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Abstract

This paper investigates the performance of
Large Language Models (LLMs) and Tool-
augmented LLMs in tackling complex math-
ematical reasoning tasks. We introduce IMR-
TIP: Improving Math Reasoning with Tool-
augmented Interleaf Prompting, a framework
that combines the strengths of both LLMs
and Tool-augmented LLMs. IMR-TIP follows
the “From Good to Great” concept, collecting
multiple potential solutions from both LLMs
and their Tool-Augmented counterparts for the
same math problem, and then selecting or re-
generating the most accurate answer after cross-
checking these solutions via tool-augmented
interleaf prompting. The framework incorpo-
rates two key aspects: self-prompt and tool-
augmented interleaf prompting (TIP). The for-
mer allows LLMs to autonomously refine and
improve an initial prompt related to tool usage,
while the latter enables LLMs to derive the final
answer by dynamically analyzing the problem,
cross-checking potential solutions, and revising
previous reasoning hints in an interleaved man-
ner. Experimental analysis shows that IMR-TIP
achieves enhanced mathematical capabilities
and outperforms traditional LLMs and tool-
augmented LLMs in accuracy and reasoning
diversity on math reasoning tasks. For instance,
IMR-TIP can improve Tool-augmented Chat-
GPT on GSM8K-Hard from 56.0% to 65.2 %.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020b; Hu et al., 2021; Zeng et al., 2022; OpenAI,
2023; Chen et al., 2023a; You et al., 2022) such
as GPT4 have exhibited remarkable performances
across a wide array of downstream tasks. They
can effortlessly tackle downstream tasks by condi-
tioning on a scant number of in-context exemplars
or plain natural language task descriptions (Brown
et al., 2020a). Notwithstanding these significant
advancements, even the most extensive LLMs are

Method Tool-Augmented LLMs

LLMs-COT

GSM8K Wrong Right Total

Wrong 286 318 604

Right 294 421 715

Total 580 739 1319

Table 1: Confusion matrix between LLMs and its Tool-
Augmented approach on GSM8K dataset. Here, we
select the calculator as the external tool, which is imple-
mented by eval function in Python. The experimental
LLM is text-davinci-003 (2-shot).

confronted with challenges when faced with intri-
cate tasks that necessitate multiple reasoning steps
(Gao et al., 2023; Chen et al., 2023b).

The capacity of LLMs to tackle complex tasks
has been extensively assessed using math reason-
ing datasets such as GSM8K (Cobbe et al., 2021)
and SVAMP (Patel et al., 2021). These datasets
present math problems that cannot be directly an-
swered but require multi-step reasoning. To encour-
age LLMs to engage in step-by-step reasoning, the
chain-of-thought (COT) strategy (Wei et al., 2022)
has emerged as the standard prompting approach.
Through COT, LLMs are guided to generate a so-
lution that consists of a sequence of intermediate
steps, leading to the final answer. Nevertheless, it
has been observed in previous studies that LLMs
are prone to making mistakes or hallucinations,
particularly during intermediate numerical com-
putations (Qian et al., 2022; Yuan et al., 2023; Lu
et al., 2022). Even a minor mistake at this stage can
result in a completely incorrect final answer. In an
effort to address this limitation, a series of studies
(Parisi et al., 2022; Schick et al., 2023; Yao et al.,
2022) have been undertaken, which leverage exter-
nal tools such as the calculator to compensate for
the weaknesses of LLMs. These approaches have
shown significant improvements in the accuracy of
answers on math reasoning tasks.

Although these approaches have led to signif-
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icant improvements overall, a pertinent question
arises: Can these tool-augmented LLMs outper-
form their traditional LLM-COT counterparts con-
sistently? To explore this question, we conduct a
pilot analysis at first: we test both LLMs-COT
and its tool-augmented counterpart (calculator-
augmented) on GSM8K dataset, separately. Ta-
ble 1 meticulously compares the quantities of ac-
curately and inaccurately predicted samples be-
tween the two methods. Upon careful analysis
of the tabulated results, we can observe that in-
corporating a calculator has undeniably yielded a
substantial boost (739 vs. 715) in the accuracy of
LLMs on the GSM8K dataset. This improvement
can be primarily attributed to the calculator’s ca-
pability to mitigate the potential errors that could
arise during mathematical computations within the
model. Nevertheless, it is noteworthy that de-
spite this tool augmentation, there persist cases
(294) where the LLMs-COT outperforms its Tool-
augmented LLMs counterpart, achieving accurate
predictions where the latter faltered. Upon experi-
mental analysis, the primary factors contributing to
this phenomenon can be categorized as: 1) LLMs
may generate different reasoning logic for the same
math question due to the varying token sampling
probabilities. 2) When employing tool-augmented
LLMs to tackle math reasoning problems, strin-
gent requirements are imposed on the output text to
adhere to specific formats. For instance, calculator-
augmented LLMs (Schick et al., 2023) must pro-
duce the output text in a predefined numerical equa-
tion format, ensuring seamless compatibility with
the calculator’s invocation. Conversely, program-
augmented LLMs (Gao et al., 2023) necessitate
the generation of specific code functions that can
be executed effectively. These prescribed format
requirements may influence the mathematical rea-
soning process of LLMs.

Based on the aforementioned analysis, we aim
to capitalize on the strengths of both LLMs and
Tool-augmented LLMs to further enhance their
mathematical capabilities. In this work, we intro-
duce IMR-TIP: Improving Math Reasoning with
Tool-augmented Interleaf Prompting. IMR-TIP
is a framework that follows the idea “From Good
to Great" that first collects multiple potential so-
lutions from LLMs and their Tool-Augmented ap-
proaches given the same math problem, and then
selects the most correct answer or re-generates new
answer after cross-checking these solutions in a
tool-augmented interleaved manner. To achieve

this, we design IMR-TIP in two aspects: (1) We
first propose self-prompt to address the challenge
of crafting clear, diverse and effective tool-based
prompts. It allows LLMs to autonomously refine
and improve an initial prompt related to tool us-
age, resulting in enhanced prompts. Moreover,
the self-prompt can yield multiple diverse tool-
based prompts through iterative runs without re-
quiring repetitive manual modifications, eliciting
varied reasoning paths (solutions) in LLMs. (2)
Then given multiple solutions, we introduce tool-
augmented interleaf prompting (TIP), a paradigm
combining reasoning, acting, and external tools in
an interleaved manner to arrive at the correct an-
swer. TIP allows LLMs to dynamically analyze
the problem, cross-check potential solutions, and
re-evaluate even revising previous reasoning hints
through action and thought. Our technical contri-
butions are summarized as follows:

• We conduct an in-depth study for LLMs-COT
and tool-augmented LLMs on the math rea-
soning tasks, make interesting observations
and design a novel framework named IMR-
TIP to improve LLMs.

• We introduce self-prompt to obtain diverse
and machine-friendly tool-based prompts
without manual effort.

• We carry out extensive experiments to ver-
ify that our proposed IMR-TIP significantly
improves LLMs and their tool-augmented ap-
proaches on 5 math reasoning tasks based on
two different backbones.

2 Methodogy

In this section, we aim to illustrate our method in
detail, as seen in Figure 1 and Figure 2. We first
review the problem formulation of math problem
reasoning. Then we introduce our proposed self-
prompt and tool-augmented interleaf prompting
methods, sequentially.

2.1 Problem formulation

A math problem solving task can be defined as
{Q,O,A}, where Q is the target math question,
O = {O1, O2, ..., Ok} are answer options if Q is
a K-way multiple choice problem, A is the corre-
sponding ground-truth answer. Given Q and O as
inputs, LLMs can directly output answers or out-
put a sequence of tokens as intermediate reasoning
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Tho-1: To validate different solutions, I first need to analyze the problem and give my reasoning logit.

Act-1: Analyze[problem]

Tho-2: First, I should list the equation to calculate the time it took Carla to download the  ……Thus, the 

total_time = time_before_restart + Windows_update + time_after_restart. Thus, total_time = 200 *0.4/2/2 + 

20 + 200/2.  To ensure the calculation is correct, I need to use Calculator to calculate the answer.

Act-2: Calculator[200 * 0.4/2/2 + 20 + 200/2]

[Calculated Ans]: 140

Tho-3: With the answer hint 140, I can first compare the answers of different options to make an initial 

assessment of their accuracy.

Act-3: Compare[answers]

Tho-4: The answers of these options are 200, 60, 130 and 180, separately, that are different with the answer 

hint 140. Thus, I can not preliminarily conclude which one is correct.  I need to further compare their 

reasoning steps and equations with mine to further verify their correctness.

Act-4: Compare[reasoning]

Tho-5:  (B), (C), and (D) have flawed algebraic equations as they omit the inclusion of Windows update 

time mentioned in the reasoning hint. (A) lacks reasoning steps, making its correctness uncertain. Because 

none options have the same answer as mine and upon comparing the answers and reasoning processes,

I need to review [Tho-2] again to  validate the accuracy of my previous reasoning and answer hint, and

output the final answer.

Act-5: Rethink[Tho-2]

Tho-6: . Based on my findings, upon comparing the answers and reasoning processes. The algebraic 

equation in [Tho-2] is correct, but the substitution is incorrect. The correct total_time = 200 *0.4/2 + 

20 + 200/2 rather than  200 *0.4/2/2 + 20 + 200/2. So the answer is 200 * 0.4/2 + 20 + 200/2. 

Act-6: Calculator[200 * 0.4/2 + 20 + 200/2]

Ans: 160

Question: Carla is downloading a 200 GB file. 

Normally she can download 2 GB/minute, but 40 

percent of the way through the download, 

Windows forces a restart to install updates, which 

takes 20 minutes. Then Carla has to restart the 

download from the beginning. How long does it 

take her to download the file?

Options:

(A): It will take her 200 GB / 2 GB/minute = 100 

minutes to download the file before restart. After 

restart. It will take her 100+100=200 minutes to 

download the file.

(B): The mathematical equation to solve the 

problem is:  total time to download = (percentage 

of file downloaded * time to download the entire 

file) + time to restart the download.  Substituting 

the given values, we get: total time to download 

= (0.4 * (200/2)) + 20.  Therefore,  Answer = 

Calculator[(0.4 * (200/2)) + 20] = 60.

(C): [Algebraic Equation]: total download time = 

time to download before restart + time to 

download after restart  [Numeric Equation]: total 

download time = (200/2) + (200/2 * (1 - 0.4))/2  

[Answer]: Calculator[(200/2) + (200/2 * (1 -

0.4))/2] = 130.

(D): [Algebraic Equation]: total time to download 

= (time to download before restart + time to 

download after restart)  [Numeric Equation]: total 

time to download = (200/2 + (200 - (200*0.4))/2) 

/ 2  [Answer]: Calculator[(200/2 + (200 -

(200*0.4))/2) / 2] = 180.

Input (a) Direct Select

First, Carla will download the file for 200/2 minutes, which is 100 minutes. Then, she will be forced to restart the download, which 

will take 100 minutes. So, the total time to download the file will be 200 minutes. Therefore, the correct answer is (A).

Analyze the 

Problem

Cross-check 

Different 

Solutions

Rethink

√

×

×

(b) IMR-TIP

Figure 1: Comparison of 2 prompting methods: (a) Direct Select, which requires LLMs to select the correct one
from options. (b) IMR-TIP, which derives the correct answer in an interleaved manner with action and thought. In
this example, we present 3 options (Option B, C, D) from tool-augmented LLMs (using the calculator) and 1 option
from LLMs COT (Option A). Tho and Act are short for Thought and Action, respectively.

steps R via COT. Then we can obtain the answer
in R through regular expression matching.

2.2 IMR-TIP

The key insights of the proposed methods are two-
fold: (1) We first propose self-prompt to obtain
diverse tool-based prompts to induce more diverse
reasoning paths and solutions. (2) We then intro-
duce TIP to better derive the final answer from
multiple reasoning solutions from LLMs and tool-
augmented LLMs. The flow of our TIP can be
defined as: Initial answer determination from
question analysis → Cross-Validation of options
accuracy → Further verification of reasoning
if discrepancies arise → Rethinking for answer
accuracy if uncertain → Final answer.

2.2.1 Self-Prompt
Crafting clear, diverse and concise tool-based
prompts, which encompasses the output format,
tool definition, and usage instructions, proves more
challenging than traditional COT. Thus, we pro-
pose self-prompt to address this issue. Moreover,
different from previous works (Wang et al., 2022;
Li et al., 2023) that focus on generating k reasoning
paths from one fixed prompt by sampling decoding,
which limits the diversity of reasoning paths. Our
proposed self-prompt can produce diverse prompts,
automatically increasing prompt diversity and en-
couraging LLMs to think differently, eliminating

the need for repetitive manual writing and editing.
Concretely, we design self-prompt in three steps,
as shown in Figure 2:

• Step1: We first give an initial tool-based
prompt to the LLM with the instruction:
“Summary the drawbacks of the current
prompt and give some advice”.

• Step2: With the advice and prompt problems
that are outputted from LLMs, we then in-
struct the LLM with: “According to your ad-
vice, please rewrite the current prompt”. Thus,
the LLM can output the revised prompt.

• Step3: Given the revised prompt as input and
ask the LLM: “Is there any problem with the
revised prompt?”. If the LLM responds “Yes”
we will repeat steps 1 to 3 until the LLM an-
swers “No”. Otherwise, this is the final im-
proved prompt.

Overall, our self-prompt follows the idea that
“LLMs know themselves better”. Through the steps
mentioned above, we not only address the issue
of manually crafting reasonable and clear instruc-
tions for LLMs to use tools but also enhance the
diversity of prompts simultaneously via running
self-prompt through multiple iterations. Experi-
mentally, the improved tool-based prompt can help
LLMs achieve better performances compared with
the initial prompt. We can run it M times, resulting
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LLMs

Initial 

Prompt
Step1: Summary the drawbacks of 

the current prompt and give some 

advice.

Step3: Is there any problems for 

revised prompts?

LLMs

Step2: According to your advice, 

please rewrite the current prompt.

LLMs

Improved

Prompt

NoYes

Figure 2: Overview of self-prompt.

in M diverse prompts, and then sample N reasoning
paths for each prompt via sampling decoding. This
way, we can obtain K = M × N tool-based diverse
reasoning paths for each math problem.

2.2.2 Tool-augmented Interleaf Prompting

The core idea of TIP is: We augment the rea-
soning paths for each question from 1 to K+L,
where L from LLMs 1 and K from their tool-
augmented LLMs (obtained from self-prompt).
Then we derive the final answer by observing and
validating these solutions (reasoning paths) in an
interleaved manner, which can be formalized as
T IP(Â|Q,R1, ...RK+L). TIP is similar to how
a human brain learns when solving mathematical
and multiple-choice questions: given a question
and different possible solutions, analyze the prob-
lem, observe the solutions to find how the ques-
tion should be solved, and then learn from these
solutions, memorize or revise its own solution, con-
clude the answer at last.

Following this, We decompose TIP into three
major steps. Given a question and multiple poten-
tial solutions: (1) ANALYZE THE PROBLEM: Be-
fore validating different answers, LLMs first need
to analyze the problem and give their own reason-
ing logical via generating algebraic and numerical
expression; (2) CROSS-CHECK DIFFERENT SOLU-
TIONS: Then based on the above reasoning hint,
LLMs can cross-check different solutions. Consid-

1In our experiments, we obtain L reasoning paths from
LLMs by sampling decoding.

ering LLMs could occasionally conclude accurate
answers when generating wrong reasoning paths,
we break down this into two sub-steps: compare the
numerical answers and then cross-verify interme-
diate steps, which explores whether each solution
is both sound and accurate. (3) RETHINK: Un-
like traditional multiple-choice question answering
tasks, where there is at least one correct solution
and reliable reasoning hints, in our case, all four so-
lutions could be incorrect, and previous reasoning
hints might also be flawed. Hence, we introduce an
extra step called “Rethink” which requires LLMs
to review and correct their initial answer hints after
observing and checking different solutions, out-
putting the final answer. We argue that LLMs are
capable of gaining a deeper understanding of the
problem by cross-checking various solutions.

Inspired by ReAct (Yao et al., 2022), we let
LLMs achieve each step in an interleaved man-
ner with thought and action. In each step, LLM
receives the environmental context ct and takes an
action at ∈ A, where ct = {t1, a1, ..., tt−1, at−1}
and A is the action space. t1, a1 are previous
thought and action at step 1. As shown in Figure
1, there could be multiple types of useful thoughts,
like creating action plans (Tho-1), reasoning pro-
cess of executing the action (Tho-2), reasoning over
the context (Tho-6).

Action Space As we focus on math reasoning
tasks, A consists of the following actions to sup-
port interactive TIP: (1) Analyze[], which requires
analyzing the specific solution or the math prob-
lem. (2) Compare[], which requires comparing
and cross-checking answers or intermediate steps
from different solutions or the generated answer
hints. (3) Rethink[], which means to double-check
or review the specific thinking process in previous
thoughts. (4) Calculator[], which calls the calcula-
tor to compute the expression.

Figure 1 shows a typical example of IMR-TIP.
In this example, all options are the wrong solu-
tions, and the direct select and self-consistency
approaches also give the wrong answers. In our
proposed IMR-TIP, despite making an initial er-
ror in predicting during the “analyze the problem"
step, the model self-corrects by cross-checking and
identifying the correct equation formulation in the
Tho-2, albeit with an algebraic mistake. In the
Tho-6, it rectifies the error, resulting in the correct
answer via calling the calculator.

Overall, our IMR-TIP has the following salient
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features for solving math reasoning tasks: (I) Multi-
view Reasoning paths: Approaching the math
problem from multiple perspectives from LLMs
and tool-augmented LLMs; (II) Multi-verification:
Comparing and cross-checking the different solu-
tions to a reasoning hint, including verifying the
correctness of numeric answers and the interme-
diate steps, aiming at providing a more accurate
understanding of the problem; (III) Calculation-
Verification: Using the calculator to calculate the
expression or verify the result; (IV) Self-Check:
Re-checking the reasoning paths that include alge-
braic equation and substitution in previous reason-
ing hints after cross-checking different solutions.

In theory, M, N, K and L could be assigned
higher values, resulting in more reasoning paths.
However, due to the fact that these K+L solutions
will be subsequently used as inputs for our TIP,
we must take into account the limitations posed by
input token length and associated costs in the in-
context learning setting. Experimentally, we have
determined that setting M=3, N=1, K = M × N =3
and L=1 is appropriate.

3 Experiments

In this section, we first review our testing datasets
and evaluation metrics. Then we briefly introduce
our experimental settings that include backbones,
and our prompts. At last, we will present our main
results and ablation studies.

3.1 Datasets and Metrics

Datasets We validate our proposed approach on
five math reasoning datasets: (1) MAWPS (Koncel-
Kedziorski et al., 2016) serves as a collection of
math word problems (MWPs), offering a unified
testbed with 1921 samples for accessing various
algorithms. (2) SVAMP (Patel et al., 2021), short
for Simple Variations on Arithmetic Math Word
Problems, is an elementary-level MWP dataset that
contains 1000 examples in test set. (3) GSM8K
(Cobbe et al., 2021) stands as a dataset compris-
ing 1391 linguistically diverse grade school MWPs,
meticulously crafted by human problem writers to
ensure high quality. (4) GSM8K-Hard (Gao et al.,
2023), an advanced iteration of GSM8K, which
substitutes numbers in the questions with larger
counterparts. This modification aims to assess the
generalization capability of LLMs when dealing
with substantial numerical values. (5) Given the
limited range of three-digit numbers in the SVAMP

dataset, we enhanced model assessment by ran-
domly replacing query numbers with values be-
tween 100,000 and 10,000,000. This adjustment,
while maintaining original reasoning logic, lead
to the creation of SVAMP-Hard. SVAMP-Hard
and GSM8K-Hard provide a more rigorous test of
LLMs’ mathematical computational capabilities.

Metrics Following previous standard works, we
use the Accuracy as the evaluation metrics.

3.2 Experimental Settings

Backbone We conduct our experiments based on
two OpenAI LLMs: GPT-3 (text-davinci-003)
and GPT-3.5 (gpt-3.5-turbo) through Azure Ser-
vice. We use the default parameters except temper-
ature = 0 for greedy decoding during inference. In
our experiments, we select the calculator as the ex-
ternal tool for tool-augmented approaches, which
is implemented by Python eval() function.

Exemplars All quintet mathematical reasoning
datasets allocate two exemplars, which are arbi-
trarily selected solely from the GSM8K-trainset,
for both LLMs-COT and tool-enhanced LLMs. In
TIP, we manually compose trajectories to use three
exemplars in the prompts. Each trajectory includes
multiple thought-action steps, where each thought
is free-form. LLMs combine these thoughts to de-
vise a plan (“... I first need to analyze x”), guide
the reasoning process (“Option (A) is right, I then
...”), call tool (“use the calculator to compute y”),
and conclude the answer (“the answer is z”). The
model will end with “[Ans]” when solving the task.
See Appendix A for more details about LLMs-COT,
tool-augmented LLMs and TIP prompts.

Baselines We mainly compare our approach with
the following baselines: (1) COT, which solves the
problem via step-by-step reasoning with our own
implementations. (2) Tool-Augmented, signifies
LLMs employing calculators for expression compu-
tation with initial tool-based prompts, as elucidated
in preceding sections. In this way, LLMs always
need to follow a specific output format. (4) Self-
Prompt, which utilizes the improved too-based
prompts from self-prompt to solve math reasoning
tasks. (5) Toolformer (Schick et al., 2023), a so-
phisticated paradigm that enables language models
like GPT-J to utilize external tools, optimizing their
performance in various tasks through fine-tuning.
(4) ART (Paranjape et al., 2023), a framework facil-
itating automatic multi-step reasoning and tool-use
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Backbone Algorithms Dataset

MAWPS SVAMP SVAMP-H GSM8K GSM8K-H Average

GPT-J Toolformer 44.0 29.4 - - - -

GPT-3
(text-davinci-003)

ART 90.1 76.2 - - - -
COT 89.6 77.1 29.5 54.2 20.4 54.2
Tool-Augmented 89.9 77.6 69.9 55.5 44.1 67.3
Self-Prompt 90.1 78.5 70.0 56.1 44.5 67.8
IMR-TIP 90.7 79.3 73.7 61.5 47.4 70.5

GPT-3.5
(gpt-3.5-turbo)

COT 91.0 76.5 39.2 73.0 35.0 62.9
Tool-Augmented 91.9 77.0 78.5 75.5 54.0 75.4
Self-Prompt 92.1 78.0 79.7 76.0 56.0 76.4
IMR-TIP 92.6 79.3 82.0 79.1 65.2 79.6

Table 2: The overall results on the five datasets. We highlight the best results for each backbone. In our experiments,
as we obtain 3 improved tool-based prompts through self-prompt (Section 3), we report their average results.
SVAMP-H and GSM8K-H are short for SVAMP-Hard and GSM8K-Hard. We report average results of 3 runs.
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Figure 3: Ablation studies of different prompting methods based on text-davinci-003 and gpt-3.5-turbo.

Models SVAMP-H GSM8K GSM8K-H

IMR-TIP 73.7 61.5 47.4

w/ Step-I 70.4 56.3 44.5
w/ Step-II 72.4 58.7 45.6

w/ Step-I + II 72.9 59.4 46.5

Table 3: Ablation studies in our IMR-TIP. Here, we
conduct results based on text-davinci-003.

integration for LLMs.

For ablations, we also compare ours with (1) Self-
consistency: We build self-consistency baselines
based on LLMs and their tool-augmented coun-
terparts, named COT-SC and Tool-SC, separately.
For a fair comparison, we sample reasoning paths
3 times by setting the temperature as 0.7. Then
we also introduce Mix-SC, which votes the most
consistent answer from the given solutions in TIP
as the prediction. (2) Direct Select: Given a math
problem, multiple solutions from LLMs and tool-
augmented LLMs, we regard it as a multiple choice
question answering task and require LLMs directly
selecting one of them as the answer through COT.
We show an example of it in Figure 1. See Ap-
pendix A for more details about their definitions.

Of note, although other works, such as PAL
(Gao et al., 2023), employs tools like programming
languages for math problem-solving, we do not
compare our method with theirs in this paper to
maintain fairness, as our tools differ.

3.3 Main Results

Table 2 shows the results of three backbone mod-
els with various prompting algorithms. Some key
observations are as follows from the table:

LLMs still suffer in math calculations. It is ev-
ident that the performances of these two backbone
LLMs with COT on SVAMP-Hard and GSM8K-
Hard are notably lower compared to their per-
formance on SVAMP and GSM8K (e.g., 77.1%
vs.29.5% on SVAMP and SVAMP-Hard). This
discrepancy suggests that when tasked with com-
putations involving larger numerical values, these
LLMs exhibit an increased susceptibility to calcu-
lation errors. Interestingly, GPT-3.5 shows better
computation ability than GPT-3.

Self-prompt benefits the performances for tool-
using. Across all datasets, it is discernible that
the prompts subjected to self-prompt adjustments
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manifest enhanced performance relative to their
original counterparts. This enhancement is at-
tributed to the provision of more lucid and explicit
tool usage instructions, alongside a heightened stan-
dardization of input-output formats.

IMR-TIP outperforms other baselines consis-
tently, particularly on more challenging datasets
involving complex computations. Firstly, the
table highlights the tool-augmented method’s su-
periority over the traditional COT approach on
all datasets, attributed to enhanced computational
abilities. Secondly, our approach yields addi-
tional enhancements across all datasets, notably
pronounced in the more challenging SVAMP-Hard
and GSM8K-Hard sets demanding higher compu-
tational prowess. For example, IMR-TIP based on
GPT-3.5 could improve COT and Self-Prompt from
35.0%, 56.0% to 65.2% on GSM8K-Hard.

3.4 Ablation Study

In this part, we conduct ablation studies to verify
the impact of (1) each key component in IMR-
TIP; (2) self-prompt (How well prompts from
self-prompt perform specifically? See Appendix
B for more details.).

Key Components Given the sequential nature of
our three-step IMP process (See Section 3), our
ablation study comprises three sub-experiments in
Table 3: 1) Step I only; 2) Step II only; 3) Steps
I and II together. Table 3 shows that: 1. Step II
holds paramount importance; 2. Steps I and III also
exhibit significance; 3. The combined use of all
three steps yields optimal performance.

4 Analysis

IMR-TIP vs. Self-consistency Given multiple
solutions from LLMs and tool-augmented LLMs,
two intuitive ways to derive the answer are: 1) Self-
Consistency; 2) Direct Select. As aforementioned,
we have three versions of self-consistency: COT-
SC, Tool-SC and Mix-SC. Figure 3 shows the com-
parison between ours and these approaches on three
datasets. We can observe that Tool-SC and Mix-
SC perform comparably but they perform much
better than COT-SC, just as tool-augmented LLMs
surpass LLM-COT. Across two distinct backbone
models, IMR-TIP consistently outperforms other
methods on each dataset.

4.1 Why IMR-TIP works?

In pursuit of a comprehensive dissection of our
IMR-TIP’s underlying mechanics, we proffer a dis-
tributional analysis capturing the trajectory through
which IMR-TIP reaches its definitive answers. Ta-
ble 5 delineates the proportions in which IMR-TIP
either selects answers from provided options or
re-generates new answers on SVAMP-Hard and
GSM8K-Hard datasets. The former is segmented
into three categories of assessment by IMR-TIP:
solely based on LLM’s answer, based on both the
LLM and the Tool-augmented methods, and ex-
clusively within the Tool-augmented method. Pre-
dominantly, IMR-TIP favors answers from Tool-
augmented LLMs that are derived from provided
solutions. Notably, IMR-TIP’s capacity for gener-
ating new answers through observation and cross-
checking significantly enhances its performance
relative to self-consistency. This unique capability
distinguishes IMR-TIP from other methods.

We remain curious about the performance of
IMR-TIP when not all the given options are neces-
sarily correct. To verify this, we conduct in-depth
analysis of the GSM8K-Hard dataset in Table 6
shows that our model incorrectly answers 2.7%
of cases when all provided answer choices are cor-
rect. Conversely, it correctly answers 5.2% of cases
when all choices are incorrect. These outcomes
highlight the challenges in enabling a model to self-
verify and self-correct. Despite some errors, our
method strengthens LLM’s ability to enhance
its understanding and correct mistakes through
interleaving reasoning steps, which is a central
aspect of our approach.

Case Study Table 4 shows the an example from
IMR-TIP and self-consistency on the GSM8K
dataset. In this instance, only option (D) stands
correct, with option (A) exhibiting a computational
error, and both options (B) and (C) featuring accu-
rate algebraic expressions albeit flawed numerical
substitutions. Within this context, Mix-SC would
favor the most consistently occurring answer, lead-
ing to the selection of 44 as the predicted answer,
despite its inaccuracy. While our approach also en-
counters numerical substitution errors in [Tho-2],
meticulous scrutiny of both the answer and reason-
ing steps reveals the preceding mistake, affirming
the correctness of option (D). This case underscores
another inherent advantage of IMR-TIP over self-
consistency: the capacity to derive an accurate an-
swer through thoughtful reasoning, rather than a
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Question: Sadie slept 8 hours on Monday. For next two days, she slept 2 hours less, each, because she had to complete
some assignments. If the rest of the week she slept 1 hour more than those two days, how many hours did she sleep in
total throughout the week?
(A): Sadie slept 8 hours on Monday. For the next two days, she slept 2 hours less, each, so she slept 6 hours each day. If
the rest of the week she slept 1 hour more than those two days, she slept 7 hours each day. So the total amount of hours
she slept throughout the week is 8+6+6+7+7+7+7=42. So the answer is 42.
(B): The mathematical equation to solve the problem is: total hours slept = (Monday’s hours + (2 days * (hours - 2)) + (4
days * (hours + 1))). Substituting the given values, we get: total hours slept = (8 + (2 * (6 - 2)) + (4 * (6 + 1))). Therefore,
Answer = Calculator[8 + (2 * (6 - 2)) + (4 * (6 + 1))] = 44.
(C): [Algebraic Equation]: Total hours slept = (Monday’s hours + (2 days * (Monday’s hours - 2 hours)) + (4 days *
(Monday’s hours - 2 hours + 1 hour)) [Numeric Equation]: Total hours slept = (8 + (2 * (8 - 2)) + (4 * (8 - 2 ))) [Answer]:
Calculator[(8 + (2 * (8 - 2)) + (4 * (8 - 2 )))] = 44.
(D): [Algebraic Equation]: total hours slept = hours slept on Monday + (hours slept on Tuesday + hours slept on Wednesday
+ hours slept on Thursday + hours slept on Friday + hours slept on Saturday + hours slept on Sunday) [Numeric Equation]:
total hours slept = 8 + (6 + 6 + 7 + 7 + 7 + 7) [Answer]: Calculator[8 + (6 + 6 + 7 + 7 + 7 + 7)] = 48.

IMR-TIP:
Tho-1: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
Act-1: Analyze[problem]
Tho-2: I need to find the total amount of hours Sadie slept throughout the week given the information that she slept 8
hours on Monday, 2 hours less for the next two days, and 1 hour more for the rest of the week. Thus, the total hours = 8 +
(2 * (8 - 2)) + (4 * (8 - 2)). To ensure the calculation is correct, I need to use Calculator to calculate the answer.
Act-2: Calculator[8 + (2 * (8 - 2)) + (4 * (8 - 2 ))]
Tho-3: With the answer hint 44, I can first compare their answers to make an initial assessment of their accuracy.
Act-3: Compare[answers]
Tho-4: I observe that (A) directly gives the answer while (B), (C) and (D) use the Calculator to compute the answer. The
answers of them are 42, 44, 44, 48. Half of them align with the answer hint 44, I can preliminarily conclude that (B), (C)
are correct. But there are still two different answers, I cannot determine which answer is definitely correct. Thus, I can
compare their reasoning steps and equations with mine to further verify their correctness.
Act-4: Compare[reasoning]
Tho-5: (A) and (D) follow similar reasoning paths and their mathematical equations are the same, but their answers are
different. Due to (D) using the calculator, (A) must have mistakes in calculation. (B) and (C) give similar algebraic
equations, but their substitutions are incorrect. (B) states that Sadie slept 6 hours each day for the next two days, which is
not accurate. (C) is also incorrect. I may also make a mistake in [Tho-2] because my numerical equation is the same as
(C). I need to review [Tho-2] again to validate the accuracy of my previous reasoning and answer hint.
Act-5: Rethink[Tho-2].
Tho-6: Based on my findings, the algebraic equation in [Tho-2] is correct, but the substitution is incorrect. The correct
total hours = 8 + (2 * (8 - 2)) + (4 * (8 - 2 + 1)) rather than 8 + (2 * (8 - 2)) + (4 * (8 - 2)).
Act-6: Calculator[8 + (2 * (8 - 2)) + (4 * (8 - 2 + 1))]
Tho-7: After revising the substitution in [Tho-2], I think the final answer is 48 and (D) is correct.
Ans: 48

Mix-SC: 44.

Table 4: Examples of generated solutions by IMR-TIP and self-consistency on GSM8K dataset.

Answer Type SVAMP-H GSM8K-H

Select
Only LLM 4.5% 6.3%
LLM and Tool 13.4% 18.5%
Only Tool 79.0% 67.1%

Re-generate new answers 3.1% 8.1%

Table 5: Proportion of each answer type in our IMR-TIP.
Here, we conduct results based on gpt-3.5-turbo.

Method Answer options have the right answer?

IMR-TIP

GSM8K-H (%) Yes No Total

Wrong 2.7% 31.8% 34.5%

Right 60.3% 5.2% 65.5%

Total 63.0% 37.0% 100%

Table 6: Ours performance when provided with an-
swer choices that are either correct or incorrect in
GSM8K-Hard dataset. The experimental LLMs is
gpt-3.5-turbo.

simplistic reliance on majority voting for consis-
tency. We present more cases in Appendix C.

5 Conclusion

This work introduces IMR-TIP, a framework de-
signed to capitalize on the strengths of both con-
ventional and tool-augmented LLMs, enhancing
their mathematical capabilities. IMR-TIP employs
self-prompt to refine its initial prompts. Addition-
ally, it utilizes tool-augmented interleaf prompting
(TIP) to reach the correct answer. This process
involves interleaved Action and Thought, which en-
compasses analyzing the problem, observing, cross-
verifying different solutions, and even rethinking
previous answer hints. Through rigorous experi-
mentation and comprehensive analysis of math rea-
soning tasks, IMR-TIP demonstrates a substantial
enhancement over established baselines.
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Limitations

In our study on enhancing the mathematical capa-
bilities of Large Language Models (LLMs) through
prompt engineering, we acknowledge two primary
limitations: the potential for inaccuracies and the
concern over prompt length. Despite the method’s
promising results, it is susceptible to errors in
specific scenarios, which may affect the model’s
overall reliability. Moreover, the use of extended
prompts, while instrumental in our approach, in-
troduces practical constraints related to processing
time and model usability. Recognizing these chal-
lenges, future research will focus on developing
training techniques aimed at improving the LLM’s
self-revision abilities and optimizing prompt length.
This direction is expected to mitigate current lim-
itations and further the application of LLMs in
complex problem-solving tasks.
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A Related Work

Math Reasoning with LLMs In recent times,
large language models (LLMs) have demonstrated
remarkable abilities in handling complex reason-
ing tasks (Scao et al., 2022; Cobbe et al., 2021;
Zhou et al., 2022; Weng et al., 2022; Chen et al.,
2023b; Gou et al., 2023). Rather than providing
direct final answers as outputs, prior research has
shown that by employing diverse prompting meth-
ods such as Chain-of-Thought (COT) prompting
(Wei et al., 2022), LLMs can be guided through
step-by-step reasoning, resulting in notably im-
proved performance across a wide array of reason-
ing tasks. Imani et al. (2023) propose to generate
multiple algebraic expressions or Python functions
to solve the same math problem, aiming to explore
different potential solutions. Li et al. (2023) intro-
duce a step-aware verifier to check the reasoning
steps in COT, improving the reasoning capabilities.
Self-Consistency (Wang et al., 2022) is another
effective work that combines different solutions
and gets a final answer by aggregating to retrieve
the most consistent answer. Among them, self-
consistency bears resemblance to our proposed TIP,
but our main distinction lies in the following: Given
several solutions, our TIP can re-generate a new
answer after cross-validating these solutions. In
contrast, self-consistency can only select the most
consistent answer from the existing ones.

Tool-Augmented LLMs Currently, researchers
have undertaken a wide array of studies aimed at en-
riching the step-by-step reasoning process. These
approaches include investigating the utilization of
external tools (Parisi et al., 2022; Schick et al.,
2023; Yao et al., 2022), like program interpreters
(Lyu et al., 2023; Chen et al., 2022) and the cal-
culator (Schick et al., 2023), training and utilizing
external reasoning modules. For example, ReAct
(Yao et al., 2022) proposes an interleaved frame-
work with utilizing an external search engine to
solve multi-hop question answering tasks. More re-
cently, Toolformer (Schick et al., 2023) introduces
a pipeline for training LLMs that can call tools
during training and inference. Parallel to these
works, our work can be seen as a preliminary ex-

73

https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2022.findings-naacl.91
https://doi.org/10.18653/v1/2022.findings-naacl.91
https://doi.org/10.18653/v1/2022.findings-naacl.91


SVAMP, 76.5

SVAMP-H, 77.8

GSM8K, 75

SVAMP, 78.5

SVAMP-H, 79.9

GSM8K, 75.4

SVAMP, 78.1

SVAMP-H, 80.5

GSM8K, 76.6

SVAMP, 77.4

SVAMP-H, 79

GSM8K, 76

75

76

77

78

79

80

81

SVAMP SVAMP-H GSM8K

Initial Prompt Tool-I Tool-II Tool-III

Figure 4: Model performances of different prompts.
Here, we use the gpt-3.5-turbo as the backbone
LLM.

ploration of how to better utilize tools, which in-
volves a fusion of diverse solutions of LLMs and
tool-augmented LLMs, culminating in the attain-
ment of the final answer through tool-augmented
interleaf prompting.

B Appendix A: Prompts

Table 7 presents COT prompts in our experiments.
Table 8 shows three tool-based prompts obtained
from our proposed self-prompt. It is worth noting
that in most cases, the self-prompt does not alter
the examples within the prompt. Its primary focus
lies in modifying instructions related to tool usage,
input-output formats, and tool definitions. All of
them contain only 2 examples.

Table 9 shows the prompts of TIP in our ex-
periments. Practically, we append “——” as the
stopping symbols after each Action to achieve in-
terleaving.

B.1 Definition of Self-consistency and
Direct-Select

• COT-SC: Utilizing COT prompts in Table 1
for math reasoning and sampling 3 times.

• COT-SC: Utilizing tool-based prompts in Ta-
ble 2 for math reasoning and sampling 3 times.
Then we report their average results.

• Mix-SC: Selecting the most consistent answer
from given options (A, B, C, D) in TIP.

• Directly Select: Select the answer from the
given options in TIP through COT. Prompts
are shown in Table 1.

C Appendix B: Self-Prompt

In this component, we conduct ablation studies to
answer the question: How well do prompts from

self-prompt perform? Figure 4 depicts a compari-
son between the initial tool-based prompt and the
three prompts modified through self-prompt. It is
evident across all three datasets that the prompts
refined by self-prompt exhibit improved perfor-
mance compared to the original initial prompts.
This enhancement can be attributed to the provi-
sion of clearer, more explicit tool usage instructions
and more standardized input-output formats. Over-
all, our self-prompt follows the road “LLMs know
themselves better.” The most simple implementa-
tion of self-prompt is to interact with ChatGPT or
GPT-4 in OpenAI’ website2.

D Appendix C: More Cases

In this section, we present typical cases when IMR-
TIP solves math reasoning tasks.

Table 10 presents the most straightforward sce-
nario, wherein the provided solution corresponds
with the answer generated by IMR-TIP in [Tho-2].
In this instance, the LLM detects the uniformity
of all five answers upon comparison, resulting in a
notable elevation of confidence and the subsequent
direct issuance of the final answer.

Table 11 also provides an example wherein IMR-
TIP makes an error. Instead of further comparing
the reasoning steps of different solutions after an-
alyzing the answers, the model directly presents
a conclusion, asserting the correctness of its ap-
proach.

Table 12 introduces another intriguing case. In
this instance, IMR-TIP attains the correct answer
for [Tho-2]. However, upon reevaluating the pre-
ceding reasoning hints and formulas for [Tho-6],
it identifies a numerical substitution error within
[Tho-2]. Despite this recognition, IMR-TIP pro-
ceeds to output the identical formula as the final
answer. Instances in which LLMs exhibit self-
contradictory reasoning yet still yield the correct
ultimate answer in IMR-TIP, as exemplified here,
are referred to as “FALSE POSITIVE."

2chat.openai.com
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COT prompts

Your task is to answer the following math questions.
Question: julia played tag with 18 kids on monday . she played tag with 10 kids on Tuesday. how many more kids did she
play with on monday than on Tuesday?
Answer: Let’s think step by step. julia playsed tag with 18 kids on monday and 10 kids tuesday, separately. So the amount
of kids that she played with on monday than on tuesday is 18-10=8. So the answer is 8.

Question: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf.
how many more action figures than books were on his shelf?
Answer: Let’s think step by step. The amount of action figures that Jack had is 9+7=16. And Jack had 10 books. So the
amount of action figures than books on his shelf is 16-10=6. So the answer is 7.

Initial tool-based prompts

Your task is to solve the following middle-school arithmetic problems by using the Calculator. A calculator is a system
used for performing mathematical calculations, ranging from basic arithmetic to more complex functions.
You can do so by writing a mathematical equation and generating the answer format starting with "Answer = Calcula-
tor[expression]", where "expression" is the expression to be computed.

Below are examples:
Question: julia played tag with 18 kids on Monday. she played tag with 10 kids on Tuesday. how many more kids did she
play with on monday than on Tuesday?
Thought: The mathematical equation to solve the problem is: number of additional kids played with = number of kids
played with on Monday - number of kids played with on Tuesday. Substituting the given values, we get: number of
additional kids played with = 18 - 10. Therefore, Answer = Calculator[18 - 10]

Question: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf.
how many more action figures than books were on his shelf?
Thought: The mathematical equation to solve the problem is: difference in number of action figures and books = (number
of action figures initially + number of action figures added) - number of books. Substituting the given values, we get:
difference in number of action figures and books = (9 + 7) - 10. Therefore, Answer = Calculator[( 9 + 7 )- 10]

Direct-select prompts

There is a multiple choice question answering task. You are required to select one of the options to answer the problem.
Let’s think step by step.

Table 7: LLMs-COT, initial tool-based prompts and direct-select prompts in our experiments.
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Prompt of Tool-I for math reasoning tasks.

Your task is to solve the following middle-school arithmetic problems using a calculator. Follow the steps provided to
write out the algebraic and numeric equations, and use a calculator to find the answers. You can generate the answer
format starting with “Answer = Calculator[expression]", where “expression" is the expression to be computed.
Example Problems:
Question: Julia played tag with 18 kids on Monday and 10 kids on Tuesday. How many more kids did she play with on
Monday than on Tuesday?
Thought:
Algebraic Equation: Additional kids played with = Kids played with on Monday - Kids played with on Tuesday.
Numeric Equation: Additional kids played with = 18 - 10
Answer: Calculate Calculator[18 - 10]

Question : Jack had 9 action figures and 10 books on a shelf. Later, he added 7 more action figures to the shelf. How many
more action figures than books were on his shelf?
Thought:
Algebraic Equation: Difference in action figures and books = (Initial action figures + Added action figures) - Number of
books.
Numeric Equation: Difference in action figures and books = (9 + 7) - 10
Answer: Calculate Calculator[(9 + 7) - 10]
Remember to enter the appropriate equation into your calculator to find the answer. You can also explain how you would
verify your solution.

Prompt of Tool-II for math reasoning tasks.

Your task is to solve the following middle-school arithmetic problems by using the Calculator. A calculator is a system
used for performing mathematical calculations, ranging from basic arithmetic to more complex functions.

You can do so by writing out Algebraic Equation, Numeric Equation, Answer steps. In the Answer step, you should
generate the output format with “Calculator[expression]", where “expression" is the expression to be computed.
Below are examples:
Question: julia played tag with 18 kids on monday. she played tag with 10 kids on Tuesday. how many more kids did she
play with on monday than on Tuesday?
Thought: [Algebraic Equation]: number of additional kids played with = number of kids played with on Monday - number
of kids played with on Tuesday.
[Numeric Equation]: number of additional kids played with = 18 - 10.
[Answer]: Calculator[18 - 10]

Question: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf.
how many more action figures than books were on his shelf?
Thought: [Algebraic Equation]: difference in number of action figures and books = (number of action figures initially +
number of action figures added) - number of books.
[Numeric Equation]: difference in number of action figures and books = (9 + 7) - 10
[Answer]: Calculator[( 9 + 7 )- 10]

Prompt of Tool-III for math reasoning tasks.

Your task is to solve the following middle-school arithmetic problems by using the Calculator. A Calculator is a system
used for performing mathematical calculations, ranging from basic arithmetic to more complex functions.

You can do so by writing out Algebraic Equation, Numeric Equation, and Answer steps:
(1) [Algebraic Equation], which directly builds an Algebraic Equation by using variables from the question to generate the
solution.
(2) [Numeric Equation], which plugs in values from the question to transform the above Algebraic Equation into its
numeric form.
(3) [Answer], which uses Calculator to calculate the above numeric equation, but not directly to give the final answer. You
can generate the answer format with “Calculator[expression]", where “expression" is the expression to be computed.

Below are examples:
Question: julia played tag with 18 kids on monday. she played tag with 10 kids on tuesday. how many more kids did she
play with on monday than on Tuesday?
Thought: [Algebraic Equation]: number of additional kids played with = number of kids played with on Monday - number
of kids played with on Tuesday.
[Numeric Equation]: number of additional kids played with = 18 - 10.
[Answer]: Calculator[18 - 10]

Question: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf.
how many more action figures than books were on his shelf?
Thought: [Algebraic Equation]: difference in the number of figures and books = (number of figures initially + number of
figures added) - number of books.
[Numeric Equation]: difference in the number of figures and books = (9 + 7) - 10
[Answer]: Calculator[( 9 + 7 )- 10]
You should keep in mind:
(1) you can not image or output the result of "Calculator[expression]".
(2) When generating a mathematical formula, do not include any units of measurement.

Table 8: Three tool-based prompts from Self-Prompt.
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Your task is to validate the several options to the same math problem and select the correct ones. You should make your own reflections, revise your own thoughts, give the final
answers based on the previous findings at the end. You can use the Calculator to help you calculate the numeric equations and verify the solutions.
A Calculator is a system used for performing mathematical calculations, ranging from basic arithmetic to more complex functions.
To do this, you can writing out interleaving Thought, Action and Answer steps. Notice that, you need to end with Answer when solving the task.
Below are examples:
Question: A robe takes 2287720 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
(A): A robe ...... 2287720 + (2287720/2) = 3,431,280 bolts.
(B): Based on the statement of the question ...... total number of bolts = Calculator[2287720 + (2287720/2)] = 3431580.
(C): [Algebraic Equation]: total number of bolts = number of blue bolts + number of white bolts...... Calculator[2287720 + (2287720 / 2)] = 3431580.
(D): [Algebraic Equation]: total number of bolts ......Calculator[2287720 + (2287720/2)] = 3431580.
Thoughts: [Thought-1]: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
[Action-1]: Analyze[problem]
[Thought-2]: First, the number of bolts of while fiber is half of the number of bolts of blue fiber. Total number of bolts = Number of bolts of blue fiber + Number of bolts of white fiber.
Thus, total number of bolts = 2287720 + 2287720/2. To ensure the calculation is correct, I should use Caculator to calculate the answer.
[Action-2]: Calculator[2287720 + 2287720/2]
[Calculated Result]: 3431580
[Thought-3]: With the answer hint 3431580, I can first compare the answers of different options to make an initial assessment of their accuracy.
[Action-3]: Compare[answers]
[Thought-4]: The answer of option (A) is 3431280 that contradicts the answer hint 3431580, while options (B), (C), and (D) align with the answer hint. Therefore, I can preliminarily
conclude that (A) is incorrect, and (B), (C), and (D) are correct. Since most of the answer options are consistent with my previous answer hint, I believe the current answer hint is likely
correct. I can compare their reasoning steps and equations with mine to further verify my judgment and investigate why option (A) yielded an incorrect answer.
[Action-4]: Compare[reasoning]
[Thought-5]: Option (A) follows a similar reasoning process and formula as mine in [Thought-2], suggesting an error in the final calculation. Options (B), (C), and (D) provide
equations that align with my earlier reasoning. Based on my findings, upon comparing the answers and reasoning processes, options (B), (C), and (D), along with the answer hint, are
all correct.
[Answer]: Calculator[2287720 + 2287720/2]

Question: Trent is 5 years older than Jane, and Jane is 3 years younger than Quinn. If Quinn is 2538570, how old is Trent?
(A): Quinn is 2538570...... So the answer is Trent is 2538572.
(B): The mathematical equation to solve the problem is: ......Answer = Calculator[2538570 + (3 - 2538570) + 5] = 8.
(C): [Algebraic Equation]: Trent’s age = Quinn’s age ......2538578.
(D): [Algebraic Equation]: ...... Calculator[2538570 + 5 + 3] = 2538578.
Thoughts: [Thought-1]: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
[Action-1]: Analyze[problem]
[Thought-2]: I need to find Trent’s age given the relationships between Trent, Jane, and Quinn’s ages. Jane is 3 years younger than Quinn and 5 year younger than Trent. If Quinn is
2538570, Trent’s age is 2538570 -3 + 5. To ensure the calculation is correct, I need to use Caculator to calculate the answer.
[Action-2]: Calculator[2538570 -3 + 5]
[Calculated Result]: 2538572
[Thought-3]: With the answer hint 2538572, I can frist compare the answers of different options to make an initial assessment of their accuracy.
[Action-3]: Compare[answers]
[Thought-4]: The answer of option (A) is 2538572 that align with the answer hint 2538572. However options (B)’s answer is 8, the answers of (C) and (D) are both 2538578 which all
contradict the answer hint. Therefore, I can preliminarily conclude that (A) is correct, and (B), (C), and (D) are incorrect. But there are three different answers and only one aligns with
the answer hint, I cannot determine which answer is definitely correct. Thus, I can compare their reasoning steps and equations with mine to further verify their correctness.
[Action-4]: Compare[reasoning]
[Thought-5]: (A) follows a similar reasoning process and formula as mine in [Thought-2]. (B) is correct in terms of the mathematical equation used, but the substitution is incorrect. It
states that Jane’s age is equal to 3. (C) and (D) present that Trent’s age = Quinn’s age + 8 (5+3), meaning that Trent is 5 years older that Jane, and Jane is 3 year older than Quinn which
contradict the information given in the question. The correct algebraic equation would be to subtract 3 from Quinn’s age to determine Jane’s age and then add 5 to Jane’s age to find
Trent’s age. Based on my findings, I think (B), (C) and (D) are wrong, the answer hint and (A) are correct with no need improvements. I don’t need to review my previous answer hint.
[Answer]: Calculator[2538570 -3 + 5]

Question: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but 40 percent of the way through the download, Windows forces a restart to install updates,
which takes 20 minutes. Then Carla has to restart the download from the beginning. How load does it take to download the file?
(A): It will take her 200 minutes to download the file.
(B): The mathematical equation ...... Therefore, Answer = Calculator[(0.4 * (200/2)) + 20] = 60.
(C): [Algebraic Equation]: ...... Calculator[(200/2) + (200/2 * (1 - 0.4))/2] = 130.
(D): [Algebraic Equation]: total time ......[Answer]: Calculator[(200/2 + (200 - (200*0.4))/2) / 2] = 180.
Thoughts: [Thought-1]: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
[Action-1]: Analyze[problem]
[Thought-2]: First, I should list the equation to calculate the time it took Carla to download the data before the Windows restart: time before restart = Downloaded data/Download
speed. And time after restart = File size/Donwload speed. Thus, the total time = time before restart + Windows update + time after restart. Thus, total time = 200 *0.4/2/2 + 20 + 200/2.
To ensure the calculation is correct, I need to use Calculator to calculate the answer.
[Action-2]: Calculator[200 * 0.4/2/2 + 20 + 200/2]
[Calculated Result]: 140
[Thought-3]: With the answer hint 140, I can first compare the answers of different options to make an initial assessment of their accuracy.
[Action-3]: Compare[answers]
[Thought-4]: The answers of these options are 200, 60, 130 and 180, separately, that are different with the answer hint 140. Thus, I can not preliminarily conclude which one is correct.
I need to further compare their reasoning steps and equations with mine to further verify their correctness.
[Action-4]: Compare[reasoning]
[Thought-5]: (B), (C), and (D) have flawed algebraic equations as they omit the inclusion of Windows update time mentioned in the reasoning hint. (A) lacks reasoning steps, making
its correctness uncertain. Because none options have the same answer as mine, I need to review [Thought-2] again to validate the accuracy of my previous reasoning and answer hint.
[Action-5]: Rethink[Thought-2]
[Thought-6]: The algebraic equation in [Thought-2] is correct, but the substitution is incorrect. The correct total time = 200 *0.4/2 + 20 + 200/2 rather than 200 *0.4/2/2 + 20 + 200/2.
So based on my findings, the answer is Calculator[200 * 0.4/2 + 20 + 200/2].
[Answer]: Calculator[200 * 0.4/2 + 20 + 200/2]

Keep in mind the following requirements:
(1) You must output the correct equation as the final answer in [Answer].
(2) If answers of all options are the same as the answer hint, you can directly end the task and output the correct equation in Answer.
(3) If you decide to use Calculator in Action, generate the format with "Calculator[expression]", where "expression" is the expression to be computed.
(4) Do not include any units of measurement in "Calculator[expression]".
(5) You can not image the results of "Calculator[expression]".

Table 9: Prompts of TIP. In this table, we omit details of each option.

77



Question: There were some birds sitting on the fence. 725067 more birds came to join them. if there are a total of 544650
birds on the fence now how many birds had been sitting on the fence at the start?
(A): The total number of birds on the fence now is 544650. And 725067 more birds came to join them. So the total number
of birds at the start is 544650 - 725067 = -180417.
(B): Answer = Calculator[544650 - 725067] = -180417
(C): [Algebraic Equation]: number of birds at the start = total number of birds on the fence now - number of birds that
came to join them. [Numeric Equation]: number of birds at the start = 544650 - 725067 [Answer]: Calculator[544650 -
725067] = -180417
(D): [Algebraic Equation]: number of birds at the start = total number of birds on the fence now - number of birds that
came to join them. [Numeric Equation]: number of birds at the start = 544650 - 725067 [Answer]: Calculator[544650 -
725067] = -180417

IMR-TIP:
Tho-1: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
Act-1: Analyze[problem]
Tho-2: The problem states that there were some birds sitting on the fence, and 725067 more birds came to join them. The
total number of birds on the fence now is 544650. To find the number of birds that had been sitting on the fence at the
start, we can subtract the number of birds that came to join from the total number of birds now. To ensure the calculation
is correct, I need to use the Calculator to calculate the answer.
Act-2: Calculator[544650 - 725067]
Tho-3: With the answer hint -180417, I can first compare the answers of different options to make an initial assessment of
their accuracy.
Act-3: Compare[answers]
Tho-4: The answers of options (A), (B), (C), and (D) are all -180417, which align with the answer hint -180417. Therefore,
I can conclude that all options are correct. No more action are needed.
Ans: -180417.0

Ground-Truth Anaswer: -180417.0

Table 10: The MOST SIMPLE interleaved example of generated solutions by IMR-TIP on SVAMP-Hard
dataset.

Question: julia played tag with 829557 kids on monday and 853729 kids on tuesday. she played cards wtih 913524 kids
on Wednesday. how many kids did she play tag with altogether?
(A): Julia played tag with 829,557 kids on Monday and 853,729 kids on Tuesday. To find out how many kids she played
tag with altogether, we need to add these two numbers together. 829,557 + 853,729 = 1,683,286 So, Julia played tag with
a total of 1,683,286 kids altogether.
(B): Answer = Calculator[829557 + 853729] = 1683286
(C): [Algebraic Equation]: total number of kids played tag with = number of kids played tag with on Monday + number of
kids played tag with on Tuesday + number of kids played tag with on Wednesday. [Numeric Equation]: total number of
kids played tag with = 829557 + 853729 + 913524 [Answer]: Calculator[829557 + 853729 + 913524] = 2596810
(D): [Algebraic Equation]: total number of kids played tag with = number of kids played tag with on Monday + number of
kids played tag with on Tuesday + number of kids played tag with on Wednesday. [Numeric Equation]: total number of
kids played tag with = 829557 + 853729 + 913524 [Answer]: Calculator[829557 + 853729 + 913524] = 2596810

IMR-TIP:
Tho-1: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
Act-1: Analyze[problem]
Tho-2: Julia played tag with a certain number of kids on Monday, Tuesday, and Wednesday. To find out how many kids
she played tag with altogether, I need to add the number of kids she played tag with on each day. The equation to calculate
the total number of kids played tag with is: total number of kids played tag with = number of kids played tag with on
Monday + number of kids played tag with on Tuesday + number of kids played tag with on Wednesday. To ensure the
calculation is correct, I need to use the Calculator to calculate the answer.
Act-2: Calculator[829557 + 853729 + 913524]
Tho-3: With the answer hint 2596810, I can first compare the answers of different options to make an initial assessment of
their accuracy.
Act-3: Compare[answers]
Tho-4: The answers of options (A), (B), (C), and (D) are 1,683,286, 1,683,286, 2,596,810, and 2,596,810, respectively. The
answer hint is 2,596,810. Therefore, options (A) and (B) are incorrect, while options (C) and (D) are correct. Since options
(C) and (D) have the same answer and reasoning process, I can conclude that the correct answer is Calculator[829557 +
853729 + 913524].
Ans: 2596810

Ground-Truth Anaswer: 1683286.0

Table 11: The typical NEGATIVE interleaved example of generated solutions by IMR-TIP on SVAMP-Hard
dataset.
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Question: Sadie slept 8 hours on Monday. For next two days, she slept 2 hours less, each, because she had to complete
some assignments. If the rest of the week she slept 1 hour more than those two days, how many hours did she sleep in
total throughout the week?
(A): Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, mealworms and vegetables to
help keep them healthy. So the amount of cups of feed that Wendi needs to give her chickens in the final meal of the day is
20x3=60. So the answer is 60.
(B): The mathematical equation to solve the problem is: total cups of feed = (number of chickens * cups of feed per meal)
- (cups of feed given in morning + cups of feed given in afternoon). Substituting the given values, we get: total cups of
feed = (20 * 3) - (6887483 + 25). Therefore, Answer = Calculator[(20 * 3) - (6887483 + 25)] = -6887448.
(C): [Algebraic Equation]: number of cups of feed for the final meal = (number of chickens * cups of feed per chicken) -
(cups of feed given in the morning + cups of feed given in the afternoon). [Numeric Equation]: number of cups of feed for
the final meal = (20 * 3) - (6887483 + 25) [Answer]: Calculator[(20 * 3) - (6887483 + 25)] =-6887448
(D): [Algebraic Equation]: total cups of feed for the final meal = (number of chickens * cups of feed per chicken) - (cups
of feed given in the morning + cups of feed given in the afternoon) [Numeric Equation]: total cups of feed for the final
meal = (20 * 3) - (6887483 + 25) [Answer]: Calculator[(20 * 3) - (6887483 + 25)] = -6887448

IMR-TIP:
Tho-1: To validate different solutions, I first need to analyze the math problem and give my reasoning logic.
Act-1: Analyze[problem]
Tho-2: Wendi needs to give her chickens three cups of feed in three separate meals. She has already given 6887483 cups
of feed in the morning and 25 cups of feed in the afternoon. Thus, the number of cups of feed that Wendi needs to give
her chickens in the final meal of the day is (Number of chickens * Cups of feed per chicken) - (Cups of feed given in the
morning + Cups of feed given in the afternoon). To ensure the calculation is correct, I need to use Calculator to calculate
the answer.
Act-2: Calculator[(20 * 3) - (6887483 + 25)]
Tho-3: With the answer hint -6887448, I can first compare the answers of different options to make an initial assessment
of their accuracy.
Act-3: Compare[answers]
Tho-4: The answers of these options are 60, -6887448, -6887448 and -6887448, separately, which are different with
the answer hint -6887448. Thus, I can not preliminarily conclude which one is correct. I need to further compare their
reasoning steps and equations with mine to further verify their correctness.
Act-4: Compare[reasoning]
Tho-5: Option (A) follows a similar reasoning process as mine in [Tho-2], but the equation is incorrect. Options (B), (C),
and (D) provide equations that align with my earlier reasoning. However, the substitution is incorrect as it does not include
the cups of feed given in the morning and afternoon. Based on my findings, upon comparing the answers and reasoning
processes, options (A), (B), (C), and (D) are all incorrect. I need to review [Tho-2] again to validate the accuracy of my
previous reasoning and answer hint.
Act-5: Rethink[Tho-2].
Tho-6: The algebraic equation in [Tho-2] is correct, but the substitution is incorrect. The correct total cups of feed =
(Number of chickens * Cups of feed per chicken) - (Cups of feed given in the morning + Cups of feed given in the
afternoon). So based on my findings, the answer is Calculator[(20 * 3) - (6887483 + 25)].
Act-6: Calculator[(20 * 3) - (6887483 + 25)]
Ans: -6887448

Ground-Truth Anaswer: -6887448

Table 12: FALSE POSITIVE Examples of generated solutions by IMR-TIP on GSM8K-Hard dataset.
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