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Abstract

The quality of the text-to-music models has
reached new heights due to recent advance-
ments in diffusion models. The controllabil-
ity of various musical aspects, however, has
barely been explored. In this paper, we pro-
pose Mustango: a music-domain-knowledge-
inspired text-to-music system based on dif-
fusion. Mustango aims to control the gen-
erated music, not only with general text
captions, but with more rich captions that
can include specific instructions related to
chords, beats, tempo, and key. At the core
of Mustango is MuNet, a Music-Domain-
Knowledge-Informed UNet guidance module
that steers the generated music to include the
music-specific conditions, which we predict
from the text prompt, as well as the general
text embedding, during the reverse diffusion
process. To overcome the limited availability
of open datasets of music with text captions,
we propose a novel data augmentation method
that includes altering the harmonic, rhythmic,
and dynamic aspects of music audio and using
state-of-the-art Music Information Retrieval
methods to extract the music features which
will then be appended to the existing descrip-
tions in text format. We release the resulting
MusicBench dataset which contains over 52K
instances and includes music-theory-based de-
scriptions in the caption text. Through exten-
sive experiments, we show that the quality of
the music generated by Mustango is state-of-
the-art, and the controllability through music-
specific text prompts greatly outperforms other
models such as MusicGen and AudioLDM2.

1 Introduction

Recently, diffusion models (Ho et al., 2020) have
shown prowess in image (OpenAI, 2023a), au-
dio (Liu et al., 2023a,b; Ghosal et al., 2023; Borsos

∗ Co-first authors. Both authors contributed equally.
† Both authors contributed equally and led this project.

et al., 2023) and music (Huang et al., 2023; Schnei-
der et al., 2023) generation tasks. Generating mu-
sic directly from a diffusion model poses some
unique challenges. First, music adheres to spe-
cific rules related to, for instance, tempo, key, and
chord progressions. Evaluating whether or not the
generated music follows these conditions remains
challenging. For instance, MusicLM (Agostinelli
et al., 2023), a text-to-music model, ensures that
the generated music matches the text prompts in
terms of instrumentation and music vibe. However,
the musicality of the generated music (e.g., mu-
sically meaningful harmonies and steady tempo)
remains only partially addressed. Secondly, the
availability of paired music and textual description
datasets is limited (Agostinelli et al., 2023; Huang
et al., 2023). Although the textual descriptions in
the existing datasets include details like instrumen-
tation or vibe, more representational descriptions
that capture the structural, melodic, and harmonic
aspects of music are missing. We thus argue that
including this information during generation may
improve the current text-to-music models in terms
of musicality and controllability (e.g., following
metrical structure and chord progressions). More
information on related work can be found in Ap-
pendix E. Beyond existing text-to-music systems’
capability (e.g., setting correct instrumentation),
our proposed Mustango model enables musicians,
producers, and sound designers to create music
clips with specific text-specified conditions like fol-
lowing a chord progression, setting tempo, and key
selection.

In this paper, we release the MusicBench dataset
which is derived from the MusicCaps (Agostinelli
et al., 2023) dataset and propose Mustango to ad-
dress these challenges. To create the MusicBench
dataset, we use two augmentation methods: de-
scription enrichment and music diversification.
The aim of description enrichment is to augment
the existing text descriptions with beats and down-
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beats location (inferred from tempo information
in the text prompt), underlying chord progression,
key, and tempo as control information. During
inference, these additional descriptive texts could
steer the music generation towards user-specified
music quality. We use state-of-the-art music in-
formation retrieval (MIR) methods (Mauch and
Dixon, 2010; Heydari et al., 2021; Bogdanov et al.,
2013) to extract such control information from our
training data. Furthermore, to diversify the mu-
sic samples in the training set, we augment this
dataset with variants of the existing music, altered
along three aspects—tempo, pitch, and volume—
that essentially determine the rhythmic, harmonic,
and interpretive aspects of music. The text descrip-
tions are also altered accordingly. The resulting
MusicBench dataset is 11 times the size of the orig-
inal MusicCaps (Agostinelli et al., 2023) dataset.
Our proposed controllable text-to-music model
Mustango incorporates a novel MuNet (music-
domain-knowledge-informed UNet) that can in-
still the input chords, beats, key, and tempo, along
with the textual description, in the generated mu-
sic during the reverse-diffusion process. The re-
sults in §4 indicate Mustango creates more mu-
sically meaningful output and shows improved
controllability (e.g., changing chords) over the
existing text-to-music models. Our MusicBench
dataset, Mustango implementation, and compar-
ative music samples are available through https:

//github.com/AMAAI-Lab/mustango.
The overall contributions of this paper are:

(i) We propose Mustango, a text-to-music diffu-
sion model with our novel MuNet module to ex-
plicitly guide the music generation towards input
tempo, key, chords, and general textual description.
(ii) We release the MusicBench dataset with ∼53K
pairs of music audio and description with informa-
tion on musical attributes like chords, key, and
beats. This is achieved by altering the music sam-
ples of MusicCaps along the harmony, tempo, and
volume dimensions and enriching the captions with
the aforementioned musically-relevant attributes.
(iii) We empirically verify that our Mustango
model is able to generate high quality music faith-
ful to the input text descriptions, chords, and beats.

2 Dataset Creation

In this section, the methods of music feature extrac-
tion and data augmentation are introduced. Then,
the application of these methods and the details of

our dataset are discussed.

2.1 Feature Extraction and Description
Enrichment

We extract four common music features: beats and
downbeats, chords, keys, and tempo, and use them
to enhance the text prompts and guide music gener-
ation. We use BeatNet (Heydari et al., 2021) to ex-
tract the beat and downbeat features, b ∈ RLbeats×2,
where the first dimension represents the type of
beat according to the meter (e.g., 1, 2, 3) and the
second represents the timing of each correspond-
ing beat in seconds. The second feature tempo,
measured in beats per minute (BPM), is estimated
by averaging the reciprocal of the time interval be-
tween beats. Chordino (Mauch and Dixon, 2010) is
used to extract the chord features, c ∈ RLchords×3,
where the first dimension represents the roots of the
chord sequence, the second represents the chord
type (e.g., major, minor, maj7, etc.), and the third
represents whether the chords are inverted. Finally,
Essentia’s (Bogdanov et al., 2013) KeyExtractor
algorithm1 is used to extract the key. The extracted
features are used to enrich the textual descriptions
and guide the reverse diffusion process. We notice
a similar data enrichment approach in concurrent
research (Gardner et al., 2023).

These features are then expressed in text format
following several text templates (e.g., ‘The song
is in the key of A minor. The tempo of this song
is Adagio. The beat counts to 4. The chord pro-
gression is Am, Cmaj7, G.’). We refer to these
as control sentences and they will be appended
to the original text prompt to form the enhanced
prompts. A full list of the different control sentence
templates can be found in Appendix I (Table 5).

2.2 Augmentation and Music Diversification

Our dataset augmentation for both music audio and
text prompts increases the total amount of training
data 11-fold to improve both audio quality and con-
trollability of our model. Standard text-to-audio
augmentations may not suit the nature of music
audio. For example, the augmentation method used
for Tango (Ghosal et al., 2023), whereby two audio
samples normalized to similar audio levels are su-
perimposed and their prompts concatenated, would
not work for music due to overlapping rhythms, dis-
sonance in harmony, and overall musical concept
mismatch.

1
essentia.upf.edu/reference/std_KeyExtractor.html
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Therefore, we alter individual music samples
along one of the three dimensions—pitch, speed,
and volume—which determine the melodic, rhyth-
mic, and dynamic aspects of music. We use
PyRubberband2 to shift the pitch of the music au-
dio within a range of ±3 semitones following a
uniform distribution. We decided to use this range
in order to keep the timbre of instruments relatively
untouched, as larger pitch shifts could result in un-
natural timbre. We change the speed of the music
audio by ±(5 to 25)%, drawn from a uniform dis-
tribution as well. Finally, we alter the volume of
the audio by introducing a gradual volume change
(both crescendo and decrescendo) with the mini-
mum volume drawn from a uniform distribution
from 0.1 to 0.5 times the original track’s amplitude,
while the maximum volume is kept untouched.

The text descriptions are enhanced and modi-
fied in tandem with the alterations to the music
audio. However, to enhance the robustness of the
model, we randomly discard one to four sentences
from the prompt that describe the aforementioned
music features. More details are illustrated in the
Appendix. Finally, we used ChatGPT (OpenAI,
2023b) to rephrase the text prompts to add variety
to the text prompts.

2.3 MusicBench

In this study, we make use of the Music-
Caps (Agostinelli et al., 2023) dataset, which com-
prises a collection of 5,521 audio clips featuring
music. Each clip is 10 seconds long and is sourced
from the train and evaluation splits of the Au-
dioSet (Gemmeke et al., 2017) dataset. These audio
clips are accompanied by on average four-sentence-
long English caption that describe the music. How-
ever, due to the inaccessibility of some audio files,
our dataset comes from 5,479 samples.

We split our dataset as shown in Fig. 1. First,
we split the data into TrainA and TestA sets. Sub-
sequently, four control sentences corresponding
to the music features are spliced with the original
prompts to obtain the TrainB and TestB sets from
TrainA and TestA, respectively. Then, by instruct-
ing ChatGPT to rephrase the TrainB text prompts,
we get the final TrainC set.

In addition, before performing audio augmen-
tation, we filter out ‘low quality’ samples by re-
moving samples that mention the terms ‘quality’
(as it is typically related to poor quality) or ‘low

2
github.com/bmcfee/pyrubberband

Figure 1: Composition of MusicBench dataset.

fidelity’ in the captions of TrainA set, to get 3,413
instances. The higher quality samples are altered
(see §2.2) to form a set of 37k augmentation sam-
ples, comprising 6 pitch-shifted, 4 tempo-altered
and 1 volume-altered sample per original sample.
In the case of pitch-shifted samples, instead of ran-
domly sampling from a uniform distribution, we
used all 6 unique semitone shifts (from -3 to +3, ex-
cluding 0). Thereafter we randomly select control
prompts to concatenate with the original captions.
We pick 0/1/2/3/4 prompts with a probability of
25/30/20/15/10%, respectively. We do this to in-
crease the robustness of the model, as the model
should be able to take inputs both with and with-
out control sentences specifying the four music
features. Then, to further increase text input robust-
ness, we rephrase all of the captions using ChatGPT
(see Appendix H). We find this step a necessary
addition in our augmentation pipeline as the au-
dio augmentation produces 11 similar samples that
share a big portion of their caption with the original
MusicCaps caption. By paraphrasing, we create
more unique instances. In our final training dataset,
we use both of the rephrased and non-rephrased
prompts with a probability of 85/15%, respectively.
Finally, we take this augmented set and concate-
nate it with sets TrainA, TrainB, and TrainC to get
our final training set consisting of 52,768 samples,
hereafter referred to as MusicBench. We note that
TestA and TestB sets consist of 200 ‘low quality’
(as explained above), and 200 ‘high quality’ sam-
ples. This means that the test set distribution is
slightly different from that of train set. Our inten-
tion was to create a difficult evaluation set to test
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the controllability of Mustango in tougher condi-
tions.

3 Mustango

Mustango consists of two components: 1) Latent
Diffusion Model; 2) MuNet.

3.1 Latent Diffusion Model (LDM)

Inspired by Tango (Ghosal et al., 2023) and
AudioLDM (Liu et al., 2023a), we leverage the latent
diffusion model (LDM) to reduce computational
complexity meanwhile maintaining the expressive-
ness of the diffusion model. More specifically, we
aim to construct the latent audio prior z0 extracted
using an extra variational autoencoder (VAE) with
condition C , which in our case refers to a joint
music and text condition. Similar to Tango, we
leverage the pre-trained VAE from AudioLDM to
obtain the latent code of the audio.

Through the forward-diffusion process (Marko-
vian Hierarchical VAE), the latent audio prior z0
turns into a standard gaussian noise zN ∼ N (0, I),
as shown in Eq. (1) where a pre-scheduled gaussian
noise (0 < β1 < β2 < · · · < βN < 1) is gradually
added at each forward step:

q(zn|zn−1) = N (
√

1− βnzn−1, βnI). (1)

For the reverse process, which reconstructs z0
from Gaussian noise zN ∼ N (0, I), we propose
MuNet (see §3.2), which is able to steer the gen-
erated music towards the given condition C. Intu-
itively, backward diffusion aims to iteratively re-
construct the latent audio prior zn−1 from the pre-
vious step zn until z0, using a denoiser ϵ̂(n)θ (zn, C).
This denoiser is driven by classifier-free guidance,
similar to Tango. The reverse diffusion process is
outlined in Appendix A.

This reconstruction is trained using a noise-
estimation loss where ϵ̂

(n)
θ is the estimated noise

and γn is the weight of reverse step n:

LDM =
N∑

n=1

γnEϵn∼N (0,I),z0 ||ϵn − ϵ̂
(n)
θ (zn, C)||22.

3.2 MuNet

The reverse-diffusion process, briefly described in
§3.1, is conditioned on both musical attributes (beat
b and chord c) and text τ (C := {τ, b, c}). This is
realized through the Music-Domain-Knowledge-
Informed UNet (MuNet) denoiser as follows:

U (1) = zn

Aτ = MHAθτ (Q = U (l),K/V = FLAN-T5(τ))

Ab = MHAθb(Q = Aτ ,K/V = Encb(b))

Ac = MHAθc(Q = Ab,K/V = Encc(c))

U (l+1) = UNet(l)θ (Ac)

ϵ
(n)
θ (zn, C) := U (L+1) (2)

where, MHA is the multi-headed attention
block (Vaswani et al., 2017) for the cross atten-
tions, where Q,K, and V are query, key, and value,
respectively, and FLAN-T5 is the text encoder
model (Chung et al., 2022), adopted from Tango.
We prioritize applying cross-attention to the beat
first, as we consider a consistent rhythm to be the
fundamental basis for the generated music. Sub-
sequently, we can focus on conditioning based on
chords.

MuNet consists of a UNet (Ronneberger et al.,
2015)—consisting of in total L downsampling,
middle, and upsampling blocks—and multiple con-
ditioning cross-attention blocks. We use two en-
coders, Encb and Encc, to encode the beat and
chord features which leverage both the state-of-
the-art Fundamental Music Embedding (FME) as
well as an onset-and-beat-based positional encod-
ing (Guo et al., 2023) which we name Music Posi-
tional Encoding (MPE). These ensure the musical
features are properly captured and several funda-
mental music properties (e.g., intervals between
pitches are translational invariant) are preserved.

We introduce the two encoders Encb and Encc

that extract the beat and chord embeddings from
the raw input. The beat encoder Encb, defined in
Eq. (3), encodes the beat types b[:, 0] (§2.1) using
One-Hot Encoding (OHb) and the beat timings
b[:, 1] with Music Positional Embedding. By con-
catenating these beat types and timing encodings
and passing them through a trainable linear layer
(Wb), we obtain the final beat features:

Encb(b) := Wb(OHb(b[:, 0])⊕MPE(b[:, 1]))
(3)

Encc(c) := Wc(FME(c[:, 0])⊕OHt(c[:, 1])⊕
OHi(c[:, 2])⊕ MPE(c[:, 3])) (4)

In the chord encoder in Eq. (4), we obtain the
chord embeddings by first concatenating i) FME-
embedded (Guo et al., 2023) chord roots c[:, 0]
(see §2.1); ii) One-Hot encoded chord type (c[:, 1]);
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Figure 2: Depiction of our proposed Mustango model. Beats and chords are inferred from the caption when they
are not provided as input.

iii) One-Hot encoded chord inversions (c[:, 1]);
and iv) MPE-embedded (Guo et al., 2023) tim-
ing of the chords (c[:, 3]). Subsequently, this con-
catenated representation is passed through a train-
able linear layer (Wc). Notably, we incorporate
a music-domain-knowledge informed music em-
bedding through the use of the Fundamental Music
Embedding from Guo et al. (2023), which effec-
tively captures the translational invariant property
of pitches and intervals, resulting in a more musi-
cally meaningful representation of the chord.

After obtaining the encoded beat and chord em-
beddings, we use two additional cross-attention
layers to integrate these music conditions during
the denoising process, whereas Tango used one
cross-attention layer to incorporate only text condi-
tions. This enables MuNet to leverage both music
and text features during the denoising process, re-
sulting in more controllable and meaningful music
generation.

3.3 Inference

During the training phase, we use teacher forc-
ing and hence utilize the ground truth beats and
chord features to condition the music generation
process. However, during inference, we employ
two transformer-based text-to-music-feature gener-
ators that have been trained independently to pre-
dict the beat and chord features as follows:

Beats: We use the DeBERTa Large model (He
et al., 2022) as the beats predictor. The model takes
the text caption as input and predicts: i) the beat
count (meter) of corresponding music, and ii) the

sequence of interval duration between the beats.
We predict them from the token representations of
the final layer of the model. The beat count takes
an integer value between 1 and 4 for the instances
in our training data. Hence, we predict the beat
using a four-class classification setup from the first
token of the output layer. The interval durations
are predicted as a float value from the second token
onwards. As an example, if the beat count is pre-
dicted as 2 and the interval durations are predicted
as t1, t2, t3, . . . , then the predicted beats are as fol-
lows: 1 at t1, 2 at t1 + t2, 1 at t1 + t2 + t3, etc. We
keep the predicted beats time up to 10 seconds and
ignore predicted timestamps beyond that.

Chords: We use the sequence to sequence
FLAN-T5 Large model (Chung et al., 2022) as
the chords predictor. The model takes the concate-
nation of the text caption and the verbalized beats
as input. The verbalized beats are prepared for the
example we illustrated earlier as follows: Times-
tamps: t1, t1 + t2, t1 + t2 + t3 . . . , Max Beat:
2. The model is trained to generate the verbalized
chords sequence with timestamps, which would
look like something as follows: Am at 1.11; E at
4.14; C#maj7 at 7.18. We again keep the predicted
chord time up to 10 seconds and ignore timestamps
predicted beyond that.

4 Experiments

We conduct extensive objective and subjective eval-
uations to answer these research questions: i) How
is the audio quality of the music generated by
Mustango? ii) Does Mustango generate music
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with better music quality compared to other base-
lines? iii) Is Mustango more controllable in terms
of music-specific instructions? iv) Is our data aug-
mentation approach effective – can models trained
on only this dataset compete with large-scale pre-
trained models?

4.1 Baselines and Mustango Variants
We first compare Mustango with Tango since it
shares a similar architecture with Mustango, ex-
cept for the extra conditioning module: MuNet.
To judge the efficacy of Mustango, we train
the following three models from scratch: i)
Tango trained on MusicCaps TrainA, ii) Tango
trained on MusicBench, iii) Mustango trained on
MusicBench. Additionally, we finetune Tango and
Mustango from pre-trained Tango checkpoints: iv)
pre-trained Tango fine-tuned on AudioCaps and
MusicCaps3, v) pre-trained Tango fine-tuned on
AudioCaps4, then finetuned on MusicBench, vi)
Mustango initialized from pre-trained Tango and
finetuned on MusicBench. Furthermore, we com-
pare Mustango with state-of-the-art Text-to-Music
model of MusicGen (Copet et al., 2023) and a Text-
to-Audio model of AudioLDM2 (Liu et al., 2023b).
For MusicGen baselines, we use the small and
medium checkpoints. For AudioLDM2, we compare
with their music-specific checkpoint.

4.2 Training and Additional Evaluation Set
All the models were trained at a learning rate of
4.5e−5 using the AdamW (Loshchilov and Hutter,
2017) optimizer until convergence. Our Beat and
Chord predictors are also trained on MusicBench.
More details on training the classifier-free guid-
ance, and parameters are reported in Appendix B.

Given that some of the fine-tuned models used in
our experiments were exposed to the entire Music-
Caps dataset in the initial Tango pre-trained check-
point, we can only fairly evaluate those models on
a different and independently created evaluation set.
We thus curated 1,000 pseudo-captioned evaluation
samples from the music files of Free Music Archive
(FMA) (Defferrard et al., 2016), which we refer to
as FMACaps. The details of creating FMACaps are
reported in Appendix F.

4.3 Inference Settings and Time
In all our experiments, we use 200 diffusion steps
with a classifier-free guidance scale of three for

3
hf.co/declare-lab/tango-full-ft-audio-music-caps

4
hf.co/declare-lab/tango-full-ft-audiocaps

all variants of Mustango, Tango, and AudioLDM2.
In MusicGen, we generate audio sequences of 10
seconds to match the outputs of the other models.
We further performed a simple time measurement
experiment to assess computing time of presented
models. With batch size of 1, we inferred 20 sam-
ples and took the average inference time on a single
Tesla V100 GPU. The obtained results are: Tango
34 sec, MusicGen-M 51 sec, Mustango 76 sec.

4.4 Objective Evaluation Methodology
Audio Quality Estimation The quality of the
generated audio samples is evaluated using three
objective metrics: Fréchet Distance (FD), Fréchet
Audio Distance (FAD) (Kilgour et al., 2019), and
Kullback-Leibler divergence (KL) as used earlier
in AudioLDM and Tango.

Controllability Evaluation We evaluate each
model’s controllability using TestB (see §2.3) and
a version of FMACaps that has all the control sen-
tences for each sample in the prompt. We first
generate music based on the text prompts and then
extract the musical features mentioned in §2.1. Sub-
sequently, we define nine metrics (all represented in
percentage; in the case of binary values, 100 stands
for true and 0 stands for false) to evaluate whether
the music properties in the generated music match
the text prompts. The metrics are:

• Tempo Bin (TB): The predicted beats per minute
(bpm) fall into the ground truth tempo bin.
• Tempo Bin with Tolerance (TBT): The pre-
dicted bpm falls into the ground truth tempo bin or
a neighboring one.
• Correct Key (CK): The predicted key matches
the ground truth key.
• Correct Key with Duplicates (CKD): The pre-
dicted key matches the ground truth key or an equiv-
alent key (i.e., a major key and its relative minor).
• Perfect Chord Match (PCM): The predicted
chord sequence perfectly matches ground truth in
terms of length, order, chord root, and chord type.
• Exact Chord Match (ECM): The predicted
chord sequence matches the ground truth exactly
in terms of order, chord root, and chord type, with
tolerance for missing and excess chord instances.
• Chord Match in any Order (CMO): The por-
tion of predicted chord sequence matching the
ground truth chord root and type, in any order.
• Chord Match in any Order major/minor Type
(CMOT): The portion of predicted chord sequence
matching the ground truth in terms of chord root
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Model Datasets Pre-trained #Params TestA TestB FMACaps
FD ↓ FAD ↓ KL ↓ FD ↓ FAD ↓ KL ↓ FD ↓ FAD ↓ KL ↓

MusicGen-S – ✗ 300M 35.40 6.82 1.81 36.40 7.54 1.75 23.21 5.13 1.31
MusicGen-M – ✗ 1.5B 36.49 6.98 1.71 35.54 6.99 1.71 22.61 5.01 1.33
AudioLDM2 – ✗ 346M 32.76 5.29 1.68 33.66 5.42 1.75 19.99 3.01 1.33

Tango MusicCaps ✗ 866M 30.80 2.84 1.34 30.39 2.92 1.33 28.32 3.75 1.22
Tango MusicCaps ✓ 866M 34.87 4.05 1.25 37.85 4.52 1.32 28.81 2.92 1.21
Tango MusicBench ✗ 866M 28.50 2.29 1.33 28.27 2.17 1.32 26.31 2.31 1.16
Tango MusicBench ✓ 866M 25.38 1.91 1.19 24.60 1.77 1.13 24.48 2.96 1.15
Mustango MusicBench ✗ 1.4B 26.58 2.09 1.21 25.24 1.57 1.18 24.24 2.94 1.16
Mustango MusicBench ✓ 1.4B 26.35 1.46 1.21 25.97 1.67 1.12 25.18 2.34 1.16

Table 1: Objective evaluation results of the models on TestA, TestB, and FMACaps datasets.

and binary major/minor chord type, in any order
(e.g., D, D6, D7, Dmaj7 are all considered major).
• Beat Match (BM): The percentage of predicted
beat counts that match the ground truth.

4.5 Objective Evaluation Results
Audio Quality: The results for TestA, TestB and
FMACaps are presented in Table 1. Both Tango
variants trained on MusicCaps are inferior to the
other four models, which depicts the efficacy of
our augmentation strategy. Pre-trained Tango fine-
tuned on MusicBench and Mustango pre-trained
seem to perform very similarly in FD and KL, but
Mustango pre-trained shows a big improvement in
FAD, which suggests better-perceived quality and
musicality as FAD is a human perception-inspired
metric. Lastly, the performance of Mustango
trained from scratch is comparable in FD and KL to
both pre-trained versions of Mustango and Tango
trained on MusicBench, which shows that training
with our augmented dataset can be an alternative
to large-scale audio pre-training for music gener-
ation. Mustango also outperforms MusicGen and
AudioLDM2 in FAD and KL across all three sets.

We note that the results for MusicGen and
AudioLDM2 differ from what was reported in their
original papers in evaluation on MusicCaps. This
is due to MusicBench representing a different,
more challenging, split of data than the Music-
Caps evaluation set, as described in §2.3. Addi-
tionally, we note that the results of both MusicGen
and AudioLDM2 show more improvement than
Mustango when evaluated on FMACaps as com-
pared to TestA and TestB. This is due to the fact
that Mustango was trained on MusicBench, thus
TestA and TestB represent similar distributions to
the training set, while FMACaps is of a slightly dif-
ferent distribution. The MusicGen and AudioLDM2
models on the other hand, were trained with vari-
ous large-scale data, hence they perform well on

an unseen set.

Controllability: The evaluation results on con-
trollability are shown in Table 2. On TestB, in terms
of Tempo metrics, all the models perform compa-
rably, except for MusicGen, which performs better.
In Beat metrics, the models perform similarly to
each other. Mustango placed second closely be-
hind MusicGen. The similarity in performance
among the models could be caused by the Music-
Caps dataset already containing enough informa-
tion about tempo, with words such as "slow", "fast",
"moderate", etc. This information being passed
through the text encoding might be a sufficient
control command. Furthermore, the inaccuracy of
the beat extractor combined with the fact that not
all music pieces in MusicCaps have clearly audi-
ble beats might further contribute to the Beat and
Tempo metrics results. Thus, having more open-
sourced high-quality music data would greatly ben-
efit development of even more controllable sys-
tems.

In Key metrics, we can observe that models
trained on MusicBench perform significantly bet-
ter than the ones trained on MusicCaps. Addition-
ally, Mustango outperforms all the other models
on TestB and placed second on FMACaps. Finally,
in Chord controllability, Mustango outperforms all
the other models by a big margin. On FMACaps, we
further see that the Chord metrics are even better
for Mustango with CMOT reaching 75.83. Overall,
the results gathered from both TestB and modi-
fied FMACaps correlate in most aspects. Overall,
Mustango performs fine in Beat and Tempo met-
rics, and it excels in Key and Chord controllability.

4.6 Subjective Evaluation Methodology

We conducted two rounds of subjective evalua-
tion, each consisting of a general and an expert
listening test that focuses on controllability. The
first round is aimed at comparing Mustango vari-
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Model Datasets Pre-
trained

TestB FMACaps

Tempo Key Chord Beat Tempo Key Chord Beat
TB TBT CK CKD PCM ECM CMO CMOT BM TB TBT CK CKD PCM ECM CMO CMOT BM

MusicGen-S – ✗ 39.50 56.00 17.5 19.00 3.17 6.03 12.56 21.74 36.75 45.0 61.9 19.9 21.1 3.62 6.49 10.99 22.30 42.4
MusicGen-M – ✗ 41.00 60.25 25.5 26.25 3.97 8.21 14.42 26.76 45.00 42.7 63.5 23.5 24.3 6.38 10.60 16.24 31.51 42.9
AudioLDM2 – ✗ 21.25 47.75 6.50 10.25 0.79 2.67 4.87 10.55 39.75 24.2 48.7 5.9 9.9 1.06 1.96 3.27 8.84 38.1

Tango MusicCaps ✗ 26.00 55.25 4.00 7.00 0.53 2.09 4.30 11.13 41.00 22.5 49.6 3.6 8.6 0.64 1.43 4.03 10.82 41.1
Tango MusicCaps ✓ 27.50 52.00 7.75 11.25 1.06 3.07 6.72 13.99 36.75 24.2 48.6 5.9 8.6 1.17 2.74 5.17 12.69 35.4
Tango MusicBench ✗ 24.75 50.75 34.25 34.50 5.56 12.03 21.54 32.21 34.25 25.5 51.0 38.1 38.4 6.60 13.45 21.18 41.49 36.4
Tango MusicBench ✓ 26.00 48.75 30.25 31.00 6.61 13.33 22.53 39.31 38.50 22.8 45.6 30.6 31.7 7.55 14.72 22.35 44.46 36.0
Mustango MusicBench ✗ 25.50 52.00 41.75 42.50 17.99 32.61 48.74 68.46 42.00 24.1 50.9 36.8 37.3 23.94 35.43 49.59 75.83 42.6
Mustango MusicBench ✓ 21.25 48.25 34.50 35.50 11.64 20.82 32.93 50.56 34.75 26.2 52.2 33.9 34.7 15.21 25.48 37.50 61.55 39.1

Table 2: Controllability evaluation results of the models on TestB and full-control variant of FMACaps. Higher
numbers indicate better controllability.

ants with Tango and in the second run we com-
pare Mustango with the state-of-the-art models:
MusicGen and AudioLDM2.

In the first round of the general listening test,
subjects listened to ten generated music samples
for each of the four models (pre-trained Mustango,
Mustango, Tango trained with MusicCaps and Mu-
sicBench) and were provided with the input text
caption. The ten text prompts were custom-made
by music experts in the style of MusicCaps, and
are shown in Table 7 in the Appendix. The partic-
ipants were asked to rate the: i) audio rendering
quality (AQ), ii) relevance of the audio with the
input text prompt (REL), iii) overall musical qual-
ity (OMQ), iv) rhythm consistency (RC), and v)
harmony and consonance of music (HC). For the
expert listening test, we added two additional music
control-specific aspects to rate the degree to which
the chords and tempo from the generated music
match the text prompt. We denote them as MCM
and MTM (musical chord/tempo match). All the as-
pects were rated on a 7-point Likert scale using the
PsyToolkit interface (Stoet, 2010). The full ques-
tions and interface used are shown in Appendix G.

For the expert listening test in the first round,
we found experts with at least five years of formal
musical training who can identify music attributes
from music audio. They were presented with 80
samples generated using 20 custom text prompts
for each of the four models as shown in Appendix J.
Samples consisted of ten contrasting pairs (e.g.,
same prompts with different chord changes) that
aimed to target musical controllability.

In the second round of the general listening test,
we used the same 10 captions as in the first run
with five additional captions taken from FMACaps.
In the expert test, we kept the same 10 contrasting
pairs as in the first round. For both of these tests, we
downsampled the MusicGen samples to 16 kHz to
eliminate audio quality bias in listeners’ responses,

and we excluded the AQ metric from these tests.

4.7 Subjective Evaluation Results

A total of 48 participants participated in the first
round of the general listening test, of which 26 had
more than five years of formal musical training.
The results in Table 3 show the average ratings
for each of the metrics defined above. We can
clearly see that the Tango baseline model is out-
performed in all metrics by the models trained on
MusicBench. Interestingly, Mustango trained from
scratch performs the best in terms of audio quality,
rhythm presence, and harmony. The differences in
ratings are minimal between the three top models,
clearly confirming that our augmentation method
is effective in furthering the output quality and that
Mustango is able to reach state-of-the-art quality.

A total of four experts participated in the con-
trollability listening study. The results of the expert
listening study in Table 3 further confirm that both
Mustango models outperform the Tango baselines
in all metrics, especially in terms of the chords of
the generated music matching with the input text
caption (Chord Match or MCM). This further sup-
ports the controllability results presented in Table 2
and shows that our proposed Mustango model can
indeed understand music-specific text prompts.

In the second run, a total of 17 general audience
listeners and 4 experts participated. The results
are depicted in the lower part of Table 3. We per-
formed a series of paired t-tests on the obtained
results and conclude that Mustango outperforms
MusicGen and AudioLDM2 in terms of REL, with
a statistically significant difference; and performs
similarly in OMQ, HC, and MTM to MusicGen,
where the t-tests showed no stastically significant
differences (both in general audience and expert
test). Moreover, Mustango dominates in MCM. In
RC, MusicGen outperformed both AudioLDM2 and
Mustango.
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Model Datasets Pre-trained General audience Music experts
REL AQ OMQ RC HC REL MCM MTM AQ OMQ RC HC

Tango MusicCaps ✓ 4.09 3.68 3.55 3.91 3.80 4.35 2.75 3.88 3.35 2.83 3.95 3.84
Tango MusicBench ✓ 4.96 4.26 4.40 4.49 4.61 4.91 3.61 3.86 3.88 3.54 4.01 4.34
Mustango MusicBench ✓ 4.85 4.10 4.02 4.24 4.43 5.49 5.76 4.98 4.30 4.28 4.65 5.18
Mustango MusicBench ✗ 4.79 4.20 4.23 4.51 4.63 5.75 6.06 5.11 4.80 4.80 4.75 5.59

MusicGen-M - - 4.55 - 4.40 5.11 4.63 4.41 2.99 4.83 - 5.01 5.61 5.31
AudioLDM2 - - 3.99 - 3.89 4.38 4.11 3.71 2.48 3.53 - 3.29 3.84 3.40
Mustango MusicBench ✗ 5.18 - 4.15 4.31 4.47 5.79 6.10 4.84 - 4.53 4.14 5.11

Table 3: Average ratings for each metric in the general and expert listening study. Top part of the table shows the first
run of listening tests, the bottom part represents the second round of comparison with MusicGen and AudioLDM2.

4.8 Ablation Study
Although without explicitly ablating one module at
a time due to resource constraints, we are able to
answer the following research questions:

Is Pre-training Mustango Necessary? In one
of the experiment settings in §4.1, we initialized
Mustango with a pre-trained Tango checkpoint
and subsequently fine-tune it using the AudioCaps
dataset. This Tango model was pre-trained using
1.2 million text-audio paired samples and it en-
capsulates a broad understanding of general audio
and text. However, we observed this did not prove
beneficial for music generation (see Tables 1 to 3).
Nevertheless, these checkpoints may find utility in
composing music with soundscapes, such as “Hip-
hop music with a lion’s roar in the background.”

Is MuNet Helpful? We prove the effectiveness
of MuNet in §4.5 and §4.7, we show that the use
of MuNet significantly enhances the performance
of Mustango in terms of controllability under both
objective and subjective evaluations. Moreover,
several objective metrics which are not explic-
itly targeted at controllability (i.e., FD, FAD, and
KL-divergence), consistently show superior perfor-
mance when MuNet is incorporated. With classier-
free guidance, MuNet does not compromise the
overall quality of the generated music when the
control sentences in the prompts are absent.

4.9 Discussions
As both objective and subjective evaluation results
show, Mustango gives state-of-the-art performance
in music quality and drastic improvement in mu-
sic controllability, despite being trained on a pub-
licly available dataset of relatively small size as
compared to other available text-to-music systems
such as MusicGen, which are usually trained on
private large-scale licensed dataset. Although these
text-to-music systems usually generate music with

better audio quality or longer-term structure, which
sheds light on further improvement direction of
Mustango.

5 Conclusion

In conclusion, Mustango presents a significant ad-
vancement in the field of controllable text-to-music
generation. Mustango is a controllable diffusion-
based text-to-music system inspired by music-
domain knowledge which is able to generate mu-
sic that follows certain music properties embed-
ded within user-specified text prompts. The in-
tegration of the MuNet module within Mustango
enables greater music controllability over state-
of-the-art text-to-music systems such as Tango,
AudioLDM2 and MusicGen. We also made our
dataset MusicBench and model publicly available.
MusicBench contains 11 times more data than
the original MusicCaps dataset and includes text
prompts that contain music-theory-based descrip-
tion and augmented music audio.

6 Limitations

Our music generation method is limited to Western
music in terms of controllability since the control
information mentioned in the paper (e.g., chord,
key) might be missing or appear in a different form
in other non-Western music (e.g., Indian or Chinese
classical music). We also assumed the availability
of paired text captions of music, which was used to
train our model. Mustango is also currently limited
to generating music of up to ten seconds due to
computational constraints. Adapting Mustango for
generating long-form music is left for future work.

7 Ethical Considerations

Our training data is based on the MusicCaps
dataset (Agostinelli et al., 2023). The 5.5k music
samples in Music-Caps are sourced from Youtube
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under Creative Commons license. We perform our
custom data augmentation strategies solely on this
dataset. We did not use any other privately-licensed
dataset.

Our listening tests involved human annotators
for which the data collection protocol was approved
by an independent ethics review board. More de-
tails can be found in the Appendix G.
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A Reverse Diffusion Process

The reverse process to iteratively reconstruct z0 is as following:

pmus
θ (zn−1|zn, C) = N (µ

(n)
θ (zn, C), β̃(n)), (5)

µ
(n)
θ (zn, C) =

1√
αn

[zn − 1− αn√
1− αn

ϵ̂
(n)
θ (zn, C)], (6)

β̃(n) =
1− ᾱn−1

1− ᾱn
βn, (7)

αn = 1− βn, (8)

αn =

n∏

i=1

αn, (9)

ϵ̂
(n)
θ (zn, C) = w ϵ

(n)
θ (zn, C) + (1− w)ϵ

(n)
θ (zn), (10)

where w is the guidance scale in Eq. (10) used during inference. During training however, ϵ(n)θ (zn, C) is
directly used for noise estimation where the conditions C are randomly dropped as specified in §4.2.

B Training Details

To further improve the robustness of the classifier-free guidance in Mustango, we use these three dropouts
during training:

1. With 5% probability, drop all the inputs (text, beats, and chords);
2. With 5% probability, drop an input feature (applied to each of the inputs separately);
3. We determine the probability of masking a prompt as min(100, 10N

M )%, where N represents the
number of sentences in the current prompt, and M is the average number of sentences per prompt. Once a
prompt is chosen for masking, we randomly draw an integer X from a uniform distribution in the range
[20, 50] and proceed to remove X% of the input sentences in the prompt.

The idea behind the first two dropouts is to enable the model to work with incomplete, faulty, or missing
input information. The third dropout is aimed at improving robustness for short text inputs. We apply
these dropouts to Tango as well, with a small modification: since Tango does not use music feature inputs,
we replace the first two dropouts with a single 10 % probability of dropping all text.

To train Mustango and Tango baselines, we used various GPU resources: 4 Nvidia Tesla V100 GPUs,
and 8 Quadro RTX 8000 GPUs. Training time ranged from 5 to 10 days with effective batch size of 32.

C Performance of the Predictors

During the inference phase, we utilize pre-trained predictors for chord and beat predictions based on textual
prompts. These predictors exhibit exceptional performance when the prompts explicitly contain chord and
beat information, achieving accuracy of 94.5 % on the TestB dataset. However, our interest extends to
evaluating their performance in scenarios where control sentences are absent from the prompt—essentially,
do these predictors generate noisy chords and beats? The concern is that such noise might propagate from
the predictors to Mustango, significantly impacting the overall quality of the generated music.

In our experiments, TestA serves as a scenario where control sentences are not included in the textual
prompts. Upon comparing the performance (Table 1) of Tango and Mustango on TestA, we observe
that the latter outperforms the former across most metrics. This observation indicates that the control
predictors do not compromise the performance of Mustango relative to Tango. The adaptability of these
predictors to specific themes or styles in the absence of control sentences remains a potential avenue for
future exploration, a topic we briefly touch upon below.

First, we investigate the effect of the Chord predictor on the generated output in a little comparison
experiment. We take both TestA and TestB samples synthesized by Mustango and extract features from
them. Then, we evaluate the chord control metrics of PCM, ECM, CMO, and CMOT using chords
predicted by chord predictor vs chords detected in the audio from feature extraction. The metrics on TestA
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are PCM - 16.15, ECM - 33.95, CMO - 39.81, and CMOT - 47.82. The metrics on TestB are PCM - 17.75,
ECM - 32.07, CMO - 47.36, and CMOT - 66.80. These results show that Mustango tends to follow the
chords predicted by the chord predictor quite often. While the results on TestA are a bit lower than on
TestB, they are still higher than Tango results on TestB as shown in Table 2.

Second, we take a look at some specific examples:

Prompt: “This folk song features a female voice singing the main melody. This is accompanied by a
tabla playing the percussion. A guitar strums chords. For most parts of the song, only one chord is
played. At the last bar, a different chord is played. This song has minimal instruments. This song
has a story-telling mood. This song can be played in a village scene in an Indian movie. The chord
sequence is Bbm, Ab. The beat is 3. The tempo of this song is Allegro. The key of this song is Bb
minor.”

Without control sentences in italics (TestA): chords predicted: ["G", "C", "G", "C", "G", "C"],
chords predicted time: [0.46, 1.21, 3.25, 5.48, 7.24, 8.92]. chords extracted from audio: ["G6",
"C", "G", "C", "G", "Cmaj7"], chords time extracted from audio: [0.46, 1.58, 3.07, 5.94, 7.62,
9.66]

With control sentences in italics (TestB): chords predicted: ["Bbm", "Ab"], chords predicted
time: [0.46, 7.24], chords extracted from audio: ["F#maj7", "Ab"], chords time extracted from
audio: [0.46, 7.43].

Prompt: “A female singer sings this bluesy melody. The song is medium tempo with minimal guitar
accompaniment and no other instrumentation. The song’s medium tempo is very emotional and
passionate. The song is a modern pop hit but with poor audio quality. The key of this song is G minor.
The time signature is 3/4. This song goes at 168.0 beats per minute. The chord progression in this
song is Am7, G7, Cm, G, A7.”

Without control sentences in italics (TestA): chords predicted: ["C#m7", "C#m7", "C#m7",
"C#m7", "C#m7"], chords predicted time: [0.46, 3.25, 6.32, 8.17, 9.29], chords extracted from
audio: ["F#", "C#m", "F#m", "C#m7"], chords time extracted from audio: [0.46, 1.21, 4.55, 5.39]

With control sentences in italics (TestB): chords predicted: ["Am7", "G7", "Cm", "G", "A7"],
chords predicted time: [0.46, 1.67, 3.53, 5.48, 8.92], chords extracted from audio: ["Am", "G",
"C", "Gmaj7", "A6", "Gmaj7"], chords time extracted from audio: [0.46, 1.67, 3.72, 5.94, 8.73,
9.85]

The two depicted samples give us some specific insights into the predicted chords and chords detected
in the generated audio. Most of the time, Mustango follows the chords provided by the chord predictor in
most cases. We can observe some substitutions in the actual chords detected from the audio compared
to the predicted chords, e.g., G became G6, C became Cmaj7, and C#m7 became C#m. These chord
substitutions are very close musically and could even be a consequence of the feature extraction system
not being 100% accurate. The substitution of Bbm for F#maj7 is more of a change at first glance, but given
that 2 out of 3 notes in Bbm are also contained in the 4-note F#maj Mustango, we see this substitution as
understandable too. However, we note that this substitution would not be considered a valid one in any of
our proposed chord control metrics.

Last but not least, in the absence of explicit control sentences in the prompt, we observe that the chords
predicted by the chord predictor usually follow specific patterns. The generated samples follow a pattern
of two chords that alternate (A, B, A, B, A, B). Another type of an observed pattern is one chord repeated
(A, A, A, A, A, A). A more elaborate study on the Chord predictor behavior should be a topic for future
work.

D Insights from the Human Annotation

Here, we take a look at some generated examples from the expert listening test, specifically a blues
sample with the following prompt: “An instrumental blues melody played by a lead guitar
and a strumming acoustic guitar. The acoustic guitarist’s strumming keeps the rhythm
steady. The chord sequence is G7, F7, C7, G7. This song goes at 100 beats per minute.”
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Figure 3: Mel-spectrogram of a blues sample generated by Tango trained on MusicBench.

In Figure 3 we can see the mel-spectrogram generated by pre-trained Tango finetuned on MusicBench.
As is clear from the spectrogram and the waveform attached, the music appears a bit abruptly in contrast
to the sample generated by Mustango depicted in Figure 4 where the rhythm is very consistent. This
seems to reflect the results of our expert listening study from Table 3. The predicted beat timestamps by
our Beat predictor that condition the diffusion process are as follows: beats predicted: [[0.26, 0.87, 1.52,
2.09, 2.76, 3.41, 4.0, 4.57, 5.1, 5.65, 6.22, 6.79, 7.36, 7.79, 8.3, 8.8, 9.3, 9.75], 3]. These predicted beat
timestamps show that there is a beat roughly every 0.6 seconds, which corresponds to 100 beats per
minute tempo. This is the tempo ordered and properly predicted to condition the model.

When it comes to chords, Tango would sometimes not follow the chords, make them sound unclear, or
not give them enough time to sound through. On the other hand, Mustango seems to follow the predicted
chords as well as their starting time. We take a look at the same blues example. The predicted chord
condition from the Chord predictor is as follows: chords predicted: ["G7", "F7", "C7", "G7"], chords
predicted time: [0.46, 2.04, 4.37, 8.17]. We can see that the chord onset time is nicely spread in time.
This is also clear from listening to the sample and seeing the spectrogram with perceived chord starts in
Figure 4. To confirm this, we extracted the chord features from the generated audio to compare. The
chord feature extracted from the audio sample generated by Mustango is: chords: ["G7", "F7", "C",
"G7"], chords time: [0.46, 1.76, 4.74, 8.45] Interestingly, the match of timing and chord sequence is
very clear here. The substitution of the C7 chord for C can be a minor mistake either on the generation
part or the feature extraction part. If we consider the chord metrics from the controllability evaluation in
§4.4, this would yield a score of 100 for CMOT and a score of 75 for CMO and ECM. In contrast, the
sample generated by pre-trained Tango finetuned on MusicBench sounds more unstable and does not give
enough time to chords to sound through. The chord feature extracted from the audio sample generated by
pre-trained Tango finetuned on MusicBench is: chords: ["Fm6", "G", "Dm", "G", "C", "Gm"], chords
time: [0.46, 2.69, 3.53, 5.76, 6.69, 9.66]. We can see that there are 6 chords extracted from the audio
sample instead of the ordered 4, and they do not match too well, as we see a minor type of F chord instead
of a major; G also appears in a minor variant once; and there is an additional Dm chord too. This would
yield a CMOT score of 75, but CMO and ECM scores of 0. The perceived chord starts can be seen in
Figure 3.
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Figure 4: Mel-spectrogram of a blues sample generated by Mustango with vertical lines showing perceived chord
starts.

Model Dataset Core Architecture Area of Focus

MusicLM (Agostinelli et al., 2023) Private Dataset including an open-
sourced test set: MusiCaps

Hierarchical Seq2Seq Modeling Audio Quality, Text-Music Relevance

Noise2Music (Huang et al., 2023) Private Dataset obtained via pseudo la-
belling

2-stage Diffusion Audio Quality, Text-Music Relevance

Ernie-Music (Zhu et al., 2023) Private Dataset consisting of online mu-
sic and corresponding comments

Diffusion (without using Audio Latent) Audio Quality, Text-Music Relevance,
Diversity

MusicGEN (Copet et al., 2023) Private Dataset Autoregressive Transformer Audio Quality, Text-Music Relevance,
Music Quality, Controllability (Follows
given melodies)

Mousai (Schneider et al., 2023) Private Dataset; Data Collection
Pipeline partially open-sourced

2-Stage Latent Diffusion Audio Quality, Text-Music Relevance,
Music Quality, Efficiency, Long-Term
Structure, Diversity

JEN1 (Li et al., 2023) Private Dataset Latent Diffusion, Multi-Task Learning Audio Quality, Text-Music Relevance,
Music Quality, Efficiency

Mustango (ours) Public Dataset + Music-Domain-
Knowledge-Enhanced Data Augmenta-
tion

Latent Diffusion Audio Quality, Text-Music Relevance,
Music Quality, Music Controllability
(Follows user-specific text prompts in-
cluding tempo, chord changes, etc)

Table 4: High-level comparison among various recent text-to-music models.

E Related Works

In this section, we describe existing state-of-the-art research on text-to-audio generation, followed by
the more specific domain of text-to-music generation. For audio generation, AudioLM (Borsos et al.,
2023) uses the state-of-the-art semantic model w2v-Bert (Chung et al., 2021) to generate the semantic
tokens from audio prompt. These tokens condition the generation of acoustic tokens that are decoded
using acoustic model SoundStream (Zeghidour et al., 2022) to generate audio.

AudioLDM (Liu et al., 2023a) is a text-to-audio framework that leverages CLAP (Wu et al., 2023),
a joint audio-text representation model, and a latent diffusion model (LDM). Specifically, an LDM is
trained to generate the latent representations of melspectrograms which are obtained using a VAE. During
diffusion, the CLAP embeddings are utilized to guide the generation. Tango (Ghosal et al., 2023) leverages
the pre-trained VAE from AudioLDM and replaces the CLAP model with an instruction fine-tuned large
language model: FLAN-T5 to achieve comparable or better results while training with a much smaller
dataset.

In the field of music generation, there is a long history of generated MIDI music (Herremans et al.,
2017). Using MIDI may be useful for producers to work with in Digital Audio Workstations, yet it has the
disadvantage that datasets are extremely limited. In recent years, the focus ofconditional music generation
within the audio domain has centered around musical conditions, such as note intensity or tempo (Pasini
and Schlüter, 2022). More recently, however, models that directly generate audio music from text captions
have emerged. A summary of these papers are provided in Table 4. MusicLM (Agostinelli et al., 2023)
uses two pre-trained models, MuLan (Huang et al., 2022), a joint text-music embedding model, and
w2v-Bert (Chung et al., 2021), a masked language model to address the challenge of maintaining both
synthesizing quality and coherence during music generation. These two pre-trained models are then
utilized to condition the acoustic model SoundStream (Zeghidour et al., 2022) which in turn can generate
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acoustic tokens autoregressively. These acoustic tokens are then decoded by SoundStream to become the
final audio output. MusicLM outperforms two existing commercially available text-to-music software:
Mubert5 and Riffusion6 in terms of Frechet Audio Distance, Faithfulness to the text description, KL
divergence, and Mulan Cycle Consistency. Since no publications are linked to these latter two systems,
the model details are not available.

Another text-to-music model is Noise2Music (Huang et al., 2023). To obtain training data for the model,
the authors propose a method to obtain a large amount of paired music and text data in which LaMDA-
LF (Thoppilan et al., 2022), a large language model, is used to generate multiple generic candidate text
descriptions. The aforementioned joint text-music embedding MuLan is then utilized to select the best
candidates for existing music data. The obtained music and text pairs are then used to train a two-stage
diffusion model, where the first diffusion model generates an intermediate representation and the second
generates the final audio output.

Ernie-Music (Zhu et al., 2023) uses a diffusion model to generate music audio from free-form text.
It is trained using a private dataset which consists of online music and the top-rated comments from
the comment section. The authors recruited 10 casual music listeners to participate in a listening study.
Results showed that Ernie-Music outperforms two non-diffusion-based generative systems.

In recent months, a number of text-to-music models have come out. Schneider et al. (2023) proposes a
2-stage diffusion model in which the first diffusion magnitude autoencoder (DMAE) learns a meaningful
latent representation of music (64 times smaller than the input), while in the second diffusion model, text
condition along with the latent acquired at the first stage is included to guide the final music generation.
MusicGen (Copet et al., 2023) utilizes a single-stage transformer LM with efficient token interleaving
patterns to achieve high-quality generation and better controlabillity over the output. MusicGen can be
conditioned by a text prompt, or by an audio fragment in the form of a chromagram. The system was
trained with a licensed dataset. The JEN-1 model (Li et al., 2023) is an omnidirectional diffusion model
designed to perform various tasks such as text-guided music generation, music inpainting, and continuation.
Another interesting recent model is that of Su et al. (2023), which focuses on generating music pieces to
complement video, conditioned on both video and text inputs. Unlike text, video conditioning can contain
a lot of temporal information, such as beats and emotions, which are important for music.

F FMACaps dataset creation

We source the new music files from the Free Music Archive (FMA) (Defferrard et al., 2016), a large
dataset of popular songs. In particular, we took 1,000 random samples from FMA-large and clipped out a
random 10-second fragment from each of them. Then, we used Essentia’s tagging models (Bogdanov
et al., 2013) to assign tags to audio. Specifically, we used the models for general auto-tagging, mood,
genre, instrumentation, voice, and voice gender which provide us with a rich set of tags along with their
probabilities. Then, a music expert wrote text descriptions for 25 of the samples based on the audio as
well as the extracted tags. Next, we instructed ChatGPT to perform an in-context learning task to get
pseudo-prompts from tags for the rest of the dataset. Finally, we added relevant control sentences to the
prompts after extracting relevant music features, as described in §2.1. Similar to our training set, we
added 0/1/2/3/4 control sentences with a probability of 25/30/20/15/10% respectively. We refer to this
evaluation set as FMACaps.

G User Interface and Questions used for Listening Studies

The human evaluation participants for the listening tests were recruited through email contacts of various
music research and machine learning communities. Their age ranged from 15 to 60+ years. No specific
information on the country of residence was collected. Participation was free of reward and voluntary. All
the participants were informed about this before their participation. The data collection protocol for the
listening test was approved by an independent ethics review board.

5
https://github.com/MubertAI/Mubert-Text-to-Music

6
https://www.riffusion.com/
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Figure 5: Question interface used for the general listening test.

Figure 6: Question interface used for the controllability listening test with music experts.
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H ChatGPT Rephrasing

In our data augmentation pipeline, we rephrase captions using ChatGPT. The instructions to the API are
as follows:

"I have a song for which the caption is the following:" *caption* "I have made some changes to
the audio file which are optionally described towards the end of the caption. Can you rephrase the
caption more naturally in a single paragraph using all the musical terms provided above? You should
generate only the caption and nothing else. Do not use the word modification in your generation. The
length of the new caption should be no more than eight sentences."

Examples of rephrasing:

Original
This folk song features a male voice singing the main melody in an emotional mood. This is

accompanied by an accordion playing fills in the background. A violin plays a droning melody. There
is no percussion in this song. This song can be played at a Central Asian classical concert. The chord
sequence is B, Dmaj7, B, Gbm. This song goes at 95.0 beats per minute. The beat counts to 2. This
song is in the key of B minor.

Rephrased
A male voice sings the main melody with emotional intensity in this Central Asian folk song. The

accordion fills the background while a violin provides a droning melody. There is no percussion in
this piece, which can be played at a classical concert in Central Asia. With a chord sequence of B,
Dmaj7, B, Gbm, the song has a beat count of 2 at a tempo of 95.0 beats per minute. The song is in
the key of B minor.

Original
This folk song features a male voice singing the main melody in an emotional mood. This is

accompanied by an accordion playing fills in the background. A violin plays a droning melody. There
is no percussion in this song. This song can be played at a Central Asian classical concert. The key is
C minor. The chord progression in this song is C, D#maj7, C, Gm.

Rephrased
This emotional folk song, perfect for a Central Asian classical concert, showcases a male voice

singing the main melody accompanied by a droning violin and accordion fills in the background.
With no percussion present, the key of C minor sets the tone, and the chord progression follows suit
with C, D#maj7, C, Gm.

I Control-Sentence Templates to Enhance the Prompts
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Feature Input Output sentences

Tempo int i • The bpm is i.
• The tempo of this song is i beats per minute.
• This song goes at i beats per minute.

Tempo string w ∈ [‘Grave’, ‘Largo’, ‘Adagio’, • This song is in w.
‘Andante’, ‘Moderato’, ‘Allegro’, • The tempo of this song is w.
‘Vivace’, ‘Presto’, ‘Prestissimo’] • This song is played in w.

• The song is played at the pace of w.

Beat count int b • The time signature is b
4

.
• The beat is b.
• The beat counts to b.

Chords text list of chords s • The chord sequence is s.
• The chord progression in this song is s.

Key string rootnote • The key is rootnote m
string m ∈ [‘major’, ‘minor’] • The key of this song is rootnote m.

• This song is in the key of rootnote m

Volume change float f indicating start/end time • There is a w from start until f seconds
of crescendo/decrescendo, • The song starts with a w.
string w ∈ [’crescendo’, ’decrescendo’], • u the volume progressively!
and u ∈ [’increase’, ’decrease’] • There is a w from f seconds on.

• At seconds f , the song starts to gradually u in volume.
• Midway through the song, a w starts.

Table 5: Rules used to create text sentences from input parameters detected from the data (key, chords, beats,
tempo), and those used to augment the data (crescendo, etc.). Note that the tempo strings w were assigned based on
music-theory binning in terms of bpm: Grave (0, 40], Largo (40, 60], Adagio (60, 70], Andante (70, 90], Moderato
(90, 110], Allegro (110, 140], Vivace (140, 160], Presto (160, 210], Prestissimo (210, ∞).
.
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J Custom Captions used for Listening Studies

1 This piece is an instrumental reggae song that is very chill and slow. There is no singer. It is relaxing to hear the groove
with the bass guitar. The song includes reggae electric guitar, horn, and percussion like bongos. The keyboard provides
lush chords. The time signature is 4/4. The chord progression is G, F, C.

2 This instrumental blues song goes very slow at a bpm of 50. You can hear the bass, harmonica and guitar grooving. The
harmonica plays a solo over the harmonious guitar and bass.

3 This classical piece is a waltz played by a string quartet. It includes two violins, a viola, and a cello, the beat counts to 3.
It sounds elegant, and has a strong first beat. It has a natural and danceable rhythm. The mood is romantic. The chord
progression is Em, Am, D, G.

4 African drums are playing a complex rhythm while a male vocalist chants a ritual. The atmosphere is mesmerizing. The
complex drumming pattern is a mesmerizing blend of syncopation, polyrhythms, and intricate patterns. It takes place
somewhere in the wilderness, or in an indigenous village.

5 This rock piece with guitars and drums is loud but fades out later on and becomes softer. It sounds powerful yet
melancholic. It is instrumental only. A bass guitar provides a steady beat, enhancing the groove and energy of the song.

6 A single bass instrument is playing a running baseline. It has a jazzy feeling to it and sounds mellow. This could be
played in a jazz club. The tempo is 120 bpm.

7 This is a hip hop song. It has two rappers taking turns, one female and one male. An electronic synth melody sample in
the background keeps on looping. We can hear electronic beats and sometimes record-scratching sound effects.

8 A smooth jazz song with saxophone, drums and guitar with a chord progression of Dm7, G7, Cmaj7. The song is relaxed
and slow. There are no vocals, it is instrumental only. The saxophone produces a velvety tone that delivers an emotive
melody.

9 A piano plays a soothing popular instrumental song that could serve as background music in a restaurant. There is only
piano playing, no other instruments. There is a piano melody with background piano chords of Am, Fmaj7, Cmaj7, and
G. The tempo is unhurried. The melody is gentle and soothing, evoking a sense of nostalgia and comfort.

10 Indian folk music with a sitar and female vocals. It evokes a sense of zen and elevation. A sitar player begins with a
gentle and melodic introduction, plucking the strings with precision and emotion. There are rhythmic beats of traditional
hand percussion instruments, such as the tabla. It could be played at a cultural festival to showcase Indian culture.

11 This is a melodic and energetic rock ballad with a male vocalist. It has a country vibe and is of alternative or popfolk
genre. The electric and acoustic guitars and the bass create the background, while the drums give a regular beat. The
singer’s voice is complemented by a piano.

12 This is a slow classical piece with violins and pianos. It has a film score feel and is instrumental only. The orchestration
is soft, with strings and flutes.

13 This fast and energetic rock song is performed by a male singer. The genre is alternative or punk rock. The background
is formed by a guitar, an electric guitar, bass, and drums. There is also a synthesizer.

14 This is a slow and ambient instrumental piece with a soundscape that feels like space. The atmosphere is meditative and
relaxing but with a certain darkness to it. The genre is electronic soundtrack, and the music is completely instrumental
with a synthesizer, bass, and drums forming the background. This song goes at 167.0 beats per minute.

15 This is an instrumental piece with Indian and classical elements. The sitar, violin, and flute play prominent roles in
creating a meditative and relaxing mood. The percussion and guitar provide a background rhythm to this world and jazz
fusion.

Table 6: Custom captions used for the general listening test. Captions in the top part were used in both first and
second runs, captions in the bottom part were used in the second run only.

Table 7 presents the 20 text prompts used for the expert listening studies. They consist of 10 contrasting
pairs written by music experts. Care was given to make sure that they were realistic and that there were
no contradicting elements in the prompts. For instance, caption 1 in Table 7 contrasts with caption 2.
They share the same original caption “An instrumental blues melody played by a lead guitar and a
strumming acoustic guitar. The acoustic guitarist’s strumming keeps the rhythm steady.”. However, the
control sentences are different: “The chord sequence is G7, F7, C7, G7. This song goes at 100 beats per
minute.” versus “The chord sequence is Dm, Am, Em. This song goes at 60 beats per minute.”. Both
chord sequences come from blues progressions, but they belong to a different key/mode. The tempo of
caption 2 is significantly slower. Such captions are ideally suited to test if the control sentences influence
the generated music.
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1 An instrumental blues melody played by a lead guitar and a strumming acoustic guitar. The acoustic guitarist’s strumming
keeps the rhythm steady. The chord sequence is G7, F7, C7, G7. This song goes at 100 beats per minute.

2 An instrumental blues melody played by a lead guitar and a strumming acoustic guitar. The acoustic guitarist’s strumming
keeps the rhythm steady. The chord sequence is Dm, Am, Em. This song goes at 60 beats per minute.

3 A piano plays a popular melody over the chords of Am, Fmaj7, Cmaj7, G. There is only piano playing, no other
instruments or voice. The tempo is Adagio.

4 A piano plays a popular melody over the chords of Gm, Bb, Eb. There is only piano playing, no other instruments or
voice. The tempo is Vivace.

5 This is an intense and loud punk song with guitars and drums. It is instrumental only. It is very energetic and powerful.
The thunderous beats of the drummer provide a pounding rhythm. A guitar solo melody emerges from the chaotic
background of the chords. The chord progression is A, D, E. The tempo of the song is 160 bpm.

6 This is an intense and loud punk song with guitars and drums. It is instrumental only. It is very energetic and powerful.
The thunderous beats of the drummer provide a pounding rhythm. A guitar solo melody emerges from the chaotic
background of the chords.The chord progression is C, B, A, G. The tempo of the song is 100 bpm.

7 A slow paced jazz song played by a saxophone, piano, guitar and drums follows a chord progression of Em7b5, A7,
Dm7. The pianist produces delicate harmonies and subtle embellishments. The drummer provides a brushed rhythm.
The guitar strums softly, while the saxophone plays a solo over the chords. This song goes at 80 beats per minute.

8 A slow paced jazz song played by a saxophone, piano, guitar and drums follows a chord progression of B7, G7, E7, C7.
The drummer provides a brushed rhythm. The guitar strums softly, while the saxophone plays a solo over the chords.
This song goes at 115 beats per minute.

9 This is a techno piece with drums and beats and a leading melody. A synth plays chords. The music kicks off with a
powerful and relentless drumbeat. Over the pounding beats, a leading melody emerges. It has strong danceability and
can be played in a club. The tempo is 120 bpm. The chords played by the synth are Am, Cm, Dm, Gm.

10 This is a techno piece with drums and beats and a leading melody. A synth plays chords. The music kicks off with a
powerful and relentless drumbeat. Over the pounding beats, a leading melody emerges. It has strong danceability and
can be played in a club. The tempo is 160 bpm. The chords played by the synth are C, F, G.

11 A horn and a bass guitar groove to a reggae tune. The combination of the horn section’s catchy melodies and the buoyant
bassline creates an irresistible groove. The bassline is bouncy and lively. The song is played at the pace of Adagio. An
electric keyboard plays the chords Am, Dm, G, C.

12 A horn and a bass guitar groove to a reggae tune. The combination of the horn section’s catchy melodies and the buoyant
bassline creates an irresistible groove. The bassline is bouncy and lively. The song is played at the pace of Moderato. An
electric keyboard plays the chords E, B, A.

13 This is a metal song with a guitar, drums and bass guitar. The bassist, wielding a solid-bodied bass guitar, adds depth
and power to the sonic landscape. The drummer commands a massive drum kit. With a relentless force, they pound
out thunderous rhythms, driving the music forward. As the song begins, the guitar roars to life, delivering a series of
distorted chords. It follows the chords of Em, C, G, D. The tempo is 120 bpm.

14 This is a metal song with a guitar, drums and bass guitar. The bassist, wielding a solid-bodied bass guitar, adds depth
and power to the sonic landscape. The drummer commands a massive drum kit. With a relentless force, they pound
out thunderous rhythms, driving the music forward. As the song begins, the guitar roars to life, delivering a series of
distorted chords. It follows the chords of A, F#m, D, E. The tempo is 170 bpm.

15 A man sings a captivating folk song while strumming chords on an acoustic guitar. This fits a campfire evening happening.
The chord progression is G, C, D, G. The tempo is 100 beats per minute.

16 A man sings a captivating folk song while strumming chords on an acoustic guitar. This fits a campfire evening happening.
The chord progression is Am, Em, Dm, Am. The tempo is 70 beats per minute.

17 This is a classical music piece played by a string trio. The instruments involved are violin, viola, and cello. The violin
plays the lead melody. The cello’s soulful and melodic contributions add depth and gravitas to the performance. The
time signature is ¾. The tempo of this song is Presto. The chord sequence is E, C#m, A, B.

18 This is a classical music piece played by a string trio. The instruments involved are violin, viola, and cello. The violin
plays the lead melody. The cello’s soulful and melodic contributions add depth and gravitas to the performance. The
time signature is 4/4. The tempo of this song is Andante. The chord sequence is Am, Dm, E7, Am.

19 This is a pop song with a female singer singing the leading melody and synthesizers looping samples as background.
These loops provide the song’s electronic foundation, creating a rich and layered sonic landscape. The charismatic
female singer has a dynamic and emotive voice. The tempo is Moderato. The chord sequence is C, G, Am, F.

20 This is a pop song with a female singer singing the leading melody and synthesizers looping samples as background.
These loops provide the song’s electronic foundation, creating a rich and layered sonic landscape. The charismatic
female singer has a dynamic and emotive voice. The tempo is Presto. The key is A minor and the chord sequences are
Am, Dm, E.

Table 7: Custom opposing captions created for the control experiment.
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K Additional Examples of Generated Music

Here we show additional samples generated from pre-trained Tango fine-tuned on MusicCaps, Tango
finetuned on MusicBench, Mustango, MusicGen-M, and AudioLDM2, all generated from the same prompts.

Prompt: A horn and a bass guitar groove to a reggae tune. The combination of the horn section’s
catchy melodies and the buoyant bassline creates an irresistible groove. The bassline is bouncy and lively.
The song is played at the pace of Adagio. An electric keyboard plays the chords Am, Dm, G, and C.

Figure 7: Mel-spectrogram of a reggae sample generated by pre-trained Tango fine-tuned on MusicCaps with
vertical lines showing perceived chord starts. The blue box shows an area of dissonance in the music. Overall, the
audio is a bit noisy.

Figure 8: Mel-spectrogram of a reggae sample generated by pre-trained Tango fine-tuned on MusicBench with
vertical lines showing perceived chord starts. There are too many chords here.

Figure 9: Mel-spectrogram of a reggae sample generated by Mustango with vertical lines showing perceived chord
starts. The chords match the prompt.
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Prompt: This is a metal song with a guitar, drums and bass guitar. The bassist, wielding a solid-bodied
bass guitar, adds depth and power to the sonic landscape. The drummer commands a massive drum kit.
With a relentless force, they pound out thunderous rhythms, driving the music forward. As the song
begins, the guitar roars to life, delivering a series of distorted chords. It follows the chords of Em, C, G, D.
The tempo is 120 bpm.

Figure 10: Mel-spectrogram of a metal song sample generated by pre-trained Tango fine-tuned on MusicCaps. It is
very noisy from the very start.

Figure 11: Mel-spectrogram of a metal song sample generated by pre-trained Tango fine-tuned on MusicBench.
The song starts with 4 beats from the drummer, but there is a bit of noise from the start.

Figure 12: Mel-spectrogram of a metal sample generated by Mustango. The song starts with 4 distinguishable beats
from the drummer, then the guitars join.
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Prompt: This is a classical music piece. There are violins playing a lead theme, with a double bass and
cymbals in the background. It is a melancholic, rather sad piece. The music builds up in volume gradually.
The key is A minor. The chord sequence is Am, C, Am.

Figure 13: Mel-spectrogram of a classical music piece generated by Mustango. The effect of gradual volume
increase (crescendo) is apparent (red color envelope around waveform).

Figure 14: Mel-spectrogram of a classical music piece generated by MusicGen-M. The effect of gradual volume
increase (crescendo) is not clear (red color envelope around waveform).

Figure 15: Mel-spectrogram of a classical music piece generated by AudioLDM-2. The effect of gradual volume
increase (crescendo) is not present (red color envelope around waveform).
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