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Abstract

The development of highly fluent large lan-
guage models (LLMs) has prompted increased
interest in assessing their reasoning and
problem-solving capabilities. We investigate
whether several LLMs can solve a classic type
of deductive reasoning problem from the cog-
nitive science literature. The tested LLMs have
limited abilities to solve these problems in their
conventional form. We performed follow up
experiments to investigate if changes to the pre-
sentation format and content improve model
performance. We do find performance differ-
ences between conditions; however, they do not
improve overall performance. Moreover, we
find that performance interacts with presenta-
tion format and content in unexpected ways that
differ from human performance. Overall, our
results suggest that LLMs have unique reason-
ing biases that are only partially predicted from
human reasoning performance and the human-
generated language corpora that informs them.

1 Introduction
1 2 The development and availability of highly flu-
ent large language models (LLMs) (i.e., (Brown
et al., 2020; Devlin et al., 2019; Ouyang et al., 2022;
Zhang et al., 2022)) has increased interest in assess-
ing their reasoning and problem solving abilities
(Bhargava and Ng, 2022; Geva et al., 2020; Jumelet
et al., 2019; Mitchell, 2021; Trinh and Le, 2019;
Webb et al., 2022). Despite considerable perfor-
mance improvements on benchmark tasks, LLMs
exhibit mixed results on reasoning tasks. Some
research has suggested that LLMs may have emer-
gent reasoning abilities that enable better perfor-
mance than those of human subjects (Webb et al.,
2022). Other research has suggested that LLM

1https://github.com/spencer-michael-s/deductive-
competence

2The views expressed are those of the author and do not
necessarily reflect the official policy or position of the Depart-
ment of the Air Force, the Department of Defense, or the U.S.
government.

reasoning performance is inconsistent and task de-
pendent. Such research has suggested that some
tasks, such as four term analogy problems (Mikolov
et al., 2013) and different natural language infer-
ence tasks (Williams et al., 2018), are simply easier
to solve. Other types of reasoning tasks such as
analogy generation (Bhavya et al., 2022) and deduc-
tive competence (Dasgupta et al., 2022) are more
challenging.

(Dasgupta et al., 2022) has investigated deduc-
tive competence in LLMs with characteristically
mixed results. They demonstrated that one LLM,
Chinchilla (Hoffmann et al., 2022), showed con-
tent effects on reasoning similar to human behavior
documented in the cognitive science literature. For
zero-shot performance, they found 50% accuracy
for what they call realistic problems but chance
accuracy for unrealistic problems. A 5-shot presen-
tation resulted in some performance improvement
for realistic problems, but performance on unrealis-
tic problems remained low.

In this paper, we extend the previous research
in several ways. First, we investigate the extent
to which limited performance may be due to how
the task was formatted. Prior research has demon-
strated that overall performance can vary accord-
ing to how a particular task is formatted (Gao
et al., 2021; Jiang et al., 2021; Li and Liang, 2021;
Shin et al., 2020). Research on analogy genera-
tion (Bhavya et al., 2022) demonstrates that per-
formance depends on the specific prompt given
to the models. Thus the inability of a model to
solve one particular format of a task only provides
a lower limit for assessing whether a model can
successfully solve that task (Jiang et al., 2021).

Second, limited performance on deductive rea-
soning may be due to how the researchers em-
ployed content familiarity, of direct relevance to
the distribution of content in the training corpus.
For familiar content, they tested several different
types of problems including social rules (i.e. If peo-
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Inference Definition
Modus ponens P =⇒ Q, P ∴ Q
Deny the antecedent P =⇒ Q, ¬P ∴ ¬Q
Affirm the consequent P =⇒ Q,Q ∴ P
Modus tollens P =⇒ Q,¬Q ∴ ¬P

Table 1: Four conditional inferences in the Wason Task

ple are driving, they must have a license) and other
relationships (i.e., If the plants are flowers, they
must be fertilized). However, content familiarity
does not fully capture the content benefit seen in
human subjects (Griggs and Cox, 1982; Manktelow
and Evans, 1979). Instead, previous research in-
dicates that people perform substantially better on
problems that involve social rules than those that
do not (Cosmides, 1989), even when the problems
contain other types of familiar content (Griggs and
Cox, 1982).

We expand the research base on the reasoning
capabilities of LLMs by: 1) examining the role
of specifically social-rules in reasoning about re-
alistic content, 2) investigating the role of alterna-
tive presentation formats in deductive reasoning
performance, and 3) expanding the set of candi-
date LLMs to evaluate potential algorithmic effects.
Our results show that social content does benefit
LLM performance, but not to the extent that might
be expected based on a human sourced training
corpus. While presentation formats do influence
performance, they interact with content in a sur-
prising (non-human) fashion. These findings are
independent of the LLM examined.

2 Evaluating Deductive Competence

The Wason selection task is a reasoning task from
the cognitive science literature that evaluates de-
ductive competence (Wason, 1968). Participants
are presented with a rule of the form If p, then
q and four cards with p status on one side and q
status on the other that correspond to the options
P,¬P,Q, and ¬Q. Participants are asked to deter-
mine which card or cards must be flipped over to
validate whether the rule holds for this set of cards.

In the traditional abstract version of the task,
participants are given rules about letters and num-
bers (i.e., if there is an odd number on one side of
the card, there is a vowel on the other side of the
card). The correct response requires the identifica-
tion of two cards. Typical human accuracy for these
problems is 10-20% with common errors consistent

with confirmation bias. In contrast, problems that
deal with a social rule (i.e., if a person is drinking
beer, they must be at least 21 years old) are easy
to solve- most participants (70%+) correctly select
both cards (Griggs and Cox, 1982).

There are four potential conditional inferences
in task: modus ponens, denial of the antecedent,
affirmation of the consequent, and modus tollens
(Evans, 2013). Of these four inferences, only
modus ponens and modus tollens are logically valid.
These inferences and their logical forms are illus-
trated in Table 1.

The Wason task makes a good candidate task for
evaluating the reasoning performance of LLMs for
several reasons. First, the task is relatively close to
certain language modeling objectives. While the
task involves a reasoning component, it can be for-
matted as a completion task, where the objective is
to predict the answer given the problem text. This
suggests that prior training, particularly for LLMs
with high numbers of parameters that have been
trained on large text corpora, should provide suffi-
cient information for performing the Wason task.
Moreover, the construction of the task minimizes
the potential for confounds that may artificially in-
flate performance (Hovy and Yang, 2021; Mitchell
and Krakauer, 2023; Rudinger et al., 2017). Previ-
ous work has demonstrated that high performance
on some natural language inference tasks (Bowman
et al., 2015; Williams et al., 2018) can be due to
exploitable properties of the training data (Gururan-
gan et al., 2018). The standardized format of the
Wason task allows for the creation of a large num-
ber of carefully constructed examples without the
risk that some answers may be easily determined
from the original prompt alone.

Second, the problem examines both straightfor-
ward and challenging aspects of deductive com-
petence. As noted above, a correct answer to a
Wason problem involves two logical processes:
modus ponens and modus tollens. Results from
the cognitive science literature indicate that these
rules are not equally difficult- applying modus po-
nens is considerably easier than applying modus
tollens. The vast majority of people correctly ap-
ply modus ponens, even for difficult problems (i.e.,
(Wason, 1968; Griggs and Cox, 1982; Manktelow
and Evans, 1979). In contrast, people fail to apply
modus tollens, unless the problem has a particular
form of semantic content associated with it. Simi-
larly, we might expect presentation format to assist
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LLMs.
Third, the way the task is constructed allows

for careful examination of how problem content
influences reasoning performance. Because LLMs
are built on co-occurring content in human-sourced
corpora, they should benefit from problems that
contain familiar relationships. This should be espe-
cially true for problems where the relationship be-
tween the antecedent and the consequent is highly
familiar. For example, in the rule If a person is
driving, they must have a driver’s license, the an-
tecedent driving a car, and the consequent driver’s
license have a familiar (and commonly occurring)
relationship. In comparison, the antecedent and
the consequent in a rule such as If a person is driv-
ing, they must have a book bag do not have the
same familiar relationship. While it is likely that
some problems may be more difficult than others
(i.e., because some completions are more probable)
we control for this experimentally. We create sets
of problems where both arguments contain realis-
tic content, but the relationship between them is
unfamiliar (see Appendix A).

Lastly, there is a large body of human perfor-
mance literature on this task. This literature pro-
vides a comparison point for evaluating the perfor-
mance of LLMs.

3 Experiments

In this section, we discuss the conditions, task for-
mat, models, and evaluation metrics associated
with our experiments.

3.1 Task Conditions

We evaluate a total of 350 problems, 325 of which
we created for this project. The remaining 25 were
drawn from recent work (Dasgupta et al., 2022)
and sorted into our problem categories. To facili-
tate comparison between content conditions, our
problems are created as matched sets. For each con-
dition (except the arbitrary condition), we create
problems that are nearly identical in content ex-
cept for the feature at issue and minor grammatical
corrections. We evaluate three different types of
problem content: realistic, shuffled, and arbitrary.
A complete diagram of the different problems we
evaluate is in Figure 7. Example problems for each
condition are in Appendix A.

For the realistic condition, we evaluate a total
140 problems. Of these 140, 70 take the form of
social rules and 70 take the form of non-social

rules. Of the social rule problems, 35 problems
take the form of familiar social rules. These prob-
lems are designed to take the form of social rules
governing human behavior and are designed to be
familiar such that they reflect social rules that are
consistent with the real world. The other 35 social
rule problems take the form of unfamiliar social
rules. These problems have the form of social rules
but do not contain familiar relationships.

Of the 70 non-social rule problems, 35 are de-
signed to be familiar non-social rules and 35 are
designed to be unfamiliar non-social rules. For
the familiar non-social rule condition, we evalu-
ate 35 problems that are not social rules and are
familiar such that the antecedent and the conse-
quent have a relationship that is consistent with
real-world expectations. For the unfamiliar non-
social rule condition, we evaluate 35 problems that
do not take the form of social rules and are de-
signed such that the antecedent and the consequent
do not have a familiar real-world relationship.

The realistic grouping is intended to capture the
same types of realistic problems that have been
used in previous work (Dasgupta et al., 2022). For
some of our analyses, we compare these problems
as a group.

For the shuffled condition, we evaluate prob-
lems where the antecedent and the consequent are
switched. We create shuffled versions of each of
the different categories of realistic problems. The
purpose of the shuffled condition is twofold. First,
the creation of shuffled non-social rules allows for
the ability to stress the semantics of plausibility
beyond mere co-occurrence. Shuffled rules allows
us to directly evaluate whether models are sensitive
to the words in a problem or the intended seman-
tic meaning. Shuffled problems contain the same
words, but convey different conditional logic rela-
tionships. Second, the creation of shuffled social
rules allows for evaluating sensitivity to the cost-
benefit structure of social rules. Standard social
rules typically have an if-then format such that if
a person receives a benefit, then they must pay
the (metaphorical) cost for that benefit, per (Cos-
mides, 1989). In comparison, switched social rules
occur in past tense- if a person has paid the cost,
then they may receive the benefit. We create shuf-
fled prompts for both the familiar non-social rule
and the familiar social rule conditions. We make
syntactic corrections to make these problems gram-
matically correct.
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For the arbitrary condition, we evaluate 70
problems where there is no particular relationship
between the antecedent and the consequent. For ex-
ample, in the problem The rule is that if the cards
have a type of food then they must have an out-
door activity, there is no particular pre-supposed
relationship between types of food and outdoor
activities.

3.2 Task Format
A complete prompt for each problem consists of
the instruction sentence, a context sentence, the
rule, and a list of cards formatted as a multiple
choice question. The instruction sentence was the
same for all questions. The context sentences were
consistent with the content type. For the arbitrary
problems, a neutral context sentence was used to
prevent a potential length confounds. The instruc-
tion sentence and a sample context sentence are in
Appendix A.

3.3 Models
For our main set of analyses, we evaluate four
recently released large language models with ap-
proximately 7 billion parameters: Guanaco, MPT,
BLOOM, and Falcon. Guanaco is a family of
LLMs fine-tuned with QLoRa, a fine tuning ap-
proach designed to reduce memory demands while
preserving model performance (Dettmers et al.,
2023). We use the 16-bit version. MPT is an
open-source family of LLMs released by Mosaic
that are designed to support fast inference (Team,
2023; Dao et al., 2022). BLOOM was trained
on a large multilingual corpus (Laurençon et al.,
2022) and has a decoder-only transformer archi-
tecture (Workshop et al., 2023). Falcon is an open
source LLM designed to support fast inference (Al-
mazrouei et al., 2023; Dao et al., 2022; Shazeer,
2019). We also run several additional LLMs of
varying sizes on this task. Results for these models
are in Appendix C. These models include: the 7B
and 13B versions of llama2 (Touvron et al., 2023),
the 7B, 13B, and 30B versions of Wizard (Xu et al.,
2023), the 40B version of Falcon (Almazrouei et al.,
2023), and the 13B and 33B versions of Guanaco
(Dettmers et al., 2023). See the cited papers for
updated details about model licenses.

3.4 Implementation Details
We run our experiments on a A100 GPU with 12
vCPUs and 85GB of RAM, running Debian 10.
Experiments were conducted in Python 3.10. A

complete list of libraries is available in the supple-
mentary materials. Total run time for three main
experiments was approximately 3 hours.

3.5 Evaluation Metrics
Previous work has proposed various methods to
correct for interactions between the specific form
of a prompt and the answer generated by a language
model (Brown et al., 2020; Holtzman et al., 2021;
Zhou et al., 2019). We use one of these metrics,
Domain Conditional PMI, as our scoring metric
(Holtzman et al., 2021). DCPMI measures how
much information a particular instruction domain
provides about a particular answer. Formally, a
correct answer is equivalent to

argmax
P (yi|x)

P (yi|baseline)

where yi is the ith answer choice, x is the input
prompt, and baseline is the probability associated
with a task-specific premise. Candidate answers are
evaluated independently. Chance performance is
1/6. Tables with both traditional accuracy metrics
and DCMPI scores for all models can be found in
Appendix C.

To facilitate comparison between content condi-
tions, our problems are created as matched sets. We
model this shared variance statistically via random
effects terms for sets of stimuli. We use a mixed-
effects approach, which allows for modeling the
hierarchical structure of the data (Gelman, 2006).
Mixed-effects models are commonly used to ana-
lyze linguistic data (i.e., (Matuschek et al., 2017;
Baayen et al., 2008)) and permit the generalization
of performance beyond a specific set of problems
(Clark, 1973). We perform follow-up tests by cal-
culating estimated marginal means derived from
the entire statistical model for each corresponding
analysis. Because estimated marginal means ac-
count for other variables in the statistical model,
interaction terms may have slightly different coeffi-
cients in different analyses. See (Lenth, 2016) and
(Searle et al., 1980) for additional information.

4 Results

4.1 Analysis 1 Results
For our first analysis, we evaluate two different
crossed factors: social rule status and content type,
using DCPMI as our scoring metric. For content
type, we evaluate arbitrary, shuffled, and realis-
tic rules. The realistic group contains social rules
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Figure 1: Model performance by content type for ar-
bitrary (AR), shuffled (SH), and realistic (RE) rules.
RE contains both social and non-social rules. Error bars
represent 95 % confidence intervals. We do not find
effects for LLM or familiarity, thus performance is col-
lapsed. Relative to arbitrary content, most models result
in a benefit for realistic rules, with mixed influences of
shuffling.

Effect OR, CI, Z
RE v SH 1.30 [1.05 - 1.62] 2.29*
SR Status x Content 1.59 [1.26 - 2.02] 3.97**
RE NSR v RE SR 0.33 [0.22 - 0.44] -3.34**
SH NSR v SH SR 2.25 [1.47 - 3.03] 2.35*
SH SR v RE SR 0.22 [0.15 - 0.29] -4.38**

Table 2: Statistical results for analysis 1. AR=arbitrary,
SH=shuffled, RE=realistic, SR=social rule, NSR=non-
social rule, OR=odds ratio, CI=confidence interval, * =
p < 0.05, ** = p < 0.01. Interactions in bottom half.

and non-social rules. We find a significant bene-
ficial main effect for realistic rules compared to
shuffled rules and a significant interaction between
social rule status and content type (Lines 1 and 2
in Table 2 respectively). Factors for LLM and fa-
miliarity do not improve model fit, suggesting that
the overall pattern of results does not significantly
differ between LLMs or between familiar and un-
familiar problems. See Appendix B for follow-up
interaction tests. Overall performance is illustrated
in Figure 1; see Figure 2 for the interaction. Perfor-
mance remains rather low overall.

4.2 Analysis 1 Discussion

Initial results from analysis 1 do seem to replicate
the general pattern of results demonstrated for hu-
man subjects: performance is better for social rule

Figure 2: Interaction between content type and social
rule status for Analysis 1. Content type: arbitrary
(AR), shuffled (SH), or realistic (RE) rules. The realis-
tic category contains social rules and non-social rules.
Social rule status: social rule (SR) or non- social rule
(NSR) problems. We do not find effects for LLM or
familiarity, thus performance is collapsed.

problems than non-social rule problems. We also
find an effect for switched social rules such that
switched social rules have considerably lower per-
formance than standard social rule problems. This
effect is similar to one reported for human subjects
(Cosmides, 1989).

However, we do not replicate the magnitude of
the content effect. While humans find abstract
problems quite difficult, they successfully solve
social rule problems 7̃0% of the time (Griggs and
Cox, 1982). In comparison, the LLMs solve so-
cial rule problems approximately 30% of the time
when using DCPMI scoring. Comparison with tra-
ditional highest probability scoring indicates that
this pattern of results is not due to domain condi-
tional scoring; highest probability scoring produces
worse overall performance and the overall pattern
of results is similar.

Additionally, we find an interaction between so-
cial rule status and content type. This interaction
demonstrates that LLMs are sensitive to some as-
pects of the structure of social rules. This is some-
what consistent with results from human subjects
which predict that performance should be lower
for shuffled social rules compared to standard so-
cial rules (Cosmides, 1989). However, human sub-
ject responses do not predict the observed differ-
ences between shuffled social rules and shuffled
non-social rules. Performance for LLMs is influ-
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Figure 3: Performance across all models for arbitrary
(AR), shuffled (SH), and realistic (RE) rules. The real-
istic category contains both social rules and non-social
rules. We collapse across LLM and familiarity.

enced by problem content, but in a manner that is
not parallel to human behavior.

4.3 Analysis 2 Results

A follow-up experiment examines whether alter-
native presentation formats may improve perfor-
mance, given some previous results that suggest
LLMs may have better reasoning performance with
more explicit representations (e.g., Saparov et al.,
2023). In addition to the standard presentation
format (classic), we investigate three additional for-
mats. In the front condition, the problems include
descriptions of the front of each card. In the back
condition, the problems include descriptions of the
hypothetical category of the item on the back of the
card. In the both condition, the problems include
descriptions of both the front and the hypothetical
category on the back of the card. We created alter-
native formats for all of the content types: realistic
social rules, realistic non-social rules, shuffled
social rules, and shuffled non-social rules. We
use DCPMI as our scoring metric.

The best fitting statistical model includes an in-
teraction between presentation format, social rule
status, and content type plus a random effect for
item instances. Adding factors for LLM and prob-
lem familiarity did not improve overall model fit,

Main Effect OR, CI, Z
Classic v Front 1.19 [1.06 - 1.34] 2.79**
Front v Back 1.28 [1.09 - 1.50] 3.17**
Back v Both 1.15 [1.00 - 1.31] 1.98*
SR v NSR x F v B 1.22 [1.06 - 1.40] 2.6*
SR v NSR x B v Both 1.25 [1.09 - 1.44] 3.30**
SH v RE x C v F 1.22 [1.08 - 1.37] 2.96**
SH v RE x F v B 1.17 [1.02 - 1.34] 2.04*
SR v NSR x SH v RE 1.32 [1.17 - 1.48] 4.66**

Table 3: Statistical results for analysis 2. AR=arbitrary,
SH=shuffled, RE=realistic, SR=social rule, NSR=non-
social rule, OR=odds ratio, CI=confidence interval, * =
p < 0.05, ** = p < 0.01. Interactions in bottom half.

suggesting that performance does not vary substan-
tially by model or by familiarity. The main effect
for presentation format was significant. Compar-
isons between classic versus front, front versus
back, and back versus both presentation formats
were all significant (lines 1, 2, and 3 respectively in
the top half of Table 3). The main effects for social
rule status and content type were not significant.

For the two-way interaction between social rule
status and presentation format, comparisons be-
tween social rule status and front versus back pre-
sentation formats and social rule status and back
versus both presentation formats were significant
(lines 1 and 2 respectively in the bottom half of
Table 3).

For the two-way interaction between content
type and presentation format, the comparison be-
tween shuffled versus realistic content types and
classic and front presentation formats and the com-
parison between shuffled versus realistic content
types and front versus back presentation formats
were significant (lines 3 and 4 respectively in the
bottom half of Table 3).

The two-way interaction between social rule sta-
tus and content type (shuffled or realistic) was sig-
nificant (lines 5 in the bottom half of Table 3).

No three way interactions were significant (z-
values = (1.92, 1.88, 1.50), all p > 0.05). See Fig-
ures 4 and 5 for plots of the interactions. Follow up
tests for individual level comparisons within each
two-way interaction are located in Appendix B.2.

Problem familiarity did not improve model fit,
suggesting that performance does not vary accord-
ing to the familiarity of problem content.
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Figure 4: Interaction between presentation format
(classic, front, back, or both), content type (shuffled
(SH) or realistic (RE)), and social rule status (social
rule or non social rule) broken out by presentation for-
mat.

Figure 5: Interaction between presentation format
(classic, front, back, or both), content type (shuffled
(SH) or realistic (RE)), and social rule status (social
rule or non social rule) broken out by content type.

4.4 Analysis 2 Discussion

In general, we find that models are sensitive to dif-
ferent presentation formats. However, we do not
find performance improvements for different pre-
sentation formats. Results suggest that there are
some interactions between presentation format and
problem content; however, most of our follow up
tests were not significant. A follow up analysis of
treatment effects broken out by content type sug-
gests that presentation formats have more of an
effect on realistic rules than shuffled rules. Such
interactions are not anticipated in human perfor-
mance data (e.g., Wason and Green, 1984; Mank-
telow and Evans, 1979).

Effect OR, CI, Z
C v F 1.34 [1.15 - 1.57] 3.76**
F v B 1.29 [1.10 - 1.51] 3.10**
B v Both 1.23 [1.07 - 1.41] 3.06*
AR v NAR 1.53 [1.23 - 1.90] 3.74**
SH v RE 1.30 [1.14 - 1.50] 3.59**

Table 4: Statistical results for antecedent selection
in analysis 3. AR=arbitrary, NAR=non-arbitrary,
SH=shuffled, RE=realistic, SR=social rule, NSR=non-
social rule, C=classic, F=front, B=back, OR=odds ratio,
CI=confidence interval, * = p < 0.05, ** = p < 0.01

4.5 Analysis 3 Results
For analysis 3, we examine antecedent selection,
also scored with DCPMI, across all conditions.
Specifically, we evaluate whether content type, pre-
sentation format, or social rule status influences
whether the models select answers that contain any
antecedent card. Complete statistical results are in
Table 4.

The best-fitting statistical model contains a main
effect for social rule status and an interaction be-
tween presentation format and content type, plus
a random effect for overall item. A term for LLM
did not improve model fit. For the presentation
formats main effect, we find significant main ef-
fects for classic versus front presentation formats,
front versus back presentation formats, and back
versus both presentation formats (lines 1, 2, and 3
respectively in Table 4). For the content type main
effect, we find significant differences between ar-
bitrary versus non-arbitrary problems and between
shuffled and realistic problems (lines 4 and 5 re-
spectively in Table 4). The main effect for social
rule status was not significant.

For the interaction between presentation format
and content type, we find significant differences
for contrasts between arbitrary and non-arbitrary
problems and classic versus front presentation for-
mats, shuffled versus realistic problems and classic
versus front presentation formats, shuffled versus
realistic problems and front versus back formats,
shuffled versus realistic problems and back versus
both formats (Lines 1-4 respectively in Table 5).
Interactions are displayed in Figure 6. Follow-up
tests for each of the interaction effects can be found
in Table 7 in Appendix B.

4.6 Analysis 3 Discussion
Results from analysis 3 are particularly interesting
because there is limited variance in human per-
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Figure 6: Evaluation of whether the LLMs select an an-
tecedent card. Content type: arbitrary (AR), shuffled
(SH), and familiar (FM). Presentation formats: classic,
front, back, and both. Social rule status: non-social
rule, social rule. Collapsed over LLM.

formance according to this metric. Regardless of
content type, human subjects select at least one
antecedent card (Johnson-Laird et al., 1972; Griggs
and Cox, 1982). Even for conditions that influence
antecedent card selection, the overwhelming ten-
dency is for participants to select the alternative an-
tecedent card (Cosmides, 1989). In contrast, our re-
sults suggest that whether LLMs select antecedent
cards varies significantly according to content type
and presentation format.

Despite differences in training datasets and tasks
and model architecture, we do not find any effects
for LLM. Additionally, the interaction between con-
tent type and presentation format suggests that dif-
ferent presentation formats have differential effects
on antecedent selection for different content types.
LLMs may benefit from different types of format-
ting depending on the content of the reasoning task.

5 Discussion

We set out to expand the research base on evalu-
ating the reasoning capabilities of LLMs with a
classic experiment contrasting a priori conditions.
We do replicate some effects found in the litera-
ture for human subjects. Performance is higher for
familiar problems than arbitrary ones and social
rule have higher performance than non-social rules.
However, we do not replicate the magnitude of the
effects; social content does not benefit LLM per-
formance as might be expected based on training

corpus content.
We do find effects for different presentation for-

mats; however, they do not improve performance.
For shuffled problems, the specific presentation
format does not make a difference. For realistic
problems, we find presentation format does make a
difference-the classic presentation format has the
highest performance.

However, our systematic, content and format
controlled experimentation and performance mea-
surement has also revealed a number of inexplica-
ble interactions that appear to be consistent across
different LLMs and are therefore independent of
architecture. Given the literature on human perfor-
mance, an interaction between social rule status
and content type is expected. However, many of
the other interactions are not expected and are in-
consistent with human performance (e.g., Wason
and Green, 1984; Manktelow and Evans, 1979).
We find some evidence that LLMs benefit from
different types of presentation formats, (depending
on the specific content of the problem), as might
be expected from popular compensatory prompt
engineering efforts. However, it is not immediately
clear what types of information facilitate overall
reasoning performance. This limits the ability to
make general predictions about the conditions un-
der which LLM reasoning is accurate.

In addition to content and presentation interac-
tions, we find that LLMs do not pick antecedent
cards at the same rate that human subjects do.
Moreover, this behavior is influenced by the task
condition- LLMs are less likely to select antecedent
cards for arbitrary and realistic problems than for
social rules.

Overall low performance is particularly surpris-
ing for realistic social and non-social rules as the
relationships for solving these problems are plau-
sibly available in the training data of LLMs. Yet
we find that all LLMs diverge from documented
human performance.

Overall performance is also remarkably consis-
tent across models despite different training data,
objectives, and model architectures. Moreover, we
find that the interaction results are also indepen-
dent of the LLM examined. Some consistency be-
tween LLMs is to be expected, given that LLMs are
trained on human-generated text corpora. However,
the commonalities are not consistent with human
behavior. This suggests a common yet surprising
emergent reasoning bias without any apparent adap-
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tive benefit.
Fine-tuning the models for this task would likely

improve task performance. We did not fine-tune the
models for several reasons. First, the Wason task is
intended to be a general task for evaluating reason-
ing performance. These tap into general knowledge
and a set of reasoning skills that transfers to new
tasks. Thus, the position that networks specifically
trained on large reasoning task corpora is the best
way to evaluate the reasoning performance of mod-
els is questionable. This is particularly true given
that models often have high performance on the
specific training task and limited performance on
related reasoning tasks (Mitchell, 2021).

Second, several researchers have proposed that
the Wason task can be solved via linguistic and
real world knowledge (Pollard, 1982; Tversky and
Kahneman, 1973; Wason, 1983). Human partici-
pants achieve high performance on problems that
deal with familiar social rules with no experience
with the task, using prior knowledge. However,
the knowledge that this task requires is plausibly
available in the training data for LLMs. The words
used in this task are all common English words.
Moreover, many of the relationships between items
are plausibly available in training text, particularly
for problems that deal with familiar social rules.
Yet, performance remained quite low.

Previous work has proposed that ideal tasks for
evaluating the reasoning of computational algo-
rithms are those that do not require task-specific
training (Chollet, 2019; Mitchell, 2021). We con-
cur with this position and suggest that the Wason
task is an ideal task in this regard.

6 Conclusion

Despite substantial performance improvements on
standard benchmark datasets, existing LLMs have
considerable room for improvement with regards
to many aspects of human intelligence (Lake et al.,
2017; Mitchell, 2021). In these experiments, we
specifically investigate two of these aspects: gener-
alized performance on related tasks and generation
of answers at the limits of available knowledge.

Overall, our results replicate some of the same
patterns found in the cognitive science literature.
However, performance remains poor with inexpli-
cable interactions between problem content and our
efforts to manipulate presentation format. LLMs
are sensitive to different sets of task criteria than
human subjects. These criteria are not predictable

across conditions and suggest areas where the rea-
soning of LLMs is not consistent with that of hu-
man capability.
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ice Rueda, Amanda Pestana, Amir Feizpour, Ammar
Khan, Amy Faranak, Ana Santos, Anthony Hevia,
Antigona Unldreaj, Arash Aghagol, Arezoo Abdol-
lahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh
Behroozi, Benjamin Ajibade, Bharat Saxena, Car-
los Muñoz Ferrandis, Daniel McDuff, Danish Con-
tractor, David Lansky, Davis David, Douwe Kiela,
Duong A. Nguyen, Edward Tan, Emi Baylor, Ez-
inwanne Ozoani, Fatima Mirza, Frankline Onon-
iwu, Habib Rezanejad, Hessie Jones, Indrani Bhat-
tacharya, Irene Solaiman, Irina Sedenko, Isar Ne-
jadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis
Sanz, Livia Dutra, Mairon Samagaio, Maraim El-
badri, Margot Mieskes, Marissa Gerchick, Martha
Akinlolu, Michael McKenna, Mike Qiu, Muhammed
Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Ra-
jani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel,
Ran An, Rasmus Kromann, Ryan Hao, Samira Al-
izadeh, Sarmad Shubber, Silas Wang, Sourav Roy,
Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le,
Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap,
Alfredo Palasciano, Alison Callahan, Anima Shukla,
Antonio Miranda-Escalada, Ayush Singh, Benjamin
Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag
Jain, Chuxin Xu, Clémentine Fourrier, Daniel León
Periñán, Daniel Molano, Dian Yu, Enrique Manjava-
cas, Fabio Barth, Florian Fuhrimann, Gabriel Altay,
Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec,
Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi,
Jonas Golde, Jose David Posada, Karthik Ranga-
sai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa
Shinzato, Madeleine Hahn de Bykhovetz, Maiko
Takeuchi, Marc Pàmies, Maria A. Castillo, Mari-
anna Nezhurina, Mario Sänger, Matthias Samwald,
Michael Cullan, Michael Weinberg, Michiel De Wolf,
Mina Mihaljcic, Minna Liu, Moritz Freidank, Myung-
sun Kang, Natasha Seelam, Nathan Dahlberg,
Nicholas Michio Broad, Nikolaus Muellner, Pascale
Fung, Patrick Haller, Ramya Chandrasekhar, Re-
nata Eisenberg, Robert Martin, Rodrigo Canalli, Ros-
aline Su, Ruisi Su, Samuel Cahyawijaya, Samuele
Garda, Shlok S. Deshmukh, Shubhanshu Mishra,
Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Sr-
ishti Kumar, Stefan Schweter, Sushil Bharati, Tan-

8625



may Laud, Théo Gigant, Tomoya Kainuma, Wo-
jciech Kusa, Yanis Labrak, Yash Shailesh Bajaj,
Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu,
Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras,
Younes Belkada, and Thomas Wolf. 2023. BLOOM:
A 176B-Parameter Open-Access Multilingual Lan-
guage Model. ArXiv:2211.05100 [cs].

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. WizardLM: Empowering Large Lan-
guage Models to Follow Complex Instructions.
ArXiv:2304.12244 [cs].

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor
Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster,
Daniel Simig, Punit Singh Koura, Anjali Sridhar,
Tianlu Wang, and Luke Zettlemoyer. 2022. OPT:
Open Pre-trained Transformer Language Models.
ArXiv:2205.01068 [cs].

Kun Zhou, Kai Zhang, Yu Wu, Shujie Liu, and Jing-
song Yu. 2019. Unsupervised context rewriting for
open domain conversation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1834–1844, Hong Kong,
China. Association for Computational Linguistics.

A Example Problems

In this section, we provide example problems. For
details on the conditions and their associated ratio-
nale, see Section 1.

A.1 Definitions
Below are definitions and examples of the different
problem components. A complete design matrix
for the study is provided in 7.

Context Sentence: Used as context for for the
problem. Example: An attendant needs to make
sure that customers are following the rules.
Instruction sentence: Used at the end of all
problems to prompt the model. Example: Pick two
cards that are required to determine if the rule is
true.
Familiar Social Rule: Problems that take the
form of a social rule (i.e., If a person pays the cost,
they receive the benefit) that deals with familiar
relationships. Example: The rule is that if the
customer is over 25 they can drive a rental car.
Unfamiliar Social Rule: Problems that take the
form of a social rule (i.e., If a person pays the cost,
they receive the benefit) and deals with unfamiliar
relationships. Example: The rule is that if the
customer is over 25 they must be in elementary

Figure 7: Breakdown of the different types of problems
we examine.

school.
Familiar Non-social Rule: Problems that do not
take the form of a social rule and deal with familiar
relationships. Example: The rule is that if the
equipment is a laptop then it must have a plastic
keyboard.
Unfamiliar Non-social Rule: Problems that do
not take the form of a social rule and deal with
unfamiliar relationships. Example: The rule is that
if the equipment is a laptop then it must have a
grass keyboard.
Shuffled Rules: Created from the rule types above.
Shuffling allows us to evaluate the extent to which
models are sensitive to the cost benefit structure of
the rules. Example shuffled familiar social rule:
The rule is that if the customer can drive a rental
car they must be over 25. Arbitrary: Rules that
contain arbitrary relationships. Example: The rule
is that if the cards have a type of food then they
must have an outdoor activity.

A.2 Complete Example Problems

Below are complete example problems for each of
the presentation conditions. Note that the order of
the answers was shuffled in the actual experiments,
answers are presented in here the P,¬P,Q,¬Q
order for all problems for ease of interpretation.

Familiar Social Rule (Classic): Context: Pick
two cards that are required to determine if the rule
is true: Problem: An attendant needs to make sure
that customers are following the rules. The rule
is that if the customer is over 25 they can drive
a rental car: A: 27 years old B: 15 years old C:
driving rental car D: riding the bus

Familiar Social Rule (Front): Context: Pick
two cards that are required to determine if the rule
is true: Problem: An attendant needs to make sure
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that customers are following the rules. The rule
is that if the customer is over 25 they can drive a
rental car. The first card has 15 years old on the
front. The second card has driving rental car on the
front. The third card has riding the bus on the front.
The fourth card has 27 years old on the front: A:
27 years old B: 15 years old C: driving rental car
D: riding the bus

Familiar Social Rule (Back): Context: Pick
two cards that are required to determine if the rule
is true: Problem: An attendant needs to make sure
that customers are following the rules. The rule
is that if the customer is over 25 they can drive a
rental car. The first card has an unknown age on
the back. The second card has an unknown activity
on the back. The third card has an unknown age on
the back. The fourth card has an unknown activity
on the back: A: 27 years old B: 15 years old C:
driving rental car D: riding the bus

Familiar Social Rule (Both): Context: Pick two
cards that are required to determine if the rule is
true: Problem: An attendant needs to make sure
that customers are following the rules. The rule
is that if the customer is over 25 they can drive
a rental car. The first card has riding the bus on
the front and an unknown age on the back. The
second card has driving rental car on the front and
an unknown age on the back. The third card has 15
years old on the front and an unknown activity on
the back. The fourth card has 27 years old on the
front and an unknown activity on the back: A: 27
years old B: 15 years old C: driving rental car D:
riding the bus

B Follow-up Interaction Tests

B.1 Analysis 1 Follow-up Tests

Results from analysis 1 found support for one inter-
action between social rule status and content type.

B.1.1 Content Type and Social Rule Status

Three of the follow-up tests for the interaction be-
tween social rule status and content type were sig-
nificant. The test comparing realistic non-social
rules and realistic social rules test was significant
(Bottom half of Table 2, line 1). The test com-
paring shuffled non-social rules and shuffled social
rules was significant (Bottom half of Table 2, line
2). The test comparing shuffled social rules and
realistic social rules was significant (Bottom half
of Table 2, line 3).

Interaction Effect OR, CI, Z
AR v NAR x C v F 1.28 [1.03 - 1.59] 2.17*
SH v RE x C v F 1.29 [1.08 - 1.54] 2.74**
SH v RE x F v B 1.28 [1.05 - 1.56] 2.54*
SH v RE x B v Both 1.33 [1.14-1.56] 3.61**

Table 5: Effects for interactions for Analysis 3.
AR=arbitrary, NAR=non-arbitrary, SH=shuffled,
RE=realistic, SR=social rule, NSR=non-social
rule, C=classic, F=front, B=back, OR=odds ratio,
CI=confidence interval, * = p < 0.05, ** = p < 0.01

B.2 Analysis 2 Follow-up Tests

Results from analysis 2 found support for three two-
way interactions: one between social rule status and
presentation format, one between content type and
presentation format, and one between social rule
status and content type.

B.2.1 Social Rule Status and Presentation
Format

None of the follow-up tests were significant for the
front versus back or the back versus both presenta-
tion format interactions with social rule status.

B.2.2 Content Type and Presentation Format
Follow-up tests for the shuffled versus realistic
rules and classic versus front presentation format
contrast found significant differences between shuf-
fled and realistic rules for the classic problems (line
1 Table 6) and other tests were non-significant.

All follow-up tests for the shuffled versus real-
istic rules and the front versus back presentation
format contrast were non-significant.

We conducted a follow-up set of comparisons to
examine differences within the shuffled and realis-
tic content types. We found significant differences
between social rules within the both presentation
format (line 4 Table 6). For realistic rules, all four
comparisons were significant (lines 5-8 Table 6).

B.2.3 Social Rule Status and Content Type
For the interaction between social rule status and
content type (shuffled versus realistic), follow-up
tests between shuffled vs realistic non-social rules
(line 2 Table 6) and realistic social rules vs shuffled
social rules were significant (line 3 Table 6).

B.3 Analysis 3 Follow-up Tests

Analysis 3 found support for an interaction between
content type (arbitrary, shuffled, or realistic) and
presentation format (classic, front, back, or both).
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Interaction Effect OR, Z, CI
SH C v RE C 1.56, 2.5*, [1.29-1.83]
SH SR v RE NSR 1.68, 3.04**, [1.39 - 1.96]
RE SR v SH SR 1.84, 3.55**, [1.53 - 2.15]
SH SR both 0.60, -2.78*
RE NSR F 0.65, -2.40*
NSR B 0.61, -2.73*
SR C 2.35, 5.95**
SR F 1.61, 3.20**

Table 6: Follow-up interaction tests for Analysis
2. AR=arbitrary, NAR=non-arbitrary, SH=shuffled,
RE=realistic, SR=social rule, NSR=non-social
rule, C=classic, F=front, B=back, OR=odds ratio,
CI=confidence interval, * = p < 0.05, ** = p < 0.01

Follow-up Test OR, CI, Z
AR C v NAR C 2.73 [1.49-5.19] 4.09**
NAR C v NAR F 0.57 [0.39-0.83] -3.68**
SH C v RE C 0.33 [0.17-0.65] -4.091**
SH F v RE F 0.59 [0.34-1.0] -2.35*
SH F v RE C 0.25 [0.13-0.49] -5.23*
SH F v RE F 0.59 [0.34-1.0] -2.35*
SH B v RE B 0.53 [0.30-0.93] -2.77*
SH B v RE F 0.62 [0.36-1.0] -2.09*
SH F v RE B 0.50 [0.29-0.88] -3.03**
SH Back v RE Back 0.53 [0.30-0.93] -2.77*
SH Both v RE Back 0.58 [0.33-1.0] -2.41*

Table 7: Follow-up interaction tests for analysis
3. AR=arbitrary, NAR=non-arbitrary, SH=shuffled,
RE=realistic, SR=social rule, NSR=non-social
rule, C=classic, F=front, B=back, OR=odds ratio,
CI=confidence interval, * = p < 0.05, ** = p < 0.01

B.3.1 Content Type and Presentation Format
Tests for this interaction indicated significant differ-
ences for four contrasts: one between arbitrary and
non-arbitrary content types and classic versus front
presentation formats (1), one between shuffled ver-
sus realistic content types and classic versus front
presentation formats (2), one between shuffled ver-
sus realistic content types and front versus back
presentation formats (3), and one between shuffled
versus realistic content types and back versus both
presentation formats (4).

Contrast 1: For the contrast between arbitrary
and non-arbitrary content types and classic ver-
sus front presentation formats, two follow-up tests
were significant. These include: 1) the test between
arbitrary classic versus non-arbitrary classic (line
1, Table 7) and 2) the test between non-arbitrary
classic and non-arbitrary front (line 2, Table 7).

Contrast 2: For the contrast between shuffled
and realistic content types and classic versus front
presentation formats, three of the follow-up tests
were significant. These include: the test between
shuffled classic and realistic classic (line 3, Table
7), shuffled front and realistic front (line 4, Table
7), and shuffled front and realistic classic (line 5,
Table 7).

Contrast 3: For the contrast between shuffled
and realistic content types and front versus back
presentation formats, all four follow up tests were
significant. These include: shuffled front versus
realistic front (line 6, Table 7), shuffled back versus
realistic back (line 7, Table 7), shuffled back versus
realistic front (line 8, Table 7), and shuffled front
versus realistic back (line 9, Table 7).

Contrast 4: For the contrast between shuffled
versus realistic content types and back versus both
presentation formats, two follow-up tests were sig-
nificant. These include: the follow up test between
shuffled back versus realistic back (line 10, Table
7) and shuffled both versus realistic back (line 11,
Table 7). Interaction plots are in Figure 6.

C Additional Models

In this section, we report full accuracy (see Table 8)
and domain-conditional PMI (see Table 9) scores
for all the models in the main paper, as well as
several additional models. While we do find that
some of the larger models perform somewhat better,
the overall pattern of results is similar.
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Model Cond Classic Front Back Both
guanaco-7b AR 0.1 (0.3) 0.14 (0.35) 0.16 (0.37) 0.09 (0.28)
guanaco-7b SH 0.1 (0.3) 0.16 (0.37) 0.14 (0.34) 0.14 (0.34)
guanaco-7b SR 0.06 (0.25) 0.09 (0.29) 0.09 (0.29) 0.07 (0.26)
mpt-7b-8k AR 0.06 (0.23) 0.21 (0.41) 0.09 (0.28) 0.09 (0.28)
mpt-7b-8k SH 0.09 (0.28) 0.14 (0.34) 0.09 (0.29) 0.19 (0.39)
mpt-7b-8k SR 0.14 (0.34) 0.15 (0.36) 0.15 (0.36) 0.11 (0.32)
bloom-7b1 AR 0.09 (0.28) 0.24 (0.43) 0.13 (0.34) 0.11 (0.32)
bloom-7b1 SH 0.13 (0.34) 0.13 (0.34) 0.07 (0.26) 0.15 (0.36)
bloom-7b1 SR 0.16 (0.37) 0.16 (0.37) 0.11 (0.32) 0.08 (0.27)
falcon-7b AR 0.11 (0.32) 0.21 (0.41) 0.06 (0.23) 0.06 (0.23)
falcon-7b SH 0.09 (0.28) 0.11 (0.32) 0.07 (0.26) 0.11 (0.32)
falcon-7b SR 0.14 (0.34) 0.16 (0.37) 0.13 (0.34) 0.11 (0.32)
WizardLM-7B-V1.0 AR 0.17 (0.38) 0.26 (0.44) 0.29 (0.46) 0.26 (0.44)
WizardLM-7B-V1.0 SH 0.15 (0.36) 0.12 (0.33) 0.11 (0.31) 0.2 (0.4)
WizardLM-7B-V1.0 SR 0.16 (0.37) 0.15 (0.36) 0.16 (0.37) 0.25 (0.43)
Llama-2-7b-hf AR 0.11 (0.32) 0.11 (0.32) 0.13 (0.34) 0.16 (0.37)
Llama-2-7b-hf SH 0.13 (0.34) 0.18 (0.38) 0.11 (0.32) 0.17 (0.38)
Llama-2-7b-hf SR 0.1 (0.3) 0.07 (0.26) 0.16 (0.37) 0.11 (0.31)
guanaco-13b AR 0.11 (0.32) 0.11 (0.32) 0.11 (0.32) 0.16 (0.37)
guanaco-13b SH 0.16 (0.37) 0.16 (0.37) 0.17 (0.38) 0.16 (0.37)
guanaco-13b SR 0.14 (0.34) 0.11 (0.32) 0.14 (0.34) 0.14 (0.34)
guanaco-33b-merged AR 0.13 (0.34) 0.19 (0.39)
guanaco-33b-merged SH 0.24 (0.43)
guanaco-33b-merged SR 0.16 (0.37)
mpt-30b AR 0.1 (0.3) 0.17 (0.38) 0.09 (0.28) 0.1 (0.3)
mpt-30b SH 0.17 (0.38) 0.16 (0.37) 0.14 (0.34) 0.12 (0.33)
mpt-30b SR 0.08 (0.27) 0.13 (0.34) 0.07 (0.26) 0.1 (0.3)
WizardLM-13B-V1.2 AR 0.13 (0.34) 0.24 (0.43) 0.17 (0.38) 0.13 (0.34)
WizardLM-13B-V1.2 SH 0.13 (0.34) 0.16 (0.37) 0.1 (0.3) 0.19 (0.39)
WizardLM-13B-V1.2 SR 0.15 (0.36) 0.18 (0.38) 0.14 (0.35) 0.2 (0.4)
WizardLM-30B-V1.0 AR 0.11 (0.32) 0.17 (0.38) 0.14 (0.35) 0.11 (0.32)
WizardLM-30B-V1.0 SR 0.13 (0.34) 0.14 (0.34) 0.18 (0.38) 0.13 (0.34)
falcon-40b AR 0.1 (0.3) 0.21 (0.41) 0.09 (0.28)
falcon-40b SR 0.13 (0.34) 0.14 (0.34) 0.13 (0.34) 0.14 (0.34)
Llama-2-13b-hf AR 0.07 (0.26) 0.14 (0.35) 0.06 (0.23) 0.09 (0.28)
Llama-2-13b-hf SH 0.06 (0.25) 0.06 (0.25) 0.06 (0.23) 0.09 (0.29)
Llama-2-13b-hf SR 0.1 (0.3) 0.11 (0.31) 0.12 (0.33) 0.12 (0.33)

Table 8: Accuracy metrics for all models tested. mean(sd)
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Model Cond Classic Front Back Both
bloom-7b1 AR 0.13 (0.34) 0.07 (0.26) 0.2 (0.4) 0.14 (0.35)
bloom-7b1 SH 0.18 (0.38) 0.21 (0.41) 0.16 (0.37) 0.19 (0.39)
bloom-7b1 SR 0.29 (0.45) 0.16 (0.37) 0.18 (0.38) 0.21 (0.41)
falcon-7b AR 0.13 (0.34) 0.17 (0.38) 0.16 (0.37) 0.09 (0.28)
falcon-7b SH 0.19 (0.39) 0.18 (0.38) 0.21 (0.41) 0.14 (0.35)
falcon-7b SR 0.29 (0.46) 0.21 (0.41) 0.16 (0.37) 0.19 (0.4)
guanaco-7b AR 0.16 (0.37) 0.14 (0.35) 0.14 (0.35) 0.13 (0.34)
guanaco-7b SH 0.22 (0.42) 0.2 (0.4) 0.16 (0.37) 0.19 (0.4)
guanaco-7b SR 0.21 (0.41) 0.24 (0.43) 0.15 (0.36) 0.14 (0.34)
mpt-7b-8k AR 0.2 (0.4) 0.16 (0.37) 0.2 (0.4) 0.11 (0.32)
mpt-7b-8k SH 0.16 (0.37) 0.21 (0.41) 0.21 (0.41) 0.19 (0.4)
mpt-7b-8k SR 0.26 (0.44) 0.21 (0.41) 0.18 (0.38) 0.13 (0.34)
Llama-2-7b-hf AR 0.2 (0.4) 0.13 (0.34) 0.19 (0.39) 0.19 (0.39)
Llama-2-7b-hf SH 0.16 (0.37) 0.18 (0.38) 0.16 (0.37) 0.14 (0.34)
Llama-2-7b-hf SR 0.16 (0.37) 0.15 (0.36) 0.16 (0.37) 0.14 (0.34)
WizardLM-7B-V1.0 AR 0.14 (0.35) 0.3 (0.46) 0.19 (0.39) 0.19 (0.39)
WizardLM-7B-V1.0 SH 0.09 (0.29) 0.15 (0.36) 0.11 (0.32) 0.19 (0.4)
WizardLM-7B-V1.0 SR 0.19 (0.39) 0.18 (0.38) 0.16 (0.37) 0.21 (0.41)
guanaco-13b AR 0.23 (0.42) 0.2 (0.4) 0.23 (0.42) 0.17 (0.38)
guanaco-13b SH 0.17 (0.38) 0.17 (0.38) 0.22 (0.42) 0.21 (0.41)
guanaco-13b SR 0.19 (0.4) 0.14 (0.35) 0.14 (0.35) 0.19 (0.4)
guanaco-33b-merged SH 0.24 (0.43)
guanaco-33b-merged SR 0.19 (0.4)
mpt-30b AR 0.2 (0.4) 0.19 (0.39) 0.19 (0.39) 0.16 (0.37)
mpt-30b SH 0.17 (0.38) 0.16 (0.37) 0.14 (0.34) 0.12 (0.33)
mpt-30b SR 0.17 (0.38) 0.16 (0.37) 0.14 (0.34) 0.2 (0.4)
falcon-40b AR 0.17 (0.38) 0.19 (0.39) 0.23 (0.42)
falcon-40b SR 0.16 (0.37) 0.19 (0.39) 0.1 (0.3) 0.11 (0.32)
Llama-2-13b-hf AR 0.24 (0.43) 0.11 (0.32) 0.16 (0.37) 0.16 (0.37)
Llama-2-13b-hf SH 0.24 (0.43) 0.2 (0.4) 0.23 (0.42) 0.22 (0.42)
Llama-2-13b-hf SR 0.21 (0.41) 0.14 (0.35) 0.19 (0.4) 0.16 (0.37)
WizardLM-13B-V1.2 AR 0.17 (0.38) 0.27 (0.45) 0.21 (0.41) 0.2 (0.4)
WizardLM-13B-V1.2 SH 0.12 (0.33) 0.15 (0.36) 0.12 (0.33) 0.23 (0.42)
WizardLM-13B-V1.2 SR 0.15 (0.36) 0.14 (0.34) 0.14 (0.34) 0.15 (0.36)
WizardLM-30B-V1.0 AR 0.11 (0.32) 0.17 (0.38) 0.14 (0.35) 0.11 (0.32)
WizardLM-30B-V1.0 SH 0.1 (0.3) 0.19 (0.4) 0.12 (0.33) 0.13 (0.34)
WizardLM-30B-V1.0 SR 0.14 (0.34) 0.19 (0.39) 0.11 (0.32) 0.14 (0.35)

Table 9: DCPMI metrics for all models tested. mean(sd)
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