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Abstract

Large language models (LLMs) are excel at
processing multiple natural language process-
ing tasks, but their abilities are constrained by
inferior performance with long context, slow
inference speed, and the high cost of comput-
ing the results. Deploying LLMs with precise
and informative context helps users process
large-scale datasets more effectively and cost-
efficiently. Existing works rely on compress-
ing long prompt contexts into soft prompts.
However, soft prompt compression encoun-
ters limitations in transferability across differ-
ent LLMs, especially API-based LLMs. To
this end, this work aims to compress lengthy
prompts in the form of natural language with
LLM transferability. This poses two chal-
lenges: (i) Natural Language (NL) prompts
are incompatible with back-propagation, and
(ii) NL prompts lack flexibility in imposing
length constraints. In this work, we pro-
pose a Natural Language Prompt Encapsula-
tion (Nano-Capsulator) framework compress-
ing original prompts into NL formatted Cap-
sule Prompt while maintaining the prompt util-
ity and transferability. Specifically, to tackle
the first challenge, the Nano-Capsulator is opti-
mized by a reward function that interacts with
the proposed semantics preserving loss. To ad-
dress the second question, Nano-Capsulator is
optimized by a reward function featuring length
constraints. Experimental results demonstrate
that the Capsule Prompt can reduce 81.4% of
the original length, decrease inference latency
up to 4.5×, and save 80.1% of budget over-
heads while providing transferability across di-
verse LLMs and different datasets.

1 Introduction

Large Language Models (LLMs) have demon-
strated substantial proficiency across a variety of
natural language processing tasks. Despite their
significant potential and broad adoption, LLMs are
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Figure 1: An example of successful prompt compres-
sion with NL formats. The compressed NL-formatted
prompt (green) aims to obtain a shorter length and main-
tain transferability and utility of the long prompt (red).

fundamentally limited by the long context length
input, which impairs their capability to understand
lengthy documents and affects their efficiency dur-
ing inference (Touvron et al., 2023; Brown et al.,
2020; Yang et al., 2023; Jin et al., 2024). As the
demand for processing millions of tokens increases,
it is progressively crucial to deploy LLMs that are
adept at comprehending extended lengths while
minimizing budgetary requirements.

To help LLMs better process long context knowl-
edge, recent advancements have focused on com-
pressing long prompt contexts into concise soft
prompts. This approach effectively transforms the
original extensive prompt into a manageable se-
ries of short-length soft prompt tokens. Gener-
ally, compression-oriented soft prompts are learned
with the guarantee of semantics through self-
information (Chevalier et al., 2023), instruction
finetuning (Ge et al., 2023; Ren et al., 2023), and
the performance alignment via knowledge distilla-
tion (Wingate et al., 2022; Mu et al., 2023). How-
ever, with the rapid evolution and the growth of
API-based accessibility of LLMs, soft prompts
pose significant limitations in terms of transfer-
ability across different LLMs, implying that well-
trained soft prompts can only be effectively adapted
to the specific LLMs for which they were designed.
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This situation creates a critical need to achieve
both transferability and utility effectively. A natu-
ral question is raised: Can we compress lengthy
prompts in a natural language format, yet still
preserve utility and ensure transferability among
various LLMs?

Compressing extended prompts into a shorter,
natural language (NL) format continues to be a
challenging and unresolved issue. As depicted in
Figure 1, effective prompt compression entails pre-
serving essential semantic information in a con-
strained length with successful performance preser-
vation. However, unlike soft prompts, which can
be directly optimized with a fixed length, compress-
ing prompts into shorter NL prompts is challenging
for several reasons: (i) NL prompts are incompati-
ble with back-propagation, as the gradient cannot
backward to a discrete raw text; (ii) NL prompts
lack flexibility on imposing strict length constraints,
where overly stringent limitations on generation
length may lead to performance degradation. Thus,
it is nontrivial to compress lengthy prompts into
shorter NL ones.

To tackle the aforementioned problems, we pro-
pose a Natural Language Prompt Encapsulation
(Nano-Capsulator) framework to effectively com-
press original prompts into a Capsule Prompt with
the aid of a rewarding technique. Our proposed
Nano-Capsulator aims to encapsulate long prompts
into shorter ones under specific generation length
constraints, maintaining performance through an
explicit semantic preservation objective with re-
ward scores. Specifically, we compress our prompt
by employing a semantics-preserving summariza-
tion, and then monitor the optimization process
using reward scores that reflect the remaining infor-
mation relevant to the downstream task. Notably,
shorter Capsule Prompts, characterized by their
concise NL formatting, preserve transferability and
utility across diverse LLMs. Capsule Prompt en-
ables two advantages: the preservation of prompt
transferability and utility across different LLMs,
and the reduction of inference time and budget
overheads. Additionally, Nano-Capsulator can be
directly applied to unseen datasets without any fur-
ther training, provided these new datasets encom-
pass downstream tasks with similar domains.

To assess the effectiveness of Nano-Capsulator,
we conduct compression experiments with two dif-
ferent prompt types: few-shot demonstration chain-
of-thoughts (CoT) and passage prompts of reading

comprehension (i.e., content passages). Capsule
Prompt exhibits strong transferability across dif-
ferent LLMs and similar but unseen downstream
datasets. This enables effective adaptation without
retraining the prompt compressor.

Our main contributions are concluded as follows:
First, we introduce and formalize Nano-Capsulator
framework, which can effectively generate high-
quality Capsule Prompt with prominent transfer-
ability across multiple LLMs and unseen datasets
with similar downstream tasks. Second, we ef-
fectively reduce the original prompts to 81.4%
of their initial length and transform them into
NL-formatted Capsule Prompt, which retains the
prompt’s transferability and utility across various
LLMs. Our compression mechanism significantly
decreases up to 4.5× of the inference latency and
saves 80.1% of the budget overheads for input se-
quences. Third, experimental results demonstrate
that Capsule Prompt can efficiently perform across
diverse LLMs, which is applicable to both few-shot
demonstration CoT and input contextual prompts.

2 Related Work

2.1 Soft Prompt Compression

In the realm of prompt compression for LLMs,
most of the existing work aims to compress the
prompt into soft prompts. Soft prompts are train-
able vectors that are optimized in conjunction with
a designated LLM, which embeds the original con-
tent information of the long hard prompts into low-
dimensional vectors.

The first line of work (Wingate et al., 2022) lever-
ages the knowledge distillation object to extract the
information from hard prompts to soft prompts.
The compressed soft prompts are expected to cap-
ture high-level concepts and preserve the fluency
from the original hard prompts. The second line of
work (Chevalier et al., 2023) employs the summa-
rization capabilities of LLMs to condense lengthy
and complex prompts into soft prompts. The pro-
cess involves dividing the input prompts into mul-
tiple segments and sequentially compressing the
information from the original prompt into smaller
segments of soft prompts, where they assemble
from these individual fragments of soft prompts to
form the final soft prompts. Another work, Gist
Token (Mu et al., 2023), condenses instruction
prompts into customized prefix soft prompts by
training a virtual soft prompt predictor.

Nevertheless, the transferability of soft prompt-
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based compression across diverse LLMs is con-
strained, necessitating the re-training of soft
prompts with each change in the specified LLMs.
This means that the soft prompts generated are
specifically tailored to work only with that particu-
lar LLM, which falls short in maintaining transfer-
ability across different LLMs, especially applied
on API-based LLMs, such as Claude2 (Anthropic,
2023) and PaLM (Chowdhery et al., 2023).

2.2 Context Distillation for Compression

Besides directly compressing hard prompts into
soft prompt vectors, recent advancement (Li et al.,
2023; Jiang et al., 2023) involves computing the
self-information scores or perplexity of the given
input context prompt to shorten the prompt length.
This process includes filtering out words with
lower scores from the input prompt, resulting in
a more concise input during the inference stage.
The primary distinction between our work and
these recent studies is that they operate prompt
compression without considering any information
from downstream tasks, resulting in inferior per-
formance while directly applying to downstream
tasks or transferring between similar but unseen
downstream datasets.

3 Long Prompt Encapsulation

We systematically introduce the Nano-Capsulator
framework in this section. Figure 2 illustrates the
overall pipeline of Nano-Capsulator. In particu-
lar, our pipeline initially compresses text into NL-
formatted Capsule Prompt and concurrently opti-
mizes their utility using the proposed rewarding
method. The design of the NL-formatted compres-
sion aims to maintain prompt utility and preserve
transferability among different LLMs.

3.1 Prompt Encapsulation

The primary aim of Nano-Capsulator is to preserve
the inherent utility of the original pre-compressed
text and ensure the compressed prompt closely
reaches the designated length constraint. Specif-
ically, the prompt encapsulation mechanism in-
cludes two components to effectively generate
Capsule Prompt: (1) NL-formatted prompt com-
pression and (2) prompt utility preservation. The
learning of Nano-Capsulator involves integrating
two components and optimizing them concurrently,
thereby assuring the compressed prompts are suffi-
cient to preserve their inherent utility.

Algorithm 1 Algorithm of Nano-Capsulator
Input: Original Long Prompt K, Compression Instructions

TRep and TSumm, and pre-trained frozen LLMs G∗(·), Sam-
pled set of downstream task questions Q.

Output: NL-formatted Capsule Prompts C.
1: Initialize F(· | θC) and G∗(·) with pre-trained weights
2: while not convergence do
3: Generate C from F(K | TRep,TSumm, θC)
4: Randomly sample a set of questions Q
5: Receive reward scores fromRcap(G∗(·), Q,C,K)
6: F(· | θC)← minimizing with LNano(·)
7: end while

3.1.1 NL-formatted Prompt Compression
We adopt an unsupervised training approach fea-
turing semantic preservation loss, motivating the
model to compress contexts while retaining simi-
lar semantic content. In this work, we shorten the
long prompts by summarizing their context and
applying our proposed semantics loss LComp to en-
sure maximal preservation of semantic meaning.
Here, semantics refers to the logical thinking pro-
cess from the few-shot demonstration CoT and the
beneficial content from context passages.

Given the original prompt K = {k1, · · · kn} con-
sisted of n tokens to the Capsule Prompt C =
{c1, · · · cm} with m tokens, where n ≫ m. Our
semantics loss aims to ensure the maximal seman-
tics preservation by measuring the similarity be-
tween the hidden state embedding of C and K of
Nano-Capsulator F(· | θC). To obtain the hidden
state embedding of K, we instruct F(· | θC) to
replicate the input prompt K, which aids in better
preserving and embedding the semantic meanings
of K. Specifically, d-dimensional hidden state em-
bedding of K and C can be generated by eK ∼
PF (K | θC ,TRep) and eC ∼ PF (C | θC ;TSumm),
where TRep and TSumm denote a replicating instruc-
tion and a summarizing instruction, respectively.
With the aid of TRep, we compel F(· | θC) to repli-
cate K under the model parameter θC , ensuring
that eK ∈ Rd accurately represents the embedding
of K. Following the criterion, F(· | θC) essentially
minimizes the semantics loss as follows:

LComp = EC

[
Ddist(eK || eC)

]
(1)

where Ddist(· || ·) can be any suitable distance mea-
surement in metric space. In this work, we leverage
mean square error as the distance function to mea-
sure the similarity between eK and eC .

3.1.2 Prompt Utility Preservation
To impose a constraint on the generated length
while preserving utility, we establish a reward func-
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Figure 2: The illustration of Nano-Capsulator training framework. Nano-Capsulator compress the long prompt with
the action of semantic (Equation 1) and utility preservation (Equation 2). Questions are sampled from the training
set to develop the reward scores for utility preservation.

tion Rcap(·) featuring a strict cut-off mechanism
Φ(·) for restricting the generated length of Capsule
Prompt. The high-level idea of the reward func-
tion is to calculate the score changes of the down-
stream task question based on leveraging the origi-
nal prompt K and the Capsule Prompt C. Notably,
the reward function employs a truncation strategy
to limit the C to a predetermined length before
proceeding to compute the scores using the reward
function. In this manner, the Capsule Prompt that
surpasses the specified length threshold could be
assigned a lower reward score as a result of the
cut-off mechanism.

Formally, given K and C along with arbitrary
pre-trained frozen LLMs G∗(·) and a sampled set of
downstream task questions Q, the reward function
Rcap(·) can be defined as follows:

Rcap = EQ

[
I{ G

(
Φ(Ci)⊕Qi

)
|| G

(
Ki⊕Qi

)
}
]

(2)
where I(· || ·) denotes an arbitrary reward metric
for yielding the reward score., and ⊕ represents
concatenation of prompts and questions. In this
study, we calculate the reward scores using the
mean square error between the hidden state embed-
ding from G∗(·). It’s noteworthy that I(· || ·) can
be replaced by other metrics, such as accuracy and
GPT4Eval Scores (Liu et al., 2023), facilitating its
potential application to API-based LLMs.

3.1.3 Compression with Reward
Upon receiving the reward scores from Rcap as per
Equation 2, we synchronize these scores with the
semantic loss LComp to maintain utility. Formally,
the ultimate objective function of Nano-Capsulator
can be indicated as:

LNano = LComp(·|θC) ∗ Rcap(·|θ∗) (3)

where θ∗ denotes the frozen model parameters of
G∗(·) and θC is the trainable parameters of Nano-

Capsulator. The fundamental principle of LNano(·)
is to impose penalties when shorter versions of
Capsule Prompt exhibit inferior performance. This
implies that if a Capsule Prompt receives a low
reward score from Equation 2, its semantic loss
will be composed by a high penalty value, resulting
in a substantial semantic loss value as punishment
during the training phase of Nano-Capsulator.

3.2 Algorithm of Nano-Capsulator

The framework of Nano-Capsulator is detailed in
Algorithm 1. Nano-Capsulator adheres to Equa-
tion 1 for the preservation of semantic meaning and
integrates the rewarding function from Equation 2
to maintain the utility of compressed NL-formatted
prompts. The two elements are then aligned, as
depicted in Equation 3, and optimized simultane-
ously with the goal of obtaining compressed NL-
formatted prompts of high utility. In the inference
phase, Nano-Capsulator is solely required to pro-
duce the compressed version of Capsule Prompt
from the provided long input prompt.

4 Experiments

In this section, we conduct experiments to evaluate
the performance of Nano-Capsulator, aiming to
answer the following three research questions:

• RQ1: How does Nano-Capsulator perform in
terms of the efficacy and transferability among
different LLMs and datasets?

• RQ2: How do the two components of Nano-
Capsulator contribute to the compression perfor-
mance for utility preservation?

• RQ3: What are the inference latency and impact
factors of Capsule Prompt?
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4.1 Dataset

We conduct compression experiments with two dif-
ferent prompt types: few-shot CoT and passage
prompts of reading comprehension. The details of
the datasets are provided as follows:

Few-shot CoT Dataset. We choose two reasoning
datasets to evaluate the proposed framework.

• CommonsenseQA (Talmor et al., 2019): The
CommonsenseQA (CSQA) dataset is a publicly
accessible collection of multiple choice questions
with 1221 samples for the commonsense reason-
ing task. CSQA presents questions characterized
by intricate semantics, typically demanding rea-
soning grounded in pre-existing knowledge.

• GSM8K (Cobbe et al., 2021): The GSM8K is
a dataset containing 1319 samples of graduate
school math questions. Each question is collected
from the Math World Problem Repository (Roy
and Roth, 2015) with a numerical answer.

Reading Comprehension Dataset.

• MultiRC (Khashabi et al., 2018; DeYoung
et al.): MultiRC (Multi-Sentence Reading Com-
prehension) comprises a collection of brief para-
graphs paired with multi-sentence questions,
where the answers can be derived from the para-
graph’s content. The dataset obtains 24029 sam-
ples for training, 3214 samples for validating,
and 4848 samples for testing.

• TriviaQA LongBench (Joshi et al., 2017): Triv-
iaQA LongBench (TriviaQA-Long) is a reading
comprehension dataset featuring 300 question-
answer-evidence triples collected from the Long-
bench dataset. It includes question-answer pairs
created by trivia enthusiasts, along with indepen-
dently sourced evidence documents, offering ro-
bust supervision for responding to the questions.

4.2 Experiment Settings

In this part, we introduce the experimental set-
tings and metrics for evaluating Nano-Capsulator.
Two distinct types of transferability evaluations are
taken into account. To verify the model transfer-
ability, the compression models are trained on one
downstream LLM, and tested on different down-
stream LLMs. The evaluation is performed on the
same dataset, with a division of 70% allocated for
training and validation and 30% designated as the
testing set. To assess data transferability, we train
the compression models using one seen dataset and

then test them on unseen datasets that the mod-
els have not previously encountered with the same
downstream tasks. The considered compression
settings and implementation details are shown as
follows. Two types of prompt compression tasks
are focused on.

Few-shot CoT Compression Task. For the few-
shot CoT compression task, we randomly compile
seven examples from the CSQA dataset and eight
from the GSM8K dataset following (Wei et al.,
2022), all selected from their respective training
sets, to construct the few-shot CoT. During the
training phase, a total of 1,000 CoT samples are
then gathered to serve as the training data for Nano-
Capsulator. During the inference stage, we aim
to compress the manual few-shot CoT proposed
in (Wei et al., 2022), where the demonstrations in
manual CoT are eliminated from any training set.
The primary evaluation metric used in both CSQA
and GSM8K datasets is accuracy, implying that the
model scores only when it provides answers that
exactly match the expected responses.

Reading Comprehension Compression Task. For
the reading compression task, we aim to compress
the reading paragraphs from the question-answer
triplets. Due to the limitation of GPU memory, we
eliminate the paragraphs that exceed 2k tokens in
TriviaQA from the LongBench dataset, resulting
in an average length of 900 tokens, while MultiRC
remains to utilize the all paragraphs in the dataset.
Throughout the training phase, we select 2,000
question-answer-paragraph triplets in the MultiRC
dataset to serve as training data and leverage all
training data in the TriviaQA-Long dataset. Our
framework is evaluated on the entire set of testing
data, using accuracy as the metric of assessment.

Implementation Details. In primary experiments,
we utilize Vicuna-7B (Chiang et al., 2023) as
the initial compression model F(· | θC) in Nano-
Capsulator. The pre-trained LLMs G∗(·) is given
as Vicuna-7B with frozen weights. We train Nano-
Capsulator using Vicuna-7B and then assess the
generated Capsule Prompt with various LLMs
other than Vicuna-7B, in order to evaluate its trans-
ferability. To reduce memory consumption dur-
ing training, we utilize LoRA1 and train the Nano-
Capsulator using two NVIDIA A40 GPUs of 48GB
memory. We employ the Adam optimizer for the
fine-tuning process, with a learning rate set at 5e-6

1PEFT: https://github.com/huggingface/peft
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CSQA | GSM8K | MultiRC | TriviaQA-Long

Manual Zero-shot Ours Manual Zero-shot Ours Original Ours Original Ours

Vicuna-13B 60.4 44.6 58.8 34.4 25.3 31.9 57.3 57.1 86.0 88.8
PaLM 73.7 67.5 75.5 62.8 56.8 59.5 72.7 72.2 78.9 78.8
Claude2 76.6 69.4 74.6 85.6 52.7 84.9 59.4 58.2 95.0 92.3

Length (# of Token) 831 – 154 751 – 231 378.39 95.66 915.7 422.6
Compress Rate (%) – – 81.4% – – 69.3% – 74.71% – 53.84%

Table 1: Evaluation of Nano-Capsulator among different LLMs. The results show that Nano-Capsulator compress
up to 81.4% of the original long prompt and save up to 80.1% of the expense on requesting for LLM API calls.

Claude2 (Anthropic, 2023)

Cost($) Original Capsule Prompt Saved

CSQA 15.03 3.30 -77.9%
GSM8K 5.22 1.88 -63.9%
MultiRC 45.91 13.01 -71.6%
TrivaQA-Long 2.14 0.42 -80.1%

Table 2: API cost comparison of Capsule Prompt and
original prompt, where Capsule Prompt save up to
80.1% of the original cost.

under the gradient clipping of 0.8, depending on the
datasets. The instructions that leverage for prompt
encapsulation TRep and TSumm are listed in Table 6
from Appendix F.

4.3 Main Results (RQ1)

Model Transferability. To assess the effective-
ness and transferability, we compress the origi-
nal input prompts into the Capsule Prompt by
Nano-Capsulator. We then evaluate the transfer-
ability and utility of these compressed prompts
across three different LLMs not included in the
pre-training of Nano-Capsulator: Vicuna-13B (Chi-
ang et al., 2023), PaLM (Chowdhery et al., 2023),
and Claude2 (Anthropic, 2023). The main findings
are presented in Table 1. In the table, "Manual"
refers to the manually created few-shot CoT pro-
posed by (Wei et al., 2022), "Zero-shot" denotes
the zero-shot CoT followed (Kojima et al., 2022),
and "Original" indicates the original paragraphs
used in the reading comprehension tasks.

In the primary experiment, we establish a com-
pression constraint limiting to a maximum of 150
tokens for the CSQA and MultiRC datasets; and a
maximum of 350 and 500 tokens for the GSM8K
and TriviaQA-Long dataset, where 150 tokens are
not sufficient for preserving the logic of GSM8K
and TriviaQA-Long dataset. We observe that the
Nano-Capsulator obtains up to 81.4% of the com-
pression rate and saves up to 80.1% of the Claude2
API cost compared to the original input prompts,
as displayed in Table 2. The cost of PaLM API

Vicuna-13B Claude20.2

0.4

0.6

0.8

Ac
cu

ra
cy Original Prompt

w/ Training
w/o Training

Figure 3: Evaluation of transferability on Nano-
Capsulator across unseen datasets.

can be found in Appendix C. For utility preserva-
tion, Nano-Capsulator retains the original perfor-
mance on the CSQA, GSM8k, and TriviaQA-Long
datasets mostly among three LLMs. Remarkably,
Nano-Capsulator maintains almost identical per-
formance to that achieved with non-compressed
prompts in MultiRC datasets. The significant com-
pression rate can advantageously impact the LLMs
by allowing for a higher tolerance in batch infer-
ence, accompanied by reduced latency and cost.

Dataset Transferability. We previously assessed
the effectiveness of Nano-Capsulator within the
same datasets, where the testing set was derived
from the same training domain. In this section, we
investigate the transferability of Nano-Capsulator
across unseen datasets (i.e., not in training data)
with the same downstream tasks. We train Nano-
Capsulator on the MultiRC dataset (seen dataset)
and test on BoolQ (Clark et al., 2019) (unseen
dataset) without any further training, where BoolQ
is also a reading comprehension dataset, under
Vicuna-13B and Claude2. The results are demon-
strated in Figure 3. We see a competitive perfor-
mance with only a slight accuracy drop compared
to the training version of Capsule Prompt. While
Capsule Prompt yields better performance with
training, the results indicate that Nano-Capsulator
possesses a great property of data transferability.

4.4 Contributions of Utility Preservation
(RQ2)

In this section, we explore the effectiveness of
components from Nano-Capsulator. Specifically,
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Figure 4: Comparison results of Capsule Prompt and
Zero-shot Summarization on GSM8K dataset (left) and
MultiRC dataset (right).
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Figure 5: Ablation studies of comparison with Capsule
Prompt and GPT-35-Turbo Summarization on CSQA
dataset and GSM8K dataset (left); and of the contribu-
tion of Reward Function from Equation 2 (right).

we conduct ablation studies from two perspectives.
First, we evaluate the efficacy of semantic preserva-
tion. We compare Nano-Capsulator with in-context
zero-shot summarization generated by Vicuna-7B,
as Vicuna-7B is the initial model weight of Nano-
Capsulator for prompt compression. The results are
demonstrated in Figure 4 with the comprehensive
comparison of three LLMs, including Vicuna-13B
and Claude2. We observe that Capsule Prompt
yielded by Nano-Capsulator outperforms in all sce-
narios, which means that our Nano-Capsulator can
significantly preserve more semantic information
and preserve prompt utility. Additionally, we assess
the performance by directly employing GPT-3.5-
Turbo to summarize the provided prompts. Figure 5
(left) illustrates that Nano-Capsulator maintains a
higher level of prompt utility compared to GPT-3.5-
Turbo, resulting in enhanced performance on both
the CSQA and GSM8K tasks.

Secondly, we carry out ablation studies to es-
tablish the effectiveness of the reward function
in Nano-Capsulator. These studies are conducted
on Vicuna-13B and Claude2 using the TriviaQA-
Long dataset. As shown in Figure 5 (right), the
results indicate a degradation in performance for
downstream tasks when the reward function is
not utilized. Note that "w/ reward" means Nano-
Capsulator trained with the reward function, while
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Figure 6: Impact of prompt length on Vicuna-13B (left)
and Claude2 (right) on TriviaQA dataset.

200 400 600
Length

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

MultiRC (Selective)
MultiRC (Ours)
CSQA (Selective)
CSQA (Ours)

200 400 600
Length

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

CSQA (Random)
CSQA (Ours)

Figure 7: The comparison results of Capsule Prompt
and text dropping methods, including Selective Context
(left) and random demonstration elimination (right).

"w/o reward" denotes a Nano-Capsulator trained
without the reward function. We further present
case studies of Capsule Prompt on GSM8K to
showcase the logic preservation, as illustrated in
Figure 10 from Appendix E. These studies clearly
demonstrate that Capsule Prompt retains more se-
mantic meanings by preserving complete logical
structures, suggesting that the utility of prompts is
better maintained.

4.5 Exploration of Impact Factors (RQ3)

In this section, we explore our proposed compres-
sion mechanism in greater detail, examining vari-
ous factors that influence its performance.

Impact of Capsule Prompt Length. In the main
experiment, the length constraint is fixed to 150 or
300 tokens for the prompt compression. We fur-
ther explore how the compression rate affects the
preservation of utility. The results are displayed
in Figure 6, obtained from experiments conducted
using the TriviaQA dataset with Vicuna-13B and
Claude2. We observe that the length of Capsule
Prompt can impact its utility on different LLMs.
While longer prompts might capture more useful
information for downstream tasks, they can also
introduce certain noise or misinformation to the
LLMs. This can result in suboptimal performance
when specific LLMs interact with the compressed
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Figure 8: Inference Latency of Vicuna-13B on CSQA
dataset (left) and TrivaQA-Long dataset (right), where
✖ indicates out of memory.

prompts. The situation can be observed from the
results of Capsule Prompt and Zero-shot Summ
Prompt, where the length of 150 outperforms other
length settings under Claude2 and the length of
200 outperforms other length settings Vicuna-13B.
We notice that the desired length settings of Nano-
Capsulator can be observed from the performance
of the Zero-shot Summ Prompt, as they share simi-
lar performance trends.

Impact of Discrete Text Elimination. In addition
to compressing prompts using Nano-Capsulator,
we acknowledge that prompt length can also be
reduced by employing methods like random drop-
ping or rule-based selection. To this end, we have
conducted studies comparing the performance of
straightforward text dropping with our proposed
framework. We consider two baseline methods un-
der Claude2: a naive random demonstration elimi-
nation on the CSQA dataset and Selective Context
as described in (Li et al., 2023), in which Selec-
tive Context eliminated the word according to the
self-information values, on both the CSQA and
MultiRC datasets. The outcomes of these compar-
isons are showcased in Figure 7. We observe that
Capsule Prompt outperforms the other two base-
lines. Particularly, Capsule Prompt achieves better
performance when the length is similar to the base-
lines. This again demonstrates the effectiveness of
Capsule Prompt in preserving the utility.

4.6 Latency of Nano-Capsulator (RQ3)

The configuration of the computational infrastruc-
ture is given in Appendix A. We conducted the
efficiency experiments on two publicly available
LLMs: OPT-2.7B (Zhang et al., 2022) and Vicuna-
13B (Chiang et al., 2023), under different batch
size settings with the generated length of 200 to-
kens. Due to the limited GPU memory, we set
Vicuna-13B as bfloat16 to accommodate a single

4 8 16
Batch Size

0.0

0.5

1.0

1.5

2.0

La
te

nc
y 

(S
ec

.)

Capsule Prompt
Original Prompt

4 8 16
Batch Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

La
te

nc
y 

(S
ec

.)

Capsule Prompt
Original Prompt

Figure 9: Inference Latency of OPT-2.7B on CSQA
dataset (left) and TrivaQA-Long dataset (right), where
✖ indicates out of memory.

GPU, while OPT-2.7B remains its inherent version.
As demonstrated in Figure 8 and Figure 9, we ob-
serve that Nano-Capsulator framework achieves
much lower computational latency compared to
the case while inputting the original prompt on
both LLMs. Specifically, Capsule Prompt obtains
mostly of its original performance while reducing
2.1× ∼ 4.5× of execution latency. As depicted in
Figure 9, Capsule Prompt is capable of being ac-
commodated within OPT-2.7B under a larger batch
size, whereas the use of the original longer prompt
leads to an out-of-memory issue (i.e., when batch
size = 16). Additionally, we notice that Capsule
Prompt achieves considerable benefits in speeding
up the inference process as the batch size increases.
Under OPT-2.7B, Capsule Prompt accelerates the
process by up to 4.5×, and under Vicuna-13B, it
achieves a speed increase of 4.1× compared to the
original input prompt. This indicates that Capsule
Prompt allows for a larger batch size while reduc-
ing the time required for the inference process.

5 Conclusion

Our work introduces Natural Language Prompt En-
capsulation (Nano-Capsulator), a framework for
effectively compressing long prompts for LMs
while preserving essential information. Nano-
Capsulator alleviates the context length limitations
of LLMs, enhancing processing efficiency and
cost-effectiveness. Our results show that Nano-
Capsulator reduces prompt lengths by 81.4%, de-
creases inference latency by up to 4.5×, and cuts
budget overheads by 80.1% with almost identical
accuracy and relevance. This demonstrates its sig-
nificant potential for improving LLM efficiency
across various applications that utilize long input
documents. Future research will focus on refining
Nano-Capsulator for broader domain applications
and exploring its usage in data-intensive fields.
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Appendix

A Computation Infrastructure

For a fair comparison of testing algorithmic
throughput, the experiments are conducted based
on the following physical computing infrastructure
in Table 3.

Device Attribute Spec
Computing infrastructure GPU
GPU model Nvidia-A40
GPU number 1
GPU Memory 46068 MB

Table 3: Computing infrastructure for the experiments.

B Additional Experiments of Comparison
to Soft Prompt Baselines

To evaluate our proposed framework against exist-
ing soft prompt methods, we conduct experiments
with AutoCompressors (Chevalier et al., 2023) on
the GSM8K dataset, as shown in Table 4. Our
Capsule Prompt is utilized for predictions using
the Llama-2-7B model, which is identical to the
pre-trained model used by AutoCompressor. As
we can see, AutoCompressor does not preserve es-
sential information in the compressed soft prompts,
leading to a considerable performance drop in the
GSM8K task.

GSM8K AutoCompressors Ours
Accuracy 3.79 19.7

Table 4: Computing infrastructure for the experiments.

PaLM (Chowdhery et al., 2023)

Cost($) Original Capsule Prompt Saved

CSQA 0.156 0.034 -77.9%
GSM8K 0.054 0.019 -63.9%
MultiRC 0.478 0.135 -71.6%
TrivaQA-Long 0.022 0.004 -80.1%

Table 5: API cost comparison of Capsule Prompt and
original prompt on PaLM, where Capsule Prompt save
up to 80.1% of the original cost.

C API Cost of PaLM

We here provide the API cost of PaLM during
the evaluation of Nano-Capsulator. We can ob-
serve that Capsule Prompt generated by Nano-
Capsulator save up to 80.1% of its original cost
on PaLM. The results further underscore the excel-
lent cost-efficiency attributes of Capsule Prompt.

D Training Costs of Nano-Capsulator

In this section, we discuss the training time the
memory cost of Nano-Capsulator in this section.
All datasets are trained using the initial weights
of Vicuna-7B. Training time and memory require-
ments are different with the volume and types of
training data. In our work, the training time for
the few-shot CoT compression task is approxi-
mately 8 hours, and for the reading comprehension
compression task, it is about 4 hours. Once the
Nano-Capsulator completes the training process,
we can directly derive the compressed hard prompts
through a single forward pass of Nano-Capsulator.

E The Case Studies of Capsule Prompt

We demonstrate the case study of Capsule Prompt
on the GSM8K and MultiRC dataset. The results,
depicted in Figure 10 and Figure 11, show that
Nano-Capsulator can better obtain the semantic
meanings of math logic from the original CoT
prompt. We observe that in the absence of Nano-
Capsulator, the Zero-shot Summarization approach
struggles to compress long prompts effectively.

F Instruction Usage in Inference LLMs

We provide a list of the instruction utilized in train-
ing our Nano-Capsulator framework in Table 6,
including TRep replicating instruction and summa-
rizing instruction TSumm.
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○ Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. 
How many trees did the grove workers plant today?
A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21 - 15 = 6. The 
answer is 6.

○ Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A:There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

○ Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39. 
The answer is 39.

○ Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to 
Denny?
A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12 = 8. The answer is 8.

○ Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.

○ Q: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How 
many computers are now in the server room?
A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 = 20 computers were added. 9 
+ 20 is 29. The answer is 29."

○ Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at 
the end of wednesday?
A: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf 
balls. The answer is 33.

○ Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 - 15 dollars left. 23 - 15 is 8. The 

answer is 8.

Original Prompt

○ There were 15 trees in the grove, and grove workers planted 6 more trees, so there are now 21 trees in the grove.
○ In the parking lot, there were 3 cars, and 2 more cars arrived, so there are now 5 cars in the parking lot.
○ Leah and her sister had 32 and 42 chocolates, respectively, and they ate 35 chocolates, so they have 39 chocolates left in total.
○ Jason had 20 lollipops and gave 8 lollipops to Denny, so he now has 12 lollipops.
○ Shawn had 5 toys and got 2 toys each from his mom and dad, so he now has 9 toys.
○ There were 9 computers in the server room, and 20 more computers were installed, so there are now 29 computers in the server 

room.
○ Michael had 58 golf balls and lost 23 on tuesday and 2 more on wednesday, so he has 33 golf balls left.
○ Olivia had $23 and bought 5 bagels for $3 each, so she has $8 left.

○ Grove workers planted 6 trees in the grove.
○ There are now 5 cars in the parking lot.
○ Leah and her sister have 39 pieces of chocolates left in total.
○ Jason gave Denny 8 lollipops.Shawn has 9 toys now.
○ There are 29 computers in the server room.
○ Michael had 33 golf balls at the end of wednesday.
○ Olivia has 8 dollars left.

Capsule Prompt

Zero-shot Summarization Prompt

Figure 10: A case study on GSM8K dataset. The results are the Capsule Prompt and in-context summarization
prompt generated Vicuna-7B, following the settings in RQ2.

Compression Tasks TRep (Replicating Instruction) TSumm (Summarizing Instruction)

Few-shot CoT Repeat the following main input. Please summarize each question-answer pair in one sen-
tence within less than {word count} words. Make sure
not to repeat the input question-answer pair.

Reading Comprehension Repeat the following main input. Please summarize the passage within less than {word
count} words. Make sure not to repeat the passage.

Table 6: Instructions used in training Nano-Capsulator.
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○ The narrator left the tower and took a candle with them to search the ground floor. The daylight was creeping in through the 
barred windows by the time the narrator finished searching the ground floor. The narrator hesitated to search the cellars but 
decided to do so because they did not want to be seen as cowardly and because the cellars were the most unlikely place to find 
anything dangerous.

Capsule Prompt

○ The narrator left the tower and took a candle with them, searching the ground floor of the house. The daylight was creeping in 
through the barred windows, but the search showed nothing new. The narrator hesitated before deciding to search the cellars, 
which were large and eerie, but ultimately decided to face their fear and complete the task.

Zero-shot Summarization Prompt

Original Prompt

○ The day was just breaking , as I left the tower ; though it was still too dark in the house to be able to see without a light , and I 
took one of the study candles with me on my ' round . By the time I had finished the ground floor , the daylight was creeping in 
, wanly , through the barred windows . My search had shown me nothing fresh . Everything appeared to be in order , and I was 
on the point of extinguishing my candle , when the thought suggested itself to me to have another glance ' round the cellars . I 
had not , if I remember rightly , been into them since my hasty search on the evening of the attack . For , perhaps , the half of a 
minute, I hesitated . I would have been very willing to forego the task -- as , indeed , I am inclined to think any man well might 
-- for of all the great , awe - inspiring rooms in this house , the cellars are the hugest and weirdest . Great , gloomy caverns of 
places , unlit by any ray of daylight . Yet , I would not shirk the work . I felt that to do so would smack of sheer cowardice . 
Besides , as I reassured myself , the cellars were really the most unlikely places in which to come across anything dangerous ; 
considering that they can be entered , only through a heavy oaken door , the key of which , I carry always on my person.

Figure 11: A case study on MultiRC dataset. The results are the Capsule Prompt and in-context summarization
prompt generated Vicuna-7B, following the settings in RQ2.
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