparing and cross-checking the different solu-
tions to a reasoning hint, including verifying the
correctness of numeric answers and the interme-
diate steps, aiming at providing a more accurate
understanding of the problem; (III) Calculation-
Verification: Using the calculator to calculate the
expression or verify the result; (IV) Self-Check:
Re-checking the reasoning paths that include alge-
braic equation and substitution in previous reason-
ing hints after cross-checking different solutions.

In theory, M, N, K and L could be assigned
higher values, resulting in more reasoning paths.
However, due to the fact that these K+L solutions
will be subsequently used as inputs for our TIP,
we must take into account the limitations posed by
input token length and associated costs in the in-
context learning setting. Experimentally, we have
determined that setting M=3, N=1, K = M × N =3
and L=1 is appropriate.

3 Experiments

In this section, we first review our testing datasets
and evaluation metrics. Then we briefly introduce
our experimental settings that include backbones,
and our prompts. At last, we will present our main
results and ablation studies.

3.1 Datasets and Metrics

Datasets We validate our proposed approach on
five math reasoning datasets: (1) MAWPS (Koncel-
Kedziorski et al., 2016) serves as a collection of
math word problems (MWPs), offering a unified
testbed with 1921 samples for accessing various
algorithms. (2) SVAMP (Patel et al., 2021), short
for Simple Variations on Arithmetic Math Word
Problems, is an elementary-level MWP dataset that
contains 1000 examples in test set. (3) GSM8K
(Cobbe et al., 2021) stands as a dataset compris-
ing 1391 linguistically diverse grade school MWPs,
meticulously crafted by human problem writers to
ensure high quality. (4) GSM8K-Hard (Gao et al.,
2023), an advanced iteration of GSM8K, which
substitutes numbers in the questions with larger
counterparts. This modification aims to assess the
generalization capability of LLMs when dealing
with substantial numerical values. (5) Given the
limited range of three-digit numbers in the SVAMP

dataset, we enhanced model assessment by ran-
domly replacing query numbers with values be-
tween 100,000 and 10,000,000. This adjustment,
while maintaining original reasoning logic, lead
to the creation of SVAMP-Hard. SVAMP-Hard
and GSM8K-Hard provide a more rigorous test of
LLMs’ mathematical computational capabilities.

Metrics Following previous standard works, we
use the Accuracy as the evaluation metrics.

3.2 Experimental Settings

Backbone We conduct our experiments based on
two OpenAI LLMs: GPT-3 (text-davinci-003)
and GPT-3.5 (gpt-3.5-turbo) through Azure Ser-
vice. We use the default parameters except temper-
ature = 0 for greedy decoding during inference. In
our experiments, we select the calculator as the ex-
ternal tool for tool-augmented approaches, which
is implemented by Python eval() function.

Exemplars All quintet mathematical reasoning
datasets allocate two exemplars, which are arbi-
trarily selected solely from the GSM8K-trainset,
for both LLMs-COT and tool-enhanced LLMs. In
TIP, we manually compose trajectories to use three
exemplars in the prompts. Each trajectory includes
multiple thought-action steps, where each thought
is free-form. LLMs combine these thoughts to de-
vise a plan (“... I first need to analyze x”), guide
the reasoning process (“Option (A) is right, I then
...”), call tool (“use the calculator to compute y”),
and conclude the answer (“the answer is z”). The
model will end with “[Ans]” when solving the task.
See Appendix A for more details about LLMs-COT,
tool-augmented LLMs and TIP prompts.

Baselines We mainly compare our approach with
the following baselines: (1) COT, which solves the
problem via step-by-step reasoning with our own
implementations. (2) Tool-Augmented, signifies
LLMs employing calculators for expression compu-
tation with initial tool-based prompts, as elucidated
in preceding sections. In this way, LLMs always
need to follow a specific output format. (4) Self-
Prompt, which utilizes the improved too-based
prompts from self-prompt to solve math reasoning
tasks. (5) Toolformer (Schick et al., 2023), a so-
phisticated paradigm that enables language models
like GPT-J to utilize external tools, optimizing their
performance in various tasks through fine-tuning.
(4) ART (Paranjape et al., 2023), a framework facil-
itating automatic multi-step reasoning and tool-use

68

Backbone Algorithms Dataset

MAWPS SVAMP SVAMP-H GSM8K GSM8K-H Average

GPT-J Toolformer 44.0 29.4 - - - -

GPT-3
(text-davinci-003)

ART 90.1 76.2 - - - -
COT 89.6 77.1 29.5 54.2 20.4 54.2
Tool-Augmented 89.9 77.6 69.9 55.5 44.1 67.3
Self-Prompt 90.1 78.5 70.0 56.1 44.5 67.8
IMR-TIP 90.7 79.3 73.7 61.5 47.4 70.5

GPT-3.5
(gpt-3.5-turbo)

COT 91.0 76.5 39.2 73.0 35.0 62.9
Tool-Augmented 91.9 77.0 78.5 75.5 54.0 75.4
Self-Prompt 92.1 78.0 79.7 76.0 56.0 76.4
IMR-TIP 92.6 79.3 82.0 79.1 65.2 79.6

Table 2: The overall results on the five datasets. We highlight the best results for each backbone. In our experiments,
as we obtain 3 improved tool-based prompts through self-prompt (Section 3), we report their average results.
SVAMP-H and GSM8K-H are short for SVAMP-Hard and GSM8K-Hard. We report average results of 3 runs.

20

30

40

50

60

70

80

SVAMP-H GSM8K GSM8K-H

COT-SC Tool-SC Mix-SC Direct-Select IMR-TIP

30

40

50

60

70

80

90

SVAMP-H GSM8K GSM8K-H

COT-SC Tool-SC Mix-SC Direct-Select IMR-TIP

(a) text-davinci-003 (b) gpt-3.5-turbo

Figure 3: Ablation studies of different prompting methods based on text-davinci-003 and gpt-3.5-turbo.

Models SVAMP-H GSM8K GSM8K-H

IMR-TIP 73.7 61.5 47.4

w/ Step-I 70.4 56.3 44.5
w/ Step-II 72.4 58.7 45.6

w/ Step-I + II 72.9 59.4 46.5

Table 3: Ablation studies in our IMR-TIP. Here, we
conduct results based on text-davinci-003.

integration for LLMs.

For ablations, we also compare ours with (1) Self-
consistency: We build self-consistency baselines
based on LLMs and their tool-augmented coun-
terparts, named COT-SC and Tool-SC, separately.
For a fair comparison, we sample reasoning paths
3 times by setting the temperature as 0.7. Then
we also introduce Mix-SC, which votes the most
consistent answer from the given solutions in TIP
as the prediction. (2) Direct Select: Given a math
problem, multiple solutions from LLMs and tool-
augmented LLMs, we regard it as a multiple choice
question answering task and require LLMs directly
selecting one of them as the answer through COT.
We show an example of it in Figure 1. See Ap-
pendix A for more details about their definitions.

Of note, although other works, such as PAL
(Gao et al., 2023), employs tools like programming
languages for math problem-solving, we do not
compare our method with theirs in this paper to
maintain fairness, as our tools differ.

3.3 Main Results

Table 2 shows the results of three backbone mod-
els with various prompting algorithms. Some key
observations are as follows from the table:

LLMs still suffer in math calculations. It is ev-
ident that the performances of these two backbone
LLMs with COT on SVAMP-Hard and GSM8K-
Hard are notably lower compared to their per-
formance on SVAMP and GSM8K (e.g., 77.1%
vs.29.5% on SVAMP and SVAMP-Hard). This
discrepancy suggests that when tasked with com-
putations involving larger numerical values, these
LLMs exhibit an increased susceptibility to calcu-
lation errors. Interestingly, GPT-3.5 shows better
computation ability than GPT-3.

Self-prompt benefits the performances for tool-
using. Across all datasets, it is discernible that
the prompts subjected to self-prompt adjustments

69

manifest enhanced performance relative to their
original counterparts. This enhancement is at-
tributed to the provision of more lucid and explicit
tool usage instructions, alongside a heightened stan-
dardization of input-output formats.

IMR-TIP outperforms other baselines consis-
tently, particularly on more challenging datasets
involving complex computations. Firstly, the
table highlights the tool-augmented method’s su-
periority over the traditional COT approach on
all datasets, attributed to enhanced computational
abilities. Secondly, our approach yields addi-
tional enhancements across all datasets, notably
pronounced in the more challenging SVAMP-Hard
and GSM8K-Hard sets demanding higher compu-
tational prowess. For example, IMR-TIP based on
GPT-3.5 could improve COT and Self-Prompt from
35.0%, 56.0% to 65.2% on GSM8K-Hard.

3.4 Ablation Study

In this part, we conduct ablation studies to verify
the impact of (1) each key component in IMR-
TIP; (2) self-prompt (How well prompts from
self-prompt perform specifically? See Appendix
B for more details.).

Key Components Given the sequential nature of
our three-step IMP process (See Section 3), our
ablation study comprises three sub-experiments in
Table 3: 1) Step I only; 2) Step II only; 3) Steps
I and II together. Table 3 shows that: 1. Step II
holds paramount importance; 2. Steps I and III also
exhibit significance; 3. The combined use of all
three steps yields optimal performance.

4 Analysis

IMR-TIP vs. Self-consistency Given multiple
solutions from LLMs and tool-augmented LLMs,
two intuitive ways to derive the answer are: 1) Self-
Consistency; 2) Direct Select. As aforementioned,
we have three versions of self-consistency: COT-
SC, Tool-SC and Mix-SC. Figure 3 shows the com-
parison between ours and these approaches on three
datasets. We can observe that Tool-SC and Mix-
SC perform comparably but they perform much
better than COT-SC, just as tool-augmented LLMs
surpass LLM-COT. Across two distinct backbone
models, IMR-TIP consistently outperforms other
methods on each dataset.

4.1 Why IMR-TIP works?

In pursuit of a comprehensive dissection of our
IMR-TIP’s underlying mechanics, we proffer a dis-
tributional analysis capturing the trajectory through
which IMR-TIP reaches its definitive answers. Ta-
ble 5 delineates the proportions in which IMR-TIP
either selects answers from provided options or
re-generates new answers on SVAMP-Hard and
GSM8K-Hard datasets. The former is segmented
into three categories of assessment by IMR-TIP:
solely based on LLM’s answer, based on both the
LLM and the Tool-augmented methods, and ex-
clusively within the Tool-augmented method. Pre-
dominantly, IMR-TIP favors answers from Tool-
augmented LLMs that are derived from provided
solutions. Notably, IMR-TIP’s capacity for gener-
ating new answers through observation and cross-
checking significantly enhances its performance
relative to self-consistency. This unique capability
distinguishes IMR-TIP from other methods.

We remain curious about the performance of
IMR-TIP when not all the given options are neces-
sarily correct. To verify this, we conduct in-depth
analysis of the GSM8K-Hard dataset in Table 6
shows that our model incorrectly answers 2.7%
of cases when all provided answer choices are cor-
rect. Conversely, it correctly answers 5.2% of cases
when all choices are incorrect. These outcomes
highlight the challenges in enabling a model to self-
verify and self-correct. Despite some errors, our
method strengthens LLM’s ability to enhance
its understanding and correct mistakes through
interleaving reasoning steps, which is a central
aspect of our approach.

Case Study Table 4 shows the an example from
IMR-TIP and self-consistency on the GSM8K
dataset. In this instance, only option (D) stands
correct, with option (A) exhibiting a computational
error, and both options (B) and (C) featuring accu-
rate algebraic expressions albeit flawed numerical
substitutions. Within this context, Mix-SC would
favor the most consistently occurring answer, lead-
ing to the selection of 44 as the predicted answer,
despite its inaccuracy. While our approach also en-
counters numerical substitution errors in [Tho-2],
meticulous scrutiny of both the answer and reason-
ing steps reveals the preceding mistake, affirming
the correctness of option (D). This case underscores
another inherent advantage of IMR-TIP over self-
consistency: the capacity to derive an accurate an-
swer through thoughtful reasoning, rather than a

70

Question: Sadie slept 8 hours on Monday. For next two days, she slept 2 hours less, each, because she had to complete
some assignments. If the rest of the week she slept 1 hour more than those two days, how many hours did she sleep in
total throughout the week?
(A): Sadie slept 8 hours on Monday. For the next two days, she slept 2 hours less, each, so she slept 6 hours each day. If
the rest of the week she slept 1 hour more than those two days, she slept 7 hours each day. So the total amount of hours
she slept throughout the week is 8+6+6+7+7+7+7=42. So the answer is 42.
(B): The mathematical equation to solve the problem is: total hours slept = (Monday’s hours + (2 days * (hours - 2)) + (4
days * (hours + 1))). Substituting the given values, we get: total hours slept = (8 + (2 * (6 - 2)) + (4 * (6 + 1))). Therefore,
Answer = Calculator[8 + (2 * (6 - 2)) + (4 * (6 + 1))] = 44.
(C): [Algebraic Equation]: Total hours slept = (Monday’s hours + (2 days * (Monday’s hours - 2 hours)) + (4 days *
(Monday’s hours - 2 hours + 1 hour)) [Numeric Equation]: Total hours slept = (8 + (2 * (8 - 2)) + (4 * (8 - 2))) [Answer]:
Calculator[(8 + (2 * (8 - 2)) + (4 * (8 - 2)))] = 44.
(D): [Algebraic Equation]: total hours slept = hours slept on Monday + (hours slept on Tuesday + hours slept on Wednesday
+ hours slept on Thursday + hours slept on Friday + hours slept on Saturday + hours slept on Sunday) [Numeric Equation]:
total hours slept = 8 + (6 + 6 + 7 + 7 + 7 + 7) [Answer]: Calculator[8 + (6 + 6 + 7 + 7 + 7 + 7)] = 48.

IMR-TIP:
Tho-1: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
Act-1: Analyze[problem]
Tho-2: I need to find the total amount of hours Sadie slept throughout the week given the information that she slept 8
hours on Monday, 2 hours less for the next two days, and 1 hour more for the rest of the week. Thus, the total hours = 8 +
(2 * (8 - 2)) + (4 * (8 - 2)). To ensure the calculation is correct, I need to use Calculator to calculate the answer.
Act-2: Calculator[8 + (2 * (8 - 2)) + (4 * (8 - 2))]
Tho-3: With the answer hint 44, I can first compare their answers to make an initial assessment of their accuracy.
Act-3: Compare[answers]
Tho-4: I observe that (A) directly gives the answer while (B), (C) and (D) use the Calculator to compute the answer. The
answers of them are 42, 44, 44, 48. Half of them align with the answer hint 44, I can preliminarily conclude that (B), (C)
are correct. But there are still two different answers, I cannot determine which answer is definitely correct. Thus, I can
compare their reasoning steps and equations with mine to further verify their correctness.
Act-4: Compare[reasoning]
Tho-5: (A) and (D) follow similar reasoning paths and their mathematical equations are the same, but their answers are
different. Due to (D) using the calculator, (A) must have mistakes in calculation. (B) and (C) give similar algebraic
equations, but their substitutions are incorrect. (B) states that Sadie slept 6 hours each day for the next two days, which is
not accurate. (C) is also incorrect. I may also make a mistake in [Tho-2] because my numerical equation is the same as
(C). I need to review [Tho-2] again to validate the accuracy of my previous reasoning and answer hint.
Act-5: Rethink[Tho-2].
Tho-6: Based on my findings, the algebraic equation in [Tho-2] is correct, but the substitution is incorrect. The correct
total hours = 8 + (2 * (8 - 2)) + (4 * (8 - 2 + 1)) rather than 8 + (2 * (8 - 2)) + (4 * (8 - 2)).
Act-6: Calculator[8 + (2 * (8 - 2)) + (4 * (8 - 2 + 1))]
Tho-7: After revising the substitution in [Tho-2], I think the final answer is 48 and (D) is correct.
Ans: 48

Mix-SC: 44.

Table 4: Examples of generated solutions by IMR-TIP and self-consistency on GSM8K dataset.

Answer Type SVAMP-H GSM8K-H

Select
Only LLM 4.5% 6.3%
LLM and Tool 13.4% 18.5%
Only Tool 79.0% 67.1%

Re-generate new answers 3.1% 8.1%

Table 5: Proportion of each answer type in our IMR-TIP.
Here, we conduct results based on gpt-3.5-turbo.

Method Answer options have the right answer?

IMR-TIP

GSM8K-H (%) Yes No Total

Wrong 2.7% 31.8% 34.5%

Right 60.3% 5.2% 65.5%

Total 63.0% 37.0% 100%

Table 6: Ours performance when provided with an-
swer choices that are either correct or incorrect in
GSM8K-Hard dataset. The experimental LLMs is
gpt-3.5-turbo.

simplistic reliance on majority voting for consis-
tency. We present more cases in Appendix C.

5 Conclusion

This work introduces IMR-TIP, a framework de-
signed to capitalize on the strengths of both con-
ventional and tool-augmented LLMs, enhancing
their mathematical capabilities. IMR-TIP employs
self-prompt to refine its initial prompts. Addition-
ally, it utilizes tool-augmented interleaf prompting
(TIP) to reach the correct answer. This process
involves interleaved Action and Thought, which en-
compasses analyzing the problem, observing, cross-
verifying different solutions, and even rethinking
previous answer hints. Through rigorous experi-
mentation and comprehensive analysis of math rea-
soning tasks, IMR-TIP demonstrates a substantial
enhancement over established baselines.

71

Limitations

In our study on enhancing the mathematical capa-
bilities of Large Language Models (LLMs) through
prompt engineering, we acknowledge two primary
limitations: the potential for inaccuracies and the
concern over prompt length. Despite the method’s
promising results, it is susceptible to errors in
specific scenarios, which may affect the model’s
overall reliability. Moreover, the use of extended
prompts, while instrumental in our approach, in-
troduces practical constraints related to processing
time and model usability. Recognizing these chal-
lenges, future research will focus on developing
training techniques aimed at improving the LLM’s
self-revision abilities and optimizing prompt length.
This direction is expected to mitigate current lim-
itations and further the application of LLMs in
complex problem-solving tasks.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020a. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020b. Language models are few-shot learn-
ers. CoRR, abs/2005.14165.

Nuo Chen, Hongguang Li, Yinan Bao, Junqing He,
Xinshi Lin, Qi Yang, Jianfeng Liu, Ruyi Gan, Ji-
axing Zhang, Baoyuan Wang, et al. 2023a. Orca:
A few-shot benchmark for chinese conversational
machine reading comprehension. arXiv preprint
arXiv:2302.13619.

Nuo Chen, Zinan Zheng, Ning Wu, Linjun Shou, Ming
Gong, Yangqiu Song, Dongmei Zhang, and Jia Li.
2023b. Breaking language barriers in multilingual
mathematical reasoning: Insights and observations.
arXiv preprint arXiv:2310.20246.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al.
2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. In ACL (industry), pages 37–42.
Association for Computational Linguistics.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152–1157, San
Diego, California. Association for Computational
Linguistics.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and
Kai-Wei Chang. 2022. A survey of deep learn-
ing for mathematical reasoning. arXiv preprint
arXiv:2212.10535.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. arXiv preprint arXiv:2301.13379.

OpenAI. 2023. Gpt-4 technical report.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els. arXiv preprint arXiv:2303.09014.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

72

https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
http://arxiv.org/abs/2303.08774

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and
Xifeng Yan. 2022. Limitations of language models
in arithmetic and symbolic induction. arXiv preprint
arXiv:2208.05051.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu,
and Jun Zhao. 2022. Large language models are
reasoners with self-verification. arXiv preprint
arXiv:2212.09561.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Chenyu You, Nuo Chen, Fenglin Liu, Shen Ge, Xian
Wu, and Yuexian Zou. 2022. End-to-end spoken con-
versational question answering: Task, dataset and
model. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 1219–1232,
Seattle, United States. Association for Computational
Linguistics.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
and Songfang Huang. 2023. How well do large lan-
guage models perform in arithmetic tasks? arXiv
preprint arXiv:2304.02015.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

A Related Work

Math Reasoning with LLMs In recent times,
large language models (LLMs) have demonstrated
remarkable abilities in handling complex reason-
ing tasks (Scao et al., 2022; Cobbe et al., 2021;
Zhou et al., 2022; Weng et al., 2022; Chen et al.,
2023b; Gou et al., 2023). Rather than providing
direct final answers as outputs, prior research has
shown that by employing diverse prompting meth-
ods such as Chain-of-Thought (COT) prompting
(Wei et al., 2022), LLMs can be guided through
step-by-step reasoning, resulting in notably im-
proved performance across a wide array of reason-
ing tasks. Imani et al. (2023) propose to generate
multiple algebraic expressions or Python functions
to solve the same math problem, aiming to explore
different potential solutions. Li et al. (2023) intro-
duce a step-aware verifier to check the reasoning
steps in COT, improving the reasoning capabilities.
Self-Consistency (Wang et al., 2022) is another
effective work that combines different solutions
and gets a final answer by aggregating to retrieve
the most consistent answer. Among them, self-
consistency bears resemblance to our proposed TIP,
but our main distinction lies in the following: Given
several solutions, our TIP can re-generate a new
answer after cross-validating these solutions. In
contrast, self-consistency can only select the most
consistent answer from the existing ones.

Tool-Augmented LLMs Currently, researchers
have undertaken a wide array of studies aimed at en-
riching the step-by-step reasoning process. These
approaches include investigating the utilization of
external tools (Parisi et al., 2022; Schick et al.,
2023; Yao et al., 2022), like program interpreters
(Lyu et al., 2023; Chen et al., 2022) and the cal-
culator (Schick et al., 2023), training and utilizing
external reasoning modules. For example, ReAct
(Yao et al., 2022) proposes an interleaved frame-
work with utilizing an external search engine to
solve multi-hop question answering tasks. More re-
cently, Toolformer (Schick et al., 2023) introduces
a pipeline for training LLMs that can call tools
during training and inference. Parallel to these
works, our work can be seen as a preliminary ex-

73

https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2022.findings-naacl.91
https://doi.org/10.18653/v1/2022.findings-naacl.91
https://doi.org/10.18653/v1/2022.findings-naacl.91

SVAMP, 76.5

SVAMP-H, 77.8

GSM8K, 75

SVAMP, 78.5

SVAMP-H, 79.9

GSM8K, 75.4

SVAMP, 78.1

SVAMP-H, 80.5

GSM8K, 76.6

SVAMP, 77.4

SVAMP-H, 79

GSM8K, 76

75

76

77

78

79

80

81

SVAMP SVAMP-H GSM8K

Initial Prompt Tool-I Tool-II Tool-III

Figure 4: Model performances of different prompts.
Here, we use the gpt-3.5-turbo as the backbone
LLM.

ploration of how to better utilize tools, which in-
volves a fusion of diverse solutions of LLMs and
tool-augmented LLMs, culminating in the attain-
ment of the final answer through tool-augmented
interleaf prompting.

B Appendix A: Prompts

Table 7 presents COT prompts in our experiments.
Table 8 shows three tool-based prompts obtained
from our proposed self-prompt. It is worth noting
that in most cases, the self-prompt does not alter
the examples within the prompt. Its primary focus
lies in modifying instructions related to tool usage,
input-output formats, and tool definitions. All of
them contain only 2 examples.

Table 9 shows the prompts of TIP in our ex-
periments. Practically, we append “——” as the
stopping symbols after each Action to achieve in-
terleaving.

B.1 Definition of Self-consistency and
Direct-Select

• COT-SC: Utilizing COT prompts in Table 1
for math reasoning and sampling 3 times.

• COT-SC: Utilizing tool-based prompts in Ta-
ble 2 for math reasoning and sampling 3 times.
Then we report their average results.

• Mix-SC: Selecting the most consistent answer
from given options (A, B, C, D) in TIP.

• Directly Select: Select the answer from the
given options in TIP through COT. Prompts
are shown in Table 1.

C Appendix B: Self-Prompt

In this component, we conduct ablation studies to
answer the question: How well do prompts from

self-prompt perform? Figure 4 depicts a compari-
son between the initial tool-based prompt and the
three prompts modified through self-prompt. It is
evident across all three datasets that the prompts
refined by self-prompt exhibit improved perfor-
mance compared to the original initial prompts.
This enhancement can be attributed to the provi-
sion of clearer, more explicit tool usage instructions
and more standardized input-output formats. Over-
all, our self-prompt follows the road “LLMs know
themselves better.” The most simple implementa-
tion of self-prompt is to interact with ChatGPT or
GPT-4 in OpenAI’ website2.

D Appendix C: More Cases

In this section, we present typical cases when IMR-
TIP solves math reasoning tasks.

Table 10 presents the most straightforward sce-
nario, wherein the provided solution corresponds
with the answer generated by IMR-TIP in [Tho-2].
In this instance, the LLM detects the uniformity
of all five answers upon comparison, resulting in a
notable elevation of confidence and the subsequent
direct issuance of the final answer.

Table 11 also provides an example wherein IMR-
TIP makes an error. Instead of further comparing
the reasoning steps of different solutions after an-
alyzing the answers, the model directly presents
a conclusion, asserting the correctness of its ap-
proach.

Table 12 introduces another intriguing case. In
this instance, IMR-TIP attains the correct answer
for [Tho-2]. However, upon reevaluating the pre-
ceding reasoning hints and formulas for [Tho-6],
it identifies a numerical substitution error within
[Tho-2]. Despite this recognition, IMR-TIP pro-
ceeds to output the identical formula as the final
answer. Instances in which LLMs exhibit self-
contradictory reasoning yet still yield the correct
ultimate answer in IMR-TIP, as exemplified here,
are referred to as “FALSE POSITIVE."

2chat.openai.com

74

COT prompts

Your task is to answer the following math questions.
Question: julia played tag with 18 kids on monday . she played tag with 10 kids on Tuesday. how many more kids did she
play with on monday than on Tuesday?
Answer: Let’s think step by step. julia playsed tag with 18 kids on monday and 10 kids tuesday, separately. So the amount
of kids that she played with on monday than on tuesday is 18-10=8. So the answer is 8.

Question: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf.
how many more action figures than books were on his shelf?
Answer: Let’s think step by step. The amount of action figures that Jack had is 9+7=16. And Jack had 10 books. So the
amount of action figures than books on his shelf is 16-10=6. So the answer is 7.

Initial tool-based prompts

Your task is to solve the following middle-school arithmetic problems by using the Calculator. A calculator is a system
used for performing mathematical calculations, ranging from basic arithmetic to more complex functions.
You can do so by writing a mathematical equation and generating the answer format starting with "Answer = Calcula-
tor[expression]", where "expression" is the expression to be computed.

Below are examples:
Question: julia played tag with 18 kids on Monday. she played tag with 10 kids on Tuesday. how many more kids did she
play with on monday than on Tuesday?
Thought: The mathematical equation to solve the problem is: number of additional kids played with = number of kids
played with on Monday - number of kids played with on Tuesday. Substituting the given values, we get: number of
additional kids played with = 18 - 10. Therefore, Answer = Calculator[18 - 10]

Question: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf.
how many more action figures than books were on his shelf?
Thought: The mathematical equation to solve the problem is: difference in number of action figures and books = (number
of action figures initially + number of action figures added) - number of books. Substituting the given values, we get:
difference in number of action figures and books = (9 + 7) - 10. Therefore, Answer = Calculator[(9 + 7)- 10]

Direct-select prompts

There is a multiple choice question answering task. You are required to select one of the options to answer the problem.
Let’s think step by step.

Table 7: LLMs-COT, initial tool-based prompts and direct-select prompts in our experiments.

75

Prompt of Tool-I for math reasoning tasks.

Your task is to solve the following middle-school arithmetic problems using a calculator. Follow the steps provided to
write out the algebraic and numeric equations, and use a calculator to find the answers. You can generate the answer
format starting with “Answer = Calculator[expression]", where “expression" is the expression to be computed.
Example Problems:
Question: Julia played tag with 18 kids on Monday and 10 kids on Tuesday. How many more kids did she play with on
Monday than on Tuesday?
Thought:
Algebraic Equation: Additional kids played with = Kids played with on Monday - Kids played with on Tuesday.
Numeric Equation: Additional kids played with = 18 - 10
Answer: Calculate Calculator[18 - 10]

Question : Jack had 9 action figures and 10 books on a shelf. Later, he added 7 more action figures to the shelf. How many
more action figures than books were on his shelf?
Thought:
Algebraic Equation: Difference in action figures and books = (Initial action figures + Added action figures) - Number of
books.
Numeric Equation: Difference in action figures and books = (9 + 7) - 10
Answer: Calculate Calculator[(9 + 7) - 10]
Remember to enter the appropriate equation into your calculator to find the answer. You can also explain how you would
verify your solution.

Prompt of Tool-II for math reasoning tasks.

Your task is to solve the following middle-school arithmetic problems by using the Calculator. A calculator is a system
used for performing mathematical calculations, ranging from basic arithmetic to more complex functions.

You can do so by writing out Algebraic Equation, Numeric Equation, Answer steps. In the Answer step, you should
generate the output format with “Calculator[expression]", where “expression" is the expression to be computed.
Below are examples:
Question: julia played tag with 18 kids on monday. she played tag with 10 kids on Tuesday. how many more kids did she
play with on monday than on Tuesday?
Thought: [Algebraic Equation]: number of additional kids played with = number of kids played with on Monday - number
of kids played with on Tuesday.
[Numeric Equation]: number of additional kids played with = 18 - 10.
[Answer]: Calculator[18 - 10]

Question: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf.
how many more action figures than books were on his shelf?
Thought: [Algebraic Equation]: difference in number of action figures and books = (number of action figures initially +
number of action figures added) - number of books.
[Numeric Equation]: difference in number of action figures and books = (9 + 7) - 10
[Answer]: Calculator[(9 + 7)- 10]

Prompt of Tool-III for math reasoning tasks.

Your task is to solve the following middle-school arithmetic problems by using the Calculator. A Calculator is a system
used for performing mathematical calculations, ranging from basic arithmetic to more complex functions.

You can do so by writing out Algebraic Equation, Numeric Equation, and Answer steps:
(1) [Algebraic Equation], which directly builds an Algebraic Equation by using variables from the question to generate the
solution.
(2) [Numeric Equation], which plugs in values from the question to transform the above Algebraic Equation into its
numeric form.
(3) [Answer], which uses Calculator to calculate the above numeric equation, but not directly to give the final answer. You
can generate the answer format with “Calculator[expression]", where “expression" is the expression to be computed.

Below are examples:
Question: julia played tag with 18 kids on monday. she played tag with 10 kids on tuesday. how many more kids did she
play with on monday than on Tuesday?
Thought: [Algebraic Equation]: number of additional kids played with = number of kids played with on Monday - number
of kids played with on Tuesday.
[Numeric Equation]: number of additional kids played with = 18 - 10.
[Answer]: Calculator[18 - 10]

Question: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf.
how many more action figures than books were on his shelf?
Thought: [Algebraic Equation]: difference in the number of figures and books = (number of figures initially + number of
figures added) - number of books.
[Numeric Equation]: difference in the number of figures and books = (9 + 7) - 10
[Answer]: Calculator[(9 + 7)- 10]
You should keep in mind:
(1) you can not image or output the result of "Calculator[expression]".
(2) When generating a mathematical formula, do not include any units of measurement.

Table 8: Three tool-based prompts from Self-Prompt.

76

Your task is to validate the several options to the same math problem and select the correct ones. You should make your own reflections, revise your own thoughts, give the final
answers based on the previous findings at the end. You can use the Calculator to help you calculate the numeric equations and verify the solutions.
A Calculator is a system used for performing mathematical calculations, ranging from basic arithmetic to more complex functions.
To do this, you can writing out interleaving Thought, Action and Answer steps. Notice that, you need to end with Answer when solving the task.
Below are examples:
Question: A robe takes 2287720 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
(A): A robe 2287720 + (2287720/2) = 3,431,280 bolts.
(B): Based on the statement of the question total number of bolts = Calculator[2287720 + (2287720/2)] = 3431580.
(C): [Algebraic Equation]: total number of bolts = number of blue bolts + number of white bolts...... Calculator[2287720 + (2287720 / 2)] = 3431580.
(D): [Algebraic Equation]: total number of boltsCalculator[2287720 + (2287720/2)] = 3431580.
Thoughts: [Thought-1]: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
[Action-1]: Analyze[problem]
[Thought-2]: First, the number of bolts of while fiber is half of the number of bolts of blue fiber. Total number of bolts = Number of bolts of blue fiber + Number of bolts of white fiber.
Thus, total number of bolts = 2287720 + 2287720/2. To ensure the calculation is correct, I should use Caculator to calculate the answer.
[Action-2]: Calculator[2287720 + 2287720/2]
[Calculated Result]: 3431580
[Thought-3]: With the answer hint 3431580, I can first compare the answers of different options to make an initial assessment of their accuracy.
[Action-3]: Compare[answers]
[Thought-4]: The answer of option (A) is 3431280 that contradicts the answer hint 3431580, while options (B), (C), and (D) align with the answer hint. Therefore, I can preliminarily
conclude that (A) is incorrect, and (B), (C), and (D) are correct. Since most of the answer options are consistent with my previous answer hint, I believe the current answer hint is likely
correct. I can compare their reasoning steps and equations with mine to further verify my judgment and investigate why option (A) yielded an incorrect answer.
[Action-4]: Compare[reasoning]
[Thought-5]: Option (A) follows a similar reasoning process and formula as mine in [Thought-2], suggesting an error in the final calculation. Options (B), (C), and (D) provide
equations that align with my earlier reasoning. Based on my findings, upon comparing the answers and reasoning processes, options (B), (C), and (D), along with the answer hint, are
all correct.
[Answer]: Calculator[2287720 + 2287720/2]

Question: Trent is 5 years older than Jane, and Jane is 3 years younger than Quinn. If Quinn is 2538570, how old is Trent?
(A): Quinn is 2538570...... So the answer is Trent is 2538572.
(B): The mathematical equation to solve the problem is:Answer = Calculator[2538570 + (3 - 2538570) + 5] = 8.
(C): [Algebraic Equation]: Trent’s age = Quinn’s age2538578.
(D): [Algebraic Equation]: Calculator[2538570 + 5 + 3] = 2538578.
Thoughts: [Thought-1]: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
[Action-1]: Analyze[problem]
[Thought-2]: I need to find Trent’s age given the relationships between Trent, Jane, and Quinn’s ages. Jane is 3 years younger than Quinn and 5 year younger than Trent. If Quinn is
2538570, Trent’s age is 2538570 -3 + 5. To ensure the calculation is correct, I need to use Caculator to calculate the answer.
[Action-2]: Calculator[2538570 -3 + 5]
[Calculated Result]: 2538572
[Thought-3]: With the answer hint 2538572, I can frist compare the answers of different options to make an initial assessment of their accuracy.
[Action-3]: Compare[answers]
[Thought-4]: The answer of option (A) is 2538572 that align with the answer hint 2538572. However options (B)’s answer is 8, the answers of (C) and (D) are both 2538578 which all
contradict the answer hint. Therefore, I can preliminarily conclude that (A) is correct, and (B), (C), and (D) are incorrect. But there are three different answers and only one aligns with
the answer hint, I cannot determine which answer is definitely correct. Thus, I can compare their reasoning steps and equations with mine to further verify their correctness.
[Action-4]: Compare[reasoning]
[Thought-5]: (A) follows a similar reasoning process and formula as mine in [Thought-2]. (B) is correct in terms of the mathematical equation used, but the substitution is incorrect. It
states that Jane’s age is equal to 3. (C) and (D) present that Trent’s age = Quinn’s age + 8 (5+3), meaning that Trent is 5 years older that Jane, and Jane is 3 year older than Quinn which
contradict the information given in the question. The correct algebraic equation would be to subtract 3 from Quinn’s age to determine Jane’s age and then add 5 to Jane’s age to find
Trent’s age. Based on my findings, I think (B), (C) and (D) are wrong, the answer hint and (A) are correct with no need improvements. I don’t need to review my previous answer hint.
[Answer]: Calculator[2538570 -3 + 5]

Question: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but 40 percent of the way through the download, Windows forces a restart to install updates,
which takes 20 minutes. Then Carla has to restart the download from the beginning. How load does it take to download the file?
(A): It will take her 200 minutes to download the file.
(B): The mathematical equation Therefore, Answer = Calculator[(0.4 * (200/2)) + 20] = 60.
(C): [Algebraic Equation]: Calculator[(200/2) + (200/2 * (1 - 0.4))/2] = 130.
(D): [Algebraic Equation]: total time[Answer]: Calculator[(200/2 + (200 - (200*0.4))/2) / 2] = 180.
Thoughts: [Thought-1]: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
[Action-1]: Analyze[problem]
[Thought-2]: First, I should list the equation to calculate the time it took Carla to download the data before the Windows restart: time before restart = Downloaded data/Download
speed. And time after restart = File size/Donwload speed. Thus, the total time = time before restart + Windows update + time after restart. Thus, total time = 200 *0.4/2/2 + 20 + 200/2.
To ensure the calculation is correct, I need to use Calculator to calculate the answer.
[Action-2]: Calculator[200 * 0.4/2/2 + 20 + 200/2]
[Calculated Result]: 140
[Thought-3]: With the answer hint 140, I can first compare the answers of different options to make an initial assessment of their accuracy.
[Action-3]: Compare[answers]
[Thought-4]: The answers of these options are 200, 60, 130 and 180, separately, that are different with the answer hint 140. Thus, I can not preliminarily conclude which one is correct.
I need to further compare their reasoning steps and equations with mine to further verify their correctness.
[Action-4]: Compare[reasoning]
[Thought-5]: (B), (C), and (D) have flawed algebraic equations as they omit the inclusion of Windows update time mentioned in the reasoning hint. (A) lacks reasoning steps, making
its correctness uncertain. Because none options have the same answer as mine, I need to review [Thought-2] again to validate the accuracy of my previous reasoning and answer hint.
[Action-5]: Rethink[Thought-2]
[Thought-6]: The algebraic equation in [Thought-2] is correct, but the substitution is incorrect. The correct total time = 200 *0.4/2 + 20 + 200/2 rather than 200 *0.4/2/2 + 20 + 200/2.
So based on my findings, the answer is Calculator[200 * 0.4/2 + 20 + 200/2].
[Answer]: Calculator[200 * 0.4/2 + 20 + 200/2]

Keep in mind the following requirements:
(1) You must output the correct equation as the final answer in [Answer].
(2) If answers of all options are the same as the answer hint, you can directly end the task and output the correct equation in Answer.
(3) If you decide to use Calculator in Action, generate the format with "Calculator[expression]", where "expression" is the expression to be computed.
(4) Do not include any units of measurement in "Calculator[expression]".
(5) You can not image the results of "Calculator[expression]".

Table 9: Prompts of TIP. In this table, we omit details of each option.

77

Question: There were some birds sitting on the fence. 725067 more birds came to join them. if there are a total of 544650
birds on the fence now how many birds had been sitting on the fence at the start?
(A): The total number of birds on the fence now is 544650. And 725067 more birds came to join them. So the total number
of birds at the start is 544650 - 725067 = -180417.
(B): Answer = Calculator[544650 - 725067] = -180417
(C): [Algebraic Equation]: number of birds at the start = total number of birds on the fence now - number of birds that
came to join them. [Numeric Equation]: number of birds at the start = 544650 - 725067 [Answer]: Calculator[544650 -
725067] = -180417
(D): [Algebraic Equation]: number of birds at the start = total number of birds on the fence now - number of birds that
came to join them. [Numeric Equation]: number of birds at the start = 544650 - 725067 [Answer]: Calculator[544650 -
725067] = -180417

IMR-TIP:
Tho-1: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
Act-1: Analyze[problem]
Tho-2: The problem states that there were some birds sitting on the fence, and 725067 more birds came to join them. The
total number of birds on the fence now is 544650. To find the number of birds that had been sitting on the fence at the
start, we can subtract the number of birds that came to join from the total number of birds now. To ensure the calculation
is correct, I need to use the Calculator to calculate the answer.
Act-2: Calculator[544650 - 725067]
Tho-3: With the answer hint -180417, I can first compare the answers of different options to make an initial assessment of
their accuracy.
Act-3: Compare[answers]
Tho-4: The answers of options (A), (B), (C), and (D) are all -180417, which align with the answer hint -180417. Therefore,
I can conclude that all options are correct. No more action are needed.
Ans: -180417.0

Ground-Truth Anaswer: -180417.0

Table 10: The MOST SIMPLE interleaved example of generated solutions by IMR-TIP on SVAMP-Hard
dataset.

Question: julia played tag with 829557 kids on monday and 853729 kids on tuesday. she played cards wtih 913524 kids
on Wednesday. how many kids did she play tag with altogether?
(A): Julia played tag with 829,557 kids on Monday and 853,729 kids on Tuesday. To find out how many kids she played
tag with altogether, we need to add these two numbers together. 829,557 + 853,729 = 1,683,286 So, Julia played tag with
a total of 1,683,286 kids altogether.
(B): Answer = Calculator[829557 + 853729] = 1683286
(C): [Algebraic Equation]: total number of kids played tag with = number of kids played tag with on Monday + number of
kids played tag with on Tuesday + number of kids played tag with on Wednesday. [Numeric Equation]: total number of
kids played tag with = 829557 + 853729 + 913524 [Answer]: Calculator[829557 + 853729 + 913524] = 2596810
(D): [Algebraic Equation]: total number of kids played tag with = number of kids played tag with on Monday + number of
kids played tag with on Tuesday + number of kids played tag with on Wednesday. [Numeric Equation]: total number of
kids played tag with = 829557 + 853729 + 913524 [Answer]: Calculator[829557 + 853729 + 913524] = 2596810

IMR-TIP:
Tho-1: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
Act-1: Analyze[problem]
Tho-2: Julia played tag with a certain number of kids on Monday, Tuesday, and Wednesday. To find out how many kids
she played tag with altogether, I need to add the number of kids she played tag with on each day. The equation to calculate
the total number of kids played tag with is: total number of kids played tag with = number of kids played tag with on
Monday + number of kids played tag with on Tuesday + number of kids played tag with on Wednesday. To ensure the
calculation is correct, I need to use the Calculator to calculate the answer.
Act-2: Calculator[829557 + 853729 + 913524]
Tho-3: With the answer hint 2596810, I can first compare the answers of different options to make an initial assessment of
their accuracy.
Act-3: Compare[answers]
Tho-4: The answers of options (A), (B), (C), and (D) are 1,683,286, 1,683,286, 2,596,810, and 2,596,810, respectively. The
answer hint is 2,596,810. Therefore, options (A) and (B) are incorrect, while options (C) and (D) are correct. Since options
(C) and (D) have the same answer and reasoning process, I can conclude that the correct answer is Calculator[829557 +
853729 + 913524].
Ans: 2596810

Ground-Truth Anaswer: 1683286.0

Table 11: The typical NEGATIVE interleaved example of generated solutions by IMR-TIP on SVAMP-Hard
dataset.

78

Question: Sadie slept 8 hours on Monday. For next two days, she slept 2 hours less, each, because she had to complete
some assignments. If the rest of the week she slept 1 hour more than those two days, how many hours did she sleep in
total throughout the week?
(A): Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, mealworms and vegetables to
help keep them healthy. So the amount of cups of feed that Wendi needs to give her chickens in the final meal of the day is
20x3=60. So the answer is 60.
(B): The mathematical equation to solve the problem is: total cups of feed = (number of chickens * cups of feed per meal)
- (cups of feed given in morning + cups of feed given in afternoon). Substituting the given values, we get: total cups of
feed = (20 * 3) - (6887483 + 25). Therefore, Answer = Calculator[(20 * 3) - (6887483 + 25)] = -6887448.
(C): [Algebraic Equation]: number of cups of feed for the final meal = (number of chickens * cups of feed per chicken) -
(cups of feed given in the morning + cups of feed given in the afternoon). [Numeric Equation]: number of cups of feed for
the final meal = (20 * 3) - (6887483 + 25) [Answer]: Calculator[(20 * 3) - (6887483 + 25)] =-6887448
(D): [Algebraic Equation]: total cups of feed for the final meal = (number of chickens * cups of feed per chicken) - (cups
of feed given in the morning + cups of feed given in the afternoon) [Numeric Equation]: total cups of feed for the final
meal = (20 * 3) - (6887483 + 25) [Answer]: Calculator[(20 * 3) - (6887483 + 25)] = -6887448

IMR-TIP:
Tho-1: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
Act-1: Analyze[problem]
Tho-2: Wendi needs to give her chickens three cups of feed in three separate meals. She has already given 6887483 cups
of feed in the morning and 25 cups of feed in the afternoon. Thus, the number of cups of feed that Wendi needs to give
her chickens in the final meal of the day is (Number of chickens * Cups of feed per chicken) - (Cups of feed given in the
morning + Cups of feed given in the afternoon). To ensure the calculation is correct, I need to use Calculator to calculate
the answer.
Act-2: Calculator[(20 * 3) - (6887483 + 25)]
Tho-3: With the answer hint -6887448, I can first compare the answers of different options to make an initial assessment
of their accuracy.
Act-3: Compare[answers]
Tho-4: The answers of these options are 60, -6887448, -6887448 and -6887448, separately, which are different with
the answer hint -6887448. Thus, I can not preliminarily conclude which one is correct. I need to further compare their
reasoning steps and equations with mine to further verify their correctness.
Act-4: Compare[reasoning]
Tho-5: Option (A) follows a similar reasoning process as mine in [Tho-2], but the equation is incorrect. Options (B), (C),
and (D) provide equations that align with my earlier reasoning. However, the substitution is incorrect as it does not include
the cups of feed given in the morning and afternoon. Based on my findings, upon comparing the answers and reasoning
processes, options (A), (B), (C), and (D) are all incorrect. I need to review [Tho-2] again to validate the accuracy of my
previous reasoning and answer hint.
Act-5: Rethink[Tho-2].
Tho-6: The algebraic equation in [Tho-2] is correct, but the substitution is incorrect. The correct total cups of feed =
(Number of chickens * Cups of feed per chicken) - (Cups of feed given in the morning + Cups of feed given in the
afternoon). So based on my findings, the answer is Calculator[(20 * 3) - (6887483 + 25)].
Act-6: Calculator[(20 * 3) - (6887483 + 25)]
Ans: -6887448

Ground-Truth Anaswer: -6887448

Table 12: FALSE POSITIVE Examples of generated solutions by IMR-TIP on GSM8K-Hard dataset.

79

Author Index

Anantha, Raviteja, 39

Bandyopadhyay, Bortik, 39

Callison-Burch, Chris, 13
Cao, Lang, 1
Chen, Nuo, 64
Clark, Peter, 13

Deng, Shumin, 25
Dutta, Sujan, 39

Gu, Yuling, 13
Gupta, Priyanshu, 56

Hooi, Bryan, 25
Hou, Zhaoyi Joey, 13

Kirtania, Shashank, 56

Li, Hongguang, 64
Li, Jia, 64

Lipani, Aldo, 46
Liu, Junyuan, 46

Mahinder, Sayantan, 39

Oo, Nay, 25

Radhakrishna, Arjun, 56

Shi, Zhengyan, 46

Tandon, Niket, 13

Wang, Baoyuan, 64
Wang, Ziyu, 13

Zhang, Li, 13
Zhang, Ningyu, 25
Zhang, Tianyi, 13

80

	Title page
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Table of Contents
	Program
	GraphReason: Enhancing Reasoning Capabilities of Large Language Models through A Graph-Based Verification Approach
	PROC2PDDL: Open-Domain Planning Representations from Texts
	Towards A Unified View of Answer Calibration for Multi-Step Reasoning
	Applying RLAIF for Code Generation with API-usage in Lightweight LLMs
	SummEQuAL: Summarization Evaluation via Question Answering using Large Language Models
	LOGIC-LM++: Multi-Step Refinement for Symbolic Formulations
	From Good to Great: Improving Math Reasoning with Tool-Augmented Interleaf Prompting

