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Abstract

Pre-trained language models (PLMs) that rely
solely on textual data may exhibit limitations
in multimodal semantics comprehension. Ex-
isting solutions attempt to alleviate this issue
by incorporating explicit image retrieval or gen-
eration techniques. However, these methods:
(1) focus exclusively on the static image modal-
ity; (2) inevitably encounter modality gaps and
noise; (3) indiscriminately treat all modalities.
In this paper, we propose a novel multimodal-
augmented framework termed MaCSC, which
can infuse multimodal semantics into PLMs
and facilitate a self-balancing calibration of
information allocation. Specifically, MaCSC
obtains modal-specific conceptual prototypes
from contrastive pre-training models (e.g.,
CLIP), and aggregates the intra- and inter-
modal semantics of the conceptual prototype to
enhance PLMs. In addition, we utilize a novel
self-balancing contrastive loss to achieve multi-
scale self-balancing calibration of multimodal
information during fine-tuning PLMs. Experi-
mental results show that MaCSC consistently
improves the performance of PLMs across var-
ious architectures and scales, and outperforms
competitive baselines on multiple NLP tasks.

1 Introduction

Large-scale Pretrained Language Models (PLMs),
(e.g., BERT (Devlin et al., 2019),T5 (Raffel et al.,
2020), GPT (Brown et al., 2020), etc.) have
achieved great success on various Natural Lan-
guage Understanding (NLU) tasks. Most PLMs un-
dergo training on textual data alone without incor-
porating information from other modalities. Those
approaches contrast with human learning (Ben-
der and Koller, 2020; Tan and Bansal, 2020a),
which typically involves multiple modalities be-
yond just text (e.g., image, audio, video, etc). Tex-
tual data may not fully capture the general charac-
teristics of entities (Liu et al., 2022), and word fre-
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Figure 1: The approach for augmenting PLMs by retriev-
ing and generating relevant multimodal data inevitably
encounters challenges associated with (a) modal gaps
and (b) the presence of noisy data. Our methodology
employs conceptual prototype extractors to effectively
mitigate the issues of modality gaps and noisy data, and
incorporate multimodal knowledge into PLMs.

quency may not consistently reflect real-world like-
lihoods (Gordon and Durme, 2013). Consequently,
these language learners may lack real-world knowl-
edge (Zhang et al., 2022) and could suffer from
human reporting bias (Yang et al., 2022).

To address this issue, current research primarily
focuses on augmenting PLMs by integrating visual
information from either retrieved or synthesized
images in NLP tasks (Tan and Bansal, 2020a; Yang
et al., 2022). We classify these visually-augmented
approaches for PLMs into three distinct categories:
visually-augmented pre-training (Tan and Bansal,
2020a; Wang et al., 2022), visually-augmented fine-
tuning (Lu et al., 2022; Guo et al., 2023), and
training-free zero-shot visual enhancement (Yang
et al., 2022). While these works represent notable
advancements, we discover several limitations: (1)
They focus exclusively on static image modality
while neglecting other modal types like speech and
video, which offer dynamic temporal information.
(2) They require time-consuming retrieval or ex-
plicit image generation and inevitably encounter
issues with modality gaps and data noise. As il-
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lustrated in Figure 2, a significant semantic gap
exists between different modalities in the represen-
tation space (Liang et al., 2022). This modality gap
can adversely impact the integration of multimodal
information. Moreover, the processes of image re-
trieval or generation are prone to introducing noise,
which can degrade the performance of PLMs. (3)
They treat all modalities of information equally.
Recent studies (Dai et al., 2022; Guo et al., 2023)
indicate that information from other modalities is
not always beneficial for NLP tasks. The contribu-
tions of various modal types vary across specific
NLP tasks. Hence, indiscriminately incorporating
semantic information from multiple modalities can
be suboptimal, potentially diminishing the efficacy
of PLMs.

In this paper, we propose a novel multimodal-
augmented framework with conceptual proto-
types enhancement and self-balancing calibration
(MaCSC). MaCSC tackles the above issues through
innovative strategies in the following two aspects:

(1) MaCSC leverages conceptual prototypes
as multimodal proxies to infuse multimodal
knowledge into PLMs. MaCSC does not explic-
itly introduce multimodal semantics by retrieving
or generating corresponding modal data. MaCSC
initially obtains text semantics aligned with other
modalities through large-scale multimodal con-
trastive pre-training models (MC-PTMs) (e.g.,
CLIP (Radford et al., 2021), AudioCLIP (Guzhov
et al., 2021) and CLIP-ViP (Xue et al., 2022), etc.).
These text semantics intrinsically have an implicit
correspondence with real-world modal data, which
we refer to as conceptual prototypes. Concep-
tual prototypes contain modal-specific represen-
tation encodings and can serve as implicit proxies.
This approach alleviates representation degradation
caused by modality gaps and noise. We analyze
the theoretical and practical effectiveness of this
prototype proxies in Section 2.2 and Section 3.2.

(2) MaCSC implements a multi-scale self-
balancing calibration for the allocation of multi-
modal information. The allocation weights as-
signed to various modal types vary across spe-
cific NLP tasks. MaCSC first implements fine-
grained and coarse-grained allocation estimation
and achieves balanced information injection for
PLMs through a proposed self-balancing con-
trastive loss. We emphasize fine-tuning PLMs
through the calibration of cross-modal contrastive
learning, which gives a disregarded but significant
insight into balancing the allocation of multimodal
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Figure 2: We visually demonstrate a comparison be-
tween the learning architectures of various language
models. (a) acquires knowledge by fine-tuning vanilla
PLMs, while (b) augments PLMs by explicitly retriev-
ing or generating images. (c) recalls modality-specific
conceptual prototypes related to sentences and achieves
balanced calibration of modal information allocation,
thereby implicitly enhancing language comprehension.

information.
Figure 2 shows the main differences between

MaCSC and other methods. Extensive experiments
conducted on ten datasets across three NLP tasks
(e.g., natural language understanding, Q&A, and
text generation tasks) demonstrate the effective-
ness and universality of MaCSC. Our contributions
are: (1) We propose a novel multimodal-augmented
framework called MaCSC, which integrates mul-
timodal semantics into PLMs through conceptual
prototypes and enhancement modules. (2) MaCSC
utilizes a proposed novel self-balancing calibration
strategy to balance multimodal information. (3) Nu-
merous experiments on multiple NLP tasks demon-
strate the significant performance of MaCSC.

2 Methods

In this section, we first introduce the task set-
ting and overview of our method in Section 2.1,
and then describe our proposed conceptual proto-
type extraction approach in Section 2.2 and cross-
modal semantic enhancement in Section 2.3. Sub-
sequently, we describe proposed allocation estima-
tion strategies and self-balancing contrastive learn-
ing in Section 2.4 and Section 2.5, respectively.
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supervision information.

2.1 Task Setting and Overview

For traditional NLP tasks, PLMs can be fine-tuned
on a specified dataset D = {xi, yi}Ni=1 to perform
classification or regression, where, xi and yi de-
note i-th text data and corresponding label and N
represents the total number of training samples.

In our research, we concentrate on developing
an efficient approach to incorporate multi-modal
knowledge into PLMs during fine-tuning. We de-
fine the set of modalities involved in this work as
M = {t, i,a,v}, where, t, i,a,v represent four
modalities: text, image, audio, and video, respec-
tively. Our proposed method is illustrated in Fig-
ure 3, where we first generate conceptual proto-
types through different MC-PTMs. Subsequently,
we adopt our proposed cross-modal enhancement
mechanism to obtain semantic-enhanced represen-
tations. Finally, we employ the proposed multi-
scale self-balancing contrastive learning to cali-
brate multimodal information.

2.2 Conceptual Prototype Extraction

In our methodology, we define modal-specific con-
ceptual prototypes as semantic units that infuse
multimodal information into PLMs. Motivated
by Radford et al. (2021), we employ MC-PTMs
to facilitate implicit conceptual prototype extrac-

tion. We compute the average attention scores be-
tween each token and the [EOS] token on the self-
attention layer of CLIP-based text encoder. Sub-
sequently, we adopt the Top-K strategy to select
the features of the top-ranked tokens as the modal-
specific conceptual prototype Hm

i ∈ Rk×d:

Hm
i = Top-K(TextEncoderm(xi)), (1)

where, m represents a specific modality other than
text, i.e., m ∈ M\{t}, k denotes the number of
tokens selected, d is the dimension of features,
and TextEncoderm denotes a text encoder on a
MC-PTMs trained on modality m and text-paired
data. In this work, we utilize the text encoders of
CLIP (Radford et al., 2021), AudioCLIP (Guzhov
et al., 2021) and CLIP-ViP (Xue et al., 2022) to
obtain conceptual prototypes of image, audio, and
video modalities, respectively. We further provide
a theoretical analysis in Appendix A.1 ahout con-
ceptual prototypes are good modal proxies.

2.3 Semantic Concept Enhancement
Although conceptual prototypes represent multi-
modal knowledge of input sentences, they are in-
dependent of the semantics of the text acquired
by PLMs. To aggregate and strengthen the repre-
sentation of conceptual prototypes, we propose a
semantic concept enhancement module to model
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both the inter-modality and intra-modality relation-
ships in a unified model.

We first employ a PLM to obtain the contex-
tualized word representations Ht

i ∈ Rl×d of the
inputs, where l denotes the length of the sequence.
As shown in Figure 3, the semantic concept en-
hancement module takes the stacked features of
conceptual prototypes and textual representations
Ei =

(
Ht

i
Hm

i

)
∈ R(k+l)×d as the input, where, m

represents the modality type and m ∈ M\{t}.
Following Wei et al. (2020), the query, key,

value, and cross-modal attention for the fragments
are formed with the following equations:

KE =
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)
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,
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(
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QEK
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E√

d
)VE,

(2)

where, Ĥt
i ∈ Rl×d and Ĥm

i ∈ Rk×d are the en-
hanced semantic features.

To simplify our derivation and enhance its com-
prehensibility, we have omitted the softmax and
scaling functions in the aforementioned equation.
This exclusion does not detract from the funda-
mental concept of our attention mechanism. The
expanded form is as follows:

(
Ĥt

i

Ĥm
i

)
=

(
Qt

Qm

)(
Kt⊤ Km⊤

)(Vt

Vm

)

=

(
QtKt⊤Vt +QtKm⊤Vm

QmKm⊤Vm +QmKt⊤Vt

)
.

(3)

Eq. 3 demonstrates that our cross-modal seman-
tic concept enhancement module concurrently ac-
counts for both intra-modal and inter-modal infor-
mation. In practice, we will use multiple attention
heads to enhance representation diversity.

2.4 Multi-scale Information Allocation
Estimation

Fine-grained Allocation Estimation We first use
class frequency to estimate class distribution πm

e =
n∑
c nc

, where, n is the quantity of each category, nc

represents the number of category c in the training
set. Based on this, we can obtain the debiased

predictive distribution of a given sample xi:

pm
i = softmax(logits(Ĥm

i )− α log πm
e ), (4)

where, logits(·) refers to the logits operation
through prototype features Ĥm

i . We further de-
fine the positive score provided by the modality
m conceptual prototype Ĥm

i of sample xi to the
modality k conceptual prototype Ĥk

j of sample xj

as w(m,k)
ij = Sim(pm

i ,pk
j ), where, Sim(·) denotes

the cosine similarity function and m, k ∈ M. Sub-
sequently, we can obtain the distribution of alloca-
tion scores for pm

i and pk
j as :

p(w
(m,k)
ij ) =

w
(m,k)
ij∑

bw
(m,k)
ib

. (5)

Here, p(w(m,k)
i |j) represents positive weight score

between Ĥm
i and Ĥk

j . For ease of reference, we
define the fine-grained relationship weight ma-
trix between modalities m and k as W (m,k) =
{w(m,k)

ij |i, j ∈ [0, N ]}. We utilize W (m,k) to bal-
ance the fine-grained information exchange be-
tween modalities m and k.
Coarse-grained Allocation Estimation The
coarse-grained allocation estimation strategy di-
rectly affects the global modality information. We
assign a learnable weight score π

(m,k)
z to modali-

ties m and k as the distribution estimate for global
modality weighting:

π(m,k)
z = softmax{z(m,k)}, k ∈ M\{m}, (6)

where, z(m,k) represents a learnable parameters
across modalities m and k. We utilize weight score
π
(m,k)
z to balance the coarse-grained information

exchange between modalities m and k.

2.5 Self-Balancing Contrastive Learning

To effectively incorporate multimodal informa-
tion into PLMs in a balanced manner, we expand
traditional contrastive loss to a multimodal self-
balancing contrastive loss based on the positive
weight score p(w

(m,k)
i |j) :

L(m,k)
i = −

N∑

j=1

1(yi = yj)p(w
(m,k)
ij ) log p

(m,k)
ij ,

p
(m,k)
ij =

exp (mi · kj/τ)∑N
a=1 exp (mi · ka/τ)

,

(7)
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where, mi and kj denotes the representations ob-
tained by feeding Ĥm

i and Ĥk
j into a linear projec-

tor, τ is the temperature coefficient, p(m,k)
ij is the

contrastive logit, and m, k ∈ M. Further, we can
obtain the contrastive loss between modalities m
and k as:

L(m,k) =
N∑

i=1

L(m,k)
i . (8)

Theorem 1. Given mi and kj represent different
modal conceptual prototypes of two samples xi and
xj , the model θ is trained through the proposed
self-balancing contrastive loss, then, the optimal
contrastive logits p

(m,k)
ij

∗
are approximately the

distribution of allocation scores p(w(m,k)
ij ), i.e., the

following equation approximately holds:

p
(m,k)
ij

∗
= p(w

(m,k)
ij ). (9)

The proof of Theorem 1 can be found in Ap-
pendix A.2. Theorem 1 indicates that models
trained using the proposed loss are capable of align-
ing the weights of multimodal information con-
sistent with p(w

(m,k)
ij ). In essence, this suggests

that the proposed loss function, as mentioned in
Eq. 7, can be effectively utilized to achieve self-
balancing in the allocation of multimodal informa-
tion between m and k.

2.6 Total Objective
Our overall loss comprises a weighted aggregation
loss for prediction, coupled with a multi-scale self-
balancing contrastive loss.
Weighted Aggregation Loss We can obtain the
predicted distribution pm(y|xi) of each category
under different modality information guidance as:

pm(yi|xi) = softmax(WmĤm
i + bm), (10)

where, Wm is a fully connected matrix, bm is a bias
vector, and m ∈ M denotes the type of modality.
Further, we adopt a learnable weight ρm as the
late fusion over the final output distributions of
multimodal models as:

p(yi|xi) =
∑

m∈M
ρmpm(y|xi), (11)

where, ρm is a learnable normalized weight and∑
m∈M ρm = 1. Therefore, we can obtain the

weighted aggregation loss for label prediction as:

Lwa =

N∑

i=i

CE(yi, p(yi|xi)), (12)

where, CE(·) denotes the cross entropy loss.
Self-Balancing Contrastive Loss To achieve equi-
librium in multimodal information processing dur-
ing the training phase, we propose to formulate the
total multi-scale self-balancing loss as follows:

Lmsb =
∑

m∈M

∑

k∈M\{m}

π
(m,k)
z L(m,k)

| M | (| M | −1)
. (13)

The multi-scale self-balancing loss, denoted as
Lmsb, incorporates strategies for allocating multi-
modal information at both fine-grained and coarse-
grained levels, thus achieving an adaptive balance
in the modality information distribution during the
training phase. Therefore, the overall loss is:

L = Lwa + λLmsb, (14)

where λ denotes the trade-off hyperparameter.

3 Experiments

3.1 Experimental Setup
Datasets. We conduct experiments across three
types of tasks:

• Natural Language Understanding (NLU).
We evaluate our method over over SST-2
(Socher et al., 2013), QNLI (Rajpurkar et al.,
2016), QQP(Chen et al., 2017) , MNLI
(Williams et al., 2018), MRPC (Dolan and
Brockett, 2005), and STS-B (Cer et al., 2017)
datasets from GLUE benchmark (Wang et al.,
2018).

• Comprehension Question Answering. We
select SQuADv1.1 (Rajpurkar et al., 2016)
and SQuADv2.0 (Rajpurkar et al., 2018) to
evaluate our method on comprehension ques-
tion answering task.

• Text Generation. In the realm of text gen-
eration, we utilized the CommonGen (Lin
et al., 2020) as the dataset, which is a con-
strained text generation task focused on gen-
erative commonsense reasoning.

Baselines. We compare our approach with the
pre-trained language models (PLMs), multimodal
contrastive pre-trained models (MC-PTMs), and
visually-augmented pre-trained language models
(VA-PLMs). (1) PLMs: We utilize BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), XL-
Net (Yang et al., 2019), and T5 (Raffel et al., 2020)
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Base Model Method Modality SST-2 QNLI QQP MNLI MRPC STS-B Avg.

BERT-base

+None T 89.3 87.9 87.2 79.4 81.7 84.4 84.98
+VOKEN T+I 92.2 88.6 88.6 82.6 83.5 86.0 86.83

+iACE T+I 91.7 88.6 89.1 82.8 85.8 86.6 87.43
+VAWI T+I 92.4 89.1 89.7 83.0 85.6 86.9 87.78
+Ours T+I 93.4 90.1 90.9 83.6 86.8 87.4 88.70
+Ours T+I+A 93.8 91.1 91.2 84.6 86.9 88.0 89.27
+Ours T+I+A+V 94.1 91.4 91.5 85.5 87.4 88.2 89.68

RoBERTa-base

+None T 89.2 87.5 86.2 79.0 81.4 85.4 84.78
+VOKEN T+I 90.5 89.2 87.8 81.0 87.0 86.9 87.06

+iACE T+I 91.6 89.1 87.9 82.6 87.7 86.9 87.06
+VAWI T+I 91.6 90.6 87.9 82.4 88.5 88.3 88.21
+Ours T+I 92.5 91.9 88.7 83.9 88.9 88.8 89.12
+Ours T+I+A 92.8 92.3 89.3 84.3 89.2 89.3 89.53
+Ours T+I+A+V 93.2 92.5 89.7 85.0 89.6 89.7 89.95

Table 1: A performance comparison of various methods on the GLUE benchmark, with the best results emphasized
in bold. The term “+None” indicates the direct fine-tuning of the backbone without incorporating additional infor-
mation. The abbreviations “T, I, A, V” denote four distinct modalities: text, image, audio, and video, respectively.
We continuously add modal-specific concept prototype extractors to assess their influence on performance metrics.
The results of VOKEN, iACE and VAWI on GLUE are reported from Lu et al. (2022) and Guo et al. (2022).

as the backbones, and directly fine-tune them as
baselines. (2) MC-PTMs: We select CLIP (Rad-
ford et al., 2021), AudioCLIP (Guzhov et al., 2021)
and CLIP-ViP (Xue et al., 2022). (3) VA-PLMs:
VOKEN (Tan and Bansal, 2020b), iACE (Lu et al.,
2022), and VAWI (Guo et al., 2022) are chosen as
the main baselines in this paper. VOKEN intro-
duces the visual information into PLMs by pre-
training on retrieved images. iACE and VAWI
infuse visual knowledge into PLMs through fine-
tuning on retrieved or generated images and im-
plicit image information, respectively.
Implementation Details. For all baselines, we
follow the setting including hyperparameters with
their papers and implement all methods based on
Huggingface Transformers (Wolf et al., 2020). The
hidden sizes for image, audio, and video concept
prototypes are set to 512, 1024, and 512. We em-
ploy Adam as the optimizer with a weight decay
of 0.01 and tune all models for 3 epochs. More
details and ablation studies can be found in Ap-
pendix A.3 and A.4, respectively.

3.2 Main Experimental Results

Evaluation on NLU Tasks. We present our exper-
imental results on six datasets in Table 1. Analysis
of Table 1 yields several insights:

(1) Enriching PLMs with additional modality in-
formation significantly enhances their performance

in NLP tasks. Both VA-PLMs (i.e., VOKEN, iACE,
and VAWI) and our multimodal-augment PLMs
outperform their corresponding PLM baselines. We
attribute this to the incorporation of multimodal in-
formation that imparts general object knowledge
(including color and shape) into PLMs.

(2) MaCSC of employing solely visual concep-
tual prototypes achieves superior performance com-
pared to VA-PLM baselines. The performance of
both VOKEN and iACE is surpassed by MaCSC
of employing solely visual prototypes. This dis-
parity may stem from the inclusion of extraneous
noise and modality gaps. And MaCSC outperforms
VAWI, with this advancement credited to our se-
mantic enhancement and self-balancing strategies.

(3) As the variety of modal information incorpo-
rated into PLMs increases, there is a correspond-
ing gradual improvement in the performance of
PLMs. We can observe that the inclusion of more
diverse sources of semantic conceptual information
yields greater improvements in performance. In
addition, our method outperforms all baselines in
terms of PLM performance gains across all back-
bone networks It demonstrates the effectiveness
and generality of MaCSC in injecting multimodal
information into PLMs.

Evaluation on Comprehension Question An-
swering Tasks. As illustrated in Table 2, we evalu-
ate the performance of our method on comprehen-
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Base Model Method Modality

SQuAD v1.1 SQuAD v2
5% 100% 5% 100%

Acc. F1 Acc. F1 Acc. F1 Acc. F1

BERT-base

+None T 61.9 72.7 80.2 87.7 54.8 57.9 72.1 75.2
+Image T+I 62.3 73.7 80.7 88.0 56.5 59.1 73.4 76.0
+Ours T+I 63.0 74.3 81.1 88.5 57.3 60.8 73.9 76.8
+Ours T+I+A 64.3 75.5 81.7 88.9 57.7 61.3 74.3 77.1
+Ours T+I+A+V 65.5 76.2 83.4 90.2 59.1 62.4 75.5 78.4

RoBERTa-base

+None T 70.5 79.4 83.3 90.1 62.6 68.5 77.6 81.2
+Image T+I 70.8 79.9 83.4 90.3 63.3 69.1 78.0 81.7
+Ours T+I 71.5 80.7 83.9 91.0 64.2 69.7 78.7 82.5
+Ours T+I+A 71.8 81.2 84.3 91.5 65.0 70.6 79.5 83.3
+Ours T+I+A+V 73.0 82.3 85.8 92.2 66.7 71.4 81.0 84.2

XLNet-large

+None T 73.4 83.5 84.8 91.4 68.8 72.0 79.4 82.6
+Image T+I 74.5 84.2 85.0 91.8 69.2 73.7 79.8 82.9
+Ours T+I 76.0 85.6 85.7 92.1 70.5 74.4 80.1 83.4
+Ours T+I+A 77.3 86.2 86.2 92.8 71.0 74.7 80.8 83.6
+Ours T+I+A+V 79.6 87.3 86.9 93.5 72.6 75.8 82.0 84.8

Table 2: A performance comparison of various methods on SQuAD v1.1 and SQuAD v2.0 datasets, with the best
results emphasized in bold. The term “+None” indicates the direct fine-tuning of the backbone without incorporating
additional information. “+Image” denotes we add retrieved images through Bing web search engines and utilize
CLIP as image feature extractors. “T, I, A, V” denotes four distinct modalities: text, image, audio, and video.

sion question-answering tasks on SQuAD v1.1 and
v2.0. We employ Bing Image Search1 for image
retrieval based on text input and utilize the CLIP
image encoder to extract visual features as concep-
tual prototypes. Furthermore, we present results
obtained using varying amounts of training data to
assess the performance of different methods under
a low-resource setting. Based on the results, we
have the following detailed observations:

(1) The improvement in model performance by
retrieving real images is not as significant as the
gain by incorporating visual concept prototypes.
This further demonstrates that inevitable noise im-
ages and modality gaps can adversely impact the
representations and comprehension capabilities of
PLMs. Our methodology eliminates the need for
retrieval or generation of corresponding modality
data, while simultaneously considering the self-
balancing of multimodal information.

(2) The increase in the types of available modal-
ity prototypes will improve the performance of
PLMs in question-answer tasks. In addition, our
method consistently achieves performance gains on
BERT, RoBERTa, and XLNet backbone networks,
which further demonstrates the generality of our

1https://learn.microsoft.com/en-us/azure/
cognitive-services/bing-image-search/overview

approach for different PLM architectures.
(3) In resource-constrained scenarios, our ap-

proach demonstrates a more substantial improve-
ment. We randomly select 5% of the samples from
the SQuAD training set to evaluate the performance
under low-resource settings. We can observe that
under low-resource settings, our method signifi-
cantly boosts the performance compared to the re-
sults obtained with a full data set This enhancement
is likely due to the capacity of our method to inte-
grate balanced and beneficial modality information
into PLMs, effectively mitigating the performance
decline caused by the scarcity of data.

Method BLUE-4 METOR Rouge-L CIDER

+None 36.2 32.7 59.3 17.7
+Image 35.8 32.1 59.0 17.6

+Ours w/o Lmbs 38.5 34.1 62.4 18.5

Table 3: Performance comparison on CommonGen,
with the best results emphasized in bold. We use T5-3b
as the backbone. “+Image” denotes we add retrieved
images through Bing web search engines and utilize
CLIP as image feature extractors.

Evaluation on the Text Generation Task. To
evaluate the universality of our approach on the
text generation task, we implement it on the T5-3b
and conduct experiments using the CommonGen
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Base Model Method SST-2 QNLI QQP MNLI MRPC STS-B Avg.

CLIP +None 72.4 72.6 70.2 69.1 73.9 75.1 72.22
AudioCLIP +None 73.1 75.7 73.3 71.0 75.6 77.8 74.42
CLIP-ViP +None 73.5 76.4 72.6 72.4 76.4 78.5 74.97

BERT-base
w/o Concept Enhancement 93.5 90.5 90.6 84.2 86.1 87.3 88.69

w/o Self-balancing Loss 92.9 90.2 89.9 84.0 85.8 87.9 88.45
+Full 94.1 91.4 91.5 85.5 87.4 88.2 89.68

RoBERTa-base
w/o Concept Enhancement 92.3 91.6 89.0 84.4 88.9 89.1 89.19

w/o Self-balancing Loss 91.9 91.1 88.5 83.6 89.0 88.7 88.80
+Full 93.2 92.5 89.7 85.0 89.6 89.7 89.95

Table 4: Ablation experiments on the GLUE benchmark. “+None” represents utilizing the text encoder of MC-PTMs
combined with a classifier for prediction.

dataset, as shown in Table 3. Specifically, we insert
enhanced representations of all conceptual proto-
types after the output features of the text encoder in
T5, while canceling self-balancing calibration. The
results show that MaCSC consistently improves the
performance of T5-3b across various metrics on the
text generation task. Furthermore, we observe that
employing images sourced from the Web search
API can negatively impact text generation perfor-
mance. This indicates that the text generation task
is more sensitive to noise information.

3.3 Ablation Study

In this section, we conduct a series of ablation
experiments to verify the effectiveness of our pro-
posed components and strategies.
The Effect of the Semantic Concept Enhance-
ment. We employ BERT-base and RoBERTa-base
as the backbones and conduct experiments to study
the impact of our semantic concept enhancement
module as illustrated in Table 4. It can be seen that
the performance of models significantly decreases
without the semantic concept enhancement module
to fusion modality information. This verifies the
following: (1) the semantic concept enhancement
module is capable of aggregating multimodal in-
formation sufficiently and effectively, and (2) the
integration of intra-modal and inter-modal features
plays a significant role in enhancing the expressive
capabilities of PLMs.
The Effect of the Self-balancing Calibration. To
evaluate the impact of our self-balancing calibra-
tion strategy on model performance, we remove
it and presented the results in Table 4 Observa-
tions indicate that the absence of self-balancing
loss significantly diminishes performance. This
suggests that balancing information across modal

knowledge is essential in multimodal-augmented
PLMs. Additionally, this result corroborates the
effectiveness of our self-balancing loss in harmo-
nizing multimodal information and enhancing the
expressive capabilities of PLMs.

Source of
Concept Prototype

SQuAD v1.1 SQuAD v2

Acc. F1 Acc. F1

Gaussian Noise (0M) 83.4 90.3 77.3 80.8
BERT-base (110M) 83.7 90.8 78.1 81.9

RoBERTa-large (355M) 84.3 91.2 78.9 82.5
T5-3b (1500M) 84.5 91.3 79.6 83.6
CLIP* (63M) 85.8 92.2 81.0 84.2

Table 5: Performance comparison of different sources of
concept prototypes in our approach on SQuAD datasets.
We employ RoBERTa-base as the base model. "CLIP*"
represents our complete approach, i.e., using the text
encoders of CLIP, AudioCLIP and CLIP-ViP.

The Effect of the Source of Conceptual Pro-
totypes. In this study, we employ three distinct
PLMs (i.e., BERT-base, RoBERTa-large, and T5-
3b, along with random Gaussian noise) as alter-
natives to our CLIP-based conceptual prototype
extractor to assess the significance of multimodal
representation. The results, as shown in Table 5, re-
veal that our approach achieves the most substantial
performance gain, surpassing even that of T5-3b.
This finding suggests that the performance improve-
ment associated with the conceptual prototype is
primarily due to the multimodal information it en-
capsulates, rather than merely the textual features
offered by the text encoder. In essence, the perfor-
mance gain brought by our method is indeed due
to the multimodal information we extract. Further-
more, this also demonstrates the significant impor-
tance of additional modal knowledge in enhancing
the expressiveness and inferential capabilities of
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Figure 4: The overlap of correct predictions between
each pair of models in the SQuAD v2 dataset.

PLMs.
Different Pre-trained Models Behave Differently.
Following Yang et al. (2022), we mathematically
define the concept of overlap in correct predictions
between two models M1 and M2 as:

O(M1,M2) =
| SM1

⋂SM2 |
| SM1 | , (15)

where, SM denotes the set of predictions made by
model M. We calculate the model overlap coeffi-
cients O among different models on the SQuAD
v2 dataset in Figure 4. We can observe that MC-
PTMs (i.e., CLIP, AudioCLIP, and CLIP-ViP) have
a markedly smaller overlap with the other models.
Conversely, the PLMs (i.e., BERT-base, RoBERTa-
base, and XLNet-large) demonstrate a big mutual
overlap. This difference explains the significant
performance gain obtained through the integration
of multimodal conceptual prototypes.

4 Related Works

Pre-trained Language Models. Recently, large-
scale pre-trained language models (PLMs) have
demonstrated remarkable success through self-
supervised learning on extensive text corpus (De-
vlin et al., 2019; Raffel et al., 2020; Brown et al.,
2020). By fine-tuning these PLMs, significant im-
provements are observed in downstream tasks in-
cluding natural language processing (NLP), ques-
tion answering, and text generation. Previous work
has shown that language learners trained solely on
textual data can exhibit biases and a lack of multi-
modal understanding of the objective world (Zhang
et al., 2022; Yang et al., 2022; Cheng et al., 2023;
Zhuang et al., 2024; Cheng et al., 2024). Further-

more, recent research suggests that these limita-
tions are not mitigated by merely expanding the
text corpus (Paik et al., 2021; Guo et al., 2022;
Zhang et al., 2022; Zhu et al., 2024b,a). In this pa-
per, we propose a universal multimodal-augmented
framework for enriching the integration of multi-
modal semantics for PLMs.

Multimodal Contrastive Pre-trained Models.
MC-PTMs are trained on a substantial corpus of
modality-pairing samples, mapping multiple dif-
ferent modalities to a unified representation space.
CLIP (Radford et al., 2021) performs pre-training
on a large number of image text pairs, achieving
alignment between image semantics and text se-
mantics. AudioCLIP (Guzhov et al., 2021) extends
CLIP to audio modality and CLIP-ViP (Xue et al.,
2022) proposes a new strategy to transfer the im-
age domain to the video domain. The latest work
indicates that models similar to CLIP have the prob-
lem of modality gaps (Liang et al., 2022). Here,
we utilize MC-PTMs to obtain text representations
aligned with multimodal data as proxies,

Language Models with Additional Modal En-
hancement. Most studies consider injecting visual
modality information into PLMs through retrieval
or image generation. Tan and Bansal (2020a);
Wang et al. (2022) integrate visual knowledge dur-
ing the pre-training of PLMs. Lu et al. (2022); Guo
et al. (2023); Wang et al. (2024) fine-tune PLMs
by introducing visual information during the fine-
tuning phase. In addition, Yang et al. (2022) gen-
erates or retrieves images and encodes image rep-
resentations to enhance zero-shot NLU. As a com-
parison, our approach is more efficient to leverage
modality information including image, audio, and
video in a balanced manner for enhancing PLMs.

5 Conclusion

In this paper, we propose a novel general
multimodal-augmented framework with self-
balancing calibration for PLMs called MaCSC.
MaCSC can efficiently inject other modal semantic
information into PLMs using multimodal concep-
tual prototypes. In addition, MaCSC adopts a novel
self-balancing contrastive loss to achieve multi-
scale self-balancing calibration of multimodal in-
formation during fine-tuning PLMs. Experimental
results show that MaCSC consistently improves the
performance of PLMs across various architectures
and scales on multiple NLP tasks.
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Ethics Statement and Limitation

Ethics Statement We conduct all experiments
on the public datasets, which do not contain any
offensive content or information with negative so-
cial impact. The focus of this article is to enhance
the multimodal common sense of PLMs, and our
model does not have uncontrollable outputs. There-
fore, we ensure that our paper complies with ethical
review guidelines.
Limitation This article proposes a new frame-
work to balance and efficiently inject multimodal
semantics into PLMs. However, the training of our
proposed model relies on fine-tuning operations
on PLMs, which may not be easily achievable in
specific situations. Fully fine-tuning some super
large language models may not be realistic. There-
fore, exploring how to reduce fine-tuning costs and
even provide training-free methods is more valu-
able for practical scenarios, which is also an im-
portant direction for future work. Furthermore, We
use CLIP, AudioCLIP, and CLIP-ViP text encoders
to generate modality-specific concepts as proxies.
As pre-trained models, these MC-PTMs may also
contain biases learned from the pre-trained corpus,
which may lead to inappropriate bias predictions
for some NLP tasks.
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A Appendix

A.1 Theoretical Analysis of conceptual
prototypes.

Theorem 2. Assuming model θ is a CLIP-like MC-
PTM trained on a substantial dataset comprising
pairs of modalities k and t, let Zk and Zt denote
representations generated through θ for k and t,
respectively, and Y represents the label set for a
specific NLP task, then maximizing the mutual in-
formation between Zt and Y is equivalent to maxi-
mizing the mutual information between Zk and Y ,
i.e,

max I(Zt, Y ) ⇔ max I(Zk, Y ), (16)

I(·) represents mutual information.

Proof. Due to θ being an MC-PTM trained on
a large amount of multimodal data pairs, the two
highly aligned modal latent variables Zt and Zk are
closely related. Therefore, we have the following
inference:

p(Zt|Zk) ≈ p(Zt|Zk) ≈ 1. (17)

Based on Eq. 17, we can derive p(zk, y) ≈ p(zt, y)
from the total probability formula. According to
the definition of mutual information, we have:

I (Zt, Y ) =
∑

zt,y

p (zt, y) log

(
p (zt, y)

p (zt) p(y)

)
;

I (Zk, Y ) =
∑

zk,y

p (zk, y) log

(
p (zk, y)

p (zk) p(y)

)
.

(18)
In this case, if I(Zt, Y ) is maximized, I(Zk, Y )
will also be implicitly maximized due to the high
correlation between Zk and Zt, and vice versa.

Claim 2 indicates that maximizing the informa-
tion entropy between the intermediary proxy Zt

and Y is essentially in maximizing the information
between Zk and label Y . In other words, Zt is
a well-implicit conceptual prototype for modality
k. We can utilize Zt to efficiently transfer multi-
modal knowledge into PLMs to augment cognitive
processing and understanding.

A.2 Proof of Theorem 1

Proof. We design a novel multimodal self-
balancing contrastive loss between modalities m
and k by incorporating a distribution of allocation
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scores p(w(m,k)
ij ) as follows:

L(m,k)
i = −

N∑

j=1

1(yi = yj)p(w
(m,k)
ij ) log p

(m,k)
ij ,

p
(m,k)
ij =

exp (mi · kj/τ)∑N
a=1 exp (mi · ka/τ)

,

(19)

where, mi and kj denotes the representations ob-
tained by feeding Ĥm

i and Ĥk
j into a linear pro-

jector, τ is the temperature coefficient, p(m,k)
ij is

the contrastive logit, and m, k ∈ M. For simplic-
ity, we define the distribution of allocation scores
as wij = p(w

(m,k)
ij ). Then, we approximate omit

1(yi = yj) in Eq. 19 and solve the optimization
problem with the Lagrange multiplier. The prob-
lem is defined as follows:




min f(p
(m,k)
i1 , · · · , p(m,k)

in )

= −∑n
j=1

(
wij · log p(m,k)

ij

)
,

s.t. g(p
(m,k)
i1 , · · · , p(m,k)

in )

=
∑n

j=1 p
(m,k)
ij − 1 = 0,

(20)

where, where n refers to the number of instances
in the training batch. And the Lagrangian function
of Eq. 20 can be formulated as:

L(λ, p(m,k)
i1 , · · · , p(m,k)

in )

=−
n∑

j=1

(
wij · log p(m,k)

ij

)
+ λ(

n∑

j=1

p
(m,k)
ij − 1)

(21)

and its corresponding partial derivatives are:

∂L
∂p

(m,k)
ij

= λ− wij

p
(m,k)
ij

= 0; (22)

∂L
∂λ

=

n∑

k=1

p
(m,k)
ij − 1 = 0. (23)

From Eq. 22 and Eq. 23, the optimal value of
contrastive logits is approximately as:

p
(m,k)
ij

∗
= p(w

(m,k)
ij ), (24)

which concludes the proof for Theorem 1.

A.3 More training details.

In this work, we utilize CLIP (ViT-B/32)2 (Radford
et al., 2021), AudioCLIP (Full-Trained)3 (Guzhov
et al., 2021) and CLIP-ViP (base-patch32)4 (Xue
et al., 2022) text encoders to obtain conceptual pro-
totypes of image, audio, and video modalities, re-
spectively. The trade-off hyperparameter in Eq 14
is set to 0.2 and the number of attention heads in
the semantic concept enhancement module is set
to 8. We set the learning rate of 1e-4 on GLUE
benchmark, 3e-5 on SQuAD v1.1 and SQuADv2.0
datasets, and 2e-5 on CommonGen dataset. In
addition, we set the training batch size of 32 on
GLUE benchmark and CommonGen dataset, and
12 on SQuAD v1.1 and SQuAD v2.0 datasets. We
use grid search to determine the optimal hyperpa-
rameters mentioned above. We use Spearman’s
correlation as the metric on STS-B and the remain-
ing GLUE tasks using accuracy as the metric. All
experiments are conducted on 8 RTX 4090 GPUs.

A.4 More Ablation Experiments and Analysis.

Text Encoder in
Prototype Extractor

SQuAD v1.1 SQuAD v2

Acc. F1 Acc. F1

BERT-base 83.7 90.8 78.1 81.9
BERT-base** 83.9 91.0 77.8 81.5

Non-fixed CLIP* 84.4 91.4 79.6 82.9
Fixed CLIP* 85.8 92.2 81.0 84.2

Table 6: Performance comparison of representations
pre-trained using different pre-training data in our ap-
proach. We employ RoBERTa-base as the base model.
“Non-Fixed CLIP*” represents using the text encoders of
CLIP, AudioCLIP and CLIP-ViP as prototype extractors
and set them as trainable modules. “BERT-base**” rep-
resents pre-training BERT-base on captions in CC3M.

The Effect of the Pre-trained Dataset. We no-
tice some discrepancies between the textual data
employed in MC-PTMs and the dataset used for
PLMs pre-training. To evaluate the effect of pre-
training textual data on model performance, we
utilize captions from the CC3M dataset (Sharma
et al., 2018) for masked pre-training of the BERT-
base model. We utilize the retrained BERT-base
as conceptual prototype extractors to conduct this
ablation study. As shown in Table 6, the results

2https://github.com/openai/CLIP
3https://github.com/AndreyGuzhov/AudioCLIP
4https://github.com/microsoft/XPretrain/tree/

main/CLIP-ViP
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reveal that pre-training with captions does not en-
hance performance and even leads to a decline in
performance on the SQuAD v2.0 dataset. This fur-
ther indicates that the performance gains from our
concept prototypes come not from the pre-trained
textual captions but from multimodal data such as
images, audio, and videos. In addition, we change
the fixed prototype extractors into learnable mod-
ules and observe that learnable extractors result in
performance degradation. This may be due to fine-
tuning breaking the original semantic structure of
MC-PTMs, thereby weakening the paired mapping
assumption of Theorem 2.

Methods MemoryColor ColorTerm ObjectShape

CLIP 27.3 24.9 19.8
BERT-base 25.1 26.7 31.5
RoBERTa-base 26.9 25.4 32.3
MaCSC 35.2 34.3 34.5

Table 7: Performance comparison on visual reasoning
tasks, with the best results highlighted in bold. We use
BERT-base as the backbone to evaluate our MaCSC.

Evaluation on Visual Reasoning Tasks. In this
study, we employ datasets focused on reasoning
about color and shape, specifically the Memory-
Color (Norlund et al., 2021), ColorTerm (Bruni
et al., 2012), and ObjectShape (Zhang et al., 2022)
datasets, to evaluate the efficacy of our method in
facilitating the transfer of visual knowledge. The
outcomes of these evaluations are presented in Ta-
ble 7. The findings derived from the analysis of
these results indicate that our MaCSC significantly
enhances the capacity of PLMs to comprehend ob-
ject colors and shapes, thereby demonstrating the
effectiveness of our approach in augmenting the
multimodal comprehension capabilities of PLMs.
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