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Abstract

Language models (LMs) as conversational as-
sistants recently became popular tools that help
people accomplish a variety of tasks. These
typically result from adapting LMs pretrained
on general domain text sequences through fur-
ther instruction-tuning and possibly preference
optimisation methods. The evaluation of such
LMs would ideally be performed using human
judgement, however, this is not scalable. On the
other hand, automatic evaluation featuring aux-
iliary LMs as judges and/or knowledge-based
tasks is scalable but struggles with assessing
conversational ability and adherence to instruc-
tions. To help accelerate the development of
LMs as conversational assistants, we propose a
novel automatic evaluation task: HumanRankE-
val (HRE). It consists of a large-scale, diverse
and high-quality set of questions, each with sev-
eral answers authored and scored by humans.
To perform evaluation, HRE ranks these an-
swers based on their log-likelihood under the
LM’s distribution, and subsequently calculates
their correlation with the corresponding human
rankings. We support HRE’s efficacy by inves-
tigating how efficiently it separates pretrained
and instruction-tuned LMs of various sizes. We
show that HRE correlates well with human
judgements and is particularly responsive to
model changes following instruction-tuning.

1 Introduction

The evaluation of Language Models (LMs) is a
challenging problem and a prolific research sub-
ject. Many benchmarks have recently been pro-
posed aiming to evaluate the general capabilities of
LMs, covering both automatic and human evalua-
tion (Chang et al., 2023). Evaluating LMs’ capa-
bilities as conversational assistants, i.e. its adher-
ence to human instructions, is particularly challeng-
ing as model inputs and outputs are more unstruc-
tured and open-ended. Ideally, human judgement
should be employed to evaluate such open-ended

Figure 1: Overview of HumanRankEval: given a ques-
tion with multiple answers, we correlate human scores
of each answer with the log-likelihoods of the LM. The
unabridged answers can be found in Figure 2.

outputs, typically either through interactive con-
versation with LMs (Zheng et al., 2023b) or by
presenting participants with outputs from different
LMs and collecting their preferences (van der Lee
et al., 2021). As this approach is time-consuming
and does not scale well, previous work proposed
to substitute human judgement with auxiliary large
LMs. However, these efforts have so far only
been applied with proprietary models, e.g. GPT-
4 (Zheng et al., 2023b; Dubois et al., 2023), and
with mixed results (Chiang and Lee, 2023). On the
other hand, conventional automatic evaluation of
LMs on knowledge-based tasks such as multiple-
choice question-answering (QA) (Zellers et al.,
2019; Clark et al., 2018; Lin et al., 2021), can
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Evaluation Type Ground Truth Metric(s)

Human Human judgement Elo, Win-Rate, Other
Knowledge-based Human-authored text (e.g. exams, tests) Accuracy-like
LM-as-a-judge LMs (e.g. ChatGPT, GPT-4) Elo, Win Rate, Other
HumanRankEval Human-authored text (Ranked QA pairs) Correlation

Table 1: Human evaluation versus relevant automatic evaluation types and their key features.

measure specific task performance in a scalable
manner, but is not necessarily indicative of how an
LM would perform these tasks in an open-ended
conversational setting (Tunstall et al., 2023).

To this end, we introduce HumanRankEval
(HRE), an automatic evaluation task for LMs as
conversational assistants that comprises a novel
dataset and metric. The core idea behind HRE is
to measure an LM’s alignment with human prefer-
ences (HP). Intuitively, given a question (Q) with
multiple available responses (A1, . . . , A4), HRE
measures how well an LM’s “preference” ranking
over those answers aligns with those of humans
(see Figure 1). We approximate HP by collecting a
set of questions and rated answers from StackOver-
flow and StackExchange. The HRE dataset covers
a diverse collection of 14 topics, each containing
500 information-seeking questions paired with the
top-4 answers rated (on average) by 100+ domain
experts. To estimate the “preferences” of an LM,
we obtain the log-likelihood of each answer under
the model’s distribution. The HRE metric is calcu-
lated as the correlation of the LM’s rankings against
the corresponding human rankings. We should note
that we do not consider HRE as a replacement for
human judgement, but rather propose its usage for
fast iterations during development.

We support HRE’s efficacy by investigating how
effectively it separates pretrained and instruction-
tuned LMs of various sizes. We then compare
our results against those of other evaluation frame-
works, showing that HRE correlates well with hu-
man evaluation of LMs and provides unique in-
sights. Specifically, relative to OpenLLM, a highly
popular automatic evaluation leaderboard (Beech-
ing et al., 2023), HRE is able to more effectively
differentiate pretrained and instruction-tuned LMs.
Our contributions are threefold: 1) we create a
large-scale, high-quality, diverse QA dataset to cap-
ture/approximate human preferences, 2) introduce
an efficient automatic method to evaluate LMs as
conversational assistants by measuring the correla-
tion of LM and human preferences, and 3) perform

analysis that shows HRE correlates well with hu-
man judgement and provides unique insights.1

2 Related Work

The evaluation of LMs is a highly active research
topic, exemplified by a recent survey (Chang et al.,
2023) that tracks over 250 papers, with over 100 of
those published in just the last 12 months. There
are additional surveys focused on alignment (Wang
et al., 2023c), trustworthiness (Liu et al., 2023b),
morals (Scherrer et al., 2023) and fairness (Li et al.,
2023c) as well as multiple benchmarks with leader-
boards covering a wide variety of LM behaviours
(Zhong et al., 2023; Wang et al., 2023a; Srivas-
tava et al., 2022; Chia et al., 2023; Ye et al., 2023;
Liang et al., 2022; Dubois et al., 2023; Liu et al.,
2023a; Yuan et al., 2023; Sun et al., 2023; Ziyu
et al., 2023), to list just a few. Therefore, we focus
on methods relevant to evaluating LMs as conver-
sational assistants to differentiate from prior work.

2.1 Human Evaluation
Due to the open-ended nature of the output, human
judgement is considered the gold standard for eval-
uating LMs as conversational assistants (Ji et al.,
2023; Song et al., 2023; Rafailov et al., 2023), how-
ever, such evaluation is costly and can be biased
(Wu and Aji, 2023). These issues are more preva-
lent in crowd-sourcing settings where participants
need to be vetted to ensure their expertise and relia-
bility, especially given that the motivations at play
(e.g. to complete as many assessments as fast as
possible) may run counter to the purposes of the
evaluation (van der Lee et al., 2021). Evaluation is
often set up as an interactive dialog with each LM
where participants are asked to rate its performance
in various metrics (van der Lee et al., 2021; Ji et al.,
2022) or by contrasting multiple LM outputs (pro-
duced by the same input/prompt) and voting for the
one that is preferred (Bai et al., 2022). The latter

1The dataset and code can be downloaded from https:
//github.com/huawei-noah/noah-research/
tree/master/NLP/HumanRankEval.
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Figure 2: HumanRankEval example from StackOverflow (Java topic).

preferences can be converted into Elo ratings to
obtain LM rankings (Zheng et al., 2023b; Wu and
Aji, 2023). A public leaderboard that maintains
such rankings is Chatbot Arena.2 Its game-like en-
vironment encourages users to guess the identity of
two LMs at the end of an anonymous interaction.
These multi-turn conversations are unstructured
and depend on the interests of participants.

2.2 Automatic Evaluation

2.2.1 Knowledge-based Evaluation
A subset of automatic evaluation focuses on
knowledge-based tasks with strictly-defined inputs
and outputs, to enable the easy application of au-
tomatic metrics and measure performance. This
is in contrast to how conversation assistants oper-
ate, where input and output is more open-ended.
For LMs as conversational assistants, the focus
of knowledge-based evaluation is to measure the
general capabilities of the model, rather than par-
ticular performance on downstream tasks. As such,
evaluation is usually applied through zero-shot or
few-shot/prompt settings, without fine-tuning LMs
on task-specific data. Examples include multiple-
choice QA (Liu et al., 2020), code generation
(Chen et al., 2021), Tool/API usage (Liu et al.,
2023a), general and advanced knowledge tests
(Hendrycks et al., 2020; Liu et al., 2020; Cobbe
et al., 2021; Zellers et al., 2019; Clark et al., 2018;
Lin et al., 2021), complex logical reasoning (Cobbe
et al., 2021), school admission tests (Zhong et al.,
2023) and fine-grained "skill sets" evaluation (Ye
et al., 2023). Individual benchmarks are often ag-
gregated into high-profile public rankings such as
the OpenLLM Leaderboard, which we reference

2https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

throughout.3 Importantly, such tasks and metrics
do not accurately estimate how an LM may per-
form on them within a conversational context, as
they were not designed for this purpose.

2.2.2 LM-as-a-judge
A faster alternative to human evaluation has been
proposed recently, i.e. to use LMs as judges (typi-
cally larger than the LMs being judged). The most
popular examples include MT-Bench (Zheng et al.,
2023b) and AlpacaEval4 (Dubois et al., 2023). MT-
Bench prompts GPT-4 to score the quality of the
candidate LM on a 10-point scale over 80 two-turn
conversations. AlpacaEval instructs GPT-4 to vote
whether the output of the candidate LM or Chat-
GPT is better, resulting in a win-rate % against
GPT-3.5, using 805 manually selected prompts.
However, these models are known to have bi-
ases (Wu and Aji, 2023) and their appropriateness
for LM evaluation is frequently being questioned
(Aiyappa et al., 2023; Chiang and Lee, 2023; Li
et al., 2023b). At the time of this writing, such
approaches have only been explored in connection
with proprietary LMs, with concerns about data pri-
vacy, frequent model (judge) changes, deprecated
APIs and their associated costs.

2.2.3 A Note on Multi-Turn Evaluation
Even though the goal is to evaluate LMs as con-
versational assistants, most automatic evaluation
methods (including HRE) are limited to evaluating
single turn conversations. This is due to the diffi-
culty of integrating LM interaction within an auto-
matic task. MT-Bench contains two-turn prompts,

3https://hf.co/spaces/HuggingFaceH4/
open_LM_leaderboard

4https://tatsu-lab.github.io/alpaca_
eval/
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but assumes no interaction either, with the second-
turn prompt attending on a reference answer.

3 HumanRankEval

We now introduce HumanRankEval, an automatic
evaluation task (comprising a novel dataset and
metric) for LMs as conversational assistants. As
mentioned earlier, the core idea behind HRE is to
evaluate LMs by observing how an LM’s “pref-
erence” ranking (derived from the model’s log-
probabilities over several answers) aligns with
human-obtained rankings. To achieve this, we
gather open-ended, information-seeking questions
from popular online communities to capture HP.
Each question comes with several answers ranked
by domain enthusiasts (see Figure 2 for an exam-
ple), indicating the order of responses (most to
least preferable). Our data sources consist of Stack-
Exchange and StackOverflow. As both contain a
plethora of topics, some of which may be consid-
ered subjective, we endeavoured to select the more
objective/quantitative topics that we would expect
to have a high degree of consensus among users,
i.e. most people would agree on "good" answers.

3.1 StackExchange

StackExchange is a trusted site for communities
of experts answering questions on various subjects.
The data dumps were sourced from the Internet
Archive5 and processed with Eleuther’s scripts.6

Due to limited data availability (after filtering for
quality), we set the number of questions to 500
for each topic for a uniform distribution over all
domains. We selected questions from popular dis-
cussion topics: Unix-based OS, English Language,
Physics, LaTeX, Software Engineering, Maths and
Statistics. We also created three "mixed topics"
(500 questions each) from somewhat less popu-
lar subsets that did not individually yield enough
questions after filtering: CS+DB (CodeReview,
Computer Science, Data Science and Databases),
App+Andr (Apple and Android) and Lang+Sci
(Latin, Chinese, French, German, Japanese, Span-
ish plus Engineering, Chemistry, Biology, Earth
Science and Astronomy).

5https://archive.org/download/
stackexchange

6https://github.com/EleutherAI/
stackexchange-dataset

Figure 3: Average votes per answer/topic. Each answer
has approximately double the votes of the next answer.
More details can be found in Figure 11 in the Appendix.

3.2 StackOverflow
StackOverflow is a highly popular website and a
leading community of people who contribute their
expertise on a plethora of technical topics. In order
to prevent HRE from being dominated by program-
ming languages, i.e provide a balance against the
more general topics of StackExchange, we selected
questions from each of the following popular topics:
Python, Java, HTML (includes CSS, JavaScript)
and C++. The dataset was contributed by Li et al.
(2023d).7 Once again, we set the number of ques-
tions to 500 per topic for a balanced dataset.

3.3 Data Filtering
HRE includes QA pairs that meet the following
criteria: i) the question has at least 4 answers (keep
the top 4) to ensure a meaningful ranking, ii) the
answers are scored by at least 40 people (10 per
answer, on average) to ensure a minimum annota-
tor pool size for each question thus giving a more
reliable agreement on the rankings, iii) each answer
has at least 5 votes to ensure a minimum annotator
pool for each answer hence avoiding low quality
responses, iv) the maximum length of each QA
pair is 4,000 characters to evaluate models with
shorter context windows without truncation, v) an-
swers with identical votes are discarded (we keep
the first answer with N votes) and vi) duplicate
QA pairs are discarded to ensure unique QA pairs

7https://huggingface.co/
datasets/suriyagunasekar/
stackoverflow-with-meta-data
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Figure 4: HumanRankEval (per-topic) scores for Pythia LMs.

for each topic. This resulted in 7K questions (28K
answers) spanning 14 topics, shown in Figure 3.
The QA pairs collectively received over 700k votes
(7k questions, 100+ votes per question on average)
from more than 100K domain experts and enthusi-
asts, assuming a ∼20% proportion of unique users,
as in LMSYS-Chat-1M (Zheng et al., 2023a).

3.4 HumanRankEval Score

The HumanRankEval metric is based on the as-
sumption that an LM’s conversational quality can
be estimated by whether the sequences it produces
more frequently are more preferable to humans
than the infrequent ones. Sequence generation
tasks such as WMT (Barrault et al., 2020), Hu-
manEval (Chen et al., 2021) and GSM8K (Cobbe
et al., 2021) provide the LM with a prompt (e.g.
problem description), generate the output token-
by-token, possibly extract the answer from the re-
turned text, then compute the score. Alternatively,
we can provide the questions as prompts to the
LM, and assuming direct access to the logits of the
LM being evaluated, determine the log-likelihood
of the HRE human-authored answers under that
model’s distribution. More formally, we compute
the log-likelihood of answer tokens Ta using model
p (normalised by character length Ca) conditioned
on the question, to obtain log-likelihoods ll for
each answer a ∈ A, as shown in Equation 1.

ll =

[
1

Ca

∑
log(

ep(t)
∑Ta

t=1 e
p(t)

)

]
∀a ∈ A (1)

Note that Ca and Ta are obtained only from answer

Figure 5: HumanRankEval (avg) scores for Pythia LMs.

tokens, a standard implementation.8 Subsequently,
the log-likelihoods ll are correlated with human
rankings using Pearson (Freedman et al., 2007)
correlation. A discussion about the reasons for
choosing Pearson over Spearman Rank (Zar, 2005)
coefficient follows in section 5.1. Finally, the corre-
lation coefficients are micro-averaged across all 7K
questions to compute the HumanRankEval score.

4 Results

4.1 Experimental Settings
We benchmark a broad selection of open-source
LMs (pretrained and instruction-tuned) available

8We follow Eleuther’s tokenizer-agnostic method of char-
acter (rather than token) length normalisation.
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Figure 6: HumanRankEval (per-topic) scores for the StarCoderBase (SCB) LMs.

Figure 7: HumanRankEval (avg) scores for the Star-
CoderBase (SCB) LMs versus Big Code Leaderboard.

from the Huggingface repository (Wolf et al., 2019).
LMs with AutoModel9 and deepspeed inference10

support (tensor parallel), LM-Eval harness (Gao
et al., 2021) compatibility, up to 16B parameters
in size were selected for efficient iteration and
accessible research. This includes some of the
most popular and frequently used LMs such as
Llama2, Llama2-Chat (Touvron et al., 2023) (7B
+ 13B), CodeLlama, CodeLlama-Instruct (Roz-
ière et al., 2023) (7B + 13B), Palmyra (Writer,
2023b) and Camel (Writer, 2023a) (5B each,
Camel is instruction-tuned), Pythia-Instruct (1.4B)
from LambdaLabs11, Vicuna (7B + 13B, both

9https://huggingface.co/docs/
transformers/model_doc/auto

10https://www.deepspeed.ai/inference/
11https://huggingface.co/lambdalabs

instruction-tuned) from LMSYS12, four StarCoder
(Li et al., 2023a) and seven Pythia (Biderman et al.,
2023) models (from 70M to 15.5B parameters),
MPT-Chat (7B) (MosaicML, 2023), Zephyr (7B,
instruction-tuned) Alpha + Beta (Tunstall et al.,
2023), WizardLM (Xu et al., 2023) (13B) and
Koala (13B) (Geng et al., 2023), both instruction-
tuned. Proprietary LMs were excluded as HRE
needs access to the logits to compute scores.

4.2 Increasing Model Sizes

In this section, we verify the consistency of HRE
scores by observing how they increase as the size
of pretrained models (code and natural language)
from the same families increases. This expecta-
tion is based on the assumption that the learning
capacity and general capabilities of LMs increase
with the number of trainable parameters (keeping
the data constant), and is supported by their perfor-
mance in OpenLLM. Figures 4 and 6 show the per-
topic scores while Figures 5 and 7 show the overall
(micro-average) scores for seven Pythia models
(70M - 12B) and four StarCoderBase models (1B
- 15.5B), respectively. The Pythia models were
specifically trained to study LM behavior across
different sizes. As expected, different models are
cleanly separated by HumanRankEval. Using a
single factor ANOVA, the differences were sig-
nificant between the Pythia (p=8.32-e12) and the
StarCoderBase models (p=0.048).

4.3 Correlation with Human Evaluation

In order to support HRE as a reliable proxy for hu-
man judgement, we show how its scores correlate
with the human-obtained Chatbot Arena ratings.

12https://hf.co/lmsys/vicuna-13b-v1.5
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Figure 8: LM rankings (normalised scores) by HumanRankEval, Chatbot Arena, AlpacaEval, MT-Bench and
OpenLLM. Koala-13B and MPT-Chat-7B were not available on the AlpacaEval leaderboard at the time of writing.

To this end, in Figure 8, we plot the scores for
various instruction-tuned models of different sizes
and families. We use the latest Chatbot Arena rat-
ings (as of writing this; 1st Nov. 2023) that were
computed from ∼90k user votes. We observe that
HRE and Chatbot Arena rankings are the most
similar, while there is an obvious misalignment be-
tween rankings produced by other popular leader-
boards, i.e. MT-Bench (LM-as-a-judge), AlpacaE-
val (LM-as-a-judge) and OpenLLM (knowledge-
based). Figure 9 shows the Pearson correlations
between the various rankings. HRE shows the best
correlation (0.96) with the human judgements of
Chatbot Arena across existing leaderboards, which
is to be expected as it was specifically designed
for evaluating LMs as conversational assistants.
OpenLLM correlates the least (0.85) with human
ratings, perhaps unsurprisingly as it consists of
knowledge-based automatic tasks. MT-bench’s cor-
relation (0.92) indicates that using LM-as-a-judge
does offer estimations closer to human judgement
than knowledge-based automatic tasks. AlpacaE-
val is excluded from Figure 9 as rankings were
unavailable for some models.

Figure 9: Pearson cor-
relations between HRE,
OpenLLM (OLL), MT-
Bench (MT) and Chat-
bot Arena (CBA) model
rankings. MT-Bench and
OpenLLM have the low-
est average agreements.

4.4 Instruction Tuning
HRE was developed specifically for evaluating
LMs as conversational assistants, i.e. to assess the
benefits of methods like instruction tuning and/or

Figure 10: HumanRankEval and OpenLLM scores for
a selection of pretrained and instruction-tuned LMs.

preference optimization. MT-Bench and AlpacaE-
val benchmark only instruction-tuned LMs thus we
cannot observe how sensitive they may be to dif-
ferences between pretrained and instruction-tuned
models. As OpenLLM includes both types, we
plot OpenLLM and HRE rankings for popular pre-
trained LMs and their instruction-tuned variants
in Figure 10. We observe a divergence between
the two leaderboard rankings, further indicated
by the low correlation between them (0.3, Pear-
son). OpenLLM scores underestimate the impact
of instruction tuning and/or preference optimiza-
tion on models’ ability to follow human instruc-
tions. This is not surprising since most of its
tasks assess specific types of knowledge, but this
is not necessarily indicative of how an LM would
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perform these tasks in an open-ended conversa-
tional setting. On the other hand, we can see that
Camel-5B shows a large improvement in HRE af-
ter instruction-tuning compared to its base model,
Palmyra-5B (no contamination suspected, see Sec-
tion 5.2). Similarly, Llama2-13B obtains a higher
score on the OpenLLM leaderboard than Llama2-
Chat-7B, however, HRE is able to correctly de-
tect the superior instruction-following ability of the
smaller model, confirmed by the Chatbot Arena
ratings in Figure 8. Another example (from same
figure) shows an equal or higher preference by hu-
mans for Vicuna (13B) over Zephyr (7B) models
despite the latter showing a significantly higher
score on the OpenLLM Leaderboard. Overall, LMs
fine-tuned with instruction data tend to show a no-
ticeable improvement in HRE scores over their
"vanilla" pretrained counterparts, however, there
are exceptions. We hypothesise that including Self-
Instruct (Wang et al., 2022) data (LM-generated,
automatically filtered outputs used for fine-tuning
code LMs) in CodeLlama-Instruct training may
be causing the weak improvement as Wang et al.
(2023b) have shown that training with such data
adversely affected performance across factual, mul-
tilingual and reasoning tasks.

5 Discussion

5.1 Pearson over Spearman

The human and LM scores over which we calculate
correlation are continuous rather than monotoni-
cally distinct. This indicates that the Pearson coeffi-
cient could be more fitting for HRE over Spearman.
This is further supported by observing that correlat-
ing the likelihoods/votes themselves or the derived
rankings, results in higher agreement with human
ratings in Chatbot Arena (see Figure 9). Corre-
lation would be lower for Spearman (0.85) than
Pearson (0.96), suggesting a better fit for the latter
metric. Empirically, we also observed that using
Pearson results in a clearer separation of models.
Figures 4 and 6 show the individual topic scores
while Figures 5 and 7 show the averages over 14
topics. We can observe that Pearson correlation
monotonically increases for 11 out of 14 topics for
Pythia models and 10 out of 14 for the StarCoder-
Base models. On the other hand, Spearman correla-
tion leads to a less clear separation of models, with
only 5 out of 14 topics showing a monotonic in-
crease for Pythia and 3 out of 14 for StarCoderBase
respectively ( Figures 12 and 13 in the Appendix).

5.2 Data Contamination

Training LMs on content sourced from StackOver-
flow and/or StackExchange is not uncommon, e.g.
the training data of reward models for Llama2-Chat
includes StackExchange data while 2% of Llama1
(Touvron et al., 2023) pretraining data comes from
StackExchange. We posit that instruction-tuning on
QA pairs that overlap with HRE would be the most
likely cause of overestimated scores, rather than
pretraining on raw web pages. HumanRankEval’s
high correlation with human ratings (see Figure 9)
indicates low data contamination in the models we
examined. We posit that unless we assume an al-
most uniform data contamination, we would have
observed some inflated scores for some models,
leading to lower correlation. According to their
model cards, the benchmarked LMs such as Camel,
Vicuna, Koala, MPT-Chat, Pythia-Instruct, Zephyr
and Llama-Chat were not instruction-tuned with
our data sources yet they show a strong improve-
ment in HRE scores. However, not all LMs pro-
vide detailed training information hence the risk
of contamination would in those cases be difficult
to determine. The most appropriate future-proof
action may be deduplicating training data against
HumanRankEval to mitigate risks of contamination
and accidental score inflation.

6 Conclusions

Multiple benchmarks have been proposed for eval-
uation of LMs as conversational assistants. How-
ever, these are either not specifically designed for
this purpose, rely on large (usually proprietary)
LMs as the ground truth, or are difficult to scale in
terms of sourcing reliable human judges. We have
therefore introduced HumanRankEval, a novel au-
tomatic evaluation task that comprises a dataset
of human-authored questions and answers coupled
with a metric. The votes for each question were
obtained from over 100 participating domain ex-
perts (on average), resulting in high-quality human
preferences. HRE performs evaluation by measur-
ing how well the LM’s “preferences”, estimated
as log-likelihoods of answers, correlate with hu-
man ratings. To validate HRE, we demonstrated
that it cleanly separates pretrained and instruction-
tuned LMs of various sizes, and showed that its
scores correlate well with human ratings. Relative
to knowledge-based evaluation, HRE is particularly
adept at detecting changes to LMs’ behaviour in-
troduced by instruction-tuning and/or preference
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optimization. While knowledge-based automatic
evaluation can test for specific skills, undesirable
biases and essential world knowledge, we expect
HRE to accelerate the development of LMs as con-
versational assistants by providing unique insights.

7 Limitations

Human preferences for our purposes were treated
as a composite attribute, and no individual com-
ponents such as helpfulness, factual correctness,
timeliness, safety and so on can be estimated indi-
vidually by HumanRankEval. LMs scoring higher
on HRE are not necessarily more factually correct,
less biased or more safe hence researchers are ad-
vised to conduct separate evaluation(s) to explicitly
test for such behaviours. We acknowledge that, un-
like knowledge-based evaluation, the ground truth
of human preferences cannot be obtained with the
same level of exactitude. HumanRankEval is a new
addition to the current consensus and it is possible
that the ground truth of human preferences may
not be adequately described by any single metric or
benchmark. While HRE covers a diverse collection
of topics, there are specialist domains that may not
be included, but are desired by some researchers. In
those cases, we recommend to follow our method-
ology to extend HRE coverage to new domains
that may be of interest. This applies to additional
languages as HumanRankEval is overwhelmingly
composed of English language content. Neither the
StackOverflow nor the StackExchange data have
specified any licence information, instructions for
intended use or the presence of undesirable content.
We subsample the data as is, relying on the corre-
sponding creators of the archives for following ap-
propriate steps. Lastly, we advise that researchers
do not solely rely on HRE to verify that a model
can be released for public use, and we recommend
that human judgement is consulted instead.
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Figure 11: Total votes received per question (median, mean) and median votes received per answer.

Figure 12: HRE using Spearman correlation (per-topic and overall scores) for the Pythia LMs.

Figure 13: HRE using Spearman correlation (per-topic and overall scores) for the StarCoderBase LMs.
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