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Abstract

We assemble a broad Natural Language Un-
derstanding benchmark suite for the German
language and consequently evaluate a wide ar-
ray of existing German-capable models in order
to create a better understanding of the current
state of German LLMs. Our benchmark con-
sists of 29 different tasks ranging over different
types such as document classification, sequence
tagging, sentence similarity, and question an-
swering, on which we evaluate 10 different
German-pretrained models, thereby charting
the landscape of German LLMs. In our compre-
hensive evaluation we find that encoder models
are a good choice for most tasks, but also that
the largest encoder model does not necessar-
ily perform best for all tasks. We make our
benchmark suite and a leaderboard publically
available at supergleber.professor-x.de and en-
courage the community to contribute new tasks
and evaluate more models on it1.

1 Introduction

Fueled by the release of ChatGPT (OpenAI, 2022),
the development of very capable, large language
models (LLMs) has been accelerating, which also
results in the release of more and more powerful
models capable of the German language (Plüster,
2023; Jiang et al., 2023). From an NLP point
of view, German is a language that apart from
smaller, commonly BERT-based models tradition-
ally has seen little attention when it comes to pub-
licly available, explicitly for German pretrained
foundational models. This now led to the situ-
ation that an increasing number of presumably
very capable, German-pretrained LLMs are being
released, but no established, diverse and system-
atic German evaluation suite for these models is
available. To illustrate this point, we emphasize
that, newly introduced German BERT-based mod-
els have historically only been evaluated on two

1github.com/LSX-UniWue/SuperGLEBer

tasks each (Scheible et al., 2020; Chan et al., 2020),
which is not enough to get a comprehensive un-
derstanding of the models capabilities. Hence a
German evaluation suite is desireable to properly
compare and assess the abilities of widely used,
but also newly developed models, like there is e.g.
for English with GLUE (Wang et al., 2018), Super-
GLUE (Wang et al., 2019) or even more recently
OpenCompass (2023). Commonly researchers
turned to these English evaluation suites to assess
their German models and - for lack of a better so-
lution - had to help themselves by translating very
hard benchmark datasets from English to German
using e.g. ChatGPT (Plüster, 2023). This arguably
leads to unreliable results, as the models are eval-
uated on a task that has been machine-translated
sometimes by the very same model these bench-
marks were created to be hard to solve and under-
stand for (Vago, 2023).

Our benchmark evaluation suite thus aims for
both: 1. aggregating a diverse set of available Ger-
man Natural Language Understanding (NLU) tasks,
2. identifying commonly used German-pretrained
LLMs and evaluating the models on this bench-
mark. To this end, we select a wide range of dif-
ferent task types to make sure to properly assess
the models’ capabilities, such that our benchmark
includes document classification, sequence tagging,
sentence similarity and question answering tasks
(Table 2). While these datasets are not new, they
have been selected to cover a wide range of dif-
ferent NLU tasks, and are sourced from various
different domains. This evaluation on a combi-
nation of tasks and domains pushes the German
NLP research forward, as it allows for a more com-
prehensive understanding of the models’ capabil-
ities. It allows insights into the models’ strengths
and weaknesses, and helps to identify areas where
the models are lacking, which can then be used
to guide future research. Like in existing LLM
benchmarks for other languages (Wang et al., 2019;
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Hardalov et al., 2023) in this benchmark we chal-
lenge the models to perform well on a wide range
of different tasks, which are not necessarily re-
lated to each other. These tasks focus on reason-
ing and language understanding, and are sourced
from public datasets across different domains. In-
spired by SuperGLUE, we select tasks with a very
simple input and output format to avoid “complex
task-specific architectures” (Wang et al., 2019), as
well as tasks that can be evaluated using a simple
and intuitive metric. This rules out tasks like e.g.
text generation, which is inherently hard to evalu-
ate. In addition to assembling this benchmark we
also run an extensive evaluation of 4 encoder-only,
3 decoder-only, and 3 encoder-decoder German-
capable transformer models as depicted in Table 1.
In our comprehensive evaluation we find, that over-
all the encoder models perform best and usually
consistently close to each other. Notably, the two
largest models mBART and leo-7b are also per-
forming well, despite not being encoder models,
which is likely owed to their large size. Neverthe-
less, we did not find a clear advantage for the larger
encoder model, as the gBERT-large model is not
consistently able to profit from its larger size, com-
pared to its smaller counterparts. We see the effort
of this benchmark not as a one-time task, but in-
stead aim to introduce a basis that can be expanded
upon with additional tasks and models in the fu-
ture, to support and foster research for German
LLMs. To this end we open-source our evaluation
code, including a public leaderboard and aim to
continously expand on this effort in the future.

Our contributions are as follows: 1. assembling
a diverse benchmark for German NLU consisting
of 29 different tasks across four task types, 2. com-
prehensively evaluating 10 different German-pre-
trained LLMs across various architectures on this
benchmark, 3. providing this open-source evalu-
ation framework to the community, allowing for
easy extension in the future.

2 German Evaluation Tasks

In order to create a challenging and diverse bench-
mark for German NLU we select a wide range of
different tasks from various different domains for
our evaluation suite. We also list the included tasks
as well as statistics for each dataset in the appendix
in Table 2. In order to evaluate different capabilities
of the pretrained models we select various different
task types: text classification, sequence tagging,

sentence similarity and question answering. All
selected tasks are sourced from public datasets and
are available in German. We carefully select the
tasks, such that we only include datasets have been
human-translated to German (Yang et al., 2019),
manually checked after automatic annotation (Hen-
rich et al., 2012), or - preferably - have a testset
that is manually annotated in German (the rest).

2.1 Text Classification

Text classification describes the task of assigning a
label to either an entire input document or a combi-
nation of input documents. We span a wide range
of different domains and prediction targets, which
we group into the following five categories.

Toxic & Offensive Language Identification
Here we have two different datasets, which we
evaluate separately: 1. The task of Offensive Lan-
guage Identification has been introduced by Wie-
gand et al. (2018), while 2. Toxic Comments Identi-
fication has been introduced by Risch et al. (2021).
For the first we evaluate on the fine-grained anno-
tation distinguishing between three different types
of offensive language (“profanity”, “insult”, and
“abuse”), while the second is a binary classification
task, where the model has to predict whether the
input sentence contains toxic language or not.

Sentiment Analysis Here we cover two different
levels of granularity: document-level and aspect-
based sentiment analysis. The dataset introduced
by Wojatzki et al. (2017) spans both granularities.
1. First it is annotated with the sentiment expressed
in the document towards the topic of “Deutsche
Bahn”, where all other sentiments expressed to-
wards unrelated topics should be ignored. 2. For a
more detailed evaluation we also include the iden-
tification of sentiment expressed towards specific
aspects within the input document in a multi-label
classification task. There are overall 20 aspects,
which can be e.g. “train_ride”, “atmosphere” or
“service” for which the model has to predict the
sentiment towards each of these aspects as “posi-
tive”, “negative” or “neutral”. 3. In the same spirit
we select a second dataset for aspect-based senti-
ment analysis, consisting of hotel reviews again
annotated with the sentiment expressed towards
specific aspects like “location”, “food&drinks” or
“service” (Fehle et al., 2023).

7905



Text Pair Matching Next we evaluate the mod-
els ability to classify whether two input documents
share a certain semantic relation. For this we se-
lect two datasets introduced in the cross-lingual
benchmark XGLUE (Liang et al., 2020): Query-Ad
Matching and Question-Answer Matching. Here
the model has to predict whether 1. an ad is a good
fit for a given query, or whether 2. a sentence is
the answer for a given question. 3. Furthermore we
use the paraphrase identification dataset PAWS-X
introduced by Yang et al. (2019), which consists
of sentence pairs where the model has to predict
whether the sentences are paraphrases of each other
or not.

Word Sense Disambiguation 1. The first dataset
WebCAGe is a corpus annotated with senses from
GermaNet (Henrich et al., 2012). The task defined
on this dataset is to predict the correct sense of
a given word in the context of the sentence; e.g.
(river) “bank” vs. “bank” (institute). 2. Further-
more we select a second dataset by Ehren et al.
(2021) focusing on the disambiguation of German
verbal idioms, where the model has to predict from
context whether a phrase is meant literally or figu-
ratively; e.g. “hold your breath” (by not breathing)
vs. “hold your breath” (waiting in anticipation).

Other Classification Tasks First, on the same
dataset as the toxic comment identification task in-
troduced previously (2.1, Risch et al. (2021)), we
also evaluate the models ability to identify whether
the input comment is 1. fact-claiming or 2. en-
gaging. Here, fact-claiming means that the sen-
tence contains a claim that can or should be veri-
fied/refuted by a fact-checker, while secondly en-
gaging comments are defined as making readers
join a discussion. 3. Next, the argument mining
task by Romberg and Conrad (2021) consists of
sentences annotated with whether the sentence con-
tains “options for actions or decisions that occur in
the discussion” (major positions), “reasons that at-
tack or support a major position or another premise”
(premise), both or none. 4. On the same dataset as
the sentiment analysis task introduced previously
(2.1, Wojatzki et al. (2017)), we evaluate the mod-
els ability to identify whether the input document
is relevant to the topic of “Deutsche Bahn”. If the
German railroad company is neither directly nor
indirectly (e.g. via their services) mentioned in the
entire input document the label is “false”. 5. Next,
the MASSIVE dataset consists of annotated voice

assistant interactions (FitzGerald et al., 2023). The
utterances by users are annotated with the intent
of the user, which the model has to predict e.g.
the concrete intent of “setting an alarm”, or the
intent to “play music”. 6. We further include the
Natural Language Inference (NLI) task, where the
model has to predict whether a hypothesis is en-
tailed by a premise or not. The dataset has been
introduced in XNLI (Conneau et al., 2018) and was
intended as a cross-lingual evaluation dataset, but
we use it as a mono-lingual dataset for German.
7. Lastly, we include the news classification task
from XGLUE (Liang et al., 2020), where the model
has to predict the category of the news article.

2.2 Sequence Tagging

The task of sequence tagging describes annotating
every word or token from the input document with
its respective class. We again span a wide range of
different domains and prediction targets, which we
group into the following two categories.

Named Entity Recognition NER is a common
sequence tagging task, refering to annotating ev-
ery token in the input document with its respective
named entity class. Named entities can be persons,
locations, organizations, but also more abstract en-
tities like time or monetary values.

1. The first dataset is taken from historical
biodiversity literature annotated with named en-
tities like “persons”, “locations”, “organizations”
or “other”, as well as time and taxonomic enti-
ties (Ahmed et al., 2019), while the 2. Europa-
Parl dataset (Faruqui and Padó, 2010) are proceed-
ings from the European Parliament annotated with
NEs like “persons”, “locations” or “organizations”.
3. The next dataset was introduced by Benikova
et al. (2014) and is sourced from German Wikipedia
articles as well as various online news sources.
4. Next, we also select a dataset with legal entities
annotated within German court decisions (Leitner
et al., 2019). It consists of German court decisions
annotated with 19 semantic classes, like e.g. “per-
son”, “lawyer”, “country”, “organization” but also
more domain-specific classes like “European le-
gal norm”, “regulation” or “contract”. 5. Lastly,
we take the NER datasets from the cross-lingual
benchmark XGLUE (Liang et al., 2020), which
is a subset of a German news dataset by Tjong
Kim Sang and De Meulder (2003) annotated with
“Person”, “Location”, “Organization” and “Miscel-
laneous” entities.
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Other Sequence Tagging Tasks 1. On the Uni-
versal Proposition Banks by (Akbik et al., 2015),
we evaluate the models abilities to predict POS
tags, as well as dependency parse tree labels in
two separate tasks. 2. Furthermore, again on the
MASSIVE dataset introduced previously (5) we
also evaluate the models ability to identify “argu-
ments” in the user’s utterance; e.g. “weck mich
[date : diese woche] um [time : fünf uhr morgens]
auf”. 3. Lastly, on the sentiment dataset by Wo-
jatzki et al. (2017) also used in Section 2.1 we
evaluate the models ability to identify the concrete
opinion term expressing the sentiment in the input
document.

2.3 Sentence Similarity

Sentence Similarity tasks measure the models capa-
bilities to generate semantically meaningful vector
representations for the input documents. Seman-
tically similar documents should be placed closer
together in the model’s embedding space than un-
related documents. For this we use the PAWS-
X (Yang et al., 2019) dataset, which consists of sen-
tence pairs annotated with whether the sentences
are paraphrases of each other or not.

2.4 Question Answering

Our last task type is extractive question answering,
where the model has to answer a question given an
input document. We evaluate this on two different
datasets: 1. GermanQuAD (Möller et al., 2021) and
2. MLQA (Lewis et al., 2020). MLQA was created
as a cross-lingual evaluation dataset, but we use it
as a mono-lingual dataset for German.

3 Training Methodology

3.1 Training Methodology by LLM Type

Depending on the of transformer architecture, we
use different training approaches, each tailored
to the specific model: we distinguish between
encoder-only, decoder-only and encoder-decoder
models and follow the established training ap-
proaches for the respective model as defined in
the used library. For transformers following the en-
coder or decoder architecture, we finetune the text
classification tasks using the standard approach of
adding a linear layer on top of the output represen-
tation of the CLS token, while for sequence tagging
tasks we use the same approach, but train the linear
layer to predict the correct class on top of the out-
put representation of each input token individually.

For the sentence similarity we follow the Sentence-
BERT (Reimers and Gurevych, 2019) approach
and finetune the model using a triplet loss with
negative sampling on the mean-pooled final output
representations of the model. When finetuning for
extractive question answering, we again follow the
standard approach of adding a linear layer on top
of the output representations of the input tokens,
and train the linear layer to predict the start and end
token of the answer span. For transformer models
following the encoder+decoder architecture, we
adopt the practices in the respectively used library
by discarding the model’s decoder entirely for clas-
sification, sequence tagging and similarity tasks,
and only finetune the encoder part of the model as
described above and for question answering tasks
we add the span extraction head on top of the de-
coder output.

3.2 Training Procedure for the Task Types

For each of the task types we implement the train-
ing routine as described above using an established,
publicly available library. That is, for text classifi-
cation and sequence classification we use flair (Ak-
bik et al., 2019), for question answering we use
the reference training loop provided by Hugging-
Face’s Transformers (Wolf et al., 2020), and for
sentence similarity we use the reference script pro-
vided by the SentenceTransformers (Reimers and
Gurevych, 2019) library. For all models we use the
same training procedure: We use the same default
hyperparameters across all models and libraries,
and the same fixed seed. These are: a batch size
of 8, a learning rate of 5e-5, 5 epochs. We also
introduce a maximum input sequence length of
512 tokens and class weighting for all classifica-
tion tasks during training. Furthermore, we conse-
quently opt to use QLoRA-training (Dettmers et al.,
2023) for all models where it is supported by the
HuggingFace library (2020). If not supported by
the library we skip the quantization steps and fall
back to LoRA (Hu et al., 2022), which in our case
applies only to the BERT/RoBERTa models. We
do this, because not all models could be trained on
a single A100 GPU, hence we use QLoRA-training
to reduce the memory footprint of the larger mod-
els to make training them on a single GPU feasible.
Consequently, enabling (Q)LoRA for all models
ensures comparability between different models
and rules out the possibility that the performance
difference between models stems from different
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training procedures. We again closely follow the
quantization hyperparameters given by Dettmers
et al. (2023): 4-bit quantization, double quantiza-
tion and NormalFloat4.

3.3 Evaluation Metrics

As mentioned previously, we select tasks that can
be evaluated using a simple and intuitive metric.
When a metric has been used on the original dataset,
we keep this metric for this dataset. We list the met-
rics used for each task in the appendix in Table 2.
Used metrics are micro F1, macro F1, accuracy
for classification and tagging tasks, mean-token-
F1 (Lewis et al., 2020) for QA tasks (all defined in
the range of 0 to 1), as well as pearson correlation
calculated on cosine similarity for the sentence sim-
ilarity task (defined in the range of -1 to 1). For all
metrics higher values indicate better performance,
and we calculate the metric with the native imple-
mentation included in the used framework. For
the sake of creating a benchmark evaluation suite
we follow other benchmarks (2019; 2020; 2023)
and average across tasks and thereby also across
different metrics.

4 Evaluated Models

In our evaluation we aim to cover a large number
of different models and model types available for
the German language (Table 1) and evaluate these
models on the tasks introduced in Section 2. We
evaluate a range of different models and architec-
tures, including encoder-only, decoder-only, and
encoder-decoder models. The models have been
pretrained on different datasets, some of which are
multilingual, while others are monolingual Ger-
man. We refer to the models by their respective
HuggingFace (2020) model identifier and compare
their parameter count in Table 3 in the appendix.

We evaluate three different BERT models, one
being “bert-base-german-cased”, pretrained on
12GB of wikipedia, legal documents and news.
The other two BERTs have been pretrained by Chan
et al. (2020) and only differ in size: “deepset/gbert-
base” and “deepset/gbert-large”. Both models
have been pretrained on 163.4GB of German text,
mostly consisting of OSCAR, enriched with OPUS,
Wikipedia and legal documents. We also evaluate
“uklfr/gottbert-base” (Scheible et al., 2020), which
is a RoBERTa model pretrained on 145GB of OS-
CAR, Wikipedia and a book corpus.

For decoder models we evaluate

“dbmdz/german-gpt2” (Schweter, 2020), which
is a GPT2 model pretrained on about 16GB
of German text, consisting of subtitles, and a
diverse set of web crawls like CommonCrawl and
news. “LeoLM/leo-hessianai-7b” is a very recent,
comparably large language model, finetuned from
a LLaMA2 checkpoint using German text (Plüster,
2023) mostly sourced from OSCAR and has
only been evaluated on a machine-translated
version of the English OpenLLM dataset. Fur-
thermore, we consider the multilingual-trained
“bigscience/bloomz-560m” model (Muennighoff
et al., 2023). It was trained in two steps: first
on a 1.5TB multilingual corpus of 45 languages
and 12 programming languages using causal
language modeling (Workshop et al., 2023), then
further multilingual, multi-task pretraining using
supervised tasks (Muennighoff et al., 2023).

We also evaluate the encoder-decoder
multilingual-trained “bigscience/mt0-small”
model (Muennighoff et al., 2023), which was
finetuned analogously to the previously introduced
Bloomz model, but is instead finetuned from the
“google/mt5-small” checkpoint. This model in turn
was trained on 101 languages, including German,
using the “span-corruption” objective (Xue et al.,
2021) on the C4 corpus (Raffel et al., 2020) and is
also included in our evaluation. Lastly we evaluate
the multilingual-trained “facebook/mbart-large-50”
model, trained on 50 languages, including German,
using the translation objective (Liu et al., 2020).
In contrast to BART, the mBART model was only
trained on the translation objective between any
pair of languages and not additionally on the
denoising objective, thus never saw German text
as input and target at the same time. Nevertheless
Wunderle et al. (2023) showed that mBART is able
to perform well on German-only tasks.

5 Evaluation

We extensively evaluate the models from Section 4
on the tasks introduced in Section 2 resulting in
Table 1. Here the results are averaged by the vari-
ous task types at varying levels of granularity. The
columns reading “avg” have been averaged across
the averages of the respective task types, in order
to not overweight any task type for which more
datasets exist, i.e. all “NER” tasks have been av-
eraged into a single value before averaging across
all tagging tasks. All tasks assigned to “other” are
directly included in the final average across all task
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types. We also list the results for the individual
tasks in the appendix in Appendix D. In the fol-
lowing we will discuss our results under various
different aspects.

5.1 Performance by Model and Task Type

For classification tasks we find that the encoder-
models all perform on average very similar to each
other (ranging 70.2 to 72.4), despite differences
in the training data and even model size and ar-
chitecture. Despite this, within the classification
tasks the models don’t perform equally well on all
tasks. For example the gBERT-large model per-
forms above average for NLI, sentiment analysis,
text pair matching, as well as word sense disam-
biguation, but at the same time below average for
toxicity detection. On average the largest encoder
model is thus even the worst performing encoder
model. For the encoder+decoder models there is a
clear distinction in performance between the mT5
and mT0 models (46.2 and 53.5) on the one hand
and the mBART model (62.9) on the other hand.
The mBART model performs much better across
most classification tasks, mostly being competitive
with the encoder models. We find that mT5 per-
forms consistently worse than its further pretrained
mT0 counterpart, with the only exception being the
sentiment analysis task. Within the decoder mod-
els GPT2 model performs similarly to the bloomz
model (69.6 and 66.7), while the leo-7b model per-
forms significantly better (81.0). Here the leo-7b
model comfortably ranks first place across all mod-
els, which is likely owed to its significantly larger
size and training data. The GPT2 model also per-
forms reasonably well, but is still outperformed by
all encoder models.

Overall we find that the encoder models perform
best across all classification tasks, and rank overall
places 2-5 across all models, with the best perform-
ing encoder model being bert-base-german-cased,
only getting beat by leo-7b. mT5 and mT0 perform
worst across all models, with mT0 performing bet-
ter than mT5.

For sequence tagging tasks the encoder mod-
els again perform very similar to each other, with
the gBERT-large model performing as good as its
smaller counterpart. Here the encoder-models rank
places 1,2,4 and 5 across all models. Along the
encoder+decoder models the mBART model again
performs clearly best, with the mT0 and mT5 again
placing at the bottom of the ranking. mBART is

even competetive with the encoder-only models,
ranking place 3 across all models, while leo-7b is
the best performing decoder and bloomz is per-
forming worst overall (52.2). The leo-7b model
always performed slightly below or roughly at aver-
age of all other models, only dominating by a large
margin for the NER task on the EuroParl dataset.
GPT2 is the best performing decoder model for
sequence tagging, but is again outperformed by the
encoder models and mBART.

Analysing the sentence similarity task the en-
coder models performance varies drastically (53.3
to 65.1), with gBERT-large performing best by a
large margin (rank 1). The other three encoder
models are comfortably outperformed by two non-
encoder models, namely mBART (rank 2) and leo-
7b (rank 3). We find that GPT2, bloomz and mT5
perform similarly bad, while mT0 is closer to the
small encoder models.

For QA performance all models - except leo-7b
and mT5 - are very close to each other. We identify
leo-7b as best-performing model (86.4), followed
by mBART (82.9) and gBERT-large (82.6).

Overall we find that depending on the task type
different models perform best, but a clear trend
is that the encoder models are always among the
top. The size of the encoder models does not seem
to have a large impact on the performance, as the
gBERT-large model does not have a consistent ad-
vantage over its smaller counterpart, except in the
sentence similarity task. The mBART model per-
forms best across the evaluated encoder-decoder
models, often being competetive with the encoder
models, only being outperformed by them on the
classification tasks. Furthermore, the pretraining
of the mT0 model seems to have a positive effect
on the performance for German, as it very consis-
tently performs better than the mT5 model across
all task types, often by a large margin. It is clear
that the leo-7b model performs best across all de-
coder models for most task types, while the bloomz
model ranks last. Given that mBART and leo-7b
are both the largest models in the benchmark, it is
not surprising that they perform best across most
task types. At the same time gBERT-large is not
able to profit from its larger size, as it is commonly
outperformed or matched by the smaller encoder
models.
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5.2 Performance Comparison to Prior Work

In Appendix D we include the reported results from
related work for comparison, where reasonably pos-
sible. Despite this, it is important to acknowledge
that the reported results cannot be directly com-
pared to ours because of variations in hyperparam-
eter optimizations, data splits, cross-lingual eval-
uations, overall evaluation scenarios, specialised
architectures, or the incorporation of extra pretrain-
ing data. Overall, we find that usually the reported
results from related work are in line with our find-
ings, and only in a few cases the results differ sig-
nificantly. E.g. for the XGLUE-sourced tasks our
models commonly perform better than the reported
results, which makes sense, as we evaluate the mod-
els in a mono-lingual setting, while the XGLUE
tasks are cross-lingual.

5.3 Performance Stability Across Seeds

To make sure that the results are not a fluke depend-
ing on a random seed, we evaluate the models on
the same tasks using different random seeds. At the
size of this benchmark running the entire evaluation
for all models and tasks for multiple seeds becomes
computationally prohibitive (Appendix A), so we
select one encoder and one decoder model, as well
as three tasks to evaluate the stability of the results
on. We run the entire fine-tuning and evaluation an
additional four times for each selected model and
task, using a different random seed each time. For
this experiment, we select the gBERT-base model,
as well as the german-GPT2 model and for the task
types we select the verbal idioms classification task,
the biodiversity NER task and the PAWS-X sen-
tence similarity task. We list detailed results in the
appendix in Table 5 and find the results to be very
stable across the different seeds with an average
standard deviation of the results being below 0.012
across tasks and models.

5.4 Performance w. and w/o. (Q)LoRA

As we exclusively use (Q)LoRA for our training
in order to keep the model footprint small and the
results comparable across models, we also conduct
a small evaluation of the performance of the mod-
els with and without (Q)LoRA training. For this
we select the same models and tasks as in Sec-
tion 5.3 and train them without (Q)LoRA once. For
this we use the same hyperparameter configuration
and seed as for the (Q)LoRA training, but train
the models using full precision. We list the results

alongside in Table 5 and find that there is a signifi-
cant performance difference between the (Q)LoRA
and non-(Q)LoRA training. The performance drop
ranges from 0.019 to 0.090 across tasks and mod-
els. We explicitly welcome non-(Q)LoRA trained
models in the benchmark evaluation leaderboards,
but also encourage further research into the perfor-
mance of (Q)LoRA training and its impact on the
performance of the models. We also plan on dif-
ferentiating between various training approaches
in the benchmark, making it possible to compare
the performance across different training methods.

6 Related Work

GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019) are two of the most prominent LLM
benchmarks, consisting of 11 and 10 different NLU
tasks respectively. These benchmarks only being
available in English has quickly been identified as
an issue for the evaluation of non-English models
by the NLP community. Thus the development of
various similar benchmarks for other languages fol-
lowed, like e.g. for Russian (Shavrina et al., 2020),
Persian (Khashabi et al., 2021), or recently for Bul-
garian (Hardalov et al., 2023). These benchmarks
are all similar in their setup, aiming to assess the
models abilities on a wide range of different tasks.

Cross- and multilingual benchmarks like
XTREME (Hu et al., 2020) and XGLUE (Liang
et al., 2020) on the other hand have been designed
to evaluate the models’ cross-lingual capabilities.
For this they consist of 9 tasks spread across 5 to
40 languages for XTREME and 11 tasks across 3
to 18 languages for XGLUE. Thus they also in-
clude tasks in German, but neither the focus of the
evaluation nor for the model itself is on German.
The general idea behind these benchmarks is to
evaluate the models’ ability to transfer knowledge
from one language to another, but not to evaluate
the models’ capabilities in a single language. Us-
ing these benchmarks as a sole basis for evaluating
German models is thus not ideal, as the tasks are
commonly accompanied by a rather small German
training set, because the focus is on learning from
the combined training data of all languages.

As mentioned earlier, in the advent of increas-
ingly large LMs, the need for German evaluation
benchmarks has been recognized, but in the ab-
sence of German focused benchmarks, the eval-
uation is commonly done by machine-translating
existing English evaluation datasets (Plüster, 2023),
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which can give an estimate of the performance of a
model, but is not a reliable evaluation of the mod-
els’ capabilities (Vago, 2023).

Although there exists no diverse and compre-
hensive evaluation benchmark for German LLMs,
on which the various capabilities of different mod-
els are evaluated, there have been efforts to evalu-
ate German models on a specific task, like sen-
timent analysis (Cieliebak et al., 2017), coref-
erence resolution (Schröder et al., 2021), utter-
ance similarity (Asaadi et al., 2022), inclusive
language (Pomerenke, 2022) or document cluster-
ing (Wehrli et al., 2023). The evaluation of models
on these benchmarks is usually not as comprehen-
sive, with models being evaluated on a single task,
and usually only a single model architecture - com-
monly encoder models - being evaluated. Overall,
there is no established, easily runnable evaluation
framework for a broad number of German tasks,
which makes it hard to compare results across dif-
ferent models.

7 Conclusion

We introduce the first large and diverse German
language understanding benchmark for language
models, consisting of 29 different tasks and cov-
ering four different task types: text classification,
sequence tagging, sentence similarity and question
answering. The text classification and sequence
tagging tasks themselves contain a wide range of
different language understanding tasks, covering
various different domains and prediction targets.

We evaluate 10 different models, including
four encoder-only, three decoder-only and three
encoder-decoder models on our newly introduced
benchmark. In our comprehensive evaluation we
find, that on average the encoder models perform
best and are usually close to each other in per-
formance on the classification and sequence tag-
ging tasks. Despite not being encoder models, the
two largest evaluated models mBART and leo-7b
are performing comparably well across all tasks,
mostly being competitive with the encoder models.
In contrast, we did not find a clear advantage for the
larger encoder model, as the gBERT-large model
is not able to consistently profit from its larger
size, often being outperformed or matched by its
smaller counterparts. We make the benchmark and
leaderboard publicly available and encourage the
community to contribute tasks as well as models to
the benchmark.

Limitations

7.1 Training Procedure
Some of the used frameworks (flair & Sentence-
Transformers) only support training on a single
GPU, which inherently limits the size of the mod-
els we can evaluate using our framework. We thus
opt for QLoRA-training here to reduce the memory
footprint of the larger models and make training
them on a single GPU feasible.

As mentioned in Table 1 we encounter some is-
sues with the training procedure of the mBART
model (OutOfMemory), as well as the training of
the bloomz model (ShapeError). The first seem
to be an issue between the bitsandbytes quanti-
zation library and the mBART model, while the
second seems to be incompatibilities between the
used framework and the respective model/tokenizer,
which we could not easily resolve. We will inves-
tigate these issues further and update the results
accordingly, if we find a solution.

7.2 Representativeness of the Results
As we train and evaluate all models using QLoRA,
we cannot make any statements about the perfor-
mance of the models without QLoRA. Our exem-
plary evaluation of the models with and without
QLoRA training (Section 5.4) shows that there is
a performance difference between the two train-
ing procedures, which is acceptable for our pur-
poses, as we evaluate all models using the same
training procedure, thus keeping the results com-
parable. Furthermore we do not limit our leader-
board to QLoRA-trained models, but also explicitly
welcome non-QLoRA-trained models, or even the
same models trained without QLoRA.

Next, we only evaluate a single hyperparameter
configuration for each model, which is the default
configuration of the respective library. We leave
the evaluation of different hyperparameter configu-
rations to future work and do not limit the leader-
board to the default configuration of the respective
library.

We only report the results for the same random
seed for each model and task and conduct a small
evaluation of the stability of the results across dif-
ferent seeds (Section 5.3). We find the results to
be stable across different seeds, such that we are
confident in our results reported in Table 1.

For some models, like the mT0, mT5, bloomz
and leo-7b we evaluated only the smallest model
size, as otherwise computing the benchmark results
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for all model sizes would have been computation-
ally prohibitive (Appendix A). Nevertheless we
encourage the community to contribute results for
the larger model sizes, but also plan to add larger
versions of used models to the benchmark in the
future ourselves.

Ethics Statement

As we only include publicly available datasets and
models, we do not see any ethical issues with this
work. We only select datasets and tasks, where the
intended use of the dataset is clearly to be used for
research.

Intended Use We intend this benchmark to be
used for the evaluation of German LLMs. To this
end we make the benchmark and leaderboard pub-
licly available and encourage the community to
contribute tasks as well as models to the bench-
mark. For this we provide an open-source evalua-
tion framework, which can be easily extended to
include new tasks and models and publish it under
an open-source license.
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A Putting the Compute into Perspective

We list the number of trainable parameters for each
model in Table 3. This includes the number of
parameters of the base model as well as the number
of trainable parameters after (Q)LoRA has been
applied.

Estimating the GPU hours for our experiments -
especially including development and debugging
- is difficult, as we did not explicitly keep track of
all time spent on GPUs. Nevertheless we estimate
the total GPU hours spent on the development of
this benchmark to be around 1500 h of A100 GPU
time.

B Dataset Domains and Licenses

The datasets we use in our benchmark are listed in
Table 2, and are described in Section 2. In Table 4
we list the domains and licenses of the datasets.

C Training Stability

Table 5 lists the results of the training stability ex-
periment described in Section 5.3, as well as the
results of a single run without (Q)LoRA training
for comparison (Section 5.4).

D Individual results

We list the detailed results of every task for every
model in Tables 6 to 8. Models achieving a 0.0
score on for multi-class classification tasks are a
known instability within the Flair library and occur
only for large number of output classes for cer-
tain models: https://github.com/flairNLP/
flair/issues/678
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task type target task name |Train| |Dev| |Test| metric

te
xt

cl
as

si
fic

at
io

n

to
x. offensive language 4508 501 3532

macro F1toxic comments 2920 324 944

se
nt

. sentiment polarity 20 941 2584 2566

micro F1DB aspect sentiment 16 200 1930 2095
Hotel aspect sentiment 3446 383 425

m
at

ch
Query => Ad Matching 9000 1000 10 000

ACCQuest. => Ans. Matching 9000 1000 10 000
Paraphrase Matching 49 129 2000 2000

W
SD WebCAGe 8339 926 1030

micro F1Verbal Idioms 6902 1488 1511

ot
he

r

Factclaiming Comments 2920 324 944 macro F1
Engaging Comments 2920 324 944 macro F1
CIMT: Arg. Min. 14 460 1607 1785 macro F1
Topic Relevance 20 941 2584 2566 micro F1
Intent Identification 13 382 1487 1652 micro F1
NLI 2245 250 5010 ACC
News Classification 9000 1000 10 000 ACC

se
qu

en
ce

ta
gg

in
g

N
E

R

Historical Biodiversity 12 668 1584 1584

micro F1

EuropaParl 3184 354 858
Wikipedia & News 24 000 2200 5100
Legal 53 384 6666 6673
News 2587 287 3007

ot
he

r

DEP Univ. Prop. Bank 14 118 799 977
POS Univ. Prop. Bank 14 118 799 977
MASSIVE Arguments 13 382 1487 1652
GermEval Opinions 19 432 2369 2566

sentence similarity PAWS-X 49 129 2000 2000 pearson corr.

question answering
MLQA 512 - 4517 mean-token

F1GermanQuAD 11 518 - 2204

Table 2: The different datasets and tasks making up the benchmark and their associated task type.

Model Total Params Trainable Params Trainable %

gbert-base 110,222,592 294,912 0.268%
gbert-large 336,522,240 786,432 0.234%

gottbert 126,279,936 294,912 0.234%
bert-base-german-cased 109,376,256 294,912 0.270%

mbart-large-50 612,059,136 1,179,648 0.193%
mt0-small 147,055,296 114,688 0.078%
mt5-small 147,055,296 114,688 0.078%

german-gpt2 124,740,864 294,912 0.236%
bloomz-560m 560,001,024 786,432 0.140%

leo-hessianai-7b 6,611,537,920 4,194,304 0.063%

Table 3: Number of parameters as well as number of trainable parameters per model after applying (Q)LoRA
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dataset domain license

EuroParl protocols GNU GPL
Hist. Bio. Div. bio literature cc-by-4.0

Legal legal texts cc-by-4.0
NLI misc OANC

WebCAGe misc N/A
Verbal Idioms misc cc-by-nc-sa 4.0

XGLUE datasets misc usable for non-commercial research (N/A)
MASSIVE spoken language, misc cc-by-4.0

CIMT Arg Min. dialogue cc-by-sa
Univ. Prop. Bank misc cc-by-sa 4.0

GermanQuAD misc cc-by-4.0
DB Sentiment Blogs & News cc-by-4.0

Hotel Sentiment Reviews N/A
PAWS-X misc "may be freely used" (N/A)

MLQA misc cc-by-sa 3.0
toxic, fact, engag. com. user comments N/A
NERWikipedia & News Wikipedia & News cc-by

NER News news N/A

Table 4: Domains and licenses for the used datasets, more details in Section 2. For our benchmark, we only included
datasets that were explicitly intended for research use. However, in cases where no license information was available
(N/A), we have reached out to the authors to obtain the appropriate licensing details. We will update the license
information accordingly on our website at https://supergleber.professor-x.de.

amount of
train type

Verbal Idioms Bio Hist NER PAWS-X
runs avg sd avg sd avg sd

5
LoRA gbert-base 0.918 0.017 0.640 0.013 0.557 0.015

QLoRA german-GPT2 0.902 0.007 0.499 0.016 0.355 0.003

1 no (Q)LoRA
gbert-base 0.937 0.704 0.639

german-GPT2 0.937 0.589 0.419

Table 5: Training stability across five different seeds. We evaluate on the two models on the three datasets and task
types described in Section 5.3. We report the average and standard deviation across the five runs. Furthermore we
report the performance of a single run without (Q)LoRA training for comparison (Section 5.4).
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