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Abstract
Multilingual pretraining has been a successful
solution to the challenges posed by the lack
of resources for languages. These models can
transfer knowledge to target languages with
minimal or no examples. Recent research sug-
gests that monolingual models also have a sim-
ilar capability, but the mechanisms behind this
transfer remain unclear. Some studies have ex-
plored factors like language contamination and
syntactic similarity. An emerging line of re-
search suggests that the representations learned
by language models contain two components:
a language-specific and a language-agnostic
component. The latter is responsible for trans-
ferring a more universal knowledge. However,
there is a lack of comprehensive exploration of
these properties across diverse target languages.
To investigate this hypothesis, we conducted an
experiment inspired by the work on the Scaling
Laws for Transfer. We measured the amount
of data transferred from a source language to a
target language and found that models initial-
ized from diverse languages perform similarly
to a target language in a cross-lingual setting.
This was surprising because the amount of data
transferred to 10 diverse target languages, such
as Spanish, Korean, and Finnish, was quite sim-
ilar. We also found evidence that this trans-
fer is not related to language contamination or
language proximity, which strengthens the hy-
pothesis that the model also relies on language-
agnostic knowledge. Our experiments have
opened up new possibilities for measuring how
much data represents the language-agnostic rep-
resentations learned during pretraining.1

1 Introduction

The emergence of self-supervised pretraining mod-
els such as BERT has revealed a notable phe-
nomenon of cross-lingual transfer even when these

1The code used in our experiments is publicly available
at https://github.com/lersouza/language-transfer.
We rely on the mC4 dataset from Huggingface, available at
https://huggingface.co/datasets/mc4

models are trained on multilingual corpora de-
void of paired translation examples. For example,
LLAMA (Touvron et al., 2023), which was trained
self-supervisedly on an English-centric corpus, ex-
hibits surprising multilingual capabilities (Yuan
et al., 2023; Ye et al., 2023). The underlying mech-
anisms driving this behavior remain unclear, with
hypotheses ranging from the presence of shared
“anchor” tokens (Pires et al., 2019) to language con-
tamination (Blevins and Zettlemoyer, 2022), yet no
scientific consensus has been reached.

Research in this area often involves the use of
pre-existing language models (LMs), which are
subsequently finetuned on supervised datasets in
different languages (de Souza et al., 2021; Yuan
et al., 2023). However, when evaluating multiple
languages, conventional methodologies encounter
two significant challenges: firstly, the dependence
on supervised finetuning datasets, which often vary
in size and quality, complicating cross-lingual com-
parisons; secondly, the use of subword tokenizers,
which do not represent all languages equally.

In this work, we avoid these problems by work-
ing with a byte-level tokenizer and by using
auto-regressive language models trained in self-
supervised from scratch in one language and then
finetuned on another. To measure the effect of
transfer learning, we employ the concept of data
transfer (Hernandez et al., 2021), which allows us
to quantify how much each different source lan-
guage contributes to the perplexity of the target
language.

Our main contribution is providing a method that
measures how much knowledge, in bytes, is trans-
ferred from one language to another. By applying
it, our findings reveal a surprising trend: even when
comparing linguistically distant languages, the data
transfer metrics are of a comparable magnitude.
This research contributes additional evidence sup-
porting the language-agnostic hypothesis, which
suggests that the internal representations developed
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by a model are not only influenced by the linguistic
surface form but also by the cultural and semantic
content of the training data.

2 Related Work

Prior work attributed the success of multilingual
models in cross-lingual transfer to “anchor” to-
kens (Pires et al., 2019). However, subsequent
research demonstrated that models could perform
well even without these tokens (Artetxe et al.,
2020), highlighting the significance of shared pa-
rameters during training (Conneau et al., 2020).
Competitive results were achieved by monolingual
models with minimal or no adaptation (Artetxe
et al., 2020; de Souza et al., 2021).

Investigations by Blevins and Zettlemoyer
(2022) linked these findings to language contami-
nation, where pretraining datasets contained target
language data. Additional factors contributing to
cross-lingual transfer success include dataset statis-
tics, language attributes (Lin et al., 2019), language
structure (Lin et al., 2019; Papadimitriou and Ju-
rafsky, 2020; Chiang and yi Lee, 2020; Ri and
Tsuruoka, 2022), and token overlap between train-
ing and target languages (Beukman and Fokam,
2023). The role of language script (Fujinuma et al.,
2022) and model tokenizer (Rust et al., 2021) was
also noted, prompting the use of a byte tokenizer
to address these issues (Xue et al., 2022; Abonizio
et al., 2022).

Recent research proposed a two-component
model representation hypothesis—language agnos-
tic and language specific (de Souza et al., 2021;
Zeng et al., 2023; Wu et al., 2022). While promis-
ing, no study has measured how much of the
language-agnostic component is used in settings
with multiple source and target languages. Addi-
tionally, existing research still applies the source
language vocabulary to the target language, po-
tentially compromising input representations and
affecting results.

To address these gaps, we draw on Hernandez
et al. (2021) and employ a byte vocabulary in our
experiments to overcome current literature limita-
tions.

3 Methodology

Inspired by Hernandez et al. (2021), our method-
ology focuses on quantifying the transferability of
pretraining data across distributions, particularly
between different languages. We select a target

language and finetune models initialized from var-
ious source languages onto it. Subsequently, we
evaluate each model on a target language test set
and compare their performance. We introduce the
Data Transfer (DT ) metric to estimate knowledge
transfer, explained in more depth in 3.1. This pro-
cess is repeated across different target languages to
observe effects across a broad linguistic spectrum.

These experiments aim to quantify and compare
cross-lingual knowledge transfer from different
source languages. This analysis seeks to uncover
the extent to which transferability depends on spe-
cific languages and the importance of language-
agnostic components in learned representations.
The following sections provide further details.

3.1 Data Transfer Estimation

To quantify the knowledge transfer from pretrained
models to a given target language, we utilize the
Data Transfer (DT ) metric. This metric assesses
the effectiveness of pretraining data by measuring
the additional tokens required in the target language
for a model initialized from scratch to match the
performance of a model pretrained on a source
language and finetuned on the target. Figure 1
illustrates this concept.

In our experiments, we utilize a set of
M different dataset sizes, denoted as DF =
{s0, s1, ..., sm}, in the target language. Initially,
we train a random-initialized model on these
datasets, resulting in a set of perplexities PR =
{pr,0, pr,1, ..., pr,m}. Subsequently, we train from
scratch another model on a fixed amount of tokens
(e.g., 6B) in a source language ℓ, and then finetune
it on the target language using the same dataset
sizes DF, generating another set of perplexities
Pℓ = {pℓ,0, pℓ,1, ..., pℓ,m}.

To estimate the Data Effective metric (DE),
which represents the amount of data needed to
achieve a certain performance, we utilize a linear
interpolation function γ(y′,X,Y). This function
interpolates between discrete data points (xj , yj) ∈
X ×Y , evaluated at y′. In our case, the calculation
is expressed as:

DE,i = γ(pℓ,i, DF, PR) (1)

Here, DE,i signifies the Data Effective metric
for the i-th perplexity value in Pℓ. PR denotes the
set of perplexity values derived from the random-
initialized model, while DF represents the dataset
sizes employed during finetuning.
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Figure 1: Example illustrating how the coeficients DT , DF and DE are calculated. Each series represents a different
initialization. DT is the number of additional tokens in the target language that a from-scratch model would have
needed to achieve the same perplexity of a model finetuned from English. DF is the size of the dataset used for
finetuning and DE accounts for all data, both DF and DT .

We utilize the linear interpolation function pro-
vided by the NumPy library to approximate DE,i.
Further details can be found in the NumPy docu-
mentation.2

Finally, the Data Transfer metric is computed by
subtracting the i-th dataset size si from DE,i:

DT,i = DE,i − si (2)

By subtracting the dataset size from DE,i, we
account only for the data coming from pretraining.
Since a byte vocabulary is utilized, the amount of
data transferred is measured in bytes.

3.2 Task and Evaluation Metric

We adopt Language Modeling as our main task
with perplexity as the performance metric for
all experiments. Perplexity, derived from the
model’s loss (eloss), facilitates future predictions of
model behavior in transfer learning scenarios, fol-
lowing the approach in Hernandez et al. (2021).
This choice also allows extensive experiments
across multiple languages, leveraging datasets like
mC4 (Xue et al., 2021) to overcome size limitations
inherent in supervised datasets.

3.3 Tokenization Impact

In cross-lingual setups, the choice of tokenization
method holds considerable significance (Rust et al.,
2021). While subword tokenizers are commonly

2See https://numpy.org/doc/stable/reference/
generated/numpy.interp.html

employed in cross-lingual experiments, using a to-
kenizer trained in a source language on a distant
target language may result in an increased number
of tokens. This can lead to the utilization of un-
dertrained embeddings in some instances, introduc-
ing challenges for effective sentence representation.
Furthermore, dealing with different scripts intro-
duces the issue of numerous “unknown” tokens,
exacerbating the difficulty of obtaining suitable in-
put representations for the model.

To address these challenges, we opt for a byte
vocabulary based on the approach proposed by
Xue et al. (2022), which allows us to standardize
representations across all languages, ensuring that
each model encounters the same quantity of UTF-8
bytes. By doing so, we mitigate the use of unknown
tokens and undertrained embeddings, thereby min-
imizing the impact of tokenization issues on the
performance of our experiments.

3.4 Language Contamination

A potential reason for a pretrained model’s supe-
rior performance in cross-lingual tasks is the pres-
ence of a substantial amount of data in the target
language in its pretraining dataset, a phenomenon
referred to as language contamination. To quan-
tify this impact, following the approach outlined
by Blevins and Zettlemoyer (2022), we examine
the rates of target language fragments in the source
language dataset and vice versa.

Specifically, for a given source language ℓ and
target language t, we calculate the ratio of all lines
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classified as ℓ in the target dataset (known as con-
tamination on target) and as t in the pretraining
dataset (known as contamination on source). We
perform language detection using the fasttext tool
(Bojanowski et al., 2017), employing a threshold
of 0.6 for classification.

Next, we compute the Spearman correlation be-
tween the set of Data Transfer metrics DT and
those ratios obtained from the outcomes of our ex-
periments.

Correlating these rates with the model’s data
transfer indicator allows us to evaluate the impact
of language contamination on model performance.

3.5 Language Similarity
Language similarity is often cited as a crucial fac-
tor influencing cross-lingual transfer performance
in natural language processing tasks. In this work,
we aim to investigate the relationship between lan-
guage similarity and cross-lingual transfer effec-
tiveness based on the outcomes of our experiments.

To explore this relationship, we measure various
distances between languages, including syntactic,
geographic, and phonological distances. These
distances are calculated based on the methodology
proposed by Littell et al. (2017).

We aim to correlate these language distances
with the data transfer metric (DT ). By employing
Spearman correlation analysis, we seek to discern
whether there exists a significant correlation be-
tween the observed DT values and the measured
language distances.

This analysis elucidates whether our experimen-
tal results can be attributed to the similarities be-
tween the languages involved in our cross-lingual
experiments.

4 Experiments

This section presents the languages, datasets,
model architecture, and training details for our ex-
periments.

4.1 Languages

Source Languages Selection. We chose three
diverse languages—English, Russian, and Chi-
nese—for the source language during the pretrain-
ing phase. This selection ensures a broad linguistic
spectrum while adhering to pretraining budget con-
straints.

Target Languages Selection. Ten target languages,
spanning various language families and different

Code Language Family Script

ar Arabic Afro-Asiatic Arabic
en English Indo-European Latin
es Spanish Indo-European Latin
zh Chinese Sino-Tibetan Hanzi
fi Finnish Uralic Latin
de German Indo-European Latin
ko Korean Koreanic Hangul
id Indonesian Austronesian Latin
ja Japanese Japonic Kanji, Hiragana, Katakana
ru Russian Indo-European Cyrillic

Table 1: Characteristics of selected target languages.

scripts, were chosen to establish a diverse cross-
lingual setting. Details, including language codes,
are provided in Table 1.

4.2 Datasets

For training and finetuning, language subsets from
the mC4 dataset (Xue et al., 2021) for the selected
languages were utilized.3 Pretraining datasets com-
prised approximately 6 billion tokens, while fine-
tuning datasets ranged from 6 million to 6 billion
tokens. Documents were sampled at random with-
out replacement until the desired amount of tokens
was reached.

4.3 Model Architecture

Our model is a decoder-only Transformer (Vaswani
et al., 2017) that uses a byte vocabulary with 256
embeddings with a dimension of 640. The model
follows closely the implementation provided in
the T5x library. It consists of 10 layers, each
having 10 attention heads with dimensions of 64.
The intermediate dimension of Multi-Layer Percep-
tron (MLP) has a dimension of 2560 and GELU
(Hendrycks and Gimpel, 2023) activations. The
parameters of the embeddings matrix and the final
dense layer are shared. We use relative positional
embeddings (Shaw et al., 2018). The resulting
model has approximately 65 million parameters.

4.4 Training details

Models were trained using a causal language mod-
eling objective. Each batch has 512 sequences of
1024 tokens. We use the AdamW optimizer with an
initial learning rate of 2e-4, which decayed to 2e-
5 through cosine decay following Hoffmann et al.
(2022). Finetuning employed a constant learning
rate of 2e-5 over 10 epochs, except for the 6 bil-
lion dataset size where we limited it to 3 epochs.

3See https://huggingface.co/datasets/mc4 for
more details.
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This adjustment was based on preliminary exper-
iments indicating that the model tends to overfit
beyond this epoch count in larger datasets. The
best model was selected based on the lowest per-
plexity achieved on the development set. Warmup
steps varied with finetuning dataset sizes (ranging
from 0 for smaller datasets to 3000 for larger ones),
aligning with findings that smaller datasets com-
pleted finetuning before warmup completion (Her-
nandez et al., 2021). We utilized the T5X frame-
work (Roberts et al., 2022) for our experiments.
We used a total of 600 hours of a TPU v2-8 (seven
hours of pretraining per model, and fifteen hours
for the largest finetuning).

5 Results

Results are compiled in Table 2, where we exclu-
sively report instances involving different source
and target languages.

Given our methodology, where we vary the
source language while keeping the target language
constant to assess the impact of pretraining lan-
guage in cross-lingual scenarios, it is essential to
read the table vertically unless stated otherwise.
Each row represents the results obtained by finetun-
ing the model from a specific source language to
a given target language (indicated in the column).
This vertical arrangement facilitates the compari-
son of model performance across different source
languages for the same target language. Further-
more, test sets vary significantly for each language
due to the nature of the mC4 dataset. Consequently,
results across target languages are not comparable.

Throughout this section, we highlight findings
from models finetuned on 6 million tokens (i.e.,
DF = {6MB}) unless otherwise specified.4 This
extreme scenario tests models with minimal target
language resources.

5.1 Performance with different initializations
We delve into the results of three target languages:
Spanish, Arabic, and Japanese. The perplexity
scores across all dataset sizes for these languages
are highlighted in Figure 2, offering a chance for
in-depth analysis despite the constraints of space.

A key observation is the consistent proximity
of perplexity values for all three source languages
in every target language. For instance, while one
might expect a significant advantage for Chinese

4This restriction applies only to the finetuned models. For
the from-scratch ones, we need their perplexities on multiple
target language dataset sizes to estimate DT .

as a source language when finetuned in Japanese,
or for English when paired with Spanish, this is
not the case. This suggests the model leverages
source language representations even when it lacks
significant similarity with the target language.

Taken together, our results indicate that the
model can rely on representations beyond those
capturing language structure. This observation
supports the recent hypothesis that these repre-
sentations encompass both language-specific and
language-neutral components, strengthening the
latter as an important aspect.

5.2 Data Transfer estimation for target
languages

Analysis of the Data Transfer (DT ) metric in Ta-
ble 2 reveals that values are consistently close
across different source languages for a given target.
Notable examples include Arabic (en: 101MB,
ru: 99MB, zh: 90MB), Japanese (en: 47.5MB,
ru: 47.8MB, zh: 69.48MB), and Finnish (en:
102.62MB, ru: 51.32MB, zh: 76.57MB).

A clear pattern emerges: one initialization stands
out for most target languages, while the other two
show similar DT values. This pattern is visually
represented in Figure 3, particularly evident for
Finnish (fi), Indonesian (id), Japanese (ja), Korean
(ko), and Chinese (zh). Additionally, closely clus-
tered results are observed for Arabic (ar), German
(de), Spanish (es), and Russian (ru).

With three diverse initializations, the fact that
two consistently show similar DT values, even
when distant from the target language (e.g., Russian
and Chinese for Finnish), suggests the models lever-
age language-agnostic representations. This obser-
vation aligns with the expected behavior, where
DT would be close to zero if language-specific
knowledge were dominant.

English (en) demonstrates effective knowledge
transfer to most target languages, potentially due
to its widespread presence in corpora across lan-
guages. This hypothesis is explored further in Sec-
tion 5.3. Additionally, Chinese (zh) appears to
transfer effectively to Japanese (ja) and Korean
(ko), likely due to their linguistic proximity.

We observe that Chinese (zh) tends to transfer
effectively to Japanese (ja) and Korean (ko), both
of which are considered closer languages. This,
together with our other observations, indicates that,
while not determinant, language-specific compo-
nent also plays a role in cross-lingual transfer.

Finally, upon examination of Figure 4, we also
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Source Lang. Metric ar de en es fi id ja ko ru zh

Scratch init. Perplexity 6.44 14.82 16.28 12.54 12.71 12.00 12.47 11.69 6.27 15.34

English Perplexity 2.82 3.67 - 3.16 3.57 2.61 3.92 3.58 2.44 4.43
DT 101.02 95.25 - 121.14 76.57 102.62 47.50 48.74 75.64 29.21

Russian Perplexity 2.83 3.98 3.66 3.47 3.80 2.84 3.89 3.58 - 4.52
DT 99.00 47.87 174.63 67.88 50.96 51.32 47.81 48.69 - 26.18

Chinese Perplexity 2.88 4.26 3.89 3.75 3.98 2.98 3.46 3.48 2.72 -
DT 90.63 31.76 66.96 50.27 49.65 50.21 69.48 49.88 48.47 -

Table 2: Results for Perplexity and Data Transfer (in MB) for all target and source languages. All metrics are
reported after finetuning the models in 6 million tokens of the target language.
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Figure 2: Results measured in Perplexity per token for three target languages. Each series represents a different
initialization: train from scratch, finetune from an English, Chinese, or Russian model.
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Figure 3: Dispersion chart for Data Transfer (DT ) across target languages. Each series corresponds to a distinct
source language. The first dashed line (top-to-bottom) indicates the average of the best results (higher transfer),
while the second one represents the average of the worst results (lower transfer).
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Figure 4: Boxplot with Data Transfer results for the 6
million tokens datasets in all target languages.

observe that most DT values are clustered between
50MB and 100MB, with low variation within a
source language across all target languages. While
not ideal, this comparison across target languages
indicates that the transfer from our source models
is relatively consistent, not spanning more than one
order of magnitude.

5.3 Language Contamination Impact
Table 3 summarizes the results of assessing the
language contamination effect in our experiments.

Correlation ρ p-value
DT and contamination on source 0.191 0.0157
DT and contamination on target 0.265 0.0021

Table 3: Spearman Correlation (ρ) and p-value assessing
the correlation of DT with both the ratio of a target lan-
guage in the source dataset (contamination on source)
and with source language in the target dataset (contami-
nation on target).

The analysis excludes the 6 billion tokens fine-
tuning dataset size to mitigate the ossification ef-
fect, as observed in Hernandez et al. (2021). This
effect leads to a performance drop for pretrained
models with larger finetuning datasets, worsen-
ing perplexity compared to scratch-trained models.
Excluding this data point helps avoid introducing
noise and adverse effects on coefficient calculation,
given its singular occurrence per source-target lan-
guage pair. Additionally, due to the sample size (<
500 observations), the permutation test is utilized
to calculate the p-value.

Although a correlation of 0.191 exists between
DT and contamination on the source dataset, this
coefficient indicates a weak association, suggesting
a minimal impact on cross-lingual performance,
contradicting the findings by Blevins and Zettle-
moyer (2022).

Exploration of language contamination in tar-
get datasets reveals a higher correlation of 0.265,

particularly influenced by widespread languages
like English. However, this coefficient still sig-
nifies a weak association between DT and target
contamination, thus not supporting the language
contamination hypothesis.

5.4 Language Similarity and Data Transfer

This subsection outlines our analysis of the cor-
relation between language distances and the data
transfer metric (DT ), summarized in Table 4.

Measure to correlate with DT ρ p-value
Syntactic distance -0.147

> 0.7

Geographic distance -0.110
Phonological distance -0.117

Genetic distance -0.150
Inventory distance -0.090
Featural distance -0.145

Table 4: Spearman Correlation (ρ) and p-value assessing
the correlation of DT with a diverse set of language
distance measurements.

We find a weak correlation between source-
target language distances and Data Transfer. Since
we are considering multiple language character-
istics, such as syntax and phonology, the results
suggest that language similarity has a minor role
in knowledge transfer between distinct languages.
Nonetheless, the small number of source languages
necessitates a cautious interpretation of these re-
sults, especially since all obtained p-values exceed
0.7, indicating limited statistical significance.

Because of that, we conducted a controlled ex-
periment, pretraining a language model in Por-
tuguese and evaluating its performance on the Span-
ish target language — a language known for its
similarity to Portuguese. Results, depicted in Ta-
ble 5, were compared across various initializations,
including more distant languages like Chinese.

Spanish
Source Lang. DT Perplexity
Portuguese 164.47 2.91

English 121.14 3.16
Russian 67.88 3.47
Chinese 50.27 3.75

Table 5: Results for Data Transfer (in MB) and Per-
plexity in Spanish, highlighting Portuguese as a source
language. All metrics are reported after finetuning the
models in 6 million tokens of the target language. En-
glish, Russian, and Chinese results are the same as Ta-
ble 2, added to facilitate comparison.

When initialized with Portuguese, the model
achieves a lower Perplexity in Spanish compared
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to when initialized with other languages. Addition-
ally, DT peaks among all initializations, suggesting
the influence of language proximity between Por-
tuguese and Spanish. English initialization also
yields comparable results, with a DT difference of
around 40 MB and a perplexity variation of 0.25.
Chinese and Russian show the lowest, yet similar,
scores.

One possible interpretation is that the language-
agnostic component accounts for 50% of the trans-
fer, with Russian and Chinese being more distant
from Spanish, while the language-specific compo-
nent contributes the remaining 50%, considering
closer linguistic and script systems. However, fur-
ther investigation with more language pairs is nec-
essary to determine the actual factors influencing
transfer performance, including linguistic structure,
script, or shared cultural knowledge in pretraining
datasets.

5.5 Commutative property exploration

Pair (L1, L2) L1 → L2 L2 → L1 ∆
en, ru 75.64 174.63 98.99
en, zh 29.21 66.96 37.75
ru, zh 26.18 48.47 22.29

Table 6: Analysis of the Commutative Property in terms
of Data Transfer DT . We analyze pairs of languages
(L1, L2), reporting the observed DT from L1 to L2 and
vice-versa. Values are reported in megabytes.

We examine the commutative property of data
transfer between English (en), Russian (ru), and
Chinese (zh) in our cross-lingual experiments (Ta-
ble 6). Notably, the data transfer amounts exhibit
non-commutative behavior, revealing variations in
knowledge transfer efficiency across bidirectional
language pairs.

In the English-to-Russian transfer (en, ru), data
transfer is more efficient when directed from Rus-
sian to English (174.63) compared to the reverse di-
rection (75.64), indicating an asymmetry in knowl-
edge transfer. Similarly, in the English-to-Chinese
transfer (en, zh), data transfer is more substantial
from English to Chinese (66.96) than in the reverse
direction (29.21).

The Russian to Chinese transfer (ru, zh) also
demonstrates a non-commutative pattern, with
higher data transfer from Russian to Chinese
(48.47) than in the reverse direction (26.18).

The variance in mC4 subsets for each language
introduces significant differences in both pretrain-
ing and evaluation datasets, potentially contribut-

ing to the absence of a commutative behavior. A
more in-depth analysis would necessitate repeating
experiments with equivalent datasets.

6 Discussion

Our study aims to measure how much knowledge,
in bytes, is transferred from one language to an-
other, enabling the investigation of the effective-
ness of language-agnostic representations acquired
during pretraining in cross-lingual scenarios. We
hypothesize that these representations enable mod-
els to perform well on downstream tasks across
diverse languages, which is observed in state-of-
the-art multilingual models.

In our results, we consistently find that at least
two source languages demonstrate very close DT

values when evaluated against a target language,
despite the diverse set of script systems and lin-
guistic characteristics involved. This observation
suggests that the data transferred from these lan-
guages to the target language is not primarily re-
lated to language-specific components but rather
to language-agnostic ones. For instance, as illus-
trated in Figure 3, both English and Russian, de-
spite being known as distant languages, achieve
nearly identical DT values when evaluated on Ko-
rean, a language distinct from either. Moreover, all
three source languages are remarkably close when
evaluated on the Japanese test set.

Despite exposure to only a few tokens in the
target language, our models demonstrate similar
perplexity performance, indicating high adaptabil-
ity and generalization across a broad range of
languages. This reinforces the notion that the
language-agnostic component plays a crucial, uni-
form role across source languages.

Notably, our results are not attributed to pre-
training exposure to target languages, since there
is a weak correlation of language contamination
with the data transfer coefficient. Additionally, the
observed performance is not solely dependent on
language proximity, as suggested in other works.

While perplexity offers valuable insights, gener-
alizable conclusions require evaluation in down-
stream tasks, especially in under-resourced lan-
guages. To explore this further, we conducted a
small-scale experiment, detailed in Appendix A,
finetuning our pretrained models for a low-resource
language inference task. Surprisingly, we observe
comparable accuracy scores between Portuguese
and Russian, with good results also for English
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and Chinese, suggesting that our initial findings
with perplexity may extend broadly. However, a
more detailed investigation is required to under-
stand cross-lingual transfer mechanisms fully.

The novelty of our approach is employing a
byte-level tokenizer and adapting Hernandez et al.
(2021) for a cross-lingual scenario. The byte-
level approach facilitates consistent model em-
beddings across diverse scripts, enabling effective
cross-lingual knowledge transfer without language-
specific tokenization or preprocessing. This is sup-
ported by the strong performance of ByT5 com-
pared to mT5 in Xue et al. (2022).

In conclusion, our study suggests the presence of
language-agnostic representations contributing to
cross-lingual transferability, while also laying the
foundation to measure it through the Data Transfer
metric. The observed consistency in model per-
formance across diverse languages, facilitated by
the byte-level tokenizer, indicates the potential for
more efficient and generalizable natural language
understanding across linguistic boundaries in com-
putational linguistics and NLP.

7 Limitations

Our study has certain limitations that merit consid-
eration. Firstly, our choice of initializing models
with only three languages, while diverse, leaves
room for improvement. Including additional lan-
guages in the pretraining phase would enhance the
robustness of our analysis by minimizing possi-
ble bias towards the selected languages while pro-
viding more samples for our correlation analysis.
However, this expansion would necessitate a more
substantial computational budget.

Secondly, our reliance on small models, specifi-
cally a 65 million parameter model, limits the scope
of our findings as larger models may exhibit dif-
ferent behavior. Additionally, the capacity of very
large models for few-shot learning opens avenues
for further exploration in the domain of transfer
learning.

Lastly, the heterogeneity of the mC4 dataset
across languages introduces a potential source of
variability in the models’ exposure to different
knowledge. While the impact of this variation on
data transfer remains unclear, conducting experi-
ments with controlled datasets would offer valuable
insights. Moreover, employing a more compara-
ble test set could help mitigate statistical variance,
particularly in analyses such as the commutative

property assessment.

8 Conclusion and Future Work

Our study delves into the transferability of knowl-
edge in cross-lingual scenarios, leveraging a byte-
level tokenizer and an adapted methodology in-
spired by Hernandez et al. (2021). By measuring
the models’ reliance on pretraining when execut-
ing tasks in diverse languages, our approach offers
an understanding of the cross-lingual capabilities
of language models. The results provide evidence
that language-agnostic representations also play
an important role in downstream tasks. This not
only contributes to the current understanding of
cross-lingual transferability but also serves as a cat-
alyst for further exploration into the properties of
language-agnostic knowledge transfer. For future
research directions, we envision key investigations
that can build upon the insights presented in this
paper:

1. Expand Experiment Range: Use more
source languages so we can draw stronger con-
clusions.

2. Controlled Datasets Usage: Employ con-
trolled datasets and comparable test sets to
address mC4 dataset heterogeneity, offering
clearer insights into varied knowledge expo-
sure impact on cross-lingual transferability
and mitigating variance.

3. Explore Larger Models: Investigate the use
of larger models in few-shot learning down-
stream tasks as complementary evaluations to
perplexity measurements.

4. Measure DT from Non-natural languages:
Perform experiments with non-natural lan-
guage data, such as artificial languages with
hierarchical structures. This exploration could
shed light on whether knowledge transfer pri-
marily occurs due to the content of pretraining
or is largely influenced by the linguistic form.
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A Appendix: Downstream Task
Experiment

To further explore the generalizability of our find-
ings beyond casual language modeling with the
perplexity metric, we conducted an additional ex-
periment focusing on a distinct downstream task.
This experiment involved finetuning our models
pretrained on the selected source languages for a
specific downstream task, targeting a different lan-
guage.

A.1 Experiment Details
For this experiment, we selected Portuguese as the
target language and the Recognizing Textual En-
tailment (RTE) task from the ASSIN2 (Real et al.,
2020)5 dataset. The dataset comprised 6,500 train-
ing examples and 500 validation instances.

We finetuned the source models for 10 epochs
using a constant learning rate of 5e− 5 and a batch
size of 128. The objective of the task was to predict
whether one sentence entails another, with evalua-
tion based on accuracy measured on the validation
set.

A.2 Results
Our results, summarized in Table 7, reveal compa-
rable performance between Portuguese (our base-
line) and Russian, despite being considered a dis-
tant language. English lags by nearly 6 percentage
points compared to our baseline, while Chinese ex-
hibits the poorest performance, trailing our baseline
by almost 20 percentage points.

Despite the limited scope of our experiment,
focusing on only one target language and task,
these findings suggest significant knowledge trans-
fer across languages with varying degrees of sim-
ilarity. For example, even with the lowest perfor-
mance observed in Chinese, it still outperforms a

5https://sites.google.com/view/assin2/
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Source Language Accuracy (%)
Portuguese (baseline) 85.0
Russian 82.0
English 78.6
Chinese 65.6

Table 7: Results from finetuning our source models on
the ASSIN2 Recognizing Text Entailment task. We
report the accuracy obtained in our validation set.

random classifier by 15 percentage points (ASSIN2
contains two distinct classes).

Based on our findings, cross-lingual knowledge
transfer appears to occur even with more distant lan-
guages. These results underscore the importance of
further exploration in this area, indicating a promis-
ing potential for measuring knowledge transfer in
cross-lingual scenarios and delineating the contri-
butions of language-agnostic and language-specific
components in the models’ representations.
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