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Abstract

Several Natural Language Understanding
(NLU) tasks focus on linking text to explicit
knowledge, including Word Sense Disambigua-
tion, Semantic Role Labeling, Semantic Pars-
ing, and Relation Extraction. In addition to
the importance of connecting raw text with ex-
plicit knowledge bases, the integration of such
carefully curated knowledge into deep learn-
ing models has been shown to be beneficial
across a diverse range of applications, includ-
ing Language Modeling and Machine Transla-
tion. Nevertheless, the scarcity of semantically-
annotated corpora across various tasks and lan-
guages limits the potential advantages signifi-
cantly. To address this issue, we put forward
MOSAICo, the first endeavor aimed at equip-
ping the research community with the key in-
gredients to model explicit semantic knowl-
edge at a large scale, providing hundreds of
millions of silver yet high-quality annotations
for four NLU tasks across five languages. We
describe the creation process of MOSAICo,
demonstrate its quality and variety, and analyze
the interplay between different types of seman-
tic information. MOSAICo, available at https:
//github.com/SapienzaNLP/mosaico, aims
to drop the requirement of closed, licensed
datasets and represents a step towards a level
playing field across languages and tasks in
NLU.

1 Introduction

There are two predominant schools of thought
on how to integrate semantics into Natural Lan-
guage Processing (NLP) systems. Most researchers
lean towards the implicit integration of semantics
through self-supervised language modeling (Devlin
et al., 2019; Liu et al., 2019; Raffel et al., 2020;
Lewis et al., 2020), a framework that proved to

∗All authors contributed equally. The core of the work
by Carlos and Pere-Lluís was carried out while working at
Babelscape. Part of the work by Luigi was carried out while
at the Sapienza University of Rome.

be successful in numerous language understanding
benchmarks (Rajpurkar et al., 2016; Wang et al.,
2019b,a). However, this approach – while concep-
tually straightforward and effective by scaling up
the number of parameters – has raised concerns
regarding its cost-effectiveness and environmental
impact (Strubell et al., 2019; Geiping and Gold-
stein, 2022). Furthermore, the black-box nature of
this approach has also prompted calls for a criti-
cal inquiry into whether the impressive results on
language benchmarks genuinely reflect a system’s
comprehension of language (Bender et al., 2021;
Ray Choudhury et al., 2022; Maru et al., 2022;
Tedeschi et al., 2023).

Conversely, other researchers have advocated
for the integration of discrete symbols into AI sys-
tems, which has recently been resurfacing under
the umbrella term of “neuro-symbolic AI” (d’Avila
Garcez and Lamb, 2020; Raedt et al., 2020). In
NLP, discrete symbols can be used to represent
word meanings, and graphs of symbols can be inter-
preted as sentence-level semantics. The integration
of such explicit semantics into NLP systems may
have the potential to address the aforementioned
concerns (Navigli, 2018). Indeed, explicit seman-
tics has been shown to be effective in reducing
the number of parameters of neural networks and
in improving the interpretability of their outputs.
However, to the best of our knowledge, we still
lack a critical enabler for training such approaches,
namely, a vast, high-quality dataset annotated with
symbolic knowledge.

To address this issue, we introduce MOSAICo,
a novel resource designed to foster explorations
and modeling of explicit semantics on an extensive
scale and across multiple languages. With its hun-
dreds of millions of silver annotations on Wikipedia
sentences across 5 languages for 4 important NLU
tasks – namely, Word Sense Disambiguation, Se-
mantic Role Labeling, Semantic Parsing, and Rela-
tion Extraction – MOSAICo is a large, diverse, and
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Figure 1: A visualization of the annotations (clickable) in MOSAICo for multilingual Word Sense Disambiguation
(WSD), Semantic Role Labeling (SRL), Semantic Parsing (SP), and Relation Extraction (RE).

robust dataset that can bootstrap research on the
integration of explicit semantics into NLP systems
to train and evalute models. In addition, MOSAICo
is also a tool for investigating the interaction be-
tween different types of symbols, structures, and
semantics, as shown in Figure 1.

In this paper, we describe the construction of
MOSAICo, which can save critical time and com-
pute for future research, and show its effectiveness
for training state-of-the-art systems on open data as
opposed to the closed and copyrighted datasets that
are traditionally used in the literature, which will
aid in lowering the barrier for the development of
next-generation systems. We also provide insights
into the interaction between different NLU tasks, as
diverse sources of semantic knowledge allow us to
look at new opportunities enabled by the availabil-
ity of a large, cross-lingual, semantically-tagged
corpus. We hope MOSAICo will be a tool that
facilitates deeper investigations of the intersection
between natural language and explicit semantics,
while also fostering analysis of the connection be-
tween different NLU tasks across languages.

2 Background and Motivation

This section briefly introduces the four semantic
tasks we considered in MOSAICo, and further ex-
plains how our resource can help the research com-
munity. Due to space constraints and the extensive
literature available for each task, we focus on the
works that are within the scope of this paper.

Word Sense Disambiguation (WSD) aims at as-
sociating a word in context with the most suitable
meaning from a predefined sense inventory (Nav-
igli, 2009; Bevilacqua et al., 2021b). WSD is a
challenging task for machines and humans, espe-
cially when using fine-grained sense inventories

like WordNet (Miller, 1992). Nevertheless, ground-
ing words to discrete senses can bring several ben-
efits, including better Language Modeling (Levine
et al., 2020; Barba et al., 2023), Machine Trans-
lation (Campolungo et al., 2022b), and lexical
bias benchmarking in applications (Campolungo
et al., 2022a). However, traditional datasets for
WordNet-based WSD are limited in size, outdated,
and mostly English-specific. Even though sense in-
ventories are available for multilingual WSD, such
as BabelNet (Navigli et al., 2021), creating high-
quality training datasets for non-English languages
is difficult (Pasini, 2020). MOSAICo aims to over-
come two limitations in today’s WSD: i) sense cov-
erage, i.e., current English datasets provide limited
coverage of the long tail of the sense distribution,
and ii) multilingual coverage, i.e., the lack of high-
quality annotations for non-English languages.

Semantic Role Labeling (SRL) is informally de-
scribed as the task of answering “who did what to
whom, where, when, and how?” (Màrquez et al.,
2008). Given a sentence, SRL usually requires: i)
predicate identification, i.e., finding all the words
that denote an action; ii) predicate sense disam-
biguation, i.e., selecting the most appropriate sense
for each identified predicate; iii) argument identifi-
cation, i.e., detecting the text spans that represent
the participants in the action; and, iv) argument
classification, i.e., assigning a semantic role to each
predicate-argument pair. The predicate senses and
semantic roles used in SRL are defined accord-
ing to an inventory of predicate-argument struc-
tures, e.g., PropBank (Palmer et al., 2005; Pradhan
et al., 2022), FrameNet (Baker et al., 1998), or
VerbAtlas (Di Fabio et al., 2019), among others.
MOSAICo provides annotations using PropBank
– due to its popularity – and VerbAtlas – due to its
manual linkage to WordNet and BabelNet and its
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cross-frame relations – and addresses three short-
comings of SRL: i) open data availability, i.e., pop-
ular datasets are not open (Carreras and Màrquez,
2004; Hajič et al., 2009; Pradhan et al., 2012), ii)
multilingual coverage, i.e., limited availability of
large multilingual datasets, and iii) cross-inventory
annotations, i.e., data annotated with more than one
type of predicate-argument structure inventory.

Semantic Parsing (SP) is the task of encod-
ing the meaning of a sentence in a machine-
interpretable structure (Kate and Wong, 2010).
Since the focus of MOSAICo is on semantics, we
direct our attention to formalisms that encode the
abstract meaning of a sentence, such as AMR (Ba-
narescu et al., 2013) and BMR (Navigli et al., 2022;
Martínez Lorenzo et al., 2022). Thanks to recent
advances (Bevilacqua et al., 2021a), modern SP
systems can now be used with high accuracy. How-
ever, SP still suffers from issues similar to those
in WSD and SRL, perhaps amplified by the extent
of the manual effort required to annotate text with
complex graphs. More specifically, the role of MO-
SAICo is to provide the first large-scale dataset of
annotations for AMR in five languages with the
aim of mitigating two problems in SP: i) shortage
of open datasets in English but also in other lan-
guages, and ii) coverage, i.e., the lack of semantic
parses for a broad range of domains.

Relation Extraction (RE) is the task of extract-
ing semantic relationships between entities from
unstructured text. Since MOSAICo is based on
Wikipedia, we focus on relation types from Wiki-
data. While previous work has mostly focused
on named entities (Roth and Yih, 2004; Riedel
et al., 2010), equally important relations are also
present between concepts. MOSAICo allows us
to explore interactions between entities identified
through Wikipedia hyperlinks, and, unlike previ-
ous efforts, concepts identified through WSD, so
as to disambiguate the subject and object of a se-
mantic relation from Wikidata. This enables the
creation of a vast network of concepts and enti-
ties interconnected through semantic relations tied
to their multilingual textual context. To leverage
them, we will explore how many of these relations
are already present in Wikidata and whether MO-
SAICo can provide new and reliable relation an-
notations. Therefore, MOSAICo provides for RE:
i) wide-coverage extraction of relational triplets1

1We define a triplet as a tuple of three elements: a subject,
an object, and the relation type that connects them.

connected to their lexical-semantic context, which
was unfeasible without the interconnection with
WSD at hand, ii) a novel way of augmenting Wiki-
data, and iii) multilingual coverage, i.e., addressing
the limited availability of high-quality, high-recall,
multilingual datasets for RE.

3 MOSAICo

Our main objective with MOSAICo is to create
a large collection of silver annotations on multi-
lingual data. However, we believe that the value
of MOSAICo does not only lie in the creation of
annotations whose quality is comparable to gold-
standard datasets. Indeed, while several groups
may have the resources and expertise to reproduce
similar efforts, we introduce MOSAICo to also
address the following issues:

• Large silver datasets require compute: by
making our resource available to the wider
community, researchers can save more than
10 thousand GPU hours;

• Processing from scratch: even if compute
were not a limitation, recreating a large dataset
from scratch is not efficient and green;

• Common reference: the open availability al-
lows our resource to be less affected by hidden
implementation details;

• Task interaction: having uniform annotations
for four types of task enables the analysis of
possible inter-task interactions.

We now describe the creation process of MO-
SAICo, our novel resource of silver-quality annota-
tions for modeling semantics at a large scale. We
start with an outline of the data collection process
(Section 3.1) and then detail how we produce the
annotations (Section 3.2).

3.1 Data collection and preprocessing
We create MOSAICo by collecting documents
from Wikipedia in five languages: English, French,
German, Italian, and Spanish.2 There are several
reasons for choosing Wikipedia as the core of MO-
SAICo. First, Wikipedia is released under a per-
missive license. Second, Wikipedia is often already
included as part of the pretraining corpus of mod-
ern language models (Devlin et al., 2019; Liu et al.,
2019). Providing annotations for textual data that

2We use the Wikipedia dump released on June 13, 2022.
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EN DE ES FR IT
M

O
SA

IC
o #documents 441K 441K 441K 441K 441K

#sentences 19.6M 16.4M 7.1M 11.8M 8.6M
#tokens 518M 335M 190M 319M 261M
avg. sent. length 26 20 27 27 30

M
-C

or
e #documents 17.2K 17.2K 17.2K 17.2K 17.2K

#sentences 2.6M 2.2M 0.7M 1.3M 1.1M
#tokens 69M 46M 18M 35M 36M
avg. sent. length 27 21 28 28 31

Table 1: Number of documents, sentences, tokens, and
average sentence length in tokens in MOSAICo and
MOSAICo Core (M-Core).

EN DE ES FR IT

M
O

SA
IC

o WSD 192.0M 83.1M 61.0M 102.2M 84.0M
SRL 114.5M 44.2M 29.3M 42.8M 54.5M
SP 17.6M 13.6M 5.5M 8.7M 6.3M
RE 18.2M 6.9M 3.4M 7.0M 3.8M

M
-C

or
e WSD 5.6M 2.9M 2.2M 3.4M 2.9M

SRL 4.8M 2.2M 1.3M 1.8M 1.7M
SP 2.5M 2.1M 0.6M 1.2M 1.0M
RE 3.6M 1.2M 0.7M 1.4M 0.7M

Table 2: Overview of the number of annotations for
each semantic task in MOSAICo and MOSAICo Core.

these language models have already used opens the
door to easier future integration of explicit seman-
tics into such models. Second, we aim to retain
information about the provenance of each sentence,
i.e., the Wikipedia article it belongs to and its posi-
tion within the article. This design choice allows a
user to connect and leverage annotations at the doc-
ument level and for the same article across different
languages.

Preprocessing. First, for each language, we re-
tain only those Wikipedia articles that appear in all
the five languages we consider. There are two main
reasons for this selection strategy. First, we hypoth-
esize that the larger the number of languages an
article is written in, the greater must be the attention
that the Wikipedia community has devoted to its
creation. Second, forcing an article to be available
in all five languages of interest makes MOSAICo
“comparable” by design, i.e., fully parallel as re-
gards the articles (concepts and entities) covered in
each language, even if not parallel (i.e., only com-
parable) as regards the textual contents. Despite
the above cross-lingual constraint, the filtering pro-
cess still results in 440,000 articles per language.
Finally, we preprocess each article using Stanza
NLP3 for sentence splitting, tokenization, lemma-
tization, and part-of-speech tagging. As shown in
Table 1, MOSAICo contains millions of sentences
and tokens across the five languages under consid-
eration.

Since MOSAICo includes hundreds of thou-
sands of articles for each language, we also iden-
tify a subset of these which includes those articles
whose quality is higher than the average, i.e., the
articles labeled as “good” or “featured” in at least
one of the five languages by the Wikipedia commu-
nity.4 We name this subset MOSAICo Core.

3https://stanfordnlp.github.io/stanza/
4Wikipedia articles need to satisfy a set of strict quality

requirements to be considered “good” or “featured”.

3.2 Construction and annotation

We now describe how we annotated the collected
texts across the four semantic tasks. One key aspect
of the construction of MOSAICo is that producing
a massive quantity of annotations, as can be seen
in Table 2, is time-consuming. Therefore, an in-
direct contribution of MOSAICo is that its open
availability can save thousands of hours of com-
putation, enabling researchers to bootstrap their
future work.5

Word Sense Disambiguation. We tag each doc-
ument in MOSAICo using ESCHER, a state-of-
the-art WSD model (Barba et al., 2021). ESCHER
takes advantage of word sense definitions to better
generalize on unseen patterns and inventories. This
is a strong desideratum in our case, as Wikipedia
features many words and senses that are not in-
cluded in traditional training datasets (Miller et al.,
1994; Pasini et al., 2021, SemCor, XL-WSD). We
train ESCHER on SemCor and the WordNet Gloss
Corpus (WGC) using deberta-v3-base for En-
glish and on the XL-WSD training datasets using
mdeberta-v3-base for the other languages. We
use BabelNet 5.16 (Navigli et al., 2021) as our de-
fault unified sense inventory to annotate in multiple
languages.

Semantic Role Labeling. For SRL, we adopt
Multi-SRL (Conia and Navigli, 2020), a state-of-
the-art system for PropBank-style dependency- and
span-based SRL. In this work, we focus on span-
based SRL, as dependency-based formalisms are
tied to syntax and, therefore, are more difficult to
employ in downstream applications. Moreover, we
leverage the mapping from PropBank to VerbAtlas
frames created by Di Fabio et al. (2019) to train

5The annotation process of MOSAICo requires about
12 470 hours on Nvidia RTX 3090: 1050 for preprocessing,
1140 for WSD, 1600 for SRL, 5080 for SP, and 3600 for RE.

6https://babelnet.org
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Multi-SRL to predict VerbAtlas-style labels as well,
thus labeling each predicate using two inventories.

Semantic Parsing. For the English sentences, we
leverage the state-of-the-art English AMR parser
LeakDistill (Vasylenko et al., 2023),7 which is an
extension of the SPRING model (Bevilacqua et al.,
2021a) – a popular system for AMR parsing (Bai
et al., 2022; Martínez Lorenzo et al., 2023a; Lou
and Tu, 2023; Gao et al., 2023). For the multilin-
gual setting, we extend CLAP (Martínez Lorenzo
and Navigli, 2024), an efficient implementation
of SPRING. LeakDistill and CLAP are auto-
regressive models fine-tuned to “translate” natural
sentences into linearized AMR graphs. To extend
CLAP cross-lingually: i) we follow Blloshmi et al.
(2020) and create a training corpus for French, Ger-
man, Italian, and Spanish from the automatic trans-
lation8 of the original English sentences in AMR
3.0 paired with the original (English) AMR graphs;
then, ii) we fine-tune an mBART-based (Liu et al.,
2020) instance of SPRING for each language.

Relation Extraction. For RE, we employ a two-
step approach based on the mREBEL multilin-
gual mBART-based RE system (Huguet Cabot
et al., 2023) and the cRocoDiLe data extraction
pipeline (Huguet Cabot and Navigli, 2021). In
the first step, we perform inference on the corpus
of MOSAICo using mREBEL to obtain the first
portion of our annotated RE data. In the second
step, we exploit the Wikipedia hyperlinks – along
with their propagations9 – and WSD annotations
as sources of disambiguated entities and concepts.
We extract the second portion of annotations by ap-
plying the cRocoDiLe pipeline which collects rela-
tional triplets from Wikipedia articles by leveraging
the disambiguated entity and concept mentions and
connecting them with the relations between them
defined in Wikidata. Unlike previous work, we do
not restrict this extraction to Wikipedia abstracts
and extract the triplets from the entire pages. Fi-
nally, we remove false positives by utilizing an NLI-
based Triplet Critic (Huguet Cabot et al., 2023).

4 Experiments and Results

To evaluate the quality of MOSAICo, we train a set
of state-of-the-art models on our silver datasets for
WSD, SRL, RE, and SP; then, we compare their

7This model does not scale cross-lingually.
8We employ DeepL to obtain high-quality translations.
9We propagate links to the other mentions of the same

entity as in Tedeschi et al. (2021).

results with those obtained by the same systems
trained on gold datasets. Table 9 in the Appendix
provides an overview of these benchmarks and re-
sources in comparison to MOSAICo.

4.1 Word Sense Disambiguation

We evaluate the effectiveness of MOSAICo for
WSD by testing ESCHER when trained under three
different settings: i) using SemCor and WGC for
English and the training datasets of XL-WSD for
the other 4 languages (ESCHERgold),10 ii) using a
randomly sampled subset of MOSAICo of the same
size as the gold training sets (ESCHERM-Ref), iii)
using MOSAICo Core (ESCHERM-Core), and iv)
using a randomly sampled subset of MOSAICo
Core of the same size as the gold training sets
(ESCHERM-Core-Ref).

Table 3 provides an overview of the results on
ALL (Raganato et al., 2017), 42D (Maru et al.,
2022), and XL-WSD test sets, which are the stan-
dard evaluation framework for WordNet-based
WSD, a new multi-domain challenge set for rare
senses, and the largest benchmark for multilingual
WSD, respectively. As expected, ESCHERM-Ref
and ESCHERM-Core-Ref do not achieve the same
results as ESCHERgold (74.9 and 76.0 vs. 76.4
in F1 score averaged across all benchmarks), but
we can see that the higher quality of MOSAICo
Core leads to higher overall performance. When
we move to the larger scale of the whole MO-
SAICo Core dataset, ESCHERM-Core improves
over ESCHERgold in every test set and language
(77.3 vs. 76.4 on average), confirming the quality
of our WSD annotations.

Since WSD is not as computationally expen-
sive as the other tasks, here we also analyze
the difference in performance when training on
MOSAICo Core compared to a random 10%
of MOSAICo (ESCHERM-10%) and the entire
MOSAICo (ESCHERM-100%). The last two
rows of Table 3 show that ESCHERM-Core com-
pares favorably against both ESCHERM-10% and
ESCHERM-100%, suggesting that MOSAICo Core
features a good balance between size and qual-
ity. Finally, it is worth noting that, for the
rare senses in 42D, coverage is the most impor-
tant aspect, as ESCHERM-100% outperforms both
ESCHERM-Core and ESCHERgold (58.4 vs. 56.2
vs. 54.4, respectively).

10We note that the XL-WSD training datasets are silver-
quality datasets and that we refer to them as gold just to be
consistent with the naming convention of the other tasks.
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ALL 42D XL-WSD Avg.EN EN DE ES FR IT

ESCHERgold 81.0 54.4 83.2 77.5 84.3 78.2 76.4
ESCHERM-Ref 79.0 51.5 81.2 76.8 83.8 77.3 74.9
ESCHERM-Core 82.0 56.2 84.1 77.8 84.5 79.1 77.3
ESCHERM-Core-Ref 80.5 53.7 82.7 77.5 83.9 77.7 76.0

ESCHERM-10% 81.7 55.9 83.8 77.6 84.4 78.8 77.0
ESCHERM-100% 81.5 58.4 83.8 77.4 84.1 78.8 77.3

Table 3: WSD results in terms of F1 score. Best in bold.

ON5 PBE X-SRL Avg.EN EN EN DE ES FR

Se
ns

es M-SRLgold 95.5 80.7 97.2 67.6 75.1 71.1 81.2
M-SRLM-Ref 94.8 80.1 96.5 67.0 74.9 71.2 80.8
M-SRLM-Core 95.3 82.6 97.0 68.4 75.5 72.3 81.9

R
ol

es M-SRLgold 87.3 74.9 92.0 69.5 75.1 72.1 78.4
M-SRLM-Ref 85.5 74.7 91.4 69.3 75.0 71.8 77.9
M-SRLM-Core 87.0 75.7 92.0 70.6 75.5 72.2 78.8

Table 4: SRL results in terms of F1 score on the test
sets of OntoNotes (ON5), PropBank Examples (PBE),
and X-SRL. Top half: predicate sense disambiguation.
Bottom half: argument labeling. Best results in bold.

4.2 Semantic Role Labeling

We assess the quality of the SRL annotations in
MOSAICo by measuring their impact on Multi-
SRL. Table 4 shows the results of Multi-SRL when
trained on three sources of SRL annotations: i)
OntoNotes 5.0, i.e., the most recent gold standard
for PropBank 3 (Pradhan et al., 2022) and derived
from CoNLL-2012, ii) a random subsample of the
MOSAICo annotations of the same size as the gold
training dataset (M-SRLM-Ref), and iii) MOSAICo
Core (Multi-SRLM-Core).

We evaluate Multi-SRL trained using the above
datasets on three benchmarks: on OntoNotes,
which is a standard benchmark in the area, on PB-
Examples (PBE), which is a comprehensive bench-
mark recently introduced by Orlando et al. (2023),
and on X-SRL, a multilingual benchmark by Daza
and Frank (2020). For each benchmark, we report
the F1 score typically used in the literature, which
combines the accuracy in predicate sense disam-
biguation with the F1 score on argument labeling.

On the OntoNotes test set, Multi-SRLM-Core
achieves F1 scores in the same ballpark as Multi-
SRLgold on predicate sense disambiguation (95.3
vs. 95.5 points) and argument labeling (87.0 vs.
87.3 points), even though we note that OntoNotes
features different genres compared to MOSAICo
Core.11 This result acquires greater value if we
consider that current datasets for SRL, such as

11For example, OntoNotes contains dialogues with informal
writing, which are rare in the Wikipedia articles.

OntoNotes, are closed-source. Instead, the open
availability of MOSAICo can lift barriers for re-
searchers looking for high-performance SRL sys-
tems, fostering future work on multilingual SRL.

PB-Examples is an out-of-domain benchmark
constructed from the annotated examples in Prop-
Bank12 and it enables us to also test the generaliz-
ability of an SRL system on verbal, nominal, adjec-
tival, and adverbial predicates, especially the latter
two types, which are not present in the OntoNotes
training set. Thanks to the wide variety of text in-
cluded in MOSAICo Core, Multi-SRLM-Core out-
performs Multi-SRLgold in predicate sense disam-
biguation (82.6 vs. 80.7 in F1 score) and argu-
ment labeling (75.7 vs. 74.9 in F1 score) on PBE.
To better understand how MOSAICo Core helps
Multi-SRL, we conduct two fine-grained analyses
on PBE. First, we split PBE by predicate type, i.e.,
verbal predicates, nominal predicates, and adjecti-
val predicates. Here, we find that Multi-SRLM-Core
generalizes better than Multi-SRLgold on the adjec-
tival predicates, which are particularly challenging
as they do not occur in the OntoNotes training
set, achieving an absolute improvement of 11.0
(74.5 vs. 63.5) and 3.2 (59.5 vs. 56.3) points in
F1 score on predicate sense disambiguation and
argument labeling, respectively. Second, we ana-
lyze the results of Multi-SRL on those predicates
whose ground-truth sense labels are “unseen” with
respect to the OntoNotes training set, finding that
Multi-SRLM-Core outperforms Multi-SRLgold by
7.0 (73.5 vs. 66.5) and 1.5 (69.4 vs. 67.8) points
in F1 score on predicate sense disambiguation and
argument labeling, respectively.

Finally, we find that Multi-SRLM-Core performs
better than Multi-SRLgold in X-SRL, a benchmark
that includes German, Spanish, and French: it
achieves an average improvement of 0.8% (72.1
vs. 71.3) and 0.5% (72.8 vs 72.3) respectively in
predicate disambiguation and argument labeling F1
across the 3 languages.

4.3 Semantic Parsing

For SP, we measure the efficacy of MOSAICo in
text-to-AMR parsing by training our SP model in
three different settings: i) the gold-standard train-
ing split of AMR 3.0 for English and on its trans-
lations for the other 4 languages (SPRINGgold), as

12Most of the predicate senses in PropBank come with a
usage example. For example, PropBank provides the follow-
ing example for give.01: [The executives]ARG0 gave [the
chefs]ARG2 [a standing ovation]ARG1.

7995



AMR3 TLP Bio AMR-4T Avg.EN - ID EN - OOD DE ES IT

SPRINGgold 83.0 81.0 60.5 69.2 72.9 71.6 73.0
SPRINGM-Ref 80.4 80.1 56.8 67.3 70.9 70.1 70.9
SPRINGM-Core 82.7 81.4 62.0 69.2 72.3 72.9 73.4

Table 5: Text-to-AMR results in terms of SMATCH
score on the test set of AMR 3.0 (AMR3), The Little
Prince (TLP), biomedical (Bio), and AMR 2.0 – Four
Translations (AMR-4T). Best results in bold.

explained in Section 3.2, ii) a random subsample
of the MOSAICo annotations of the same size as
AMR 3.0 (SPRINGM-Ref), and iii) the silver an-
notations from MOSAICo Core (SPRINGM-Core).
We compare the results on the test sets of AMR 3.0
(LDC2020T02), the out-of-domain benchmarks of
The Little Prince (TLP) and Bio AMR, and the mul-
tilingual test set of “AMR 2.0 – Four Translations”
(LDC2020T07) in German, Italian, and Spanish.
We use the well-established SMATCH metric (Cai
and Knight, 2013) – which calculates the maxi-
mum overlap between two graphs – to evaluate the
performance of the systems.

Table 5 presents the results in SP. Comparing
SPRINGM-Ref to SPRINGgold, we can see that, as
in previous tasks, the model trained on the gold
training dataset outperforms our baseline. How-
ever, similar to WSD and SRL, although the genres
in MOSAICo Core and the test set of AMR 3.0
do not match, SPRINGM-Core achieves results that
are comparable to SPRINGgold (82.7 vs. 83.0 in
SMATCH score, respectively). Moreover, in out-
of-domain benchmarks, due to its wide range of
texts and domains, SPRINGM-Core provides im-
provements over SPRINGgold of 0.4 points on TLP
(81.4 vs. 81.0), and 1.5 on Bio (62.0 vs. 60.5).

Finally, in the multilingual setting,
SPRINGM-Core and SPRINGgold achieve re-
sults in the same ballpark for German (69.2
vs. 69.2), Spanish (72.3 vs. 72.9), and Italian
(72.9 vs. 71.6). Interestingly, once again, since
“AMR 2.0 — Four Translations” sentences are
human translations of a portion of the AMR 3.0
test sentences, SPRINGM-Core is evaluated in
an out-of-genre setting, while SPRINGgold in
an in-genre one. These findings gain even more
relevance considering that current training datasets
for SP are closed-source.

4.4 Relation Extraction

The experimental setup for RE is different from
the other tasks. While sense inventories can be

Model CONLL04 NYT ADE Avg.

BARTgold 71.2 91.8 81.7 81.6
BARTREBEL 75.4 92.0 82.2 83.2
BARTM-cRoco 72.7 91.6 81.5 81.9
BARTM-Core 75.4 91.9 81.9 83.1

Table 6: RE results in terms of F1 score. Best in Bold.

shared across datasets, relation taxonomies dif-
fer among RE datasets, MOSAICo annotations,
and more in general silver-standard resources for
RE. Therefore our annotations cannot be used as
direct training material to evaluate on gold cor-
pora. For this reason the research community
has relied on silver corpora to perform a first
round of pretraining before fine-tuning models on
a specific dataset and relation set (Yamada et al.,
2020). In order to provide an extrinsic evalua-
tion of the quality of the annotations in MOSAICo
for the English language, we compare them with
those used in REBEL (Huguet Cabot and Nav-
igli, 2021) and design three different settings by
pretraining BART with REBEL’s same decoding
scheme under i) the silver data provided by REBEL
(BARTREBEL), equivalent to REBELpre−training in
the original paper, ii) MOSAICo Core’s instances
produced just with the cRocoDiLe pipeline on
the Wikipedia hyperlinks as in REBEL annotation
scheme (BARTM-cRoco), and iii) all the silver an-
notations in MOSAICo Core (BARTM-Core). As a
reference, we include the performances of BART
when trained only on each of the gold corpora
(BARTgold). More specifically, we then evaluate the
difference in performance on CoNLL04 (Roth and
Yih, 2004), NYT (Riedel et al., 2010), ADE (Gu-
rulingappa et al., 2012) datasets when further train-
ing any of the aforementioned pre-trained BART
on these datasets. All results are reported as micro-
F1 scores based on the labeled triplets, where a
triplet is considered correct only if subject, object
and relation type are correctly identified.

As we can see from the results in Table 6,
BARTM-Core and BARTREBEL perform in the same
ballpark, with the latter slightly outperforming the
former, and both surpassing BARTgold. However,
we highlight that BARTM-Core is 66% smaller than
BARTREBEL (259,982 vs. 784,202 instances). We
hypothesize that BARTM-Core does not outperform
BARTREBEL due mainly to two reasons: i) the
REBEL dataset differs from MOSAICo in its com-
position, as it is built only from Wikipedia lead
sections and it features a different distribution of
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EN IT FR DE ES

ESCHERgold 88.4 85.9 82.8 86.3 83.1

Table 7: F1 scores of ESCHERgold on Wiki-WSD.

relation types, which can be beneficial when trans-
ferring knowledge to smaller datasets used for eval-
uation, and ii) MOSAICo provides a higher density
of triplets per training passage than REBEL (6.7
vs. 1.2), but the datasets used for evaluation are
more similar to REBEL than MOSAICo (1.6 for
ADE, 1.5 for CoNLL-2004, 1.7 for NYT). More-
over, when we compare the results of BARTM-cRoco

to those of BARTM-Core, we can see that, when the
additional sources MOSAICo provides are dropped,
performance decreases, reaffirming the importance
of our work in providing an augmented annotation
scheme that includes concepts and not only entities.
Despite the slightly lower performance, a system
trained on MOSAICo is able to extract more triplets
per instance, and thanks to a larger annotation cov-
erage, we believe it will enable richer RE systems
to be built not just in English, but also in French,
Italian, German and Spanish.

5 Insights and Opportunities

Here, we highlight the opportunities MOSAICo
brings to interconnect the different types of knowl-
edge captured by each semantic task.

MOSAICo is a test for multilingual WSD. In-
deed, one feature often overlooked in Wikipedia is
that, in each article, the first mention of a term has
been manually hyperlinked to the corresponding
Wikipedia article if it exists. Therefore, we can
use the 1:1 mapping (Navigli et al., 2021) between
Wikipedia and BabelNet to convert Wikipedia in-
terlinks to BabelNet synsets and create Wiki-WSD,
a large novel benchmark for multilingual WSD.
For reference, we employ Wiki-WSD to evaluate
ESCHERgold, as shown in Table 7. Wiki-WSD is
the largest available WSD benchmark for English,
Italian, French, German, and Spanish, including
almost 6.7 million crowdsourced sense-tagged in-
stances compared to 14,166 instances in XL-WSD.
While we stress that Wiki-WSD is restricted to
nominal senses, we argue that, thanks to its large
coverage, this benchmark can be employed for eval-
uating WSD systems, providing new insights into
multilingual disambiguation, and for studying the
interplay between different sense inventories.

Interconnecting WSD and SRL. A key step in
SRL is that of predicate sense disambiguation, i.e.,
selecting the most appropriate “sense” for a pred-
icate in context so as to make it possible to also
assign appropriate semantic roles to each predicate-
argument pair. We note that, in many respects, pred-
icate sense disambiguation is equivalent to WSD.
However, there has been little interest in intercon-
necting the two tasks and their linguistic invento-
ries, perhaps due to a lack of parallel annotations
for WSD and SRL. Instead, thanks to MOSAICo,
we show that such an interconnection can open the
door to interesting work. More specifically, we
leverage the fact that VerbAtlas “senses” (more
correctly, frames) are clusters of BabelNet synsets.
Therefore, we convert each verbal synset predicted
by ESCHER to a VerbAtlas frame and compare it to
the frame predicted by Multi-SRL. Interestingly, al-
though both systems report state-of-the-art results,
the agreement is only 74%. A manual inspection
reveals several classes of disagreement. The two
simplest cases are when one of the two systems is
wrong, i.e., there is either a WSD error or an SRL er-
ror. However, part-of-speech errors – which make
the WSD and SRL predictions inevitably wrong
– appear a non-negligible number of times, even
though part-of-speech tagging is often considered
a “solved” task, especially in English. Perhaps,
most importantly, we observe inventory errors, i.e.,
predictions that are wrong by default because the
inventory (e.g., BabelNet, VerbAtlas, or PropBank)
does not include the correct answer among its pos-
sible options. It is clear that future work should
aim at bridging not only the approaches, but also
the inventories used in WSD and SRL.

Comparing structured data: SRL and SP.
Since our SRL and SP annotations employ the
same inventory – PropBank – we can leverage MO-
SAICo Core to investigate the relation between
two different types of structured prediction, namely,
the predicate-argument structures in SRL and the
AMR subgraphs in SP. However, because AMR
abstracts away from the sentence level, there is no
direct relation with the words in a sentence, unlike
SRL, which works at the span level. Therefore,
in order to check the SRL-AMR overlap, we use
the cross-lingual AMR sentence-graph aligner of
Martínez Lorenzo et al. (2023b) to connect each
AMR node to the respective sentence span. In the
AMR graphs of MOSAICo Core, there are around
10M nodes tagged with a PropBank sense label. If
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we compare the predicate lemmas found in these
AMR graphs with those found in the SRL annota-
tions of the corresponding sentences, we can ob-
serve a large overlap of around 5.6M predicate
lemmas. It is interesting to note that SPRING and
Multi-SRL agree on the sense labels of these pred-
icates around 95.5% of the time. Among the rest
of the predicates, we can attribute 3.2% of the dis-
agreements to an annotation error by one of the two
systems (or both). Instead, only 1.3% of the dis-
agreements on the predicate sense can be attributed
to differences in how SRL and AMR parses are con-
structed. Finally, we analyze the overlap between
the semantic roles that appear in the AMR graphs
and the SRL annotations, finding that 92.7% of
these triplets are annotated with the same semantic
roles by both SPRING and Multi-SRL. Given the
strong ties between the SRL and SP annotations
in MOSAICo, future work may explore leveraging
their connection to produce cleaner annotations.

RE meets WSD. The combination of RE and
WSD presents a unique opportunity for enriching
relations. As outlined in Section 3.2, we produce
a large portion of our RE annotations with the
cRocoDile pipeline using the links to Wikidata in
Wikipedia articles. However, by leveraging the
mapping between BabelNet and Wikidata, we also
enrich the RE corpora by combining the manual
annotations provided by the Wikipedia community
with the WSD annotations in MOSAICo. Com-
pared to using only the Wikipedia links, using the
WSD annotations results in the addition of more
than 5 million triplets to MOSAICo Core, as high-
lighted in Table 8. Moreover, MOSAICo Core con-
tains more commonsense annotated relational facts,
i.e., triplets in which the subject and object are con-
cepts, than those usually provided by a RE system,
providing new opportunities for future research. Fi-
nally, the fact that nearly half of the relation triplets
in MOSAICo Core originate from WSD validates
our hunch on the presence and value of semantic re-
lations, not only between entities but also between
concepts (Martinelli et al., 2024).

New Wikidata annotations. MOSAICo is a
source of new relational data and textual evidence.
From the predictions portion of the annotation
(see Table 8), there are triplets not yet present in
Wikidata, which is known to be incomplete (Co-
nia et al., 2023). For instance, there are 141,128
unique relational facts in the English version of
MOSAICo Core that were not present in Wikidata

Predictions cRocoDiLe WSD Total

EN Triplets 533,341 878,958 1,563,412 3,631,011
Filtered 60,382 220,845 597,731 878,958

FR Triplets 449,403 372,355 570,145 1,391,903
Filtered 39,160 105,128 175,765 320,053

ES Triplets 224,037 187,454 290,794 702,285
Filtered 28,758 98,017 158,707 285,482

IT Triplets 227,720 190,166 283,916 701,802
Filtered 30,225 115,185 119,711 265,121

DE Triplets 403,184 306,169 537,814 1,247,167
Filtered 44,313 138,624 246,506 429,443

Table 8: Number of triplets annotated in MOSAICo-
Core. Triplets come from three sources: predicting new
triplets using a RE system (predictions), interlinking
Wikipedia text and Wikidata (cRocoDiLe), and leverag-
ing WSD annotations (WSD). We also report the num-
ber of triplets after Triplet Critic filtering (Filtered).

at the time of the RE annotations (September 9,
2022). However, compared to a more recent Wiki-
data dump (December 30, 2022), that number is
reduced to 140,568. This means 560 newly added
relational facts were already present in MOSAICo.
For example, the fact that Leonhard Euler (Q7604)
had worked in the field (P101) of Graph Theory
(Q131476) was added to Wikidata on November
7, 2022, and is annotated five times in MOSAICo
Core despite not being present at annotation time.

6 Conclusion and Future Work

In this paper, we presented MOSAICo, the first
effort in the field of NLU aimed at equipping re-
searchers with the key ingredients for modeling
symbolic semantic knowledge at a large scale. MO-
SAICo provides hundreds of millions of annota-
tions in four NLU tasks across five languages, fill-
ing a crucial gap in the availability of semantically-
tagged corpora. After describing the creation pro-
cess of MOSAICo, we analyzed the interplay be-
tween different sources of semantic information
and provided insights into how they can be com-
bined to bring different types of explicit knowledge
together. Finally, we demonstrated the quality of
the annotations in MOSAICo, which can improve
the performance of state-of-the-art systems across
standard benchmarks, showing its value for the re-
search community. We release MOSAICo to the
community, allowing future work to drop the re-
quirement of licensed datasets and making research
in this area accessible to a wider community.
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Limitations

Here we discuss some of the limitations of our
work, hoping not only to address them but also to
encourage future work on top of ours.

Manual evaluation. Although some proxy re-
sults do confirm the quality of MOSAICo – for
example, the performance of the systems trained
on MOSAICo and tested on standard benchmarks
(Section 4) – we did not evaluate the annotations
directly. Performing such a manual effort would
have been too expensive, especially when we con-
sider that MOSAICo’s annotations span across 5
languages and 4 different tasks. However, after
conducting a qualitative analysis of the annotations,
we found them to exhibit promising quality. This
is evident, for example, when comparing them to
the user annotations in Wikipedia, which confirms
their effectiveness in WSD, as shown in Table 7.
Overall, we believe that a human evaluation would
be a valuable contribution and bring deeper insights
into problems and challenges of each task. How-
ever, such a wide-range annotation process would
require annotators trained on several tasks and lan-
guages, and a large budget. We would also need
to include redundant annotations in order to miti-
gate issues like inter-annotator agreement, which
is notoriously hard for these tasks. For instance,
most SemEval tasks in WSD concern the manual
annotation and validation of only 1000-2000 items,
still involving considerable work in one or a few
languages for a single task. We think that creating
such a gold standard would merit a paper in itself.

Missing languages and tasks. While we believe
that the multilingual nature of MOSAICo already
provides a valuable foundation for cross-lingual
studies, we recognize the desire to expand the lan-
guage coverage of MOSAICo to include a broader
range of languages. Furthermore, we strongly be-
lieve that the more semantic tasks we add to MO-
SAICo, the greater will be the opportunity to study
possible intersections between them. For this rea-
son, we designed MOSAICo as an ever-growing
resource and will continue to update it by adding
new tasks and languages.

Wikipedia. Despite the numerous advantages of
utilizing Wikipedia as the underlying corpus for
our resource, it is important to acknowledge certain
limitations inherent to this choice. Two notable
drawbacks are the topics discussed and the descrip-
tive/encyclopedic writing style found in Wikipedia

articles, which may introduce inherent biases and
thus impact the generalizability of our resource
to other domains or genres (Navigli et al., 2023).
However, we would also like to note that the bench-
marks that we use to evaluate the systems include
out-of-domain sets as well. The results on these test
sets suggest that training a system on MOSAICo’s
annotations actually brings improvements in the
generalization capabilities of the system.

Another limitation is the relatively low cover-
age of low-resource languages within Wikipedia.
Although Wikipedia contains vast amounts of infor-
mation in multiple languages, there is an inherent
bias towards languages with larger speaker pop-
ulations, or those with more active contributors.
Consequently, the availability and depth of annota-
tions for low-resource languages may be limited.
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A MOSAICo: Construction and
Annotation

Here we provide more details on the systems that
we used to create MOSAICo. More specifically,
for each task, we have selected a system among
the ones that are considered to be state-of-the-art,
trained it from scratch, and used it to annotate
Wikipedia. In the following, we provide the train-
ing details of the systems used for WSD, SRL, SP,
and RE.

Word Sense Disambiguation. We used ES-
CHER (Barba et al., 2021) to tag MOSAICo with
word senses since it is a state-of-the-art system

that takes advantage of word sense definitions to
better generalize on unseen patterns and invento-
ries. We train every model using AdamW with
5000 warmup steps and for a total of 100 000 steps
with a learning rate of 10−5 and a batch size of
4096 tokens. For English we follow the training
splits described in Raganato et al. (2017), for all
the other languages we follow the splits described
in the XL-WSD framework.

Semantic Role Labeling. We used Multi-
SRL (Conia and Navigli, 2020) to tag MOSAICo
with predicate-structure inventories. Multi-SRL
is a state-of-the-art system for SRL with strong
performance in multilingual settings. We train ev-
ery model using AdamW with a peak learning rate
of 10−5, 10 000 warmup steps, and a linear de-
cay to 10−6 for the learning rate for 20 epochs.
In every configuration, we train a model on En-
glish data from OntoNotes 5 and rely on the cross-
lingual transfer capabilities of its underlying lan-
guage model, i.e., XLM-RoBERTa-base to tag SRL
annotations in non-English languages.

Semantic Parsing. We used LeakDistill (Va-
sylenko et al., 2023) to tag MOSAICo with
predicate-structure inventories in English. LeakDis-
till is a state-of-the-art system for English AMR
parsing. For the multilingual settings, we ex-
tend the efficient implementation of SPRING,
CLAP (Martínez Lorenzo and Navigli, 2024), fol-
lowing Blloshmi et al. (2020). We train every
model using Adafactor with a peak learning rate of
10−4, 500 warmup steps, and a batch size of 2048
tokens.

Relation Extraction. We used
mREBEL (Huguet Cabot et al., 2023) to tag
MOSAICo with triplets as part of the RE an-
notation process along the Crocodile pipeline.
mREBEL is an mBART-based version of
REBEL (Huguet Cabot and Navigli, 2021), which
reframes the RE task as a seq2seq problem by
decoding a linearized version of the triplets.
Similarly, to enable comparisons with REBEL on
English benchmarks, we train our RE models on
top of BART-large, using the same settings as the
original paper for both pretraining, (1000 warmup
steps) and finetuning on target datasets (10% steps
warmup) with 10−5 peak learning rate and 32
batch size.
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Task Benchmark Languages #Sentences #Annotations Training Dev Test

WSD

SemCor EN 33K 226K 33K – –
WGC EN 116K 497K 116K – –
ALL EN 1.1K 7.2K – – 1.1K
42D EN – – – – 0.4K
XL-WSD M 696K 1.5M 1.5M 2K 14.2K
MOSAICo M 63.5M 522M 63.5M – –
MOSAICo-Core M 7.9M 17M 7.9M – –

SRL

OntoNotes 5 EN 137K 384K 309K 43K 32K
PB-Examples EN 14K 14K – – 14K
X-SRL M 118K 219K 200K 7K 12K
MOSAICo M 63.5M 285.3M 285.3M – –
MOSAICo-Core M 7.9M 11.8M 11.8M – –

SP

AMR 3.0 EN 59,255 59,255 55,635 1,722 1,898
TLP EN 1,562 1,562 – – 1,562
Bio EN 6,952 6,952 – – 6,952
AMR 4T M 1,371 1,371 – – 1,371
MOSAICo M 17.6M 17.6M 17.6M – –
MOSAICo-Core M 2.5M 2.5M 2.5M – –

RE

CoNLL04 EN 1.4K 2.1K 1,290 343 422
NYT EN 66.2K 111.3K 94,222 8,489 8,616
ADE EN 4.3K 6.8K 6,821 – –
MOSAICo M 63.5M 39.3M 39.3M – –
MOSAICo-Core M 7.9M 7.6M 7.6M – –

Table 9: Data Distributions of Benchmarks for each Task. Rows: WSD, SRL, SP, and RE. Columns: Task,
Benchmark Name, Languages, Total Number of Sentences, Total Number of Annotations, and Distribution of
Training, Dev, and Test Sets annotations. The Language column can be En (English) or M (Multilingual), where, in
the multilingual case, the number of annotations is per language.
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