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Abstract

Depression is a widespread mental health dis-
order affecting millions globally. Clinical in-
terviews are the gold standard for assessing
depression, but they heavily rely on scarce pro-
fessional clinicians, highlighting the need for
automated detection systems. However, exist-
ing methods only capture part of the relevant el-
ements in clinical interviews, unable to incorpo-
rate all depressive cues. Moreover, the scarcity
of participant data, due to privacy concerns and
collection challenges, intrinsically constrains
interview modeling. To address these limita-
tions, in this paper, we propose a structural
element graph (SEGA), which transforms the
clinical interview into an expertise-inspired di-
rected acyclic graph for comprehensive model-
ing. Additionally, we further empower SEGA
by devising novel principle-guided data aug-
mentation with large language models (LLMs)
to supplement high-quality synthetic data and
enable graph contrastive learning. Extensive
evaluations on two real-world clinical datasets,
in both English and Chinese, show that SEGA
significantly outperforms baseline methods and
powerful LLMs like GPT-3.5 and GPT-4.

1 Introduction

Depression is a pervasive mental health disorder
that affects a significant portion of the global popu-
lation. According to the World Health Organization
(WHO)1, over 300 million people suffer from de-
pression, casting a profound shadow on individuals,
families, and society. Furthermore, in many com-
munities, limited awareness and stigmatization sur-
rounding mental health can lead to under-diagnosis
and under-treatment, which underscores the imper-
ative for effective depression screening.

To date, clinical interviews remain the standard
method for assessing depression severity (He et al.,

∗ Corresponding author.
1https://www.who.int/news-room/fact-

sheets/detail/depression

Answer Transcript Answer Video

What are some things you don't really like about LA?

What's your dream job?

My dream job... I don't think there is a dream job. 
Umm... For me, no, there isn't one.

So spread out, so hard to get places.

How are you at controlling your temper?

I've gotten better over the years. Umm... Most 
of the time, I just try to, umm, you know, walk 
away or, you know, control my emotions in 
terms of, you know, just walking away. 

Do you travel a lot? Why?

No, around LA maybe but that's about it . Why don’t 
I travel? I don't have the funds to do that anymore.

When was the last time you felt really happy?

<sigh> Ooh… that's a good question. It's been 
awhile I'd say, year and a half maybe.

Interview Question

Answer Audio

Interviewer Participant

… more question-answer rounds …

Figure 1: A clinical interview for assessing depression.

2022). In Figure 1, we present an example in-
terview from DAIC-WOZ (Gratch et al., 2014),
a widely-used corpus for clinical depression de-
tection. As can be seen, clinical interviews typi-
cally take the form of semi-structured multi-round
question-answering dialogues. The interviewer fol-
lows an outline while flexibly posing questions
relevant to personal experience and mental states,
and the participant answers are recorded to assess
the state of depression. Currently, conducting clin-
ical interviews has become relatively feasible, by
either an “Wizard-of-Oz” virtual interviewer (Kel-
ley, 1983) or a fully autonomous scripted agent
(DeVault et al., 2014). However, analyzing clini-
cal interviews for depression assessment remains a
domain reserved for highly specialized clinicians.

As an alternative, automatic assessment of clin-
ical interviews has emerged as a promising as-
sistance for depression detection (Valstar et al.,
2016). Clinical interviews mainly encapsulate four
types of elements: the interview questions2 and the
answer transcripts/audios/videos, enabling super-

2Denote the text of questions. The video and audio of the
interviewer are usually tool-synthesized without information.
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Method Elements in Clinical Interviews
T A V Q

❶ Burdisso et al. (2023)  ✕ ✕ ✕
❷ Fan et al. (2022) ✕  ✕ ✕
❸ Shen et al. (2022)   ✕ ✕
❹ Yoon et al. (2022) ✕   ✕
❺ Fang et al. (2022)    ✕
❻ Niu et al. (2021)   ✕

SEGA (Ours)   

Table 1: A glance at latest detection methods in model-
ing the transcript T, audio A, video V, and question Q.

vised learning for automatic depression assessment.
However, existing studies still face two major chal-
lenges. 1) As can be seen from Table 1, existing
methods only capture part of the four elements in
clinical interviews, unable to incorporate all rele-
vant cues for depression detection. The main rea-
sons are twofold. One is that the background noise
in audio and video modalities poses difficulties for
interaction among different elements, which may
even degrade performance (Baltrušaitis et al., 2018;
Hazarika et al., 2022). Moreover, the interview
questions are usually overlooked since they contain
no participant information. The other is the poten-
tial complexity of interviews, which can include up
to 50 rounds, leading to a compromise in using only
partial elements for efficient aggregation (Al Hanai
et al., 2018). 2) The scarcity of participant data,
arising from privacy concerns and collection costs,
directly constrains the quality of interview mod-
eling. Commonly available datasets like DAIC-
WOZ contain only ∼100 training samples with
≤30 depressed participants. Hereby, training a so-
phisticated depression detection model becomes an
intrinsical demanding task.

To address the above limitations, we propose
an LLM-empowered Structural Element GrAph
(SEGA) for comprehensive interview modeling un-
der limited resources. 1) To make full use of all
four types of elements, we transform the clini-
cal interview into SEGA, a directed acyclic graph.
We first gather expertise about processing inter-
view elements in depression assessment, then align
SEGA’s structure with this human experience to fa-
cilitate representation learning. Specifically, within
each round, we predefine the information flow be-
tween elements with noise suppression, allowing
for element interaction while avoiding interference.
Across multiple rounds, we specify simple yet ef-
ficient information propagation and aggregation
approaches, so as to preserve the complete element
features for predicting depressive status. 2) To alle-
viate the negative impact of data scarcity on inter-

view modeling, we introduce a novel LLM-based
data augmentation approach guided by principles
of integrity, authenticity, respectfulness, consis-
tency, and informality. Along with the graph con-
trastive learning with real and synthetic data, we
further advance the performance of SEGA under
limited resources. We conduct experiments on two
real-world clinical interview datasets in English
and Chinese, respectively. The results demonstrate
that SEGA significantly surpasses existing base-
line methods and powerful LLMs like GPT-4 for
depression detection in clinical interviews.

2 Related Work

2.1 Depression Detection

Depression is a debilitating mental condition that
affects a person’s thoughts, feelings, and behavior.
The automatic analysis of clinical interviews has
been recognized as a promising assistant for psy-
chologists and psychiatrists to improve the time
efficiency and diagnostic consistency of depression
detection (Valstar et al., 2016; Zou et al., 2022).

Most studies leverage the participant answers for
depressive assessment, which can be categorized
into three types: 1) Uni-modal methods typically
model either transcripts or audios. For transcripts,
existing work focuses on aggregating word rep-
resentations for prediction (Mallol-Ragolta et al.,
2019; Burdisso et al., 2023), or further incorpo-
rates affective and mental health lexicons (Xezon-
aki et al., 2020; Villatoro-Tello et al., 2021). For
audios, existing studies have investigated the utility
of shallow acoustic features like MFCCs (Taguchi
et al., 2018; Huang et al., 2022) and deep audio
representations from neural networks like CNN
(Ma et al., 2016; Zhang et al., 2021; Sardari et al.,
2022; Sun et al., 2022) . 2) Bi-modal methods
typically combine transcripts and audios as the
two most informative modalities via feature fu-
sion (Al Hanai et al., 2018; Wu et al., 2022; Guo
et al., 2022; Seneviratne and Espy-Wilson, 2022)
or prediction ensembling (Niu et al., 2021; Shen
et al., 2022). Yoon et al. (2022) model both audio
and video modalities with a cross-attention trans-
former, but the performance is relatively limited
without transcripts. 3) Tri-modal methods consider
the answer transcripts, audios, and videos via multi-
modal fusion conducted at word-level (Rohanian
et al., 2019) or utterance-level (Guohou et al., 2020;
Zhang et al., 2020; Zheng et al., 2020; Fang et al.,
2022; Prabhu et al., 2022).
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In addition to the three modalities of the answers,
a few studies (Niu et al., 2021; Flores et al., 2022)
have incorporated the interview questions as sup-
plementary context to better extract salient cues
from participant answers. Different from the above
methods, we resort to human experience in depres-
sion assessment to construct the structural element
graph, so as to effectively model all four types of
interview elements under limited resources.

2.2 LLMs Application in Healthcare

Recent years have witnessed the rapid development
and powerful capability of large language mod-
els (LLMs), such as OpenAI’s ChatGPT (Ouyang
et al., 2022), Anthropic’s Claude (Bai et al., 2022),
Google’s LaMDA (Thoppilan et al., 2022), and
Meta’s LLaMA (Touvron et al., 2023). LLMs
have shown promising potential in powering the
healthcare domain. Wang et al. (2023) and Chen
et al. (2023) use LLMs to play doctor and patient
roles, respectively, to generate medical dialogue
data. Yang et al. (2023), Bisercic et al. (2023),
and Jo et al. (2023) leverage LLMs to assist diag-
nosis via medical report generation, tabular data
extraction, and emotional support deployment, re-
spectively. Sarker et al. (2023) and Liyanage et al.
(2023) conduct data augmentation via LLMs to en-
hance medication event identification and wellness
dimension classification.

Despite these advances, LLMs remain underex-
plored in the realm of depression detection in clini-
cal interviews. In this work, we meticulously craft
principle-based prompts to direct LLMs in gener-
ating high-quality data for depression detection,
complemented by responsible quality verification
and ethical consideration.

3 Methodology

3.1 Task Definition

In a clinical interview I from the corpus C, the
interviewer asks the participant a series of m ques-
tions (recorded as text) Q = {q1, ..., qm}, typi-
cally probing into their feelings, experiences and
mental states. The participant’s responses are
recorded in three modalities - transcripts T =
{t1, ..., tm} capturing the textual content, audios
A = {a1, ..., am} capturing tone and prosody, and
videos V = {v1, ..., vm} capturing facial expres-
sions and body movements. Each question (qi) and
transcript (ti) comprises a word sequence, while
each audio (ai) and video (vi) comprises a frame

sequence sampled with a certain frequency. The
goal is to analyze these elements and predict a la-
bel y ∈ {1, 0} denoting whether the participant is
depressed or not.

3.2 Structural Element Graph

For depression detection in clinical interviews, we
propose the structural element graph (SEGA) based
on human experience for comprehensive interview
modeling. Figure 2 presents the architecture of
SEGA, which comprises three main components:
element feature extraction, graph construction with
expertise, and graph learning and prediction.

3.2.1 Element Feature Extraction
In clinical interviews, each element serves as a
unique indicator of the depressive state. Interview
questions may probe for negative emotions, shed-
ding light on underlying feelings of hopelessness
or worthlessness. Answer transcripts may reveal
a higher frequency of negative words, reflecting
a depressed mindset. Answer audios can hint at
depression through a flatter affect, slower speech
rates, or prolonged pauses. Answer videos capture
visual cues like reduced facial expressivity or sub-
dued reactions. Together, these elements form a
rich tapestry of information that helps in assessing
an individual’s depressive state.

Below we show how to extract element features.
Within a question-answer round, the question (qi)/
transcript (ti) is an utterance involving the text
modality. We first map every word in the utter-
ance using a pre-trained word embedder, then com-
pute the mean of word vectors to obtain the ut-
terance representation qi / ti. For the audio (ai)
and video (vi) modalities of the answer utterance,
they are already processed into frames at a certain
frequency, where the raw features are specified by
the used dataset. We then process those frames
according to the timestamps in the corresponding
transcript. Specifically, we look at the start and end
timestamps of the utterance in the transcript, then
average the frames spanning the duration of this
utterance to derive audio and video representations
ai / vi for the answer utterance. By this means, we
ensure that all element features are strictly aligned
at the granularity of a question-answer round.

3.2.2 Graph Construction with Expertise
Based on the element features, we follow specific
expertise for depression assessment to derive the
graph structure and facilitate interview modeling.
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Ellie: How are you doing today?

Ellie: Do you travel a lot?

Ellie: What do you do to relax?

Audio Video Transcript

125.08 s
~

126.07 s

Participant: I'm doing good,
thank you.

Participant: Not really, I mean I
have enough things going on
here, so if I travel, it's usually
somewhere that's within driving
distance.

Participant: What do I do to
relax? I like to run and I like
to go to the gym.

…

…

frame  12508
~

frame 12607 
frame  3752

~
frame 3782 

Timestamp

52.93 s
~

53.87 s
frame  5293

~
frame 5387 

frame  1587
~

frame 1616

347.08 s
~

348.41 s
frame  34708

~
frame 34841 

frame  10412
~

frame 10452 

Interview Question

Answer Transcript
Answer Audio
Answer Video

q1

t1 a1 v1

q13

t13 a13 v13

13th Turn

1st Turn

28th Turn
q28

t28 a28 v28

Feature Extraction Graph Construction

Non-Depressed

Depressed…

…

…

Proxy Node

Summary Node

Prediction

…

…

…

…

…

…

…

…

…

…

Graph Learning

13th

1st

28th

Figure 2: The architecture of SEGA. We first extract element features according to timestamps and frame index,
then construct and learn a structural element graph for depression detection in clinical interviews.

Expertise within Each Round: 1) Element Im-
portance. Studies on multi-modal learning have
demonstrated that texts contain the richest seman-
tics (Rohanian et al., 2019; Hazarika et al., 2022).
Therefore, for each round, we anchor the transcript
ti as the central node, and treat the audio ai and
video vi as auxiliary nodes. The question qi is also
recognized as a supplementary node since it com-
pletes the contextual information of the answer. 2)
Information Flow. To reflect the status of nodes,
we build a directed acyclic graph (Shen et al., 2021)
where information is passed unidirectionally from
the auxiliary nodes to the central node. 3) Noise
Suppression. To avoid direct interference from the
background noise in audio and video elements (Bal-
trušaitis et al., 2018), we additionally insert a proxy
node pi within each round. It aims to first distill
evidence from the audio and video, transform it
into the text vector space, and then let the transcript
node selectively absorb useful information. The
representation of pi is initialized with the repre-
sentation of ti. Besides, each element node has a
self-loop edge to preserve its own information.

Expertise across Multiple Rounds: 1) Infor-
mation Propagation. Since an interview topic (e.g.,
querying family relationships) may span multiple
rounds, we link adjacent central nodes (ti) for cap-
turing temporal dependencies. 2) Information Ag-
gregation. To represent the semantics of the entire
clinical interview, we introduce an additional vir-
tual “summary” node (s). We then pass informa-
tion unidirectionally from all central nodes (ti) to
the summary node s. The representation of s is
initialized by averaging all ti representations.

The structural element graph is a simple yet ef-
fective architecture. On the one hand, it fully uti-
lizes the evidence in four types of elements embed-
ded in clinical interviews. On the other hand, it
benefits from prior human experience and sets a
good starting point for interview modeling.

3.2.3 Graph Learning and Prediction
Based on the constructed structural element graph,
we employ Graph Attention Network (GAT)
(Velickovic et al., 2018) to capture the interactions
among elements and accordingly update represen-
tations. For node i and its neighborhood nodes
N (i), we iteratively updates the node representa-
tion hi ∈ Rdh by aggregating neighborhood node
representations using multi-head attention:

r
(k)
ij = LeakyReLU(w⊤[W(k)hi||W(k)hj ]), (1)

α
(k)
ij = softmaxj(r

(k)
ij ) =

exp(r
(k)
ij )

∑
m∈N i exp(r

(k)
im )

, (2)

h
(k)
i = ELU


∑

j∈Ni

α
(k)
ij W(k)hj


 , (3)

hi = ||Kk=1h
(k)
i , (4)

where k denotes an attention head, W(k) is the
weight matrix, w is the weight vector, α(k)

ij is the

attention weight, h(k)
i is the output feature vector

for head k, || denotes vector concatenation. After
the computation of L GAT layers, we collect the
representation s of the summary node after prop-
agation as the final feature of the interview. We
then feed it into a feed-forward layer to predict the
depressive status ŷ and compute the cross-entropy
loss Lce for detection:

ŷ = softmax(Wy(s)), (5)
Lce = − (y log(ŷ) + (1− y) log(1− ŷ)) . (6)

3.3 A Helping Hand from LLMs

While SEGA intrinsically aligns with the exper-
tise of processing interviews, its learning capabil-
ity is still constrained by the limited clinical re-
sources. Due to collection difficulties and privacy
concerns, the training set size of commonly-used
public clinical depression detection corpora is only
about 100. Nevertheless, large language models
(LLMs) possess an extremely strong human-like
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Input Real Utterance

Rephrase the last [Target Participant] utterance
with similar meaning using different vocabulary.
Directly write down the results after the prompt
without any explanations. Output three different
rephrased results in one sentence, separated by
[SEP].

Instruction Principle

Adhere to the five principles below:
1. Integrity of Content: …
2. ConversationalAuthenticity: …
3. Respectful Communication: …
4. Consistency in Length: …
5. Tolerance for Informality: …

Example 1
Input: [Ellie] How are you doing today? [Participant] I'm fine, how 
about yourself. [Ellie] That's good. I'm great, thanks. Where are you 
from originally. [Participant] I'm from los angeles california. [Ellie] 
Really. Me too. [Target Participant] What part?
Output: [Target Participant] Which area exactly? [SEP] From which
region? [SEP] Which neighborhood of LosAngeles?

× N

Demonstration

[Ellie] What's your dream job? [Participant] Working with kids as a
school teacher or in that capacity. [Ellie] That sounds really hard.
[Participant] Yeah it is, but if it's a passion of yours, it'll always be fun.
[Ellie] That's great. How close are you to your family. [Target Participant]
I'm very close, sometimes too close.

Output Augmented Utterance
I have a strong bond with my family, sometimes even too close. [SEP] 

My family and I share a close relationship, maybe even too close at times. [SEP] 

I have a very tight-knit connection with my family, sometimes even too tight.LLM

Figure 3: Guided by principles, LLMs synthesize augmentation data by rephrasing the answer utterances.

text generation capability, offering immense poten-
tial for generating synthetic data to alleviate data
scarcity. Hereby, we propose to design a principle-
based prompt to carefully control the LLM for data
augmentation. The goal is to simulate diverse par-
ticipant responses by rephrasing transcripts with
the same meanings but different vocabularies.

3.3.1 Principle-based Augmentation

While LLMs are capable of generating fluent and
coherent text, their outputs can sometimes deviate
from the original meaning or contain inappropriate
content if not properly constrained. This presents
challenges when utilizing them for data augmenta-
tion in sensitive domains like mental healthcare.
Therefore, to ensure LLMs rephrase transcripts
faithfully without altering semantics or tones, we
guide the synthesizing process with explicit princi-
ples. The five principles serve as “guard rails” to
steer the model toward making edits that introduce
diversity while preserving integrity, authenticity,
respectfulness, consistency, and informality.

We list the principles as follows. 1) Integrity
of Content: Retain the original meaning and senti-
ment. Do not change the substance. 2) Conversa-
tional Authenticity: Use natural, casual language.
Avoid overly formal styles. 3) Respectful Com-
munication: Maintain a respectful tone. Do not
make inappropriate/offensive alterations. 4) Con-
sistency in Length: Keep similar length to the orig-
inal. Avoid excessive shortening/lengthening. 5)
Tolerance for Informality: Tolerate some irregulari-
ties (omissions, repetitions, filler words) given the
conversational context.

We rephrase transcripts in a sliding window with
a size of three, applying LLMs with context aware-
ness. In other words, when rephrasing each an-
swer transcript, we use the last three rounds of
question-answers as input. Besides, we also pro-
vide N hand-crafted demonstrations to facilitate

task understanding. As shown in Figure 3, the fi-
nal input prompt is composed of task instruction,
rephrasing principles, and manual demonstrations.
After prompting, we collect the outputs of LLMs as
the augmented data. For the accompanying audios
and videos, due to the untouchability of raw record-
ings and the lack of LLM-level synthesis tools, we
adopt a simple random frame-swapping method.
We sample aj ̸= ai, vj ̸= vi in the same interview
as augmentation features, capturing feasible vari-
ance. We do not augment interview questions as
their content is predefined.

After synthesizing augmentation data via
rephrasing, we manually inspect samples for qual-
ity verification. We verify that: 1) The rephrased
sentences express the same semantic content as the
originals, without introducing factual inconsisten-
cies or changes in meaning. 2) The tone and sen-
timent remain consistent between the original and
augmented versions. 3) No offensive, unethical, or
otherwise inappropriate language is generated. 4)
Personal details and identifiers are not altered or
exposed. Ultimately, steered by the guiding princi-
ples, only very few (less than 1%) of the augmented
data is filtered out and regenerated.

3.3.2 Empowerment of SEGA

After obtaining the synthetic data Ĉ, we mix it with
the original corpus C to obtain the augmented train-
ing data. Furthermore, owing to the improved size
and diversity with synthetic data, we introduce the
self-supervised contrastive learning with InfoNCE
(Oord et al., 2018) loss to encourage distinct repre-
sentations for depressed and control participants:

Lcl = −
C||Ĉ∑

c

log
exp(s⊤

c s
+
c /τ)

exp(s⊤
c s

+
c /τ) +

∑J
j=1 exp(s

⊤
c s

−
c,j/τ)

(7)

where τ denotes a temperature parameter, s+c is a
certain positive sample with the same label , s−c
denotes several negative samples with the opposite
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label. By update the final training loss as L = Lce+
Lcl, we obtain the empowered model SEGA++.

4 Experiment

4.1 Experimental Setup

Datasets We conduct experiments on two avail-
able corpora for clinical depression detection:
DAIC-WOZ (Gratch et al., 2014) and EATD (Shen
et al., 2022). DAIC-WOZ is a widely-used English
dataset that collects interviews from 189 partici-
pants, recorded in transcripts, audios, and videos.
Each participant is accompanied by a PHQ-8 score
(Kroenke et al., 2009), and those with scores >=
10 are labeled as depressed ([D]), while the others
are labeled as control ([C]). DAIC-WOZ has a fixed
data split, and we follow previous studies by using
the development set for evaluation since the labels
of the test set are unavailable. EATD is a newly
released Chinese dataset that consists of interviews
conducted with 162 student volunteers, recorded in
transcripts and audios. Each participant is accom-
panied by an SDS score (Zung, 1965), and those
with scores >= 53 are labeled as depressed. EATD
is split into training and development sets via 3-fold
cross-validation with train:dev = 2:1. The detailed
statistics of datasets are shown in Table 2. The
details of interview recordings and pre-processing
methods can be found in Appendix A.

Dataset Size Category Round Token Duration

D
A

IC
-W

O
Z

train 107 [D] 30 6,069 149,149 26h53m
[C] 77 (x̄=57) (x̄=1,394) (x̄=15m04s)

dev 35 [D] 12 1,909 53,588 10h01m
[C] 23 (x̄=55) (x̄=1,531) (x̄=17m09s)

E
A

T
D train 108 [D] 23/20/24 324 19,994 1h22m

[C] 85/88/84 (x̄=3) (x̄=181) (x̄=47s)

dev 54 [D] 7/10/6 162 9,968 1h1m
[C] 47/44/48 (x̄=3) (x̄=177) (x̄=49s)

Table 2: Detailed statistics of DAIC-WOZ and EATD.

Settings We first discuss feature pre-processing.
For DAIC-WOZ, we use the GloVe.840B.300d em-
beddings (Pennington et al., 2014) to vectorize
interview questions and answer transcripts. The
videos and audios have already been processed
by COVAREP (Degottex et al., 2014) and Open-
Face (Baltrušaitis et al., 2016), respectively. For
EATD, we use the pre-trained Chinese BERT (Cui
et al., 2020) as the word embedder. EATD only
provides unprocessed raw audios, so we extract the
extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) (Eyben et al., 2016) via OpenS-

MILE (Eyben et al., 2010) as acoustic features.
For the implementation of SEGA, the dimen-

sion of all hidden states is dh=256. The layer
number of GAT is L=2. The number of attention
head K=8. We use gpt-3.5-turbo-0613 for
principle-guided data augmentation. In the prompt,
we include N=2 manually written samples as the
demonstration. We collect three rephrased results
for each transcript, but only use the first one since
no significant performance difference is observed,
resulting in 2x training samples. We perform con-
trastive learning within a single batch with τ=0.05.
For DAIC-WOZ/EATD, we train the models for
300/100 epochs using Adam optimizer (Kingma
and Ba, 2015) with a learning rate 1e-4/2e-5 and
batch size 8. We run all experiments on a single
Tesla V100 32G GPU in Ubuntu 16.04. SEGA
contains 2.6M trainable parameters and requires
0.33 GPU hours for training. The hyperparameter
ranges can be found in Appendix B.

Following previous studies (Burdisso et al.,
2023), we use depressed, control (i.e., non-
depressed), and macro F1-scores as the metrics.
We select the checkpoint for evaluation based on
macro F1-scores. The final results for comparison
are the average scores of 3 runs with random seeds
(for DAIC-WOZ) or folds (for EATD)3.

4.2 Compared Methods

After reviewing the literature on depression detec-
tion, we find that the pre-processing of clinical
interviews in different methods varies considerably,
making it inaccurate to compare their reported re-
sults directly. For instance, Niu et al. (2021) em-
ploy manual cleaning of transcripts, while Shen
et al. (2022) group every ten participant answers as
one sample. Additionally, there are hardly any
reported results on the recently released EATD
dataset. Therefore, we select the four latest top-
performing methods involving participant tran-
scripts, audios, videos, and interview questions
used in SEGA. Since most models are not open-
sourced, we carefully replicate them following the
original papers. Our implementation may serve as
a basis for fair comparison in future research.
ω-GCN (Burdisso et al., 2023) is a uni-modal

model that leverages answer transcripts. EATD-
Fusion (Shen et al., 2022) is a bi-modal model that
leverages answer transcripts and audios. MFM-Att
(Fang et al., 2022) is a tri-modal model that lever-

3Code is available at https://github.com/zhchen18/SEGA.
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Method Element DAIC-WOZ EATD
T A V Q Depressed Control Macro Depressed Control Macro

ω-GCN  ✕ ✕ ✕ 78.26 89.36 83.81 66.63 78.40 72.52
EATD-Fusion   ✕ ✕ 69.57 85.11 77.34 70.24 82.63 76.44
MFM-Att    ✕ 78.57 85.71 82.14 70.06 82.10 76.08
HCAG   ✕  76.92 86.36 81.64 71.88 76.88 74.38

GPT-3.5 (Zero Shot)  ✕ ✕  35.29 79.25 57.27 6.05 73.12 39.58
GPT-3.5 (Few Shot)  ✕ ✕  52.63 82.35 67.49 31.38 74.29 52.84
GPT-4 (Zero Shot)  ✕ ✕  75.86 82.93 79.39 4.26 73.36 38.81
GPT-4 (Few Shot)  ✕ ✕  78.57 85.71 82.14 13.10 72.07 42.58

SEGA     81.48† 88.37 84.93† 73.18† 84.42† 78.80†

SEGA++     84.62† 90.91† 87.76† 75.31† 85.91† 80.61†

Table 3: Depressed, Control, and Macro F1-scores. The best scores are in bold, and the best baseline scores are
underlined. Results with † are significantly better than baselines (p < 0.05) based on a one-tailed unpaired t-test.

ages answer transcripts, audios, and videos. MFM-
Att for EATD only uses transcripts and audios since
there is no video modality in EATD. HCAG (Niu
et al., 2021) is a model that captures the interac-
tion between interview questions and participant
answers. Considering that we use LLMs for data
augmentation, we further compare the performance
of GPT-3.5 and GPT-4 by prompting them to de-
termine whether the participant is depressed ac-
cording to the clinical interview. We consider both
zero-shot and few-shot settings, where the latter
includes a control and a depressed training sample
as two demonstrations. The implementation details
of baseline methods can be found in Appendix C.

4.3 Main Results

We present the performance on DAIC-WOZ and
EATD datasets in Table 3. Obviously, SEGA
achieves state-of-the-art performance, outperform-
ing the best baseline by 1.12% and 2.36% in
terms of macro F1-scores on two datasets, respec-
tively. After LLM-empowered data augmenta-
tion, SEGA++ obtains further gains of 2.83% and
1.81%, surpassing baselines by 3.95% and 4.17%.
Moreover, all methods achieve markedly lower F1-
scores on the depressed class compared to the con-
trol class, stemming from the severe class imbal-
ance prevailing in the corpora. For the primary de-
pressed class, SEGA and SEGA++ demonstrate no-
tably higher performance than all baselines, reach-
ing (81.48%, 84.62%) and (73.18%, 75.31%) on
DAIC-WOZ and EATD, respectively.

When examining the upper four baselines, we ob-
serve that simply introducing more elements does
not necessarily lead to better performance. For
instance, ω-GCN, by ingeniously weighting the re-
lations between words and interviews, achieves the

best baseline results on DAIC-WOZ. Compared
to baseline methods, SEGA employs a directed
acyclic graph with prior expertise for interview
modeling, which effectively captures relevant de-
pressive cues in four types of elements.

We then inspect the performance of the GPT fam-
ily. Despite the strong general capabilities, GPTs’
performance still lags behind existing baselines.
We hereby have the following observations: 1)
GPT-4 generally outperforms GPT-3.5, benefiting
from more parameters and pretraining data. 2) Few-
shot models significantly exceed zero-shot models,
where the additional depressed and control sam-
ples serve as anchors to aid judgment. 3) Perfor-
mance on English DAIC-WOZ is markedly higher
than Chinese EATD, indicating the language pref-
erence inside LLMs. 4) LLMs are more accurate
at identifying the control class, showing the data
encountered during LLM pretraining is also im-
balanced, limiting discrimination of the depressed
class. Overall, the primary reason for the infe-
rior performance is that LLMs cannot explicitly
model the specific pragmatic structure of clinical
interviews, and they are inherently less adept at
integrating multi-modal evidence such as useful
MFCCs and eye movements.

Our key findings can be summarized into two
aspects. One is that effective structure modeling,
rather than simply introducing more elements, is
more important. SEGA’s structural element graph
has shown strength in capturing clinical interviews.
The other is that, directly applying LLMs to spe-
cialized domains like mental health still yields un-
satisfactory performance. We effectively absorb
applicable knowledge from LLMs with principle-
guided augmentation, which empowers SEGA++

to make further performance gains.
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5 Analysis

5.1 Ablation Study
We conduct extensive ablation studies to investi-
gate the contribution of different components and
present the results on DAIC-WOZ.
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Figure 4: Ablation variants on graph structures.

In Figure 4, we present models with variations
on the graph structure. We first include variants
“Transcript”, “Video”, and “Audio” representing
variants using only the respective single modality,
where the results emphasize the need for integrating
different elements for interview modeling. We then
examine the graph construction. “FC Graph” uses
fully connected subgraphs for each round’s four
elements; “Bi Edge” alters unidirectional edges
to bidirectional without modifying the structure;
“w/o Proxy” involves removing proxy nodes, allow-
ing auxiliary nodes to directly connect with cen-
tral nodes. The evident performance drop in these
structural variants underscores the effectiveness of
SEGA based on human experience.
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Figure 5: Ablation variants on modalities.

In Figure 5, we present models with different
modalities. For bi-modal models, combining au-
dios and videos as “A+V” leads to performance
gains compared to these two single modalities.
However, adding audios or videos to transcripts,
forming “T+A” or “T+V”, results in similar or
even decreased performance. This suggests that au-
dios and videos contain relatively limited informa-
tion, thus potentially complementing each other. In
contrast, transcripts contain abundant information,
making it challenging for audio or video alone to
effectively supplement valuable information. Nev-

ertheless, when all these modalities are combined
as “T+V+A”, a slight improvement over the sin-
gle transcript modality can be achieved. Moreover,
modeling interview questions (i.e., SEGA) can fur-
ther enhance the performance.
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Figure 6: Ablation variants on empowerment.

In Figure 6, we compare variants for empower-
ment. The absence of contrastive learning (“w/o
CL”) results in a performance decline. Removing
principle-based augmentation (“w/o DA”) leads
to a performance drop to the level of the original
SEGA, highlighting the effectiveness of synthetic
data. “Free Gen” leverages LLMs to role-play de-
pressed/control participants and answer questions
for augmentation, resulting in a substantial per-
formance decrease, indicating its impracticality.
“EDA” (Wei and Zou, 2019) involves easy data aug-
mentation like deletion, insertion, and swapping,
which brings insignificant improvement.

5.2 Case Study

To have a close look, we further select a correctly
predicted depressed sample from the development
set of DAIC-WOZ, and highlight a question-answer
round heavily weighted by the summary node per
SEGA’s average graph attention scores. The an-
swer transcript and audio’s Mel spectrograms are
presented in Figure 7. The video is omitted due to
the unavailability of original recordings.

[Ellie] Is there anything you regret?
[Participant] There's only one thing I regret, and that is that ... um, after
my twins became, um, old enough to, um, start going to, um, school, the
elementary school level, um, I was taking some courses, um, as a pre-law
major. And, um, at that time I was married to their father, who…who turned
out not to be a good … fit for me. And, because of the stresses involved with
him, you know, knowing that that was going to end and I was going to leave
him, um, I dropped out of college. So, that was my biggest regret.

Negative Emotions Verbal Pauses

Figure 7: The answer transcript and audio’s Mel spec-
trograms of a depressed participant.
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In the transcript, we mark negative emotion
words in blue, expressing the participant’s dis-
tress and regret in semantics. Moreover, from
the green highlights and Mel spectrograms, we ob-
serve slower speech and more pauses, which exist-
ing research identifies as typical depressive symp-
toms (Sobin and Sackeim, 1997). This demon-
strates SEGA’s strength in integrating indicative
cues across modalities via the structural element
graph to make accurate detection.

5.3 Implications on Mental Healthcare

Mental healthcare currently faces challenges such
as insufficient specialized professionals, uneven
distribution of resources, and stigma surrounding
treatment seeking. By proposing SEGA, we abso-
lutely do not intend to replace mental health experts
like psychologists and psychiatrists. Rather, our
goal is for SEGA to act as a qualified assistant.

For practical implementation, clinical depres-
sion assessment can be formulated as a two-step
pipeline. The first step is conducting automated
interviews, for which existing methods like Wizard-
of-Oz or fully automated agents are viable options.
The second step is the automatic detection by an-
alyzing the interview recordings to aid in judging
the participant’s depressive state, like SEGA. By
combining these two steps, we can alleviate the bur-
den on professionals, compensate for imbalanced
medical resources, expedite widespread depression
screening, and ultimately promote public health
and well-being for people worldwide.

6 Conclusion

In this paper, we propose a novel structural element
graph SEGA for depression detection in clinical
interviews. SEGA comprehensively captures all
key elements - interview questions, answer tran-
scripts, audios, and videos - within a simple yet
effective directed acyclic graph. To further address
data scarcity, we design the empowered SEGA++

via principle-guided augmentation with LLMs and
graph contrastive learning. Experiments on two
real-world datasets demonstrate the state-of-the-art
performance of our method, surpassing the latest
baseline methods and zero/few-shot GPT-3.5/4.
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Limitations

We discuss the limitations of our work as follows.
1) Task Setting. In this work, we focus on de-

pression detection in clinical interviews, a serious
“laboratory setting” typically conducted by mental
health experts like psychologists and psychiatrists,
representing a standard approach in depression
screening. Contrasting this is the “wild setting”,
which refers to informal early screenings for daily
contents, such as analyzing social media posts (e.g.,
on Reddit). Due to significant differences between
these settings in data structures, modalities, and
judgment criteria, intuitively, our method designed
for the “laboratory setting” might not effectively
transfer to the “wild setting”.

2) Modality Specificity. Due to our reliance
on publicly available datasets, our methodology is
limited to three modalities: text (interview ques-
tions and participant responses), audio (MFCC, for-
mants), and video (facial actions, eye gazes, etc.).
We do not include other medically relevant informa-
tion such as electroencephalograms (EEGs), near-
infrared signals, or magnetic resonance imaging
(MRI) signals.

3) Corpus Size. Considering the challenges
in data collection and privacy considerations, the
datasets available for depression detection in clin-
ical interviews usually have limited samples. In
experiments, we report the average results across
multiple runs and conduct significance testing to
ensure that any performance improvements are sta-
tistically valid.

4) Data Release. Due to licensing constraints
of the DAIC-WoZ and EATD datasets, we are un-
able to directly release raw interview recordings.
Instead, under appropriate licensing or registration,
we can provide pre-processed vector features to
those who have already applied to obtain the raw
data. Access to the original materials is possible
for anyone who completes an application form and
receives approval from the dataset authors.

Ethical Considerations

We here elaborate on the potential ethical issues.
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1) Data Privacy and Consent. We apply and
use publicly available datasets, DAIC-WoZ and
EATD, for depression detection in clinical inter-
views. According to the original dataset papers,
both datasets have received approval from Insti-
tutional Review Boards. All participants are in-
formed that their interviews are for academic re-
search. All personal details like names, ages, and
professions are either removed or anonymized,
eliminating any risk of personal information ex-
posure. The DAIC-WoZ dataset, involving a video
modality, does not provide original videos but de-
identified vector features of facial actions and eye
gaze, making it impossible to reconstruct the par-
ticipants’ appearances. Therefore, the information
of participants is comprehensively and rigorously
protected, with no privacy breaches.

2) Participant Demographics. The DAIC-WoZ
dataset, collected by researchers from the Insti-
tute for Creative Technologies at the University of
Southern California, encompasses participants in-
cluding the U.S. armed forces veterans and the gen-
eral public from the Greater Los Angeles metropoli-
tan area. The EATD dataset, collected by re-
searchers from the School of Software Engineering
at Tongji University, primarily includes teachers
and students from universities in Shanghai. The
focus on specific groups in both datasets is a result
of objective conditions and research goals, rather
than any intention of bias or unfairness towards
race, nationality, age, or gender.

3) Role of AI in Diagnosis. Our method aims to
serve as an intelligent assistant for mental health ex-
perts such as psychologists and psychiatrists, not to
replace them. Directly using our method to calcu-
late depression coefficients may cause or perpetuate
algorithmic bias, potentially leading to inaccurate
diagnoses. Therefore, the model predictions should
only be used as a reference, while the final diagno-
sis must be cautiously determined by professionals.
Our method is based solely on completed interview
recordings for preliminary screening and does not
offer medical advice or intervention.

4) Dataset Access and Use. For the DAIC-WOZ
dataset, we meticulously review the DAIC-WOZ
End-User License Agreement and submit the nec-
essary official application forms, securing consent
from the original authors. For the EATD dataset,
we download the data from the author’s official
GitHub repository. We strictly use the two datasets
exclusively for the research purposes of this work.

No unauthorized dissemination or sharing of the
data is conducted.

5) LLM Data Augmentation. In the use of
large language models for data augmentation, we
apply principle-guided rephrasing instead of free
generation to control the model behavior. This ap-
proach ensures that the model performs semantic-
preserving rewrites and does not introduce imagina-
tive, additional information. We rigorously verify
all synthetic data to ensure no introduction of any
unsafe or harmful content.
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A Details of Dataset Pre-Processsing

We here discuss the raw information provided by
the dataset and the detailed preprocessing methods.

A.1 DAIC-WOZ
The Distress Analysis Interview Corpus - Wizard
of Oz (DAIC-WOZ) provides multi-modal data,
including transcripts, audios, and videos of clinical
interviews.

• Transcript: DAIC-WOZ provides complete
textual transcripts of each interview con-
taining interview questions and participant
answers. We process transcripts with
GloVe.840B.300d word embeddings.

• Audio: DAIC-WOZ provides the raw audio of
each interview along with acoustic features ex-
tracted using COVAREP, including F0, VUV,
NAQ, QOQ, H1H2, PSP, MDQ, peakSlope,
Rd, Rd_conf, MCEP_0-24, HMPDM_0-24,
HMPDD_0-12, and the first 5 formants.

• Video: DAIC-WOZ provides the visual fea-
tures extracted from each interview using
OpenFace, instead of the original video
recordings. These include 2D/3D facial land-
mark points, facial action units, eye gazes,
Felzenswalb’s HoG features, and head poses.

A.2 EATD
The Emotional Audio-Textual Depression Corpus
(EATD) provides multi-modal data, including tran-
scripts and audio, without video.

• Transcript: EATD provides only the tran-
scribed text of participant answers. We sup-
plemented these with 26 additional interview
questions based on the content of the answers.
We use pre-trained Chinese BERT to obtain
word embeddings for the text.

• Audio: EATD provides audio recordings of
each participant’s answers. Since no specific
audio processing tool is specified, we extract
the extended Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS) acoustic features
using OpenSmile, which contains features re-
lated to frequency-related parameters like for-
mant, energy-related parameters like loudness,
and spectral parameters like MFCCs.

B Details of Hyperparameter Ranges

We present the hyperparameter ranges in Table 4.
We select all hyperparameters via manual tuning.

Table 4: Ranges of hyperparameters.

Hyperparameter Range Selected

GAT & Bi-LSTM hidden state dh (64, 128, 256, 512) 256

number of GAT layers L (1,2,3,4) 2

number of attention heads K (1, 2, 4, 8, 16) 8

number of demonstrations N (1, 2, 3) 2

temperature in contrastive loss τ (0.01, 0.05, 0.1, 0.5, 1.0) 0.05

batch size (4, 8, 16, 32) 8

learning rate
(1e-5, 2e-5, 5e-5, 1e-4/

1e-4, 2e-4, 5e-5) 2e-5

C Details of Baseline Implementation

We here illustrate the implementation of baseline
methods.
• ω-GCN is a uni-modal model that leverages an-
swer transcripts for depression detection. It con-
structs a graph between words and interview doc-
uments, and uses TF-IDF, PMI, and PageRank to
obtain the edge weights for graph convolution.

• EATD-Fusion is a bi-modal model that lever-
ages answer transcripts and audios for depression
detection. It uses a gating mechanism for integrat-
ing predictions from two modalities.

• MFM-Att is a tri-modal model that leverages an-
swer transcripts, audios, and videos for depression
detection. It first learns features of single modali-
ties, then uses an attention fusion network to obtain
fused multi-modal representation. MFM-Att for
EATD only uses transcripts and audios since there
is no video modality in EATD.

• HCAG is a model that captures the interaction
between interview questions and participant an-
swers for depression detection. It concatenates the
question and answer in each round as a vertex, and
constructs edges between adjacent QA rounds in a
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Zero-Shot Prompt for GPT-3.5/GPT-4

Below is a transcript of an interview between an interviewer and a participant. Based on the content of the interview, determine
whether the participant is depressed or not. Only answer ’Yes’ or ’No’ without any explanations.

{ INPUT CLINICAL INTERVIEW }

Few-Shot Prompt for GPT-3.5/GPT-4

Below is a transcript of an interview between an interviewer and a participant. Based on the content of the interview, determine
whether the participant is depressed or not. Only answer ’Yes’ or ’No’ without any explanations.

Example 1

Input: { DEMONSTRATION CLINICAL INTERVIEW 1 }

Output: LABEL OF DEMONSTRATION 1

Example 2

Input: { DEMONSTRATION CLINICAL INTERVIEW 2 }

Output: LABEL OF DEMONSTRATION 2

Target

Input: { INPUT CLINICAL INTERVIEW }

Output:

Table 5: The zero-shot and few-shot prompts for evaluating GPT-3.5 and GPT-4 for depression detection in clinical
interviews.

QA graph. GAT is used to update vertex features
and make predictions.

• GPT-3.5 and GPT-4 are included as the
competitors in experiments. Given the length
of the clinical interview, for GPT-3.5, we
employ the gpt-3.5-turbo-16k-0613
API (the 4k context window of the default
gpt-3.5-turbo-0613 is insufficient in
length). As for GPT-4, we utilize the standard
gpt-4-0613 API with an 8k context window.
The zero-shot and few-shot prompts used for
evaluating the GPT family in depression detection
are shown in Table 5.

D Use of AI Assistants

We use ChatGPT to polish some of the content.
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