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Abstract

Large Language Models (LLMs) are frequently
used for multi-faceted language generation and
evaluation tasks that involve satisfying intricate
user constraints or taking into account multi-
ple aspects and criteria. However, their perfor-
mance can fall short, due to the model’s lack of
coherence and inability to plan and decompose
the problem. We propose BRANCH-SOLVE-
MERGE (BSM), a Large Language Model pro-
gram (Schlag et al., 2023) for tackling such
challenging natural language tasks. It consists
of branch, solve, and merge modules that are
parameterized with specific prompts to the base
LLM. These three modules plan a decomposi-
tion of the task into multiple parallel sub-tasks,
independently solve them, and fuse the solu-
tions to the sub-tasks. We apply our method to
the tasks of LLM response evaluation and con-
strained text generation and evaluate its effec-
tiveness with multiple LLMs, including Vicuna,
LLaMA-2-chat, and GPT-4. BSM improves the
evaluation correctness and consistency for each
LLM by enhancing human-LLM agreement by
up to 26%, reducing length and pairwise posi-
tion biases by up to 50%, and allowing LLaMA-
2-chat to match or outperform GPT-4 on most
domains. On a constraint story generation task,
BSM improves the coherence of stories while
also improving constraint satisfaction by 12%.

1 Introduction

Large Language Models (LLMs) are widely used
for various text generation tasks (Radford et al.,
2019; Brown et al., 2020; OpenAI, 2023b; Chowd-
hery et al., 2022; Touvron et al., 2023). It has also
become common to employ them as evaluators of
such LLM generations in order to assess, critique
and improve the outputs (Zheng et al., 2023; Bai
et al., 2022b). However, LLMs still struggle with
tasks that have intricate requirements like satisfy-
ing a set of constraints or meeting objectives that
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are, in general, multi-dimensional (e.g., evaluating
the quality of generated text against certain diverse
criteria). This appears to primarily stem from the
model’s lack of self-consistency and inability to
plan (Yao et al., 2023b; Bubeck et al., 2023). Re-
cent research has tried to mitigate these limitations
by developing iterative methods that involve elic-
iting reasoning, planning, and refinement, but so
far they are still considered as open problems (Bai
et al., 2022b; Madaan et al., 2023; Ganguli et al.,
2023; Yao et al., 2023c; Chen et al., 2023; Li et al.,
2023; Huang et al., 2023).

In this work, we propose BRANCH-SOLVE-
MERGE (BSM), a decomposition method for solv-
ing such multi-faceted natural language tasks. Our
approach is an instance of a Large Language Model
program (Schlag et al., 2023; Dohan et al., 2022)
and consists of three modules: branch, solve, and
merge that are parameterized with specific prompts
to an underlying LLM. Given an arbitrary user task,
the ‘branch’ module generates a solution plan by
decomposing the task into multiple parallel sub-
tasks, where each sub-task is represented by a
unique branch, representing different components
required to solve the overall problem. The ‘solve’
module then solves each of these independent sub-
problems. Finally, the ‘merge’ module fuses the
solutions to these sub-problems to generate the
overall solution. We apply our method to two chal-
lenging tasks where LLMs are commonly utilized
but their performance still lags behind humans:
• Evaluation of LLM Outputs (Zheng et al.,

2023). LLMs are now regularly used to perform
automatic evaluation of model responses, e.g., to
user queries (Dubois et al., 2023). Evaluating
LLMs holistically is challenging because of their
ability to generate long-form answers to arbitrary
user questions (Zheng et al., 2023), the lack of re-
liability originating from many biases (Zheng
et al., 2023; Wu and Aji, 2023; Wang et al.,
2023b), and reliance on hand-designed evalua-
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Compose an engaging travel blog post about a recent trip to
Hawaii, highlighting cultural experiences and must-see attractions.

Relevance: Assess how well the
response aligns with the user's
question and whether it provides
relevant information about
cultural experiences and must-
see attractions in Hawaii. 

Clarity: Evaluate how clear
and concise the response is
....

Accuracy: Check the
response for factual accuracy,
ensuring that ....

Assistant A's response: 4/5
The response provides relevant
information about cultural
experiences .... However, it
could be improved by including
more specific details about the
cultural experiences and
attractions ....

Assistant B's response: 5/5
The response is highly relevant
to the user's question and
provides a well-structured and
detailed overview of cultural
experiences and must-see
attractions in Hawaii .....

Assistant A's response:
4/5
The response is generally
clear and concise, with
well-structured sentences
and appropriate vocabulary.
....

Assistant B's response:
5/5
The response is
exceptionally clear and
concise, with short, well-
structured sentences that
are easy to follow ....

Assistant A's response: 4/5
The response accurately
mentions the Polynesian
Cultural Center and Hanauma
Bay,
....

Assistant B's response: 5/5
The response accurately
provides information ....,
including the Polynesian
Cultural Center, Iolani Palace,
Hawaii Volcanoes National
Park, .....

Assistant A's response: 3/5
The response provides some unique
insights into the cultural
experiences available in Hawaii,
.....
However, the mention of popular
attractions like Hanauma Bay and
Waimea Canyon is not particularly
original
.....

Assistant B's response: 4/5
The response offers a more original
perspective on Hawaii's cultural
experiences and attractions ....

After carefully reviewing all the evaluations, it is clear that Assistant B has provided a better response overall. Assistant B's response
scored higher in relevance, clarity, engagement, accuracy, and originality. While Assistant A's response was informative, it lacked the
personal touch and engaging tone that Assistant B's response provided. Additionally, Assistant B's response was more accurate, with no
factual errors, and offered more original suggestions for cultural experiences and attractions in Hawaii.

Therefore, the final verdict is: [[B]]. Assistant B's response is better overall.

Question

Response A

Response B

Question Question

Originality: Evaluate the
response's originality, considering
whether it provides a fresh and
unique perspective on Hawaii's
cultural experiences and attractions
or simply regurgitates common
tourist information.

Branch 1 Branch kBranch (k-1)Branch 2

Criterion

Figure 1: An illustration of BRANCH-SOLVE-MERGE with LLaMA-2-70B-chat for pairwise evaluation of LLM
responses. Given a question and two LLM responses A and B, BSM generates a preference judgment. The Branch
module conditions on the question to generate a question-specific evaluation plan which in this case consists of
different criteria like ‘Relevance’ to the Hawaii trip topic, ‘Clarity’, etc. The ‘Solve’ module evaluates the response
pairs for each criteria (branch) independently and the ‘Merge’ module combines the individual judgments to generate
the final verdict, in this case that B is the better response.

tion plans that impact the method’s generaliza-
tion, introducing unintended human biases (Liu
et al., 2023; Wu and Aji, 2023). BSM can be ap-
plied to this task by each branch assessing differ-
ent aspects and criteria that require evaluation.*

• Constrained Text Generation. State-of-the-art
LLMs struggle with constrained text generation
tasks, e.g., the constraint of writing a story that
should include several concepts. Models com-
monly either violate constraints, or else generate
text that is incoherent in order to satisfy these con-
straints (Bubeck et al., 2023; Yao et al., 2023a).
BSM can be applied to this task by each branch
writing part of the story satisfying only some of

*Subsequently, we will refer to the task as ‘LLM Evalua-
tion’. In the scope of our study, this will involve the pairwise
evaluation of the response quality of two LLM outputs.

the constraints, followed by a final merge.
We apply BSM to both these problems, see Fig. 1

and Fig. 3, and evaluate its effectiveness with mul-
tiple open-source and black-box LLMs of vary-
ing sizes and strengths including LLaMA-2-7B-
chat (Touvron et al., 2023), Vicuna-33B (Chiang
et al., 2023), LLaMA-2-70B-chat, and GPT-4 (Ope-
nAI, 2023b). BSM significantly improves both
tasks, addressing the aforementioned limitations of
LLM evaluation and generation:
• BSM improves correctness of LLM evalua-

tion. In particular, on the MT-Bench bench-
mark (Zheng et al., 2023), BSM improves LLM-
human agreement for evaluating multi-turn ques-
tions belonging to different domains including
writing, coding, reasoning, and mathematics. For
example, compared to zero-shot prompting and
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self-consistency (Wang et al., 2022) baselines,
BSM with LLaMA-2-70B-chat improves LLM-
human agreement by up to absolute 26% and
even matches or outperforms GPT-4 on many do-
mains. BSM with GPT-4 improves agreement by
a further 3% over GPT-4. Overall, these findings
point to BSM’s ability to evaluate LLM responses
to arbitrary user questions from diverse domains
and to improve any base LLM as an evaluator.

• BSM also improves the consistency of LLM eval-
uation. It significantly reduces position, length,
and self-enhancement biases of LLM-based eval-
uators. For instance, BSM with LLaMA-2-70B-
chat reduces position bias by up to absolute 50%.
Importantly, BSM with GPT-4 also improves
GPT-4’s reliability as an evaluator when eval-
uating its own responses.

• For the constrained story generation task, BSM
generates more coherent stories, which are pre-
ferred by a GPT-4 judge a substantial 93% of the
time compared to a zero-shot baseline. It also
improves constraint satisfaction by 12%.
Overall, BSM provides a framework for plan-

ning and task decomposition for addressing chal-
lenging multi-faceted language generation and eval-
uation tasks. As the approach is framed as a generic
LLM program, it can be applied to any underlying
LM and potentially a wide range of tasks.

2 Related Work

LLM Programs and Decomposing Complex
Tasks. LLM programs such as BSM solve complex
problems with an algorithm that breaks the prob-
lem down into multiple steps and each step is then
parameterized with a different prompt to an under-
lying LLM (Schlag et al., 2023; Dohan et al., 2022;
Creswell and Shanahan, 2022). Complex tasks, in
general, require task decomposition (Khot et al.,
2022) and planning (Yao et al., 2022; Huang et al.,
2022; Yao et al., 2023b; Ning et al., 2023). This has
motivated a lot of recent work on advanced prompt-
ing methods (Khot et al., 2022; Zhou et al., 2022;
Wang et al., 2023a; Dua et al., 2022; Saha et al.,
2022, 2023; Khot et al., 2021; Gupta and Kemb-
havi, 2023; Cho et al., 2023). However, most of
these works typically focus on reasoning problems
(like commonsense, symbolic, or mathematical)
that benefit from sequential decompositions. We,
however, study tasks that benefit from branching
into parallel decompositions, in particular LLM
evaluation and constrained text generation. As well

as being an LLM program, BSM is also an instance
of Graph-of-Thoughts (GoT) prompting (Lei et al.,
2023; Besta et al., 2023) because the execution
trace takes the shape of a graph. GoT defines a
wide array of LLM programs, including refining,
backtracking and skipping graph nodes, which we
do not consider here. Our work develops a specific
fixed program, and applies it to the challenging
tasks of evaluating or improving language models.

LLM Evaluation. A fundamental challenge with
the rapid progress of LLMs is evaluating their capa-
bilities holistically (Chang et al., 2023; Liang et al.,
2022). Human evaluation is difficult and expen-
sive (Smith et al., 2022). On the other hand, LLMs,
by being trained with RLHF, are shown to exhibit
alignment with humans (Ouyang et al., 2022; Bai
et al., 2022a). Hence, a standard procedure for
comparing and evaluating LLM generations is by
utilizing a strong LLM like GPT-4 (Bubeck et al.,
2023; OpenAI, 2023a; Dubois et al., 2023; Zhou
et al., 2023; Chiang and Lee, 2023; Wang et al.,
2023c; Hada et al., 2023; Liu et al., 2023) on dif-
ferent benchmarks (Zhong et al., 2023; Köpf et al.,
2023; Zheng et al., 2023). LLM-based evaluators
are not fair evaluators (Wang et al., 2023b; Wu and
Aji, 2023) and there have been proposals of using
multi-agent debate (Chan et al., 2023) or develop-
ing wider and deeper LLMs (Zhang et al., 2023). In
contrast, BSM improves LLM evaluation through
an intuitive and general decomposition-based ap-
proach that can be applied on top of any LLM to
evaluate responses for a wide range of tasks.

Constrained Text Generation. Recent works
evaluate LLMs for their capabilities in the more
difficult setting of controllable and constrained text
generation (Keskar et al., 2019; Dathathri et al.,
2019; Lu et al., 2021, 2022; Lin et al., 2020; Li
et al., 2022) and show that even GPT-4 struggles
with such planning-based tasks (Bubeck et al.,
2023; Madaan et al., 2023; Yao et al., 2023a). We
experiment with such a constrained story genera-
tion task and show the promise of BSM.

3 BRANCH-SOLVE-MERGE

We first introduce some notation to formally de-
scribe BSM. Let pθ denote an LLM with parame-
ters θ. We also denote x = x1,···,n as a sequence of
n tokens, such that pθ(x) =

∏n
i=1 pθ(xi|x1,···,i−1).

BSM is an LLM program that aims to solve com-
plex planning-based tasks with three neural mod-
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ules: branch, solve, and merge. Each module is
parameterized with unique prompts to the LLM pθ.
The LLM program further defines an algorithm on
top of these modules, acting as a controller and
invoking a module at each step of the algorithm.

3.1 Components of BRANCH-SOLVE-MERGE

LLM Program. For a given task, BSM de-
fines a controller as an algorithm that lays
out the transition logic between the modules.
Let us denote the three modules with their
functional forms: branch(·), solve(·), and
merge(·). Then the program is defined as Prog :
(x, branch(·), solve(·), merge(·)) → y, taking as
input a task instance x, along with the module im-
plementations and generating an output y.

Branch Module. Given a task, the branch mod-
ule generates multiple sub-tasks where each sub-
task is represented by a unique branch. Branch-
ing into sub-problems allows task decomposition
such that each part can be solved independently
in parallel, at which point the partial solutions are
combined. Formally, given a task input x, we de-
fine a ‘branch’ prompt promptbranch(x) that can
be wrapped around x with branching instructions
and some demonstrations (if available). Condi-
tioning on the prompt, the LLM pθ generates a
set of k sub-problems X = {x(1), x(2), · · ·, x(k)},
where k is referred to as the branching factor. The
sub-problems are generated auto-regressively as a
sequence of tokens: X ∼ pθ(X|promptbranch(x)).
Importantly, the flexibility of our method comes
from the fact that for a given problem, the LLM
itself decides (generates) the sub-problems and the
corresponding branching factor.

Solve Module. The solve module solves the task
at hand by generating an output y(i) for a branch
task input x(i). Similar to the branch prompt, we
define a ‘solve’ prompt promptsolve(x(i)), condi-
tioning on which the LLM generates a solution
y(i) ∼ pθ(y

(i)|promptsolve(x(i))) for each branch.

Merge Module. The merge module fuses the so-
lutions to the sub-problems to generate a global
solution to the main problem. This is done through
a ‘merge’ prompt promptmerge(Y ) that generates
a merged solution y ∼ pθ(y|promptmerge(Y )),
conditioning on a set of sub-solutions Y =
{y(1), y(2), ···, y(k)}. Conceptually, the merge mod-
ule learns an aggregator function that could aggre-
gate a set of values (using an aggregation operator)

or fuse pieces of text, depending on the task.
Next, we motivate and conduct case studies of

BSM with two challenging NLP tasks: LLM evalu-
ation and constrained generation.

3.2 BSM: Case Study with LLM Evaluation
Task Description. We consider the task of evalu-
ating LLM-based chat assistants. Formally, given
an open-ended question and a pair of responses
from two LLM agents, the task requires produc-
ing a preference judgement of which response is
better or if it is a tie (see Fig. 1). Evaluating LLM
responses is challenging for many reasons:
1. Long-form answers to arbitrary questions.

With the goal of providing a general-purpose
assistant, the user asks arbitrary questions from
any domain, and the LLM responds with long-
form answers (Zheng et al., 2023). Based on the
initial model response, the user can ask follow-
up questions. Depending on the type of question,
the evaluation process must consider the intent
of the question, what is expected from an ideal
response, and what criteria to evaluate on.

2. LLM evaluators are prone to biases. LLM-
based evaluators are not reliable and are prone
to different biases including (a) Position Bias:
evaluation changes based on the encoding order
of the responses, (b) Length Bias: tendency to
favor longer responses, (c) Self-enhancement
Bias: the LLM-evaluator favoring its own re-
sponses (Zheng et al., 2023).

3. GPT-4 as evaluator is expensive. While API-
based models like GPT-4 are fairly good eval-
uators (Zheng et al., 2023), these models are
proprietary and charge users per token gener-
ated. Current open-source alternatives correlate
less well with humans and are much more sus-
ceptible to the aforementioned biases.

4. Hand-designing evaluation plans is not scal-
able. A robust evaluator should generalize well,
capable of evaluating responses to arbitrary
questions and hence, hand-designing the eval-
uation plan for every task is not desirable (Liu
et al., 2023). For example, see Fig. 1, where
evaluating responses to a ‘writing’ question
requires considering factors like ‘Relevance’,
‘Clarity’, etc whereas if the question is a ‘cod-
ing’ question (see Fig. 2 in the Appendix), one
should evaluate for ‘Code Correctness’, ‘Code
Readability’, etc.
Hence, given the multi-faceted nature of this

evaluation task, we develop a version of BSM, as
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described below. For this study, we focus on eval-
uating two-turn conversational questions although
our method is generally applicable for any number
of turns. Let us denote the first question as q1 and
the follow-up question as q2. Let the responses
from the two LLMs A and B be r

(A)
1 and r

(B)
1 for

q1, and r
(A)
2 and r

(B)
2 for q2.

Branch Module for LLM Evaluation. It gen-
erates an evaluation plan i.e., a set of evaluation
criteria that the response will be evaluated against.
The branch module only conditions on the input
question and for turn-1 questions, is defined as as
branch(q1), while for turn-2 questions, it condi-
tions on both turn-1 and turn-2 questions, repre-
sented as branch(q1, q2). The output is a set of
evaluation criteria, branch(q) → {ci}ki=1, where
each ci is the title of the criterion (e.g., ‘Relevance’)
and a short description of how to evaluate for it
(e.g., ‘Assess how well the response aligns with
the user’s question ... and must-see attractions in
Hawaii.’). See Fig. 1 and 2 for examples of gener-
ated branches for different questions.

Solve Module for LLM Evaluation. It com-
pares and evaluates the responses based on a spe-
cific criterion. The output of the evaluation is a
pair of scores (within a specified range, according
to the solving instruction, e.g., 1-5) for each of the
responses. For example, given an evaluation crite-
rion c, we denote the solve module for a question q

as: solve(q, r
(A)
1 , r

(B)
1 , c) → (s(A), s(B)), where

s(A) and s(B) are the evaluation scores assigned
to the two assistant responses. Note that the solve
module is not symmetric i.e., the encoding order of
the two responses is important (and we address this
below in our LLM program). The module addition-
ally generates explanations along with the scores.
Fig. 1 shows example generations from the solve
module with a LLaMA-2-70B-chat model.

Merge Module for LLM Evaluation. We de-
velop two variants of the merge module. A
simple non-neural variant sums up the scores
across all branches. We also develop a neural
LLM variant that conditions on the individual
evaluations and generates the final verdict with
a model-decided aggregation strategy, denoted
as merge(q, {ci}ki=1, {s

(A)
i }ki=1, {s

(B)
i }ki=1) → y,

where the evaluation criteria {ci}ki=1 are the out-
puts of the branch module and s

(A)
i and s

(B)
i are the

criterion-wise evaluations (scores and explanations)

of the two assistant responses generated from the
solve module. The final verdict is y ∈ {A,B, tie}.

LLM Program for LLM Evaluation. The over-
all LLM program pseudocode is given in Algo-
rithm 1. To account for position bias, the program
executes two independent runs of BSM by swap-
ping the encoding order of the responses in the
‘solve’ module. The final judgment is either ‘A’ or
‘B’ if and only if the judgement is consistent for
both orders, otherwise it is a ‘tie’.

3.3 BSM: Case Study with Constrained Gen

Task Description. Our next case study shows the
general applicability of BSM by applying it to a
completely different task, that of LLM generation.
We consider a constrained story generation task –
given a set of concepts l, the task is to generate
a coherent story y by including all concepts in it
(see Fig. 3 in the Appendix). When the number
of concepts is large, LLMs tend to either leave out
some concepts or generate text that is incoherent.
The task requires composition incorporating the
various constraints.

Branch Module for Constrained Generation.
The branch module branch(l) → (l1, l2, t) pro-
poses a story generation plan, consisting of (1) two
subsets of concepts l1 and l2 and (2) a story topic t.
The two subsets represent sub-problems of the orig-
inal task with a smaller number of concepts. The
story topic ensures that all sub-stories generated as
part of BSM belong to the same topic.

Solve Module for Constrained Generation.
The solve module solve(li, t) → yi conditions
on a subset of concepts li and the story topic t
to generate a story yi on that topic, while also in-
cluding all concepts in li. Intuitively, ‘solving’ the
constrained generation task is easier with a smaller
number of concepts.

Merge Module for Constrained Generation.
The merge module merge(y1, y2) → y conditions
on two intermediate stories and fuses them together
to generate the final story y. Since both intermedi-
ate stories belong to the same high-level topic, the
fusion can lead to a final coherent story. Overall,
BSM ensures better constraint satisfaction by solv-
ing sub-problems and maintains coherency through
a top-level plan that includes a story topic.
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4 Experiments

4.1 Large Language Model Evaluation

4.1.1 Experimental Setup
Dataset. We experiment with the MT-Bench
dataset, that evaluates LLMs as judges of other
LLM’s responses when acting as helpful AI as-
sistants in multi-turn conversations (Zheng et al.,
2023). It consists of instructions from 8 diverse
domains e.g., writing, reasoning, math, coding, etc.

Evaluation Metrics. We evaluate BSM (and
baselines) using the following four metrics.
• LLM-Human Agreement (Ag). Following past

work (Zheng et al., 2023), we report LLM-human
agreement ∈ [0, 1] individually for turn-1 and
turn-2 questions, and their combination.

• Position Bias (PB). To evaluate whether BSM
helps reduce the consistency problem with LLM-
based evaluators, we report PB, which is the
fraction of samples where the judgment changes
based on the encoding order of the responses.

• Length Bias (LB). We measure LB as the frac-
tion of samples where humans prefer the shorter
response but the evaluator model does not. In
other words, we compute how often an evaluator
chooses the longer response when according to
human preference, it should not.

• Self-enhancement Bias (SB). SB refers to an
evaluator model preferring its own responses.
Evaluating this bias in isolation is challenging
because knowing when the model is choosing
its own response because of this bias and not
for another reason is an interpretability question.
However, the question we are interested in study-
ing here is the following: When an LLM is eval-
uating its own responses (which is a common
phenomenon when using LLMs as evaluators),
does BSM lead to better and more reliable eval-
uation? We measure this by considering the fol-
lowing setting. We use GPT-4 as the base judge
model and consider the subset of samples from
the MT-Bench benchmark where one of the re-
sponses is also generated by GPT-4. If BSM with
GPT-4 improves human-agreement for this sub-
set of samples, it suggests that even in scenarios
where model A is judging its own outputs, BSM
(with model A) leads to a better evaluator. While
this does not necessarily compute whether an
evaluator has less SB, it does verify whether the
evaluator model correlates better with humans
even when it is evaluating its own responses.

While multiple past works have highlighted the
importance of these biases (Zheng et al., 2023; Wu
and Aji, 2023), we measure all of them with con-
crete metrics within the same evaluation frame-
work. Conceptually, ‘Ag’ evaluates correctness
while ‘PB’ for example evaluates consistency of
LLM-based evaluators. These are complementary
aspects and an ideal evaluator should perform well
in all metrics for it to be reliably used.

Implementation Details. We develop BSM on
top of multiple LLMs of varying scales and capabil-
ities: LLaMA-2-7B-chat, Vicuna-33B, LLaMA-2-
70B-chat, and GPT-4. We implement all modules
zero-shot, providing only module-specific instruc-
tions and assuming no access to demonstrations of
how to branch, solve, or merge.

Baselines. We compare our method, BSM, to
(1) two variants of zero-shot prompting with
the same LLM: a relative evaluator, that directly
generates a preference judgment and an absolute
evaluator, that generates two scores for the two
responses and then the final preference is deter-
mined based on the higher score, (2) plan&solve
prompting (Wang et al., 2023a), which plans (i.e.,
generates evaluation criteria) but instead of solving
them independently, solves all branches together
in one LLM call, (3) self-consistency (Wang et al.,
2022), which samples multiple evaluations from
the prompted LLM (with temperature 0.7) and
chooses the majority vote as the final judgment.
For fair comparison, self-consistency samples the
same number of generations as the branching factor
in BSM. We also note that self-consistency is a sim-
ple special case of BSM, where the branch module
spawns multiple instances of the same underlying
problem (instead of sub-problems), solves them
by sampling different solutions, and the merging
operator is a majority vote. Refer to Appendix A
for more details about the dataset, implementation,
and baselines.

4.1.2 Main Results
BSM improves LLM-human agreement and re-
duces biases. Table 1 evaluates the efficacy of
BSM with LLaMA-2-70B-chat as the base LLM,
specifically focusing on the ‘writing’ category of
questions from the MT-Bench benchmark. We re-
port our main findings below.
• Overall agreement. We find that BSM improves

LLM-human agreement for both turn-1 and turn-
2 questions, compared to all baselines. In partic-
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Method Overall Turn-1 Turn-2

Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓
Zero-shot (Relative) 0.43 51.66 54.88 0.53 42.66 50.00 0.34 60.66 59.42
Zero-shot (Absolute) 0.45 30.00 48.87 0.56 19.33 43.75 0.34 40.66 53.62
Plan&Solve 0.43 43.00 54.13 0.43 42.00 51.56 0.43 44.00 56.52
Self-Consistency 0.52 35.66 48.12 0.57 32.00 45.31 0.47 39.33 50.72
BSM 0.55 17.33 39.09 0.60 14.66 39.46 0.50 20.00 39.13

Table 1: Comparison of zero-shot LLM evaluators (Relative and Absolute), Plan&Solve, Self-Consistency, and
BSM on the ‘writing’ questions in the MT-Bench dataset. All methods use LLaMA-2-70B-chat as the base LLM.
We report LLM-Human Agreement (Ag), Position Bias (PB), and Length Bias (LB) for turn-1 and turn-2 questions
overall, and individually. BSM improves agreement scores, and reduces position and length biases.

Ag↑ PB↓ LB↓
Zero-shot (w/ GPT-4) 0.51 6.33 36.36
BSM (w/ GPT-4) 0.54 7.33 34.54

Table 2: BSM leads to less self-enhancement bias. BSM
obtains better agreement for the fraction of samples
where one of the responses is also generated by GPT-4.

ular, it obtains up to 12% absolute improvement
over Plan&Solve, which specifically shows the
utility of branching into and solving indepen-
dent sub-problems. BSM also outperforms Self-
Consistency. As noted earlier, Self-Consistency
is a special case of BSM. This result is note-
worthy because both approaches leverage similar
amounts of compute in generating multiple solu-
tions – but branching and solving the differing
sub-problems provides superior results to solving
the same problem multiple times.

• Turn-1 versus Turn-2 questions. Evaluating
turn-2 questions is harder because it requires ad-
ditional contextualization of the responses for the
turn-1 question. This is also reflected in all base-
line methods (except for plan&solve) exhibiting
lower turn-2 agreement scores (e.g., zero-shot
results drop from 0.53 in turn-1 to 0.34 in turn-2).
BSM shows that a decomposition approach that
generates an evaluation plan is particularly help-
ful for evaluating long context questions, result-
ing in more improvements for turn-2 questions
(e.g., up to 16% improvement). An illustration is
shown in Fig. 2, in which for the turn-2 question,
the model generates ‘Adherence to Instructions’
as the first criterion to evaluate.

• Position and Length Bias Reduction. On top of
improving LLM-human agreement, BSM helps
reduce critical biases with LLM-based evaluators
(e.g., up to 34% reduction in PB). This is a di-
rect consequence of BSM’s task decomposition
that helps reduce inconsistencies in evaluation.

Method Ag↑ PB↓ LB↓
Zero-shot (w/ LLaMA-2-7B-chat) 0.39 62.33 54.88
BSM (w/ LLaMA-2-7B-chat) 0.41 48.33 53.38

Zero-shot (w/ Vicuna-33B) 0.51 30.66 48.12
BSM (w/ Vicuna-33B) 0.56 20.00 42.85

Zero-shot (w/ LLaMA-2-70B-chat) 0.43 51.66 54.88
BSM (w/ LLaMA-2-70B-chat) 0.55 17.33 39.09

Zero-shot (w/ GPT-4) 0.59 17.33 39.09
BSM (w/ GPT-4) 0.62 17.00 36.84

Table 3: Comparison of zero-shot evaluation and BSM
on ‘writing’ questions with different base LLM eval-
uators. BSM improves agreement for all models and
reduces biases for all models except GPT-4.

BSM’s reduction in LB could be attributed to
the following: when an evaluator branches into
different criteria, if ‘length’ is indeed one of the
criteria that the responses should be evaluated
against, it only counts as a single branch (i.e.,
one sub-problem) of the overall evaluation and
hence, branching allows the model to explicitly
evaluate for other criteria, beyond just length.

• Self-enhancement Bias Reduction. Table 2
evaluates self-enhancement bias by comparing
BSM (with zero-shot GPT-4) for the samples
where one of the responses is also generated by
GPT-4. We observe a 3% better correlation with
humans, suggesting that BSM improves evalua-
tion even when the LLM judges its own outputs.

BSM not only leads to an improvement in overall
LLM-human agreement (as per the ‘Ag’ metric) but
also on the fraction of samples where one response
is generated by the same evaluator LLM (as per the
‘SB’ metric), thus pointing to its robustness as an
evaluation method. In summary, BSM improves
both correctness and consistency of LLM-based
evaluators.

BSM improves upon all zero-shot base LLMs.
We demonstrate the generalizability of BSM as an
LLM program by implementing it on top of four dif-

8358



Method Coding Reasoning Math

Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓
Zero-shot (w/ LLaMA-2-70B-c) 0.47 52.33 51.32 0.47 38.00 48.75 0.52 45.66 50.56
BSM (w/ LLaMA-2-70B-c) 0.61 25.66 42.47 0.57 20.33 46.25 0.64 17.66 34.83
GPT-4 0.61 19.66 38.93 0.64 22.66 53.75 0.62 19.00 39.32

Table 4: Reference-based LLM evaluation for ‘Coding’, ‘Reasoning’, and ‘Math’ question categories of MT-Bench.
BSM improves reference-based evaluations and for math, outperforms GPT-4.

Domain Method Overall Turn-1 Turn-2

Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓

Roleplay
Zero-shot (w/ LLaMA-2-70B-c) 0.55 29.66 51.67 0.61 30.00 48.14 0.50 29.33 55.88
BSM (w/ LLaMA-2-70B-c) 0.61 11.00 40.26 0.66 10.66 38.27 0.56 11.33 42.64
GPT-4 0.64 13.66 43.62 0.65 16.00 45.67 0.63 11.33 41.17

Extraction
Zero-shot (w/ LLaMA-2-70B-c) 0.40 70.66 51.82 0.46 61.33 51.47 0.33 80.00 52.08
BSM (w/ LLaMA-2-70B-c) 0.55 31.33 40.24 0.55 32.00 45.58 0.44 30.66 36.45
GPT-4 0.71 15.00 33.53 0.68 13.33 35.29 0.75 16.66 32.29

Stem
Zero-shot (w/ LLaMA-2-70B-c) 0.46 59.33 55.31 0.50 52.66 51.19 0.43 66.00 61.40
BSM (w/ LLaMA-2-70B-c) 0.72 10.33 44.68 0.70 10.66 40.47 0.73 10.00 50.87
GPT-4 0.72 13.66 46.80 0.68 16.66 44.04 0.75 10.66 50.87

Humanities
Zero-shot (w/ LLaMA-2-70B-c) 0.46 59.00 45.69 0.51 52.00 49.18 0.41 66.00 43.33
BSM (w/ LLaMA-2-70B-c) 0.67 18.00 36.42 0.63 18.00 39.34 0.71 18.00 34.44
GPT-4 0.73 14.00 37.08 0.70 19.33 42.62 0.76 8.66 33.33

Table 5: LLM evaluation for ‘Roleplay’, ‘Extraction’, ‘Stem’, and ‘Humanities’ question categories of MT-Bench.
We compare LLaMA-2-70B-chat BSM with the baseline zero-shot method, and also report GPT-4 results. BSM
obtains significant improvements over the LLaMA baseline, and matches or is close to GPT-4 agreement in three of
the four domains, while sometimes outperforming GPT-4 in reducing biases.

ferent base LLMs, ranging from LLaMA-2-7B to
GPT-4. As shown in Table 3, BSM improves agree-
ment with humans for all base LLMs, compared
to a zero-shot baseline. Even though zero-shot
GPT-4 is the state-of-the-art LLM-based evaluator,
applying BSM obtains a further improvement of
3%. Moreover, applying BSM to LLaMA-2-70B-
chat makes it competitive with GPT-4 for turn-1
questions. BSM also significantly reduces position
and length biases for all models except for GPT-4.

BSM generalizes to reference-based evaluations.
We find that BSM also excels at reference-based
evaluations for complex tasks like in math, rea-
soning, and coding (Cobbe et al., 2021; Wei et al.,
2022). Following past work (Zheng et al., 2023),
we evaluate responses for these categories by first
generating an answer using GPT-4 and then ap-
pending it to the evaluation prompt, which is our
baseline in this experiment. For BSM, we then
follow a similar recipe by conditioning the ‘solve’
module on the GPT-4 generated answers. The key
assumption here is that these answers are curated
once and have limited variations unlike answers for
open-ended questions. Table 4 shows that BSM
significantly outperforms zero-shot baseline in all

categories (by up to 14% better agreement scores
and 27% better position bias in coding questions).
On Math, it even outperforms the state-of-the-art
GPT-4 evaluator, outperforming on all metrics.

BSM generalizes across further domains. Ta-
ble 5 shows that BSM is capable of evaluating
generations for questions in other categories like
‘Roleplay’, ‘Extraction’, ‘Stem’, and ‘Humanities’,
with similar findings. See Appendix A.2 for details.

Scalability of BSM’s branching. One of the
core strengths of BSM is its scalability – it uses the
same branch prompt (in Fig. 4) for all evaluation
domains (e.g., writing, code, reasoning, etc). The
prompt only specifies the meaning of a branch for
a given task and the LLM is capable of generating
its own branches for different domains without any
human intervention. We observe almost no overlap
between the branch names of coding questions and
writing questions. For example, the most occur-
ring ‘writing branches’ are Clarity, Relevance, Cre-
ativity, Accuracy, Engagement, Coherence, Orig-
inality, Completeness, Grammar and Readability,
etc whereas the most occurring ‘coding branches’
are Efficiency, Completeness, Accuracy, Correct-
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ness, Code Readability, User Experience, Time Ef-
ficiency. Branches for questions belonging to the
same domain exhibit more overlap, as measured by
the names of the branches. For example, ‘Correct-
ness’ is a branch that is generated for evaluating
almost all coding problems; however, their descrip-
tions are different and problem-specific (e.g., see
Fig. 2 for an example).

4.2 Constrained Text Generation
4.2.1 Experimental Setup
Dataset. Our constrained story generation task
is a more challenging variant of a generative com-
monsense reasoning task, CommonGen (Lin et al.,
2020). While the original task requires generating
a single coherent sentence from 3 or 4 concepts,
we increase the complexity of the task by having
the model generate a concise story consisting of 10
concepts (Madaan et al., 2023)†. We experiment
with 100 samples for the purpose of this study.

Evaluation Metrics. We evaluate the generated
stories along two axes: constraints satisfaction
and overall story quality. For constraints satisfac-
tion, we report two metrics: (a) All Present (AP):
fraction of samples where all constraints are sat-
isfied i.e., there are no missing concepts, and (b)
Missing Concepts (MC): average percentage of
missing concepts. Higher ‘all present’ and lower
‘missing concepts’ are preferable. We identify a
concept as missing if it does not appear in the story
in any word form. For evaluating overall story qual-
ity, we conduct a pairwise evaluation with GPT-4.
The evaluation prompt is provided in Fig. 7. To ac-
count for position bias in this pairwise comparison,
we follow our findings from the LLM Evaluation
task and conduct each evaluation twice, by swap-
ping the order of the stories and preferring one story
over the other only if the evaluations are consistent.

Implementation Details. We evaluate BSM us-
ing LLaMA-2-7B-chat and LLaMA-2-70B-chat.
All modules generate text using greedy decoding.
For the branch module, the LLM is prompted to
divide the concepts into two groups.

Baselines. We compare BSM to (1) zero-shot
prompting with the same LLM: given a set
of concepts, directly generates the story, (2)
plan&solve prompting, that first proposes a story
topic (as a plan) and then generates a story on that

†https://github.com/madaan/self-refine/blob/
main/data/prompt/commongen/commongen_hard.jsonl

Method LLaMA-2-7B-chat LLaMA-2-70B-chat

AP↑ MC↓ AP↑ MC↓
Zero-shot 15.0 17.3 22.0 27.2
Plan&Solve 13.0 18.0 21.0 26.6
Self-Consis 19.0 16.6 24.0 20.1
BSM 23.0 15.5 28.0 14.7

Table 6: Constrained story generation evaluation results.
BSM (with both LLaMA-2 models) improves constraint
satisfaction in the generated stories.

topic, (3) self-consistency, where we first sample
multiple stories and then prompt the LLM again
to select one of the sampled stories that has more
constraints satisfied.

4.2.2 Results and Analysis
Constraint Satisfaction. Our main results are
given in Table 6. They show that BSM with both
model variants outperforms all baselines on our
constraint satisfaction metrics. We also note that
this is still a challenging task even for a stronger
LLaMA-2-70B-chat model and the scale of the
model has little impact on constraint satisfaction.
For example, even BSM with LLaMA-2-70B-chat
omits at least one concept for 72% of the sam-
ples, echoing the findings from prior work that
constrained text generation is hard even for state-
of-the-art LLMs (Yao et al., 2023a). We provide
an analysis of missing concepts in BSM in Ap-
pendix B.

Overall Story Quality. BSM not only satisfies
more constraints but almost always generates a
more coherent story. We find that in a head-to-head
comparison with the zero-shot prompting baseline
(with LLaMA-2-70B-chat), stories generated by
BSM are preferred a substantial 93% of the time
by GPT-4. This can be attributed to two aspects
of BSM. First, in each of the branches, the model
conditions on a lesser number of concepts and thus
generates intermediate stories that by themselves
are more coherent. Second, in the merging step,
the model is able to condition on these two interme-
diate stories and generate a final story that further
improves the coherence.

5 Conclusion

We presented BSM, an LLM program for improv-
ing LLM evaluation and generation. We conducted
two case studies with different implementations of
branch, solve, and merge modules, showcasing the
effectiveness and generalizability of BSM.
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Limitations

We list the limitations of our work below.

1. Evaluating for safety, toxicity, and bias in
LLM generations is also critical for a holis-
tic evaluation of LLMs, however, we do not
address this topic in our paper.

2. While BSM obtains improvements in length
bias, we note that measuring length bias
in isolation is challenging because knowing
whether the model prefers the longer response
because of its length (and not for another rea-
son) is an interpretability question and hu-
mans also tend to prefer longer responses, es-
pecially for open-ended questions.

3. Recursive or multi-level BSM, in which an
LLM recursively branches into parallel sub-
tasks is an interesting avenue for future work
but we do not explore this in this work due to
the increased computation cost.

4. Decomposition into parallel sub-tasks should
also help improve efficiency (e.g., compared
to sequential decompositions) (Ning et al.,
2023) but in this work, we instead focused
on improving the task performance.
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Ag↑ PB↓ LB↓
Zero-shot (w/ LLaMA-2-70B-c) 0.46 34.00 45.00
BSM (w/ LLaMA-2-70B-c) 0.48 23.77 40.25

Table 7: Results of reference-free evaluation of ‘Rea-
soning’ questions. BSM outperforms the zero-shot base-
line in evaluating ‘Reasoning’ questions, even when
reference answers are not used (on a random subset of
100 samples).
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A Additional Experiments: LLM
Evaluation

A.1 Experimental Setup
Dataset. We experiment with the MT-Bench
dataset, that evaluates LLMs as judges of other
LLM’s responses when acting as helpful AI as-
sistants in multi-turn conversations (Zheng et al.,
2023). It consists of 2400 LLM responses and
3000 expert human judgements. LLM outputs are
responses to 80 representative instructions from 8
diverse domains: writing, roleplay, extraction, rea-
soning, math, coding, knowledge I (STEM), and
knowledge II (humanities/social science). Each
question is a conversational question, consisting of
two turns, in which the turn-2 question is a follow-
up to the turn-1 question. For each question, the
dataset consists of responses from 6 different LLMs
(Alpaca-13B, Vicuna-13b, LLaMA-13B, Claude-
v1, GPT-3.5-turbo, and GPT-4), resulting in 15
possible response pairs. Thus, the entire evalua-
tion set consists of 300 response-pair samples per
category.

Implementation Details. Algorithm 1 shows the
LLM program. For better reproducibility, all mod-
ules in BSM generate text using greedy decoding.
For the branch module, the LLM is prompted to
generate a plan consisting of a maximum of five
evaluation criteria (which we found it adheres to in
experiments). For the merge module, we find that
the non-neural merge of summing up the criterion-
wise evaluations is simple and works well in prac-
tice, hence all our experimental results are reported
with that method. The prompts are shown in Fig-
ures 4 and 5. All experiments are run on an AWS
cluster of 8 A100 GPUs.

Baselines. All methods, including BSM, account
for position bias in the same manner, generating
a verdict for both encoding orders and choosing
the final verdict based on the individual verdicts
(assigning a tie if the two encoding orders disagree).
In particular, Self-Consistency computes majority
vote independently for each encoding order.

A.2 Results and Analysis

BSM generalizes well across domains. In Ta-
ble 5, we evaluate BSM’s ability to evaluate gen-
erations for questions in the categories of ‘Role-
play’, ‘Extraction’, ‘Stem’, and ‘Humanities’. We
find that BSM is robust and performs well across
domains in terms of improvement over the LLaMa-
2-70B-chat baseline, and approaches GPT-4 perfor-
mance on several of the domains. In particular, on
the Stem domain, it is able to improve agreement
scores over the baseline by up to 26% (absolute),
match GPT-4, and even outperform it in terms of
position and length biases. Table 7 shows that BSM
outperforms the zero-shot baseline for ‘Reasoning’
questions, even in reference-free evaluations (i.e.,
GPT-4 generated answers are not used either in the
baseline or in BSM).

Combining BSM and SC reduces position bias
further. BSM generates a single solution for each
sub-problem (each branch). A possible enhance-
ment is combining BSM with self-consistency i.e.,
sampling multiple solutions for each sub-problem.
In particular, we implement BSM+SC by sampling
five evaluations per branch (with temperature 0.7)
and then the score for each sub-evaluation in that
branch is given by the average score. We compare
BSM with BSM+SC in Table 8. While agreement
scores do not improve further, we observe a 2%
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Overall Turn-1 Turn-2

Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓
BSM 0.55 17.33 39.09 0.60 14.66 39.46 0.50 20.00 39.13
BSM + SC 0.55 15.33 39.09 0.61 10.66 39.06 0.49 20.00 39.13

Table 8: Effect of using Self-Consistency within each branch of BRANCH-SOLVE-MERGE (BSM+SC). Results are
with the LLaMA-2-70B-chat model. While the overall agreement scores do not improve further, we obtain a further
2% reduction in position bias.

Overall Turn 1 Turn 2

Vicuna-33B 0.52 0.53 0.51
BSM (w/ Vicuna-33B) 0.55 0.56 0.54

LLaMA-2-70B 0.48 0.58 0.37
BSM (w/ LLaMA-2-70B) 0.53 0.59 0.47

GPT-4 0.61 0.59 0.63
BSM (w/ GPT-4) 0.63 0.63 0.62

Table 9: LLM-Human agreement scores for the ‘writ-
ing’ category questions (overall and individually for
turn-1 and turn-2). Here agreement is computed using
majority voting (instead of treating each human vote per
sample independently).

reduction in position bias. This points to two con-
clusions. First, BSM, through its decomposition
approach, already constructs sub-problems that are
granular enough and hence, the variance reduction
that one obtains through self-consistency within
each sub-problem is limited. However, the moder-
ate reduction in position bias still reflects its useful-
ness, which is a direct effect of making evaluations
more consistent.

Effect of Branching Factor. BSM has the bene-
fit of relying on the underlying LLM for deciding
what sub-problems to branch to, while the prompt
controls the maximum branching factor (see the
phrase ‘list of up to five factors’ in the branch
prompt in Fig. 4). We vary this maximum branch-
ing factor from 2 to 5 and study its effect on 100
samples from the ‘writing’ category of questions.
Table 10 reports our findings. We observe highest
agreement at a branching factor of 4, after which
the result mostly saturates. In general, the opti-
mal branching factor should depend on the specific
question under consideration and unlike past work
where users specify what factors to evaluate on (Liu
et al., 2023; Zheng et al., 2023), BSM generates
that plan on its own. Position bias continues to
decrease with increasing branching factor, where
more branches helps reduce variance in the final
judgment.

BSM is robust to evaluation scale. Evaluation
tasks, in general, require defining a scale for scor-
ing the responses. In Table 11, we compare the
performance of BSM by varying this evaluation
scale, specified in the ‘solve’ prompt (see Fig 5),
either scoring 1-5 (used in the main experiments) or
1-10. We observe that BSM is fairly robust to such
variations, obtaining comparable agreement scores.
The position bias, however, increases slightly with
a larger scale.

B Additional Experiments: Constrained
Text Generation

Analysis of Missing Concepts in BSM. The
source of missing concepts in BSM can be at-
tributed to one of the following two categories:
(a) the ‘solve’ module, i.e., the model omits con-
cepts even when generating an intermediate story
in a branch subproblem with a lesser number of
concepts; or (b) the ‘merge’ module, i.e., the inter-
mediate stories include their respective concepts
but the fusion process omits some of these. We
observe that out of 72% of the BSM stories (with
LLaMA-2-70B-chat) where at least one concept is
missing, a significant 60% of these belong to the
first category (i.e., concept omission in the ‘solve’
module) versus only 12% belong to the second cat-
egory (i.e., concept omission during ‘merging’).
This suggests that constraint satisfaction can be
further improved via a ‘recursive’ BSM method
involving iterative branching to even more granular
sub-problems. However, recursive BSM would be
significantly more expensive because of many more
calls to the base LLM. We leave this exploration as
part of future work.
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Overall Turn-1 Turn-2

BF Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓
2 0.50 22.00 49.20 0.49 24.00 45.00 0.50 22.00 56.52
3 0.52 19.00 38.09 0.53 14.00 35.00 0.51 24.00 43.47
4 0.53 19.00 38.09 0.51 16.00 35.00 0.55 22.00 43.47
5 0.52 12.00 34.92 0.51 12.00 35.00 0.54 12.00 34.78

Table 10: Impact of maximum Branching Factor (BF) on 100 samples of the ‘writing’ category in LLM response
evaluation with BSM on LLaMA-2-70B-chat.

Solving Technique Overall Turn-1 Turn-2

Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓ Ag↑ PB↓ LB↓
Eval Scale (1-5) 0.52 12.00 34.92 0.51 12.00 35.00 0.54 12.00 34.78
Eval Scale (1-10) 0.50 18.00 36.50 0.51 18.00 40.00 0.50 18.00 30.43

Table 11: Analysis of evaluation scale for LLM response evaluation, with 100 samples of ‘writing’ category. BSM
(with LLaMA-2-70B-chat) is fairly robust to such variations.

Turn 1 Question: Compose an engaging travel blog post about a recent trip to
Hawaii, highlighting cultural experiences and must-see attractions.

Turn 2 Question: Rewrite your previous response. Start every sentence with the letter A.

Adherence to Instructions: 
Evaluate how well each response adheres to the
instructions given in the user question. Consider
whether the response rewrites every sentence
with the letter A and maintains the same
meaning and structure as the original response.

Articulation: Assess the clarity and
coherence of each response. Consider
whether the response is well-organized,
easy to follow, and uses appropriate
transitions between sentences.

Attention to Detail: Evaluate the level of
detail in each response. Consider whether
the response includes specific examples and
descriptions that demonstrate a deep
understanding of the topic.

Turn-2 Writing Question

Authenticity: Assess the authenticity of
each response. Consider whether the
response reflects the writer's personal
experience and perspective, and whether it
provides original insights and
recommendations.

Branch 1

Aesthetics: Evaluate the overall aesthetic
appeal of each response. Consider whether the
response uses descriptive language, imagery,
and an engaging tone that captures the
reader's attention and imagination.

Branch 2 Branch 3 Branch 4

Question: Develop a Python program that reads all the text files under
a directory and returns top-5 words with the most number of occurrences.

Correctness: Check if the response provides a
working Python program that reads all text files
under a directory and returns the top-5 words
with the most number of occurrences.

Code Readability: Evaluate how easy it
is to understand the code provided in the
response. Consider factors such as
variable naming, indentation, and
commenting.

Efficiency: Assess the efficiency of the
provided code. Consider factors such as
time complexity and memory usage.

Turn-1 Coding Question

Helpfulness: Evaluate how helpful the
response is to a user who is new to
Python programming. Consider factors
such as the clarity of the code, the level of
detail provided, and the relevance of the
response to the user's question.

Branch 1

Relevance: Check if the response directly answers the
user's question. Consider factors such as whether the
response provides a solution that meets all the
requirements mentioned in the question.

Branch 2 Branch 3 Branch 4 Branch 5

Branch 5

Figure 2: Examples of LLM Evaluation branch generation. We show different branches (evaluation plans) generated
by BSM with a LLaMA-2-70B-chat model for different kinds of questions: (top) a turn-2 writing question and
(bottom) a coding question.
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shirt, dunk, bang, soap, court, float, swimmer, coat, sleigh, groom

Concepts

shirt, dunk, bang, soap, court float, swimmer, coat, sleigh, groom

Branch 1 Branch 2

Concepts

As the winter wedding guests arrived, they were greeted by
a swimmer, clad in a sleek, black coat, who was expertly
navigating the icy waters of the lake. The groom, a skilled
float operator, carefully guided the wedding party across the
frozen water, while the bride's maids, dressed in matching
red coats, rode on a colorful sleigh, pulled by a team of
spirited horses. As they approached the shore, the swimmer
gracefully emerged from the water and joined the wedding
party, ready to celebrate the happy couple's special day.

As the winter winds howled outside, Sarah and John stood before their friends and family, ready to say their vows. But just as the pastor began to speak,
a loud bang echoed through the church, causing everyone to jump. The sound was followed by the sight of John's best man, dunking his shirt in a bucket
of soap and water, and then using it to clean the court. Confused and amused, the guests watched as the best man explained that he had been tasked
with performing a strange and silly tradition, meant to bring good luck to the happy couple. Meanwhile, outside, the groom, a skilled float operator,
carefully guided the wedding party across the frozen water, while the bride's maids, dressed in matching red coats, rode on a colorful sleigh, pulled by a
team of spirited horses. As they approached the shore, a swimmer, clad in a sleek, black coat, gracefully emerged from the water and joined the wedding
party, ready to celebrate the happy couple's special day. Despite the unexpected interruption, Sarah and John exchanged their vows and sealed their love
with a kiss, ready to start their new life together.

A winter wedding adventure

Story Topic 

As the winter winds howled outside, Sarah and John stood
before their friends and family, ready to say their vows. But
just as the pastor began to speak, a loud bang echoed
through the church, causing everyone to jump. The sound
was followed by the sight of John's best man, dunking his
shirt in a bucket of soap and water, and then using it to clean
the court. Confused and amused, the guests watched as the
best man explained that he had been tasked with performing
a strange and silly tradition, meant to bring good luck to the
happy couple. Despite the unexpected interruption, Sarah and
John exchanged their vows and sealed their love with a kiss,
ready to start their new life together.

Concepts

Story Story 

Figure 3: An illustration of BSM with LLaMA-2-70B-chat for constrained story generation. Given a set of random
concepts, the ‘Branch’ module first divides them into two sets and generates a story topic. The ‘Solve’ module
conditions on the concepts and the topic to generate an intermediate story for each branch. The ‘Merge’ module
merges the intermediate stories to generate a final story ensuring that all concepts are still present.

Algorithm 1 BRANCH-SOLVE-MERGE: LLM Program for LLM Evaluation

Require: Question q, LLM Responses {r(A), r(B)}, Modules m = {branch(·),solve(·),merge(·)}
function BSM(q, r(A), r(B),m, swap)

C ← branch(q) ▷ Branch to different evaluation criteria.
for each ci ∈ C do

if swap = False then
s
(A)
i , s

(B)
i ← solve(q, r(A), r(B), ci) ▷ Solve for each of the criteria.

else
s
(A)
i , s

(B)
i ← solve(q, r(B), r(A), ci)

end if
end for
y(A,B) ← merge(q, {ci}ki=1, {s(A)

i }ki=1, {s(B)
i }ki=1) ▷ Merge the individual evaluations.

return y(A,B)

end function
function BRANCH-SOLVE-MERGE(q, r(A), r(B),m)

y(A,B) = BSM(q, r(A), r(B),m, swap = False) ▷ Get verdict by not swapping the response order.
y(B,A) = BSM(q, r(A), r(B),m, swap = True) ▷ Get verdict by swapping the response order.
if y(A,B) = A & y(B,A) = B then

y ← A ▷ Choose a response only if the individual evaluations are consistent.
else if y(A,B) = B & y(B,A) = A then

y ← B
else

y ← tie
end if
return y

end function
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We want to evaluate the quality of the responses provided by two AI assistants to the user question displayed
below. Your task is to propose an evaluation plan that can be executed to compare the two responses. The
evaluation plan should consist of a list of up to five factors that one should consider such as helpfulness,
relevance, accuracy, etc. In each line, write an evaluation criterion along with a short descrition of how we
should evaluate that criterion.
User Question: {question1}
Evaluation Plan:

Branch Prompt for Turn-1 Question

We want to evaluate the quality of the responses provided by two AI assistants. Focus specifically on the second
user question displayed below. Your task is to propose an evaluation plan that can be executed to compare the
two responses. The evaluation plan should consist of a list of up to five factors that one should consider such as
helpfulness, relevance, accuracy, etc. In each line, write an evaluation criterion along with a short descrition of
how we should evaluate that criterion.
First User Question: {question1}
Second User Question: {question2}
Evaluation Plan:

Branch Prompt for Turn-2 Question

Figure 4: Branch prompts for Turn-1 and Turn-2 questions for the task of LLM Response Evaluation. The Turn-1
prompt conditions only on the Turn-1 question while the Turn-2 prompt conditions on both turn questions to
generate an evaluation plan.
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You are given a user question and responses provided by two AI assistants. Your task is to evaluate and score the
quality of the responses based on a single evaluation criterion displayed below. Make sure to evaluate only based
on the criterion specified and none other. In the first line, provide a score between 1 to 5 for Assistant A's
response. In the second line, provide a score between 1 to 5 for Assistant B's response.
[User Question]
{question1}

[The Start of Assistant A's Answer]
{answer_a}
[The End of Assistant A's Answer]

[The Start of Assistant B's Answer]
{answer_b}
[The End of Assistant B's Answer]

[Evaluation Criterion]
{eval_criterion}
[End of Evaluation Criterion]

Evaluation of {criterion_name}:

Solve Prompt for Turn-1 Question

You are given two user questions and responses provided by two AI assistants for the second question. Your task is
to evaluate and score the quality of the responses based on a single evaluation criterion displayed below. Make sure
to evaluate only based on the criterion specified and none other. In the first line, provide a score between 1 to 5 for
Assistant A's response. In the second line, provide a score between 1 to 5 for Assistant B's response.
[First User Question]
{question1}

[Second User Question]
{question2}

[The Start of Assistant A's Answer]
{answer_a}
[The End of Assistant A's Answer]

[The Start of Assistant B's Answer]
{answer_b}
[The End of Assistant B's Answer]

[Evaluation Criterion]
{eval_criterion}
[End of Evaluation Criterion]

Evaluation of {criterion_name}:

Solve Prompt for Turn-2 Question

Figure 5: Solve prompts for Turn-1 and Turn-2 questions for the task of LLM Response Evaluation. Each prompt
conditions on the question(s), the responses from both LLMs, and a given evaluation criterion that the branch
module has generated.
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Given a set of concepts, we want to write a concise and coherent story consisting of a few sentences using those
concepts. In order to do so, you task is to first propose a story topic and then divide the concepts into two groups
such that the story generated from each group of concepts can be combined together to form a longer story. Make
sure that you do not leave out any concepts.

Concepts: {concepts}

Branch Prompt for Story Generation

Write a concise and coherent story on the following topic consisting of a single paragraph. Make sure to include all
the following concepts in the story.

Concepts: {concepts}
Story Topic: {story_topic}

Solve Prompt for Story Generation

Given two groups of concepts and two stories containing those concepts, combine the two stories into a concise
and coherent story consisting of a single paragraph. Make sure that the combined story does not miss any concept
from the two groups.

Group 1 Concepts: {concepts1}
Story 1: {story1}
Group 2 Concepts: {concepts2}
Story 2: {story2}

Merge Prompt for Story Generation

Figure 6: Branch, Solve, and Merge prompts for the task of Constrained Story Generation. The branch prompt
conditions on the concepts. The solve prompt conditions on a subset of concepts and a story topic that the branch
module has generated. The merge prompt conditions on the two intermediate stories that the solve module has
generated and their respective concept-sets.

Please act as an impartial judge and evaluate the quality of the stories provided by two AI assistants. Your
evaluation should consider factors such as grammaticality, coherence, engagement, etc. Begin your evaluation by
comparing the two stories and provide a short explanation. Avoid any position biases and ensure that the order in
which the stories were presented does not influence your decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing
your explanation, output your final verdict by strictly following this format: \"[[A]]\" if story A is better, \"[[B]]\" if
story B is better, and \"[[C]]\" for a tie.

Story A: {story_a}

Story B: {story_b}

Story Quality Evaluation Prompt

Figure 7: Prompt for evaluating the quality of the stories with GPT-4. It asks the model to perform a pair-wise
evaluation between the stories generated by the baseline method and by BSM.
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