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Abstract

In this work, we introduce several schemes
to leverage description-augmented embedding
similarity for dataless intent classification us-
ing current state-of-the-art (SOTA) text embed-
ding models. We report results of our methods
on four commonly used intent classification
datasets and compare against previous works
of a similar nature. Our work shows promising
results for dataless classification scaling to a
large number of unseen intents. We show com-
petitive results and significant improvements
(+6.12% Avg.) over strong zero-shot baselines,
all without training on labelled or task-specific
data. Furthermore, we provide qualitative error
analysis of the shortfalls of this methodology
to help guide future research in this area.

1 Introduction

Task-oriented dialogue systems (TODS) by design,
aid the user in accomplishing tasks within specific
domains, and can have a wide range of applica-
tions from shopping (Yan et al., 2017) to health-
care (Wei et al., 2018; Valizadeh and Parde, 2022).
Modular TODS (Wen et al., 2017) will typically
contain an intent classification component (Louvan
and Magnini, 2020; Chen et al., 2019; Su et al.,
2022) used by a dialogue manager to determine the
appropriate task the user intends to complete. In
recent years, neural-based models using supervised
training have reached state-of-the-art on many nat-
ural language processing tasks, including intent
classification. However, supervised learning meth-
ods require human-labelled data for a predefined
set of intents, which may be time-consuming and
labour-intensive to acquire (Xia et al., 2018), and
may have poor scalability if new intents are added,
or task definition changed. An early approach to
tackle this problem is dataless intent classification
(Chang et al., 2008; Song and Roth, 2014) which
aimed to leverage the pairwise similarities between
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semantic representations of utterances and intent
classes to perform classification without reliance
on human-labelled data. However, this approach
relies heavily on the quality of semantic representa-
tions (Chang et al., 2008). In recent years, success-
ful zero-shot intent classification approaches (Liu
et al., 2019; Yan et al., 2020; Yin et al., 2019) have
received greater attention, whereby learning con-
ducted using labelled examples of a subset of seen
intent labels is transferred to unseen intents. How-
ever, these methods still require human-labelled
data, and tend to bias towards seen intents, with
the number of unseen intents also generally much
lower than seen intents (Liu et al., 2022; Zhang
et al., 2022).

In this work, with the significant recent advance-
ments in the quality of text embedding models
(Muennighoff et al., 2023), we explore the poten-
tial for dataless intent classification methods using
a number of recent state-of-the-art text embedding
models. We introduce several approaches for gen-
erating intermediate textual representations for in-
tents, most notably using intent label descriptions,
and formalise our methodology. We perform ex-
tensive evaluation of our methods, including sce-
narios with large numbers of intents from different
domains, using three commonly used intent classi-
fication datasets. We summarise our contributions
as follows:

• We introduce a new scheme for generating
intent descriptions with an aim to minimise
reliance on human expert input.

• We show that our intent descriptions yield sig-
nificant improvements over label tokenization
through extensive evaluation.

• We introduce an approach utilising utterance
paraphrasing and masking which yields fur-
ther improvements and show this is consistent
across a range of models.

• We aggregate and explore the potential of a
multitude of current SOTA text embedding
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models for dataless classification.
• We extensively evaluate our methodology

on four commonly used intent classification
datasets and report on the results.

• We provide qualitative error analysis aimed at
guiding future work.

2 Related Works

2.1 Generalized Zero-Shot Learning

Zero-shot learning (ZSL) (Yin et al., 2019) aims to
leverage learning previously performed on labelled
examples from seen tasks to unseen tasks, of which
there are no labelled examples available for super-
vised training. ZSL has seen increasing popularity
in the domain of intent classification (Liu et al.,
2019; Yan et al., 2020) in recent years, whereby
models are trained on a subset of intent labels and
evaluated on another disjoint subset of intent labels.
In more recent years, the concept of generalized
zero-shot learning (GZSL) has seen an increase
in prominence in the domain, in which the perfor-
mance on both seen and unseen classes are consid-
ered in tandem (Zhang et al., 2022; Lamanov et al.,
2022). Several GZSL approaches learn a label pro-
totype space during training, which is transferred
to unseen classes through methods such as inter-
class relationship modelling (Zhang et al., 2021)
and prototype adaptation (Zhang et al., 2022). Ap-
proaches such as (Lamanov et al., 2022) encode
the utterance and labels in a sentence-pair setup,
with template-based lexicalisation of labels used as
class prototypes. Other approaches exist that use
label prototypes as centroids in Gaussian mixture
models trained on seen class utterances (Yan et al.,
2020; Liu et al., 2022). An issue that can occur
with GZSL is biased towards seen classes (Zhang
et al., 2022), which can lead to significantly lower
performance on unseen classes. It is also difficult
to see the efficacy of transfer to a large number of
diverse unseen classes, as the number of unseen
classes in evaluation is also typically much smaller
than the number of seen classes.

2.2 Dataless Classification

Dataless text classification (Chang et al., 2008) is
defined as tackling text classification without prior
training on any labelled data. Generally regarded as
a precursor to zero-shot text classification, this ap-
proach typically leverages sentence representations
without any training on labelled data, by comparing
the semantic representations between a sentence

and that of the intent classes (Song and Roth, 2014).
(Zha and Li, 2019) utilises “seed" words associated
with each intent class to further contextualise the
intent class representation, as a single word may
often be insufficient to encapsulate the meaning
of the class (Chen et al., 2015). Some approaches
further leverage class hierarchy to augment classi-
fication performance (Li et al., 2016; Popov et al.,
2019).

3 Methodology

3.1 Problem Definition
Let C be a set of intents supported by a task-
oriented dialogue system, U =

⋃{Uc}c∈C defines
the set of all user utterances, Uc = {ui}1≤i≤nc is
the set of utterances belonging to intent class c. The
model undergoes no task-specific training and is
tasked with making an intent prediction ŷi for a pre-
viously unseen utterance ui at inference time. We
follow the paradigm set by previous works in data-
less text classification (Chang et al., 2008; Song
and Roth, 2014) to conduct nearest-neighbour clas-
sification over the sentence embedding space. For
a given utterance ui, an encoder h(·) and a set
of class label representations {lc}c∈C , we make a
prediction ŷi as follows:

ŷi = argmax
c

s(h(ui),h(lc)) (1)

where s(u,v) = u · v/||u||2||v||2 is the cosine
similarity between two vectors.

In order to conduct nearest-neighbour classifica-
tion using intent labels, we require an intermediate
representation, or prototype, which encapsulates
to some degree the meaning of a class (Zha and
Li, 2019), from which we can obtain a suitable
embedding. A commonly used approach in data-
less classification is to use the labels (Chang et al.,
2008).

3.2 Label Tokenization
A class prototype is obtained by tokenizing intent
labels directly, inserting spaces and replacing char-
acter separators, i.e.

AddToPlaylist → Add To Playlist
oil_change_how→ Oil Change How

However, this approach depends on the descrip-
tiveness of the original intent labels, which can
vary significantly between datasets and tasks. As
such, we propose an additional step to produce
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intent label descriptions which we hypothesise
can (1) better align the semantic representation
with the characteristics of the class and (2) pro-
vide more consistent performance across datasets
or approaches without requiring in-task data, which
previous works (Lamanov et al., 2022) have shown
could improve performance over purely using tok-
enized labels.

3.3 Our Approach
3.3.1 Intent Description
Our objective is to produce a brief description of
the intent expressed by the user in a given utterance,
while ensuring the process requires minimal expert
human effort so as to remain scalable for large
numbers of intent classes. Rather than producing a
general description of the intent (Gao et al., 2023),
we formalise our template for producing intent de-
scriptions with the two following constraints:

Label Preservation The resulting intent descrip-
tion must contain tokens from the original in-
tent label i.e. car_rental → User wants
to rent a car, or replace with an appropriate
word (lexical cognates, synonyms etc.).

Format Consistency Descriptions should be
written in the declarative form, beginning with
either "User is [asking|saying]", or
"User wants [to]", and aim to introduce
minimal extraneous tokens in a similar manner to
abstractive summarization (De Raedt et al., 2023).
Our approach differs from the template-based ap-
proach in (Lamanov et al., 2022) in that we use
exclusively the declarative form in writing our de-
scriptions to maintain consistency across intent
classes and datasets. Example descriptions can
be seen in Table 1, more examples can be found
in Appendix I. We examine the robustness of our
approach in Section 6.

In our experimentation (Section 4), our intent
descriptions added on average 6.6 tokens to the
tokenized intent labels (1.9 → 8.5), with 98.3%
of descriptions containing at least one of the label
tokens in exact form, and 82.7% of all label tokens
preserved.

3.3.2 Utterance Paraphrasing
The diversity of user utterances for any given in-
tent can pose a challenge as intents may not be
obvious (Mueller et al., 2022). We hypothesise
that a format consistency constraint over the user
utterance can benefit dataless intent classification

Label Description
abbreviation “user is asking what an abbrevi-

ation stands for or means"
flight_no “user is asking about a flight

number"
AddToPlaylist “user wants to add a song to a

playlist"
food_last “user wants to know how long

a food lasts
maybe “user is expressing uncertainty"

Table 1: Example descriptions for intent labels from
each of the datasets (Section 4.1) used in our experimen-
tation.

performance. Previous works primarily focused on
utterance paraphrasing as a means of data augmen-
tation (Kumar et al., 2019; Jolly et al., 2020; Sahu
et al., 2022) or to reduce overfitting (Dopierre et al.,
2021). Our approach leverages inference-time para-
phrasing to enforce a weaker degree of our intent
descriptions’ format consistency constraint on user
utterances. Given a paraphraser model p(·) we
compute a sentence embedding of the paraphrased
utterance p(ui):

Pui = h(p(ui)) (2)

We leverage a 1.6B StableLM model1 (Bellagente
et al., 2024) to generate a single paraphrase for each
utterance. Our selection was based on said model
being the top-performing model under 2B param-
eters on the Open LLM Leaderboard (Beeching
et al., 2023) as of the time of writing. We addition-
ally experimented with 1.6B Zephyr (Tunstall et al.,
2023) and 1.3B Phi-1.5 (Li et al., 2023a) models
but found no significant difference on our task. Ex-
ample templates and further details are shown in
Appendix A. The mean cosine similarity between
the paraphrases and the original utterances across 4
intent classification tasks and 12 embedding mod-
els is 0.89± 0.06.

3.3.3 Label Entity Overlap & Masking
We note that sentence embeddings tended to cap-
ture the topic and entity information rather than
the associated action, which can lead to misclas-
sifications in the event that two or more intent
classes share entities (i.e. AddToPlaylist and
PlayMusic can both refer to songs as their ob-
jects). To tackle this, we introduce a masking

1https://huggingface.co/stabilityai/
stablelm-2-1_6b-chat
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Algorithm 1 Utterance Masking Procedure

1: Given user utterance ui = {ui,1, . . . ui,t}
2: Ti← DependencyParser(ui)
3: procedure MASKTREE(T )
4: n← root(T )
5: if relation(n) is obj then
6: n← [MASK]
7: DROP children(n)
8: else
9: for ui,j in children(n) do

10: MASKTREE(ui,j)
11: end for
12: end if
13: end procedure

component which given user utterance ui masks
spans containing the object of said utterance, iden-
tified through dependency parsing2 (de Marneffe
and Manning, 2008; Schuster and Manning, 2016),
to produce mi. mi is then weighted to form the
masking component:

Mui = h(mi)×Overlaps(ui, k)×1masked (3)

where Overlaps(u, k) denotes whether there is
likely entity overlap in the top k candidate intents
by similarity and 1masked is whether there exists
a masked version of the original sentence. We did
not find significant differences in performance for
k > 3, and thus we use k = 3 for all our experi-
ments.

Masking Algorithm 1 illustrates the masking pro-
cedure which identifies and masks object spans in
the utterance. We define such object spans as sub-
trees within the dependency tree in which a par-
ent node has any of {dobj, pobj, ccomp}
relations. We note that object relations are not al-
ways present in the dependency tree, in such cases
masked representations are not used. From our ex-
periments, some degree of masking was performed
for 97.29% of utterances from the ATIS dataset,
98.04% of SNIPS, 90.88% of CLINC and 84.24%
of MASSIVE. We show an example of this proce-
dure in Appendix B.

Entity Overlap For each intent, we predict a
set of entities ec = {ec1 , . . . , eck} from the intent
description that may describe the object of said

2We leverage an off-the-shelf dependency parser,
en_core_web_trf from Spacy url: https://spacy.
io/models/en

class. As such, entities are defined at problem
definition and can be modified alongside intent
descriptions when they are added/removed. We
precompute an overlap matrix Overlap where

Overlap[i, j] =

{
1 ei ∩ ej ̸= ∅
0 otherwise

(4)

At inference time, we compute overlaps for
classes with top k embedding similarities for an
utterance ui. Given a similarity vector si =
{si,1, . . . , si,c}c=|C| of embedding similarities be-
tween utterance embedding h(ui) and intent
description embeddings h(lc)c∈C , we compute
Topk(ui) as the top k classes with similarity scores
sorted in descending order. We then compute pair-
wise overlap for all pairs in Topk(ui) as follows:

Overlaps(ui, k) =
⋃

m,n ∈ Topk(ui),m ̸= n

Overlap[m,n] (5)

We note that future work could explore expan-
sion of the definition of relevant entities to each
intent class, as the current solution relies on the
quality of intent descriptions and only covers the
most likely entities across an entire class, a more
dynamic inference-time solution that determines
overlap based on candidate classes would be desir-
able.

3.4 Combined Sentence Representation

We formulate the final representation of the user
utterance within the embedding space as the sum
of the original utterance embedding with the para-
phrasing and masking components:

hi = h(ui) + Pui +Mui (6)

ŷi = argmax
c

s(hi,h(lc)) (7)

4 Experiments

4.1 Datasets

We evaluate our methods on four commonly used
English task-oriented dialogue (TOD) system in-
tent classification datasets, covering a diverse range
of number of intents (7-150) and domains (up to
18). (1) ATIS (Hemphill et al., 1990) is an English
air-travel information system dataset containing
18 intent classes. For comparison, we follow pre-
vious works (Zhang et al., 2022) in filtering out
intent classes containing fewer than 5 examples.
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(2) SNIPS-NLU (Coucke et al., 2018) contains
7 intent classes, totalling 14,484 utterances. (3)
CLINC (Larson et al., 2019) is a dataset for out-
of-scope intent classification, with 150 intents and
22,500 utterances spanning 10 domains. (4) MAS-
SIVE (FitzGerald et al., 2023) is a multilingual
spoken language understanding dataset containing
60 intents across 18 domains, we select the 16,521
instances from the en-US split of the dataset for
our experiments. As our method does not involve
fine-tuning on task-specific data, we consider entire
datasets to consist of unseen data for evaluation3.

4.2 Models

We select 11 models from the Massive Text Em-
bedding Benchmark (MTEB) (Muennighoff et al.,
2023) that are in the top 20 at the time of writ-
ing4. Our selections are based on the following
criteria: (1) the model weights must be released
(2) documentation of training methods and experi-
mentation details must be readily available. Addi-
tionally, owing to computational limits5, we only
consider models up to 3GB in size. Our final se-
lection of 11 models can be largely grouped into 4
families of models: InstructOR (Su et al., 2023),
E5 (Wang et al., 2022), GTE (Li et al., 2023b) and
BGE (Xiao et al., 2023). More details on selected
models are provided in Appendix C.

We report results in Section 5 for all E5,
GTE and BGE models using averaged token em-
beddings as sentence representations. We ad-
ditionally compare model performances against
a commonly used embedding model in Ope-
nAI’s text-embedding-ada-002 (Neelakan-
tan et al., 2022) which we refer to in our tables as
‘Ada-002’. We also investigated the generation of
synthetic examples as intent prototypes (Appendix
I) but did not find significant improvements over
our approach using intent descriptions (Appendix
J).

3We make our code and datasets publicly available and
can be found at https://github.com/ruoyunlp/
dataless-intent-classification

4November-December 2023. We note our top-performing
selected models are still competitive with current top-
performing models from MTEB fitting our criteria as of May
2024

5All experiments conducted using a single 9GB GPU

5 Results

5.1 Baselines and Terminology

We compare the performance of our methods
against several unknown intent classification meth-
ods previously detailed in Section 2. Here we clar-
ify the terminology used henceforth to refer to these
methods in our results. We refer to scores on un-
seen intent labels reported by (Zhang et al., 2021)
as ICR, (Yan et al., 2020) as SEG, (Liu et al., 2022)
as ML-SEG, dataless approach trained using origi-
nal data from (Lamanov et al., 2022) as TIROrig

and likewise TIRSyn for training on synthetic data.
We refer to the results of the adapted method of
(Gidaris and Komodakis, 2018) reported in (Zhang
et al., 2022) as CosT and the reported main results
as LTA. We refer to the best-performing model of
a similar size to our selection from (Gretz et al.,
2023) as TTCD.

5.2 Metrics

Following from previous works (Zhang et al., 2022;
Lamanov et al., 2022), we report Accuracy and
Macro-F1 scores for intent classification on each of
the datasets, in addition, we also compute the aver-
age of Accuracy and F1 score for direct comparison
between our methods similar to (Gritta et al., 2022).
We show macro-F1 only for MASSIVE in Table 2
for comparison’s sake as the previous work (Gretz
et al., 2023) did not report Accuracy scores. Full
results for each of our approaches including Accu-
racy scores are shown in Table 9.

5.3 Methods using Tokenized Labels

Despite a lack of task-specific fine-tuning, models
using tokenized intent labels generally performed
comparably to most of the baselines on unseen in-
tents. The best-performing model (BGELarge) out-
performs baseline scores for ICR (+9.13 Mean),
SEG (+10.21 Mean) and ML-SEG (+3.14 Mean),
TIRSyn (+13.60 Mean), TIROrig (+4.55 Mean) and
TTCD (+0.31 F1). BGELarge outperforms CosT
on all datasets; however, it also significantly un-
derperforms LTA on all 3 datasets (-16.38 ATIS,
-7.49 SNIPS-NLU, -1.21 CLINC). We note that
this approach appears quite sensitive to the model
as indicated by the comparatively high standard
deviation (σOvr = 5.65) across models.

5.4 Methods using Intent Descriptions

Our method using intent label descriptions yields
a significant improvement over using tokenized la-
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Model AT. SN. CL. MA. Ovr.Mean Acc. & F1 F1

B
as

el
in

es

ICR 35.04 - - - -
SEG - 69.46 - - -
ML-SEG - 76.53 - - -
TIROrig - - 68.50 - -
TIRSyn - - 59.65 - -
CosT 45.62 55.28 66.50 - -
LTA 60.55 87.16 74.46 - -
TTCD - - - 54.22 -
Baselines 60.55 87.16 74.46 54.22 69.10

To
ke

ni
ze

d
In

te
nt

La
be

ls

Instr.Large 18.72 82.39 62.76 47.62 52.87
E5-v2Base 20.39 77.13 63.87 45.97 51.84
E5-v2Large 26.64 69.99 60.40 46.83 50.97
mE5Large 22.47 59.35 57.34 44.34 45.88
E5Large 40.57 74.44 69.11 49.78 58.48
Ada-002 25.98 82.75 66.97 47.90 55.90
GTESmall 20.75 73.99 68.47 51.90 53.77
GTEBase 55.66 81.75 70.65 51.44 64.88
GTELarge 39.78 79.36 69.54 49.08 59.44
BGESmall 19.50 78.00 70.78 52.43 55.18
BGEBase 45.74 76.81 73.05 55.89 62.87
BGELarge 44.17 79.67 73.25 54.53 62.91

In
te

nt
La

be
lD

es
cr

ip
tio

ns

Instr.Large 42.18 85.60 77.25 55.52 65.14
E5-v2Base 52.44 87.49 70.92 53.73 66.14
E5-v2Large 52.16 87.31 71.49 55.65 66.65
mE5Large 60.51 83.88 72.24 56.67 68.32
E5Large 52.56 88.92 74.88 56.32 68.17
Ada-002 51.34 89.50 77.81 58.03 69.17
GTESmall 54.71 84.42 70.20 51.86 65.30
GTEBase 52.60 86.41 75.10 54.62 67.18
GTELarge 55.85 86.33 75.83 57.85 68.97
BGESmall 47.84 85.51 72.03 54.27 64.91
BGEBase 48.76 88.32 77.61 58.92 68.40
BGELarge 54.88 89.30 79.08 62.88 71.53

+
Pa

ra
ph

ra
se

an
d

M
as

ki
ng

Instr.Large 49.07 89.86 80.17 59.79 69.72
E5-v2Base 60.93 90.03 75.06 57.81 70.95
E5-v2Large 48.06 85.56 74.69 58.27 66.64
mE5Large 57.72 83.36 75.00 57.67 68.43
E5Large 53.78 91.92 76.27 59.17 70.28
Ada-002 57.02 90.51 79.73 59.92 71.80
GTESmall 53.48 88.11 71.50 57.53 67.66
GTEBase 64.20 85.88 75.75 58.41 71.06
GTELarge 60.63 91.70 78.89 61.63 73.21
BGESmall 54.16 90.76 75.04 59.11 69.77
BGEBase 58.69 91.81 79.80 61.98 73.07
BGELarge 61.04 92.57 81.52 65.76 75.22

Table 2: Model performance on 4 intent classification
tasks. We show Mean of Accuracy and Macro-F1 scores
for ATIS, SNIPS-NLU & CLINC. Macro-F1 is shown
for MASSIVE as TTCD did not report Accuracy. Full
results for each dataset are shown in Table 9.

Model Tok. Desc. Comb.
InstructORLarge 64.96 73.19 76.89
E5-v2Base 62.98 71.02 74.58
E5-v2Large 59.75 71.76 73.13
mE5Large 54.23 71.50 72.57
E5Large 64.70 73.65 76.09
Ada-002 66.48 75.35 77.12
GTESmall 65.43 69.38 72.80
GTEBase 68.57 72.35 73.63
GTELarge 66.63 73.57 77.57
BGESmall 68.20 71.11 75.37
BGEBase 69.36 75.28 78.05
BGELarge 69.76 77.15 79.91

Table 3: Average model Mean of Accuracy and F1 over
SNIPS-NLU, CLINC and MASSIVE datasets using to-
kenized intent labels (Tok.), intent descriptions (Desc.)
and combined utterance embedding (Comb.).

bels (Tables 2 and 3), with an average increase per
model of +11.24 overall. This supports our hy-
pothesis (1) (Section 3.2) in that the additional con-
textualisation added through describing the label
via a declarative sentence better encapsulates the
semantic information represented by a label. We
also note from Table 3 that the standard deviation
in performance across models is significantly lower
when using descriptions (σOvr = 1.98), supporting
our hypothesis (2) that descriptions can improve
consistency across models and approaches. Our
overall best-performing model (BGELarge) also
considerably outperforms the strongest baseline on
SNIPS-NLU (+2.14 Mean), CLINC (+4.62 Mean)
and MASSIVE (+8.66 F1). We do note that all of
our approaches in this setup underperform on the
ATIS dataset compared to the baseline, with our
overall best-performing approach yielding 60.51
vs 60.55; we provide further insight into possible
reasons in Section 7 to help guide future research.

5.5 Methods with Additional Paraphrasing
and Masking

Our addition of paraphrase and masked utterance
embeddings yields further overall score improve-
ments on average of +3.16 over label descriptions
and is consistent across different models (Table
3). Our best-performing model (BGELarge) signif-
icantly outperforms previous approaches on all 4
datasets (+0.49 ATIS, +5.42 SNIPS-NLU, +7.06
CLINC, +11.54 MASSIVE). Additionally, our ap-
proach outperforms previous work on 9 out of 12
selected models.
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Setup AT. SN. CL. MA. Ovr.E P M O
x 54.89 89.29 79.08 63.09 71.59

x 56.03 85.77 78.77 63.35 70.98
x 30.72 76.76 37.90 33.62 44.75

x x 56.11 88.83 81.56 65.60 73.02
x x 60.84 92.52 75.56 60.80 72.43

x x 60.57 92.19 75.99 62.91 72.92
x x x 61.04 92.67 81.22 65.64 75.14
x x x 60.84 92.56 77.36 61.82 73.14

x x x 60.57 92.02 76.86 63.04 73.12
x x x x 61.04 92.57 81.52 65.65 75.20

Table 4: Mean of Accuracy and Macro-F1 on 4 intent
classification datasets using a bge-large-en-v1.5
model. Setup denotes whether a component is used
in the combined sentence embedding: E - utterance
embedding, P - paraphrasing, M - masking, O - entity
overlap in masking.

6 Ablations

Addition of paraphrasing and masking Table
3 illustrates the mean performance across SNIPS,
CLINC and MASSIVE datasets for each model
different class prototypes. We note the consistent
improvement in performance between tokenized
intent labels and our approach using declarative in-
tent descriptions (+7.86 Mean), and the further im-
provements with added paraphrasing and masking
(+10.56 Mean). We omit ATIS from this table as
it is significantly unbalanced, the impact of which
we explore in Section 7, and its results are already
included in Table 2.

Combination of techniques Table 4 demon-
strates the performance (mean of accuracy and
macro-f1) between different combinations of
our techniques using a bge-large-en-v1.5
model. We observe that the addition of paraphras-
ing increases performance by an average of +2.06%
compared to methods without, supporting our hy-
pothesis (3) that inference-time paraphrasing can
benefit dataless intent classification. We observe
that masking increases performance by an average
of +1.80% and the addition of masked embedding
only when entity overlaps are predicted increases
performance by +0.32% on average. We perform
further ablations over combinations of techniques
using other models in Appendix E and note similar
behaviour across different models.

Choice of Descriptions To investigate whether
our proposed method is sensitive to the choice of

intent descriptions, we generate paraphrases of our
manually produced descriptions with increasing
temperature values and sampled 200 combinations
of descriptions for each dataset. Table 5 contains
the mean and standard deviations of the macro-
f1 scores for each dataset, we report macro-f1 for
this ablations experiment due to the severely un-
balanced nature of the ATIS dataset towards a sin-
gle class flight (accounting for ∼ 74% of the
dataset). Further details on description paraphrase
generation and sampling along with examples are
provided in Appendix F. Methods using only tok-
enized intent labels are outperformed by our meth-
ods using label descriptions (+4.51%), with further
improvements from the addition of paraphrasing
and masking (+8.00%). The overall scores per
dataset are slightly affected by the choice of intent
descriptions, with standard deviations between 1-
2% with the exception of the ATIS dataset. Future
work could focus on the combination of multiple
intent descriptions (via paraphrasing) or descrip-
tion refinement with unsupervised training (Chu
et al., 2021; Müller et al., 2022) to further improve
robustness to the choice of descriptions.

7 Analysis and Future Work

In-Domain Saturation We visualise the embed-
dings generated by our best-performing model
(BGELarge) on the 4 evaluation datasets using t-
SNE (van der Maaten and Hinton, 2008), along
with the embedding for the intent label descrip-
tion to gain insight into the source of errors in
our approach. Figure 1 shows the distribution of
embeddings on the ATIS and SNIPS datasets. In
the interest of space, visualisations of CLINC and
MASSIVE are shown in Appendix G . We observe
a poor alignment on the ATIS dataset between the
intent label descriptions (Figure 1a) and utterance
embeddings corresponding to each class, possibly
explaining the poor performance in general on this
dataset across models. We note the single-domain
nature of the ATIS dataset, with all utterances re-
lating to air-travel/flight; additionally, we note the
significantly imbalanced nature of the ATIS dataset
(Nan et al., 2021), with ∼ 74% of utterances be-
longing to the flight class, which is a label that
overlaps the domain of the dataset. We hypothesise
this may lead to the intent label descriptions being
much worse at capturing semantic information dis-
tinct to each class. This is supported by analysis of
the pairwise embedding similarities of utterances
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Setup ATIS SNIPS CLINC MASSIVE Overall
Tokenized Intent Labels 40.11 78.74 72.45 54.53 61.46

Intent Label Descriptions 42.00± 3.91 86.97± 2.05 73.77± 1.10 61.12± 1.04 65.97± 2.02
+ Paraphrase & Masking 46.83± 4.18 91.21± 1.61 76.17± 1.14 63.61± 1.19 69.46± 2.03

Table 5: Comparison of macro-f1 score across 200 sampled combinations of descriptions for our setups with/without
paraphrasing and masking. Note our combined approach outperforms tokenized labels across all datasets.

(a) (b)

(c) (d)
Figure 1: t-SNE (van der Maaten and Hinton, 2008) visualisation of embeddings computed using BGELarge, class
label description embeddings are shown in black and labelled. (Row 1) Embeddings of ATIS (a) and SNIPS (b),
(Row 2) Embeddings with Paraphrasing and Masking for ATIS (c) and SNIPS (d).

belonging to the same class vs utterances belong-
ing to different classes (Table 13) where models’
embeddings on the ATIS dataset consistently had
lower percentage-difference in embedding similar-
ity between in-class and out-class, implying more
difficulty in distinguishing the utterances using
solely embeddings. This issue is mitigated to some
degree with our addition of paraphrasing and mask-
ing, as the number of misclassifications where there
are entity overlaps between classes is reduced on
average by 19.19%. We see this visually in Figure
1d as the cluster for each class is more distinct com-
pared to 1b. Errors from classes with overlapping
entities in SNIPS are reduced by 29.31%.

Error Analysis We perform qualitative analysis
of the remaining errors and identify two categories
of commonly occurring errors. (1) Description
Scope: Our approach utilises a single description
for each intent and can work well when an intent

concerns a limited number of topics; however, in-
tents such as meta and small_talk from the
CLINC dataset, and qa from the MASSIVE dataset
can encompass a significantly broader range of
topics than other intents within the same dataset.
The impact of topical granularity per intent class
and the potential for a hierarchical approach to
intent classes in a dataless setting can be the fo-
cus of future work in this area. (2) Action Over-
lap: Our approach mitigates some errors arising
from shared entities across intents through mask-
ing. Whilst this has shown success in reducing
errors of this nature (i.e. between PlayMusic
and AddToPlaylist from the SNIPS dataset),
it is less successful in events where an action is
shared across classes, such as play from the MAS-
SIVE dataset, and SearchCreativeWork and
SearchScreeningEvent from the SNIPS-
NLU dataset. Future work could investigate the
potential to decouple the desired action and object
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Dataset Top-1 Top-3 Top-5 Top-10
ATIS 67.70 93.38 96.03 98.10
SNIPS-NLU 89.78 97.13 99.43 100.00
CLINC 77.24 91.71 94.86 97.41
MASSIVE 61.45 81.85 87.79 92.79
Average 74.04 91.01 94.53 97.08

Table 6: Percentage of correct labels within Top-k
ranked by embedding similarity per evaluation dataset,
averaged across 11 selected models.

(topical information) in utterance embeddings.

Label Candidate Analysis We observed from
our results (Table 2) that our approach, despite out-
performing strong baselines on ATIS and MAS-
SIVE datasets, still consistently underperforms
compared to the same setup on SNIPS-NLU and
CLINC. We therefore investigate the position of
the correct label when ranking embedding similar-
ities. Table 6 shows the percentage of examples
where the correct label is ranked within the top-k
by embedding similarity for k = 1, 3, 5, 10. We
note for erroneous predictions, the correct label is
within the Top-3 in 67.11% of cases, 81.89% in
Top-5 and 90.94% in Top-10. This implies that our
approach can be used to identify candidate intents
from a larger set of intents, with a high success rate
even for small values of k (i.e. 91.01% Top-3).

Analysis Summary Our proposed approach per-
forms well overall against the strong baseline meth-
ods in unseen intent classification; however, it
struggles in certain instances with overlaps in in-
tents within the same domain. We identified po-
tential areas for future work to pursue in tackling
said issues. The results of our experiments have
shown intent label descriptions can perform well
as intent prototypes in this problem setting, and
that the addition of paraphrasing and masking can
further improve performance.

Limitations This approach contains a number
of limitations: We have identified issues with the
descriptiveness of individual labels earlier in this
section, and textual labels may not be readily avail-
able for certain datasets, though summarisation
methods may be effectively applied to a few user
utterances to produce such labels. Our evaluation
compares against previous works using scores as
reported in their respective papers, further work can
be done to replicate their experiments to mitigate
any potential risk arising from differences in exper-
imental settings. Future work may also investigate

the application of descriptions to tasks outside of
intent classification, such as emotion recognition
(Rashkin et al., 2019).

8 Conclusion

Dataless classification allows for scaling to a large
number of unseen classes without requiring train-
ing on labelled, task-specific data. The benefits
of such an approach can enhance development of
task-oriented dialogue systems in application to
data-poor or compute-limited scenarios where sup-
ported intents may also change as the system is
developed. In this paper, we have explored the
potential of current SOTA text embedding models
in dataless intent classification settings using three
different approaches for representing intent classes
and compared our results against strong zero-shot
learning baselines. We proposed a method for stan-
dardising the generation of intent label descriptions
with an aim to minimise the amount of human an-
notation required to further support scaling to high
numbers of intent classes. Our results have shown
that description-augmented dataless classification
methods can achieve comparable, and sometimes
superior performance to zero-shot methods on the
task of intent classification.
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A Utterance Paraphrasal

Table 7 contains an example template used
to generate paraphrases for utterances from
the CLINC dataset. Examples used in the
template do not appear in the dataset and
do not make explicit mentions of classes.
We use length_penalty=-1 to encourage
shorter outputs, repetition_penalty=1.2
and num_beams=3, we use default values for all
other generation parameters.

We perform an additional ablation study over
the choice of examples in the paraphrase genera-
tion template using 9 different examples across 3
configurations for each of SNIPS and MASSIVE
datasets. We select these datasets specifically as
we believe they differ sufficiently in number of
intents and domains. Across 3 ablation configura-
tions and the original paraphrasing setup, we obtain
an overall score (mean of accuracy and macro-f1)
of 92.66 ± 0.19% for SNIPS and 65.48 ± 0.18%
for MASSIVE. As the standard deviation is low
in both instances, we conclude that the choice of
examples in the paraphrase generation prompt has
little impact on the final performance through our
setup.

Prompt
Given an utterance, describe what the user is asking.

sentence: "set an alarm for every weekday at 7 am"
description: user is asking to set an alarm for every
weekday at 7am

sentence: "can you show me the step-by-step instruc-
tions to bake chocolate chip cookies"
description: user is asking for recipe for chocolate chip
cookies

sentence: "could you please tell me what time it is now"
description: user is asking for the current time

sentence: "{}"
description:

Table 7: Example template used to generate user utter-
ance paraphrases from the CLINC dataset.

B Example Masking Procedure

Given an user utterance “i want to watch animated
movies at Showcase Cinemas”, we first perform de-
pendency parsing to identify utterance objects that
can be masked. Figure 2 shows an illustration of the
resulting parsed dependency relations. Following
the approach outlined in Section 3.3.3, we mask out
nodes with any of {dobj, pobj, ccomp} re-
lations, namely “animated movies” and “Showcase
Cinemas” to produce the resulting masked repre-
sentation “i want to watch [MASK] at [MASK]”.

C Details of selected models

Basic model specifications are shown in Table 8.

Model s dh l µMTEB

InstructORLarge 1.34 768 512 61.59

E5-v2Base 0.44 768 512 61.50
E5-v2Large 1.34 1024 512 62.25
Multilingual-E5Large 2.24 1024 514 61.50
E5Large 1.34 1024 512 61.42

GTESmall 0.07 384 512 61.36
GTEBase 0.22 768 512 62.39
GTELarge 0.67 1024 512 63.13

BGESmall 0.13 384 512 62.17
BGEBase 0.44 768 512 63.55
BGELarge 1.34 1024 512 64.23

OpenAI-Ada-002 - 1536 8191 60.99

Table 8: Specifications of selected models grouped by
training method. Column s shows model size (GB), dh
embedding dimensions, l maximum sequence length
and µMTEB averaged performance on MTEB bench-
mark.
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Figure 2: Example dependency parse tree from the SNIPS dataset.

InstructOR (Su et al., 2023) embeds the utter-
ance with a task description, allowing for task-
specific conditioning at inference time, with good
performance on unseen domains. Trained on 330
datasets using a contrastive learning objective (Ni
et al., 2022). This family of models is initialised
from GTR (Ni et al., 2022) models, which are in-
turn initialised from T5 (Raffel et al., 2020) models.

E5 (Wang et al., 2022) performs unsupervised
pretraining on the model on ∼270M text pairs us-
ing an InfoNCE (van den Oord et al., 2019) ob-
jective with other utterances within the batch act-
ing as negative examples, followed by supervised
fine-tuning on 3 datasets. We select the Base and
Large variants, initialised from bert-base-uncased
and bert-large-uncased-whole-word-masking re-
spectively.

GTE (Li et al., 2023b) pretrains the model on
∼800M text pairs and fine-tunes using 33 datasets.
The contrastive learning objective used in this work
considers, for each query-document pair (qi, di) in
a batch, the pairwise relation to the remaining ex-
amples {(qj , dj)}j ̸=i. The embedding similarities
s(qi, dj), s(qi, qj), s(di, dj) are added to the parti-
tion function, where s(q, d) is the cosine similarity
between two embeddings.

BGE The work (Xiao et al., 2023) initialised
from BERT (Devlin et al., 2019) models and trained
using RetroMAE (Xiao et al., 2022) whereby both
the input sentence and sentence embeddings in an
autoencoder setup are randomly masked during
MLM training. The authors use [CLS] token em-
beddings as the sentence representation. Our ex-
perimentation showed a slight improvement when
using averaged token embeddings (Mean perfor-
mance +0.82% Tokenized-labels, +1.06% Class-
description).

D Full Results

See Table 9 for individual accuracy and macro-f1
scores by task and model.

E Further Ablations

We conduct further ablation studies using
bge-small-en-v1.5 (Table 10) and
gte-large (Table 11) models to verify
the findings of our main ablation study conducted
on bge-large-en-v1.5 (Table 4). We note
that similar trends are observed with the different
models, in that our proposed setup utilising a
combination of the original utterance embedding
with paraphrase embedding and masked utter-
ance embedding using entity overlaps produced
consistently higher scores.

F Description Paraphrasing

To produce paraphrases of intent descriptions, we
leverage a stablelm-2-1_6b-chat model in
a similar setup to our inference-time utterance para-
phrasal. We increase temperature value from 0.5
to 4.1 in increments of 0.2, producing a paraphrase
for each value. We then filter the generated set of
descriptions for duplicates and enforce our Label
Preservation and Format Consistency constraints,
resulting in an average of 3.94 paraphrases per in-
tent in addition to the original manually produced
intent description. Each paraphrase has an aver-
age Levenshtein distance of 4.61 to the manual
intent description. We replace half of all intent de-
scriptions for each dataset with randomly sampled
paraphrases, we produce 200 such combinations
and repeat our experiments. Table 12 shows exam-
ples of paraphrased intent deescriptions for each
dataset.

G t-SNE Visualisation

Due to the challenge to readability posed by the
large number of intents in the CLINC dataset, in-
stead sample the 15 top-performing (100% accu-
racy) and lowest-performing (24.47% accuracy) in-
tent classes for illustration, with the results shown
in Figures 1c and 1d respectively.
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Model ATIS SNIPS CLINC MASSIVE
Acc F1 Mean Acc F1 Mean Acc F1 Mean Acc F1 Mean

B
as

el
in

es

ICR 35.54 34.54 35.04 - - - - - - - - -
SEG - - - 69.61 69.31 69.46 - - - - - -
ML-SEG - - - 77.08 75.97 76.53 - - - - - -
TIROrig - - - - - - 63.90 73.10 68.50 - - -
TIRSyn - - - - - - 58.00 61.30 59.65 - - -
CosT 46.04 45.21 45.62 47.73 62.84 55.28 62.73 70.28 66.50 - - -
LTA 66.09 55.02 60.55 90.09 84.22 87.16 73.18 75.74 74.46 - - -
TTCD - - - - - - - 54.73 - - 54.22 -

Baselines 66.09 55.02 60.55 90.09 84.22 87.16 73.18 75.74 74.46 - 54.22 -

To
ke

ni
ze

d
In

te
nt

La
be

ls

Instr.Large 12.41 25.03 18.72 82.71 82.07 82.39 64.50 61.02 62.76 51.86 47.62 49.74
E5-v2Base 13.20 27.58 20.39 77.30 76.96 77.13 65.33 62.40 63.87 49.91 45.97 47.94
E5-v2Large 14.67 38.61 26.64 70.83 69.15 69.99 61.56 59.24 60.40 50.88 46.83 48.85
mE5Large 16.41 28.53 22.47 59.90 58.80 59.35 59.13 55.56 57.34 47.63 44.34 45.98
E5Large 44.71 36.43 40.57 75.68 73.21 74.44 70.27 67.96 69.11 51.30 49.78 50.54
Ada-002 21.88 30.09 25.98 83.32 82.19 82.75 68.25 65.70 66.97 51.50 47.90 49.70
GTESmall 14.28 27.21 20.75 74.94 73.04 73.99 69.38 67.55 68.47 55.78 51.90 53.84
GTEBase 68.99 42.34 55.66 82.37 81.14 81.75 71.56 69.74 70.65 55.15 51.44 53.30
GTELarge 45.14 34.42 39.78 80.13 78.60 79.36 70.44 68.64 69.54 52.88 49.08 50.98
BGESmall 11.40 27.60 19.50 79.20 76.81 78.00 71.67 69.89 70.78 59.21 52.43 55.82
BGEBase 52.15 39.34 45.74 77.73 75.88 76.81 73.85 72.24 73.05 60.55 55.89 58.22
BGELarge 48.24 40.11 44.17 80.60 78.74 79.67 74.05 72.45 73.25 58.19 54.53 56.36

In
te

nt
La

be
lD

es
cr

ip
tio

ns

Instr.Large 41.24 43.12 42.18 85.85 85.35 85.60 77.95 76.55 77.25 57.95 55.52 56.73
E5-v2Base 64.84 40.04 52.44 87.75 87.23 87.49 72.15 69.68 70.92 55.57 53.73 54.65
E5-v2Large 62.33 41.98 52.16 87.84 86.77 87.31 72.39 70.59 71.49 57.30 55.65 56.48
mE5Large 75.85 45.16 60.51 84.64 83.11 83.88 73.09 71.39 72.24 60.09 56.67 58.38
E5Large 63.60 41.52 52.56 89.00 88.83 88.92 75.50 74.25 74.88 58.00 56.32 57.16
Ada-002 58.97 43.71 51.34 89.71 89.28 89.50 78.75 76.86 77.81 59.49 58.03 58.76
GTESmall 66.62 42.80 54.71 84.62 84.22 84.42 71.19 69.22 70.20 55.18 51.86 53.52
GTEBase 63.21 41.99 52.60 86.60 86.22 86.41 75.90 74.30 75.10 56.47 54.62 55.55
GTELarge 66.91 44.79 55.85 86.65 86.01 86.33 76.62 75.04 75.83 59.27 57.85 58.56
BGESmall 55.69 39.99 47.84 86.01 85.01 85.51 73.04 71.01 72.03 57.31 54.27 55.79
BGEBase 53.14 44.37 48.76 88.66 87.98 88.32 78.38 76.85 77.61 60.91 58.92 59.91
BGELarge 62.07 47.70 54.88 89.58 89.01 89.30 79.70 78.46 79.08 63.29 62.88 63.09

+
Pa

ra
ph

ra
se

an
d

M
as

ki
ng

Instr.Large 52.03 46.11 49.07 90.22 89.49 89.86 80.82 79.51 80.17 61.54 59.79 60.66
E5-v2Base 78.39 43.47 60.93 90.33 89.72 90.03 75.80 74.31 75.06 59.48 57.81 58.65
E5-v2Large 52.10 44.02 48.06 86.88 84.24 85.56 75.15 74.22 74.69 60.02 58.27 59.15
mE5Large 77.50 37.93 57.72 85.09 81.62 83.36 75.68 74.31 75.00 61.04 57.67 59.35
E5Large 65.37 42.19 53.78 91.96 91.89 91.92 76.40 76.13 76.27 61.01 59.17 60.09
Ada-002 67.81 46.22 57.02 90.88 90.14 90.51 80.50 78.97 79.73 62.30 59.92 61.11
GTESmall 68.03 38.94 53.48 88.46 87.75 88.11 72.05 70.95 71.50 60.04 57.53 58.78
GTEBase 80.50 47.91 64.20 86.68 85.07 85.88 76.16 75.33 75.75 60.14 58.41 59.27
GTELarge 71.27 50.00 60.63 92.00 91.40 91.70 79.46 78.31 78.89 62.61 61.63 62.12
BGESmall 62.12 46.20 54.16 91.07 90.45 90.76 75.81 74.27 75.04 61.52 59.11 60.31
BGEBase 67.91 49.46 58.69 92.00 91.63 91.81 80.34 79.25 79.80 63.09 61.98 62.53
BGELarge 69.57 52.51 61.04 92.81 92.33 92.57 81.95 81.09 81.52 65.49 65.76 65.62

Table 9: Performance of baseline and selected models on 4 intent classification tasks. We report accuracy, macro-f1
score and the mean of both for each dataset. For each metric, bold denotes highest score, underline denotes
second-highest
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Setup ATIS SNIPS CLINC MASSIVE Overall
embeds only 47.84 85.51 72.02 55.79 65.29
pp only 55.57 84.73 71.18 59.14 67.65
masked only 21.77 71.66 29.94 26.66 37.51
embeds + pp 52.87 86.83 75.56 60.12 68.85
embeds + masked 44.11 90.53 67.12 54.01 63.94
pp + masked 52.44 91.16 68.17 57.95 67.43
embeds + pp + masked 54.16 91.19 74.47 59.82 69.91
(overlap) embeds + masked 44.11 90.69 69.39 55.35 64.89
(overlap) pp + masked 52.44 90.68 69.41 58.32 67.71
(overlap) embeds + pp + masked 54.16 90.76 75.04 60.23 70.05

Table 10: Ablations on 4 intent classification datasets using a bge-small-en-v1.5 model. Overall denotes the
mean of accuracy and macro-f1 scores across all datasets.

Setup ATIS SNIPS CLINC MASSIVE Overall
embeds only 55.85 86.33 75.83 58.56 69.14
pp only 51.39 83.93 75.87 60.49 67.92
masked only 35.15 75.00 35.71 31.45 44.33
embeds + pp 55.26 86.39 78.86 62.29 70.70
embeds + masked 61.38 92.34 72.92 57.10 70.94
pp + masked 59.17 91.69 73.21 59.86 70.98
embeds + pp + masked 60.64 91.89 78.64 61.97 73.29
(overlap) embeds + masked 61.38 92.31 74.41 57.91 71.50
(overlap) pp + masked 59.17 91.42 74.33 60.06 71.25
(overlap) embeds + pp + masked 60.64 91.70 78.89 62.14 73.34

Table 11: Ablations on 4 intent classification datasets using a gte-large model. Overall denotes the mean of
accuracy and macro-f1 scores across all datasets.

H Embedding Similarities Analysis

We perform additional analysis on the mean em-
bedding similarity of sentences within the same
intent class (in-class) and of different intents (out-
class). For a set of intent classes C and utterances
U , we calculate the mean in-class similarity sin and
out-class similarity sout as

sin =
1

|C|
∑

c∈C

∑

ui∈Uc

∑

uj∈Uc\{ui}

s(h(ui),h(uj))

nc(nc − 1)

sout =
1

|C|
∑

c∈C

∑

ui∈Uc

∑

uj∈Uc′

s(h(ui),h(uj))

ncnc′

where Uc and Uc′ denotes the set of utterances be-
longing to class c and all classes other than c′ re-
spectively, nc is the number of utterances in set Uc.
The mean in-class and out-class similarity scores
are shown per dataset (Table 13). From a basic cor-
relation analysis of the mean embedding similarity
against a number of metrics, we note for model

performance on the MTEB benchmark there exists
a strong positive correlation to the difference ∆s

between in-class and out-class examples (Pearson
r = 0.72, p < 0.01) as well as %∆s (Pearson
r = 0.73, p < 0.01), and there exists a strong neg-
ative correlation to the mean out-class similarity
µsout (Pearson r = −0.72, p < 0.01).

I Synthetic Examples

We compare additionally against synthetic utter-
ance generated for each intent class. We leverage
gpt-3.5-turbo (OpenAI, 2023) for this pur-
pose, by including the tokenized intent labels and
label description within the prompt to generate a
set S of questions or commands fitting said intent
i.e. “Given a category tokenized_intent and
the description description, Please generate
n different example sentences of users asking ques-
tions or making commands that fit the given cate-
gory.". At inference time, we sample k synthetic
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Intent Description Paraphrase

abbreviation
user is asking what an
abbreviation stands for or mean

"user is asking for a definition or explanation of an abbreviation"
"user wants clarification on an abbreviation meaning"
"user is asking about the meaning of an abbreviation"

aircraft user is asking about an aircraft
"user is asking about an aircraft ticket or booking details"
"user wants to know about an aircraft"
"user wants information about an aircraft"

airfare
user is asking about fares, costs
or airfares

"user wants to know airfare prices"
"user wants to know about airfare prices"

AddToPlaylist
user wants to add a song to a
playlist

"user wants to include a song in their playlist"
"user wants to incorporate a song into their music collection"
"user wants to add a song to their playlist"

RateBook
user wants the rating of/to rate a
book

"user wants to give an opinion on a book"
"user wants to leave a rating for a book"
"user wants to leave a review on/ rate the book"

SearchScreeningEvent
user wants to know when a
movie is on/screening time of a
movie

"user wants movie screening information"
"user wants to know movie screening schedule"
"user wants to know movie screening time"

accept_reservations
user wants to know if a location
accept reservations

"user wants to check if the place allows reservations"
"user wants to check if a place allows reservations"
"user wants to check location reservations"

alarm user wants to set or get an alarm
"user wants a time alarm"
"user wants to set a reminder or schedule an alarm"
"user wants to set an alarm clock"

calendar
user wants to know about
events from their calendar

"user is asking for event details from their calendar"
"user wants to see their calendar for upcoming events"
"user wants to check events in their calendar"

email_query user is asking about email
"user wants to know how to send an email"
"user wants to know how to use email effectively"
"user wants an email response or clarification"

general_greet user is saying a greeting
"user wants to talk or greet someone"
"user wants to greet or say hello"
"user wants to greet you or acknowledge your presence"

news_query user is asking about the news
"user wants to learn about the latest news"
"user wants to know the latest news"
"user wants news update or clarification"

Table 12: Intents, descriptions and example paraphrases from all 4 intent classification datasets.
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Dataset µsin σsin µsout σsout ∆s %∆s

ATIS 0.80 0.06 0.77 0.06 0.03 3.86
SNIPS 0.76 0.04 0.69 0.05 0.07 8.65
CLINC 0.83 0.05 0.68 0.05 0.15 17.86
MASSIVE 0.80 0.05 0.69 0.05 0.11 13.73

Table 13: Mean embedding similarity of sentences
within the same class (in) and different classes (out).
∆s denotes the average difference between in-class and
out-class, %∆s denotes the percentage average differ-
ence of similarity.

k Metric ATIS SNIPS CLINC
µ σ µ σ µ σ

k
=

1 Mean 23.59 8.42 71.37 5.51 53.87 5.42
∆Label -6.15 -4.23 -4.94 -1.02 -13.31 0.37
∆Desc -24.08 4.38 -15.54 2.57 -20.60 2.48

k
=

3 Mean 28.63 7.41 77.27 4.16 64.65 3.21
∆Label -1.10 -5.23 0.96 -2.37 -2.53 -1.84
∆Desc -19.03 3.37 -9.64 1.22 -9.82 0.27

k
=

5 Mean 30.05 6.74 78.54 3.98 67.29 2.81
∆Label 0.31 -5.90 2.24 -2.55 0.11 -2.23
∆Desc -17.62 2.70 -8.36 1.04 -7.18 -0.13

k
=

1
0 Mean 30.80 5.33 79.63 3.57 69.24 2.48

∆Label 1.06 -7.31 3.32 -2.96 2.06 -2.57
∆Desc -16.87 1.29 -7.28 0.63 -5.23 -0.46

k
=

1
5 Mean 31.12 5.15 80.06 3.46 69.99 2.50

∆Label 1.38 -7.49 3.75 -3.07 2.80 -2.55
∆Desc -16.55 1.12 -6.85 0.52 -4.49 -0.44

Table 14: Averaged mean of accuracy and macro-f1
scores experiments conducted across 20 samples and
12 models using k number of synthetic examples per
intent class. ∆Label and ∆Desc are differences to the
averaged performance of methods using tokenized la-
bels and intent descriptions respectively.

examples for c classes and make prediction ŷi as
follows:

ŷi = argmax
c

∑k
m s(h(ui),h(s

c
m))

k

where scm denotes the mth example utterance be-
longing to intent class c ∈ C. Examples of syn-
thetic utterances can be found in Appendix I. We re-
port on the results separately in Section I.1 and the
full results can be seen in Appendix J. We also con-
sider synthetic examples generated using gpt-4
but found the average performance to be lower on
our task (Appendix K).

I.1 Results: Methods using Synthetic Data

We evaluate the efficacy of methods using syn-
thetic examples by generating a set of n = 20
synthetic examples, from which we sample k to
act as class prototypes, we repeat this procedure
20 times and compute the average performance

across all samples. Table 14 shows averaged model
performance across all 12 selected models and sam-
ples for k = [1, 3, 5, 10, 15]. For full results see
Table 18 in Appendix J. We conducted additional
experimentation with k > 15 but found further in-
creasing k did not yield significant improvements
in performance. We note our method using k = 15
synthetic examples outperforms tokenized labels
on SNIPS (80.06 vs 76.30) and CLINC (69.99 vs
67.18) datasets, but underperforms slightly on the
ATIS dataset (31.12 vs 31.70). Synthetic examples
underperforms description-based methods by a con-
siderable margin on all datasets, suggesting single
intent label descriptions can be more powerful as
class prototypes than synthetic instances. We note
also the higher standard deviation σ in performance
compared to the description-augmented method but
lower compared to methods using tokenized labels.

I.2 Table of intents, descriptions and sampled
synthetic examples generated using
gpt-3.5-turbo

See Table 15 (ATIS), Table 16 (SNIPS) and Table
17 (CLINC).

J Full table of results for approach using
synthetic examples generated using
gpt-3.5-turbo

See Table 18.

K Table of averaged mean and standard
deviation statistics for examples
generated using gpt-4

See Table 19.
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Intent Description Synthetic Examples

abbreviation
user is asking what an
abbreviation stands for
or mean

“what does eta stand for?"
“can you tell me the meaning of atc?"
“what is the abbreviation vfr referring to?"

aircraft user is asking about an
aircraft

“what is the maximum speed of this aircraft?"
“can you provide me with the dimensions of the aircraft?"
“how many passengers can this aircraft accommodate?"

airfare user is asking about
fares, costs or airfares

“what are the airfare options for a round-trip flight from new york to los angeles?"
“can you provide me with the cost of a first-class airfare from london to paris?"
“how much does it usually cost for a one-way airfare from tokyo to sydney?"

airline user is asking about an
airline/airlines

“which airline offers the most affordable tickets from los angeles to new york?"
“can you recommend any airlines that provide extra legroom for tall passengers?"
“what are the baggage restrictions for this airline?"

airport user is asking about an
airport/airports

“which airports in new york have direct flights to los angeles?"
“can you provide me with information about the nearest airport to my current location?"
“how long does it take to get from the city center to heathrow airport?"

capacity user is asking about
capacity (of an aircraft)

“what is the seating capacity of a boeing 747 aircraft?"
“can you tell me the maximum passenger capacity of a airbus a380?"
“what is the cargo capacity of a cessna 172 aircraft?"

cheapest user is asking about the
cheapest (fare)

“can you find me the cheapest flight from new york to los angeles?"
“i need the cheapest airfare available for a one-way trip from london to barcelona."
“what is the cheapest flight i can get from chicago to miami during the christmas holidays?"

city user is asking about a
city or place

“can you provide me with flight options to new york city?"
“what are the popular attractions in san francisco?"
“which airlines operate flights to tokyo?"

day_name user is asking about a
day (of the week)

“which day of the week is the best to book a flight?"
“can you tell me the day of the week for my flight to new york?"
“what is the departure day for the flight to london?"

distance
user is asking for the
distance between
places/locations

“what is the distance between new york and los angeles?"
“calculate the distance from london to paris."
“how far is it from sydney to melbourne?"

flight user is asking about
available flights

“what flights are available from new york city to los angeles tomorrow?"
“can you please check if there are any direct flights from london to tokyo?"
“i need to book a one-way flight from chicago to miami on the 15th of june."

flight_no user is asking about a
flight number

“what is the flight number for the flight from new york to london?"
“can you provide me with the flight number for the 6:00 am departure to los angeles?"
“i need to know the flight number for the red-eye flight to chicago."

flight_time
user is asking about
departue time or
schedule for a flight

“what is the flight time for the next available flight to new york?"
“can you tell me the departure time for flight 123 to london?"
“i need to know the schedule for flights leaving tomorrow morning."

ground_fare
user is asking about the
ground fare at a
destination

“what is the average ground fare in los angeles?"
“can you provide information about ground fares in paris?"
“how much should i expect to pay for ground transportation in london?"

ground_service
user is asking about
ground service at a
location

“what are the available ground services at this airport?"
“can you provide me with information about ground services at the destination airport?"
“is there wheelchair assistance available as part of the ground services?"

meal user is asking about
meals/catering

“what meal options are available for the flight?"
“can i request a vegetarian meal for my flight?"
“do you have any special meals for passengers with dietary restrictions?"

quantity
user is asking about the
quantity/amount of
something

“how many flight attendants are there on this flight?"
“could you tell me the total weight of the luggage allowed per passenger?"
“how many passengers are currently on board the plane?"

restriction user is asking about
restrictions

“can you please provide me with the baggage restrictions for my upcoming flight?"
“what are the restrictions on carrying liquids in my hand luggage?"
“are there any age restrictions for children traveling alone on your flights?"

Table 15: Intents, descriptions and synthetic examples for the ATIS dataset.
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Intent Description Synthetic Examples

AddToPlaylist user wants to add a song to a
playlist

“hey, can you please add this new release to my workout
playlist?"
“add the latest hit by taylor swift to my party playlist, please."
“can you include this classic rock track in my road trip playlist?"

BookRestaurant user wants to book/make a
reservation at a restaurant

“can you help me book a table at a fancy restaurant for this
saturday?"
“i would like to make a reservation for two at the most popular
restaurant in town."
“what is the best way to book a restaurant online?"

GetWeather user wants to know about the
weather

“what will be the weather like tomorrow?"
“can you provide me with a detailed weather forecast for the
next week?"
“is it going to rain today?"

PlayMusic user wants to play a song
“hey, playmusic! can you play ’shape of you’ by ed sheeran?"
“playmusic, please play some soothing music to help me relax."
“i’m in the mood for some throwback tunes. playmusic, can you
play ’don’t stop believin’ by journey?"

RateBook user wants the rating of/to rate a
book

“can anyone recommend a ratebook website where I can find
reviews and ratings for the latest bestsellers?"
“what’s the highest-rated ratebook on the market right now? i
want to make sure i’m picking something worthwhile."
“i’d like some suggestions for popular ratebooks in the fantasy
genre. any recommendations?"

SearchCreativeWork user wants to find a creative
work (book, song etc.)

“can you help me search for a creative work that is similar to
harry potter?"
“i’m looking for a book recommendation, search for a creative
work with a thrilling mystery plot."
“find me a song that has won multiple awards and has a catchy
melody."

SearchScreeningEvent
user wants to know when a
movie is on/screening time of a
movie

“when is the next screening event for the movie avengers:
endgame?"
“what are the screening times for the romantic comedy crazy,
stupid, love?"
“can you tell me the showtimes for the movie joker in theaters
nearby?"

Table 16: Intents, descriptions and synthetic examples for the SNIPS dataset.
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Intent Description Synthetic Examples

timezone user is asking about
timezone

“can you please tell me the current timezone in new york city?"
“what is the timezone difference between san francisco and
tokyo?"
“i need to know the exact timezone utc offset for london."

fun_fact user wants to know a
fun fact

“tell me a fun fact about the eiffel tower!"
“i need a fun fact to impress my friends at dinner tonight."
“give me a fun fact about dolphins, please."

date user wants to know the
current date

“what is today’s date?"
“can you tell me the current date?"
“i need to know the date, please."

what_can_i_ask_you user wants to know
what can be asked

“what kind of questions are appropriate to ask you?"
“can you provide me with a list of topics that i can ask you
about?"
“i’m curious, what type of questions am i allowed to ask in this
category?"

todo_list_update user wants to update or
change todo list

“how can i edit my current todo list?"
“can you show me how to modify my existing tasks in the todo
list?"
“is there a way to change the priority of items on the todo list?"

bill_balance user wants to know
their bill balance

“what is my current bill balance?"
“can you please provide the details of my bill balance?"
“i need to know how much is due on my bill."

schedule_meeting user wants to schedule
meeting

“can you help me schedule a meeting for next week?"
“i need assistance in setting up a meeting with our new client."
“how do i go about scheduling a team meeting for tomorrow?"

routing user wants to know
about routing number

“what is a routing number and why is it important for banking?"
“how can i find the routing number for my bank account?"
“can you explain the specific purpose of a routing number in
online transactions?"

food_last user wants to know how
long a food lasts

“how long can i safely keep cooked chicken in the refrigerator?"
“what is the shelf life of fresh milk at room temperature?"
“can you give me some tips on how to extend the life of avoca-
dos?"

bill_due user wants to know
when a bill is due

“hey, can you remind me when my electricity bill is due?"
“what’s the due date for my credit card bill this month?"
“i need to know when my phone bill is due. can you help me
with that?"

time user is asking for the
time

“what is the current time?"
“could you please tell me what time it is?"
“do you have the time?"

freeze_account user wants to freeze
their account

“how can i freeze my account temporarily?"
“i need to put a hold on my account, can you assist me?"
“please freeze my account until further notice."

rollover_401k user wants to know
about 401k rollover

“how can i rollover my 401k into a new retirement account?"
“can you explain the process of a 401k rollover to me?"
“what are the benefits of doing a rollover with my 401k?"

travel_alert user wants to know
about travel alerts

“are there any current travel alerts that i should be aware of?"
“notify me if there are any travel alerts for my upcoming desti-
nation."
“can you provide me with the latest travel alerts for international
travel?"

translate user wants to translate
“can you translate this document from english to french?"
“excuse me, i need assistance translating this menu into spanish."
“how can i translate this phrase into italian?"

Table 17: Intents, descriptions and synthetic examples for 15 intents from the CLINC dataset.
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Model ATIS SNIPS CLINC
Acc F1 Mean Acc F1 Mean Acc F1 Mean

n
=

1
InstructORLarge 32.77 23.99 28.38 72.60 69.26 70.93 56.94 53.71 55.32
E5-v2Base 27.01 19.30 23.16 70.28 66.52 68.40 50.05 47.21 48.63
E5-v2Large 29.50 19.12 24.31 68.09 64.41 66.25 47.24 44.54 45.89
Multilingual-E5Large 23.85 18.37 21.11 64.02 60.24 62.13 45.68 43.54 44.61
E5Large 28.57 20.22 24.40 69.35 66.13 67.74 54.44 51.38 52.91
OpenAI-Ada-002 30.86 19.40 25.13 75.35 72.78 74.07 57.70 54.42 56.06
GTESmall 25.87 20.15 23.01 65.42 62.17 63.80 51.37 48.41 49.89
GTEBase 25.34 20.33 22.83 69.09 65.89 67.49 53.10 50.04 51.57
GTELarge 29.94 21.83 25.88 70.02 66.56 68.29 54.95 51.72 53.34
BGESmall 27.44 21.32 24.38 66.60 62.76 64.68 52.69 49.56 51.13
BGEBase 24.57 20.62 22.59 70.39 66.52 68.46 55.24 52.21 53.72
BGELarge 33.97 23.83 28.90 71.31 67.29 69.30 58.17 54.73 56.45

n
=

3

InstructORLarge 39.20 29.25 34.22 76.71 72.39 74.55 67.88 64.84 66.36
E5-v2Base 35.75 26.97 31.36 76.25 71.56 73.90 63.52 60.63 62.08
E5-v2Large 40.41 27.85 34.13 75.68 70.98 73.33 62.35 59.47 60.91
Multilingual-E5Large 25.07 25.90 25.48 75.67 70.93 73.30 60.56 58.19 59.37
E5Large 37.33 29.64 33.48 74.57 70.24 72.40 67.18 64.25 65.72
OpenAI-Ada-002 46.96 26.53 36.74 82.42 80.27 81.34 68.77 65.77 67.27
GTESmall 24.50 26.95 25.72 71.00 67.40 69.20 62.38 59.16 60.77
GTEBase 30.05 27.82 28.93 74.57 70.63 72.60 64.69 61.76 63.23
GTELarge 40.40 29.40 34.90 75.04 71.23 73.14 65.78 62.67 64.23
BGESmall 29.24 27.49 28.37 73.49 68.98 71.23 64.59 61.72 63.16
BGEBase 28.35 27.00 27.67 73.83 69.23 71.53 66.59 63.66 65.13
BGELarge 38.30 28.14 33.22 74.83 70.09 72.46 68.05 64.62 66.34

n
=

5

InstructORLarge 41.77 32.86 37.31 78.36 74.08 76.22 70.30 67.51 68.90
E5-v2Base 34.49 28.76 31.63 78.53 73.47 76.00 66.75 63.94 65.34
E5-v2Large 36.82 29.53 33.17 78.02 73.66 75.84 65.70 62.76 64.23
Multilingual-E5Large 31.29 29.28 30.29 76.21 72.18 74.19 64.36 61.78 63.07
E5Large 37.24 32.79 35.01 76.04 71.20 73.62 69.63 66.62 68.13
OpenAI-Ada-002 45.01 28.38 36.70 84.56 82.60 83.58 70.81 68.03 69.42
GTESmall 32.92 30.05 31.48 73.21 69.16 71.18 65.63 62.58 64.10
GTEBase 29.90 30.02 29.96 76.54 72.13 74.33 67.11 63.95 65.53
GTELarge 41.92 32.41 37.17 75.73 71.18 73.45 68.48 65.38 66.93
BGESmall 35.33 32.64 33.99 72.85 68.06 70.46 67.15 64.35 65.75
BGEBase 27.94 29.49 28.72 76.61 71.90 74.25 69.42 66.52 67.97
BGELarge 35.79 32.38 34.08 76.26 71.00 73.63 70.68 67.64 69.16

n
=

1
0

InstructORLarge 47.38 33.77 40.58 80.58 76.50 78.54 72.37 69.68 71.03
E5-v2Base 37.04 32.17 34.60 80.31 74.92 77.61 69.59 66.86 68.23
E5-v2Large 46.80 32.53 39.66 79.11 74.31 76.71 68.65 65.70 67.17
Multilingual-E5Large 30.88 32.70 31.79 78.71 74.43 76.57 67.87 65.39 66.63
E5Large 41.44 34.74 38.09 77.83 73.35 75.59 72.42 69.62 71.02
OpenAI-Ada-002 46.60 32.90 39.75 85.57 83.46 84.51 73.30 70.60 71.95
GTESmall 32.71 33.53 33.12 74.77 70.42 72.59 67.48 64.56 66.02
GTEBase 28.05 31.23 29.64 77.35 72.76 75.06 69.50 66.44 67.97
GTELarge 45.05 35.25 40.15 76.29 71.67 73.98 69.86 66.90 68.38
BGESmall 36.24 34.44 35.34 75.95 71.13 73.54 68.96 66.27 67.61
BGEBase 31.14 31.62 31.38 78.15 73.07 75.61 71.48 68.73 70.10
BGELarge 43.19 35.56 39.38 77.77 72.44 75.10 72.36 69.39 70.88

n
=

1
5

InstructORLarge 40.59 35.40 37.99 80.57 75.75 78.16 73.10 70.54 71.82
E5-v2Base 42.17 34.44 38.31 80.25 74.65 77.45 70.18 67.50 68.84
E5-v2Large 47.71 33.67 40.69 79.86 74.66 77.26 69.70 66.69 68.19
Multilingual-E5Large 28.31 33.48 30.89 79.91 75.32 77.61 69.31 66.76 68.03
E5Large 42.42 36.31 39.36 78.02 73.00 75.51 73.13 70.26 71.69
OpenAI-Ada-002 48.13 34.26 41.20 87.04 85.03 86.03 73.97 71.36 72.66
GTESmall 38.54 34.38 36.46 75.03 70.32 72.68 68.63 65.60 67.12
GTEBase 33.68 32.35 33.02 78.27 73.56 75.92 69.86 66.73 68.29
GTELarge 37.98 34.38 36.18 77.78 72.93 75.36 70.51 67.62 69.07
BGESmall 28.06 34.30 31.18 75.43 70.54 72.98 70.20 67.56 68.88
BGEBase 27.20 31.08 29.14 78.92 73.65 76.29 71.93 69.15 70.54
BGELarge 42.22 37.06 39.64 78.76 73.43 76.10 73.17 70.24 71.71

Table 18: Results per model using k synthetic examples averaged across 20 samples.
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k Metric ATIS SNIPS CLINC
µ σ µ σ µ σ

k
=

1 Mean 24.51 10.15 67.63 5.48 51.63 5.13
∆Label -7.19 -2.58 -8.68 -1.05 -15.56 0.08
∆Desc -27.38 6.37 -19.29 2.46 -22.92 2.12

k
=

3 Mean 31.19 8.61 73.25 4.49 63.71 2.76
∆Label -0.51 -4.11 -3.06 -2.04 -3.47 -2.29
∆Desc -20.70 4.84 -13.66 1.47 -10.83 -0.25

k
=

5 Mean 33.29 7.90 74.73 4.16 66.54 2.35
∆Label 1.59 -4.82 -1.57 -2.37 -0.64 -2.70
∆Desc -18.60 4.13 -12.18 1.14 -8.00 -0.67

k
=

1
0 Mean 36.12 7.51 76.28 3.49 68.92 2.08

∆Label 4.42 -5.21 -0.02 -3.04 1.73 -2.97
∆Desc -15.77 3.73 -10.63 0.48 -5.63 -0.94

k
=

1
5 Mean 36.17 7.13 76.78 3.75 69.74 1.93

∆Label 4.47 -5.59 0.48 -2.78 2.55 -3.12
∆Desc -15.72 3.36 -10.13 0.73 -4.81 -1.09

Table 19: Averaged mean of accuracy and macro-f1 scores experiments conducted across 20 samples and 12
models using k number of synthetic examples per intent class generated using gpt-4-1106-preview. ∆Label

and ∆Desc are differences to the averaged performance of methods using tokenized labels and intent descriptions
respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: t-SNE (van der Maaten and Hinton, 2008) visualisation of embeddings for CLINC and MASSIVE
datasets computed using BGELarge, class label description embeddings are shown in black and labelled. (Row 1)
Embeddings of top 15 and bottom 15 classes from CLINC, (Row 2) Embedding + Paraphrasing and Masking of top
15 and bottom 15 classes from CLINC, (Row 3) Embeddings for top 15 and bottom 15 classes from MASSIVE,
(Row 4) Embedding + Paraphrasing and Masking of top 15 and bottom 15 classes from CLINC.
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