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Abstract

Large Language Models (LLMs) are power-
ful models for generation tasks, but they may
not generate good quality outputs in their first
attempt. Apart from model fine-tuning, ex-
isting approaches to improve prediction accu-
racy and quality typically involve LLM self-
improvement / self-reflection that incorporate
feedback from models themselves. Despite
their effectiveness, these methods are hindered
by their high computational cost and lack of
scalability. In this work, we propose CERET, a
method for refining text generations by consid-
ering semantic stability, entailment and inter-
sample uncertainty measures. Experimental
results show that CERET outperforms Self-
consistency and Self-rerank baselines consis-
tently under various task setups, by 1.6% in
Rouge-1 for abstractive summarization and
3.5% in hit rate for question answering. Com-
pared to LLM Self-rerank method, our ap-
proach only requires 9.4% of its latency and
is more cost-effective. 1

1 Introduction

Large Language Models (LLMs) like GPT (Brown
et al., 2020), Claude, PaLM (Chowdhery et al.,
2022; Anil et al., 2023), and Llama (Touvron et al.,
2023) have showcased unprecedented capabilities
in natural language understanding and generation.
These models, with parameter counts reaching into
the hundreds of billions, have become pivotal in
advancing the frontier of natural language process-
ing (NLP). Despite their impressive fluency and
coherence, language models frequently generate
content that is incomplete, biased, or misleading in
their initial attempts across a variety of language
generation tasks.

The key challenge is that while pre-training
equips base models with broad linguistic knowl-

1The source code and data samples are released
at https://github.com/amazon-science/
CERET-LLM-refine.

edge, it does not necessarily impart the spe-
cialized skills needed for particular downstream
tasks. Current methodologies for enhancing LLM
generation largely involve resource-intensive ap-
proaches such as supervised fine-tuning (SFT),
which relies heavily on domain-specific training
data, or reinforcement learning from human feed-
back (RLHF), which necessitates extensive hu-
man annotations. However, curating large vol-
umes of high-quality domain-specific data and hu-
man feedback often proves prohibitively expensive
and time-consuming in practice, severely limiting
the applicability of SFT and RLHF. By integrat-
ing feedback derived from the generated outputs,
self-improvement / self-reflection approaches en-
hance generations in an iterative manner (Madaan
et al., 2023; Yao et al., 2023a). These approaches
empower the LLM to adapt to specific tasks and
domains by learning from its own mistakes and suc-
cesses. Nevertheless, the substantial cost linked to
iterative inference poses challenges for scalability
and applicability real-time systems.

This paper introduces CERET, a novel method
designed to refine text generation in a rapid, low-
resource manner to reduce the need for domain-
specific training data or expensive human annota-
tions. The cornerstone of CERET lies in its ability
to enhance generated content by holistically con-
sidering three key scoring dimensions - semantic
stability, entailment, and inter-sample uncertainty
measures.

Semantic stability scoring quantifies the linguis-
tic invariance among multiple candidate outputs
generated by the base model for the same input,
indicating higher confidence for more stable can-
didates. Entailment scoring leverages natural lan-
guage inference (NLI) models to quantify the logi-
cal entailment relations between candidate outputs,
preferring candidates that maximally entail others.
Inter-sample uncertainty scoring penalizes candi-
dates that are semantically similar to outputs for
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different inputs, a signal of greater uncertainty.
Our approach operates in a rapid, zero-shot man-

ner without any domain-specific training data, re-
ward modeling, or human feedback. The pro-
posed scoring and refinement process encapsu-
lates an efficient way to improve text generation
across a diverse spectrum of NLP tasks, includ-
ing abstractive summarization, dialogue response
generation, and open-domain question answering.
Through a rigorous series of experiments on stan-
dard datasets, CERET is empirically validated to
significantly outperform baseline methods such as
Self-consistency and Self-reranking across both
summarization and QA tasks. Beyond its superior
performance, CERET stands out for its practical-
ity and cost-effectiveness, making it a promising
solution for real-world applications where domain-
specific resources and annotations are limited or
unavailable. This paper not only presents CERET
as a valuable novel contribution to the growing
field of NLP but also underscores its potential im-
pact on advancing the practical deployment of text
generation across a myriad of domains. The main
contributions are summarized as follows:

• CERET is proposed as a holistic framework
for enhancing generation quality, encompass-
ing semantic stability, entailment, and inter-
sample uncertainty measures.

• The refinement process is data efficient and
cost-effective, without the requirement for
domain-specific training data or expensive an-
notations.

• The proposed approach can be applied across
various natural language processing tasks,
such as text summarization, dialogue response
generation and question-answering systems.

• CERET is highlighted for its practicality and
efficiency, presenting only a minor fraction
of the usual latency associated with a single
generation call, which positions it as a feasible
solution for real-world applications.

2 Approach

2.1 System Architecture

CERET consists of three scoring methods, namely
Semantic Stability Scoring, Entailment Scoring
and Inter-sample Uncertainty Scoring, for calibrat-
ing the quality of LLM predictions. The overview

of the proposed system is illustrated in Figure 1.
Firstly, a diverse set of candidates are sampled from
LLMs. Then each individual scoring method will
produce a separate score from a certain perspec-
tive. Based on the scores in three dimensions, a
linear weighted final confidence score is computed
to measure the quality of each prediction. The pre-
diction with the highest confidence score is selected
as the final model prediction.

2.2 Semantic Stability Scoring
We first introduce an intra-sample scoring method,
Semantic Stability Scoring, which is motivated
by the need to enhance the confidence and reli-
ability of sample generations produced by LLMs.
The scientific rationale is inspired by Kuhn et al.
(2023) and Yin et al. (2022), where it was shown
that a sample generation exhibits higher confidence
when it demonstrates considerable semantic stabil-
ity or linguistic invariance among other generations.
However, the semantic stability measured in Kuhn
et al. (2023) involves clustering sampled genera-
tions for each sample, which is computationally
expensive for real world applications at large scale.

In contrast, we propose a cluster-free method for
semantic stability modeling. Specifically, Seman-
tic Stability Scoring is formulated as the following:
Given input data sample x, the model generates
k predictions (y1, ..., yk). For each yi, a fixed pre-
trained language model produces its correspond-
ing embedding e(yi). In practice, we leverage
RoBERTa (A Robustly Optimized BERT Pretrain-
ing Approach) (Liu et al., 2019) as the pre-trained
language model, and the final hidden representa-
tion of “<s>” token from RoBERTa, is regarded
as e(yi). To aggregate all intra-sample representa-
tions, we treat the average-pooled embedding ē as
a stability reference point:

ē = mean(e(y1), ..., e(yk)) (1)

A lower distance between an embedding and the
reference point implies a higher stability. We can
employ Euclidean distance or cosine distance as
the distance metric || · ||. The stability score sista is
defined as the negative distance between e(yi) and
the stability reference point ē:

sista = −||e(yi)− ē|| (2)

2.3 Entailment Scoring
Entailment scoring is another intra-sample scoring
method, fully powered by entailment relation: “p
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requesting information about accommodation in a specific price range with free wifi
and parking.
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(k) A conversation between two people about searching for a hotel and a college in a
certain location and price range.

Inter-sample
Uncertainty
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Semantic
Stability Scoring
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Scoring

Input

S1: Hi, can you give me some information on places to
stay on my trip?
S2: I can. We have 3 places ...
S1: I'd like one in the expensive price range that includes
free wifi. ... and includes free parking as well.
...
S2: I have made a booking. Here is the information-
Booking was successful.

Generative LLM(s)

Best Prediction: (2)

Figure 1: CERET overview

entails h” (p ⇒ h), if a human reading premise p
would infer that hypothesis h is most likely true.
This intrinsic connection to human inference aligns
closely with the objective that language models
should have the capacity to generate content that
is not only syntactically accurate but also semanti-
cally meaningful. In the entailment scoring process,
when an LLM generates k predictions (y1, ..., yk),
each prediction’s entailment relation to others is
quantified by a Natural Language Inference (NLI)
model. The scalar value sij reflects the degree to
which the content of yi logically entails yj .

sij = ENT(yi, yj) (3)

Although the scalar function for entailment can
be evaluated by the base LLM itself, such an
approach leads to a higher computational cost.
Hence, we resort to a more efficient and lightweight
NLI model. Specifically, we adopt DeBERTa
(Decoding-enhanced BERT with disentangled at-
tention) (He et al., 2021) for this work. The NLI
task is treated as a sequence classification problem:
The texts yi, yj are concatenated, with special to-
kens as separators, to form the input to DeBERTa.
The final hidden representations of pretrained De-
BERTa are passed to a pooling layer and a clas-
sifier, to obtain softmax probability for three cat-
egories, namely Neutral, Entailment and Contra-
diction. The softmax probability for Entailment is
used as ENT(yi, yj).

A generation is plausible if it entails as many
other sampled generations as possible. With the
top k sampled model predictions, the entailment
score for sample yi is computed as follows:

sient =
1

k

∑

1≤j ̸=i≤k

sij + LP (yi) (4)

Note that the preferred prediction will likely
have rich information, and may be lengthy in cer-
tain situations. A length penalty LP (yi) is applied
to this entailment score, in case lengthy outputs
harm the expected conciseness.

LP (yi) = 1− (1 + q · len(yi))p (5)

where 0 ≤ q < 1 and p > 1 are hyperparame-
ters2.

2.4 Inter-sample Uncertainty Scoring
In contrast to the methods above, the following
is an inter-sample scoring method, which is in-
spired by uncertain region analysis. We first build
an embedding space for all sampled predictions
with a standalone model, e.g., RoBERTa. The ra-
tionale behind this inter-sample scoring method
is that when a sampled prediction is located near
predictions from different input data samples in

2In our practice, we chose q = 0 (i.e. no penalty). We found
that our beam search sampled predictions generally have very
comparable lengths. Nevertheless, the length penalty may
benefit other datasets or decoding settings.
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Figure 2: Inter-sample uncertainty region

the embedding space, this prediction is likely to be
uncertain, illustrated in Figure 2. Uncertain pre-
dictions are down-weighted by a lower uncertainty
score sunc.

Suppose dataset D has size N . For each input x,
top k predictions are generated by LLM(s), result-
ing in k ·N predictions in total: {yi}1≤i≤kN . The
Euclidean distance of all possible prediction pairs
∥yi − yj∥ , i ̸= j are computed and cached. Ac-
cording to Euclidean distance, the nearest neighbor
set N (i) is constructed for each prediction yi. The
inter-sample uncertainty score siunc is computed as
follows:

siunc = −
∑

j∈N (i)

I(x̂i ̸= x̂j)

(1 + ∥yi − yj∥)
(6)

where I(·) is the indicator function. x̂i denotes
the input sample x for prediction yi. Note that pos-
sibly x̂i = x̂j when i ̸= j. ||yi − yj || in denomina-
tor of Equation 6 is a regularization term, ensuring
a further yj is assigned with a lower weight for
uncertainty. A negative sign is added to ensure that
a higher score is better. In case when the dataset is
large, the computation cost for obtaining pairwise
Euclidean distances and nearest neighbors can be
mitigated by limiting data size N to a certain batch
(e.g., 1000). Additionally, the LLM generations in
practice mostly have the number of sampled predic-
tions k ≤ 20. Thus the efficiency of this method
can be maintained.

2.5 Computation of Final Score
All separate scores ssta, sent, sunc are transformed
to the interval (0, 1) by applying sigmoid function

sigmoid(x) =
1

1 + e−ux
(7)

where u > 0 is an additional scaling factor 3. Since
three scores have distinct ranges, u is applied to
ensure their scaled ranges are comparable. The
final confidence score is a linear weighted score
based on three dimensions.

s = α · ssta + β · sent + γ · sunc (8)

The coefficients α, β, γ are tuned on validation
datasets. To mimic the properties of probability for
intuitive interpretation, the following constraints
are imposed:

{
α+ β + γ = 1

α, β, γ ≥ 0
(9)

3 Experimental Setup

3.1 Datasets

We evaluate the proposed approach CERET on Ab-
stractive Summarization and Question Answering
(QA) tasks. For summarization, we consider two
dialogue summarization datasets: TodSum (Zhao
et al., 2021) and DialogSum (Chen et al., 2021),
as dialogue summarization has been a challeng-
ing summaization use case due to its multi-speaker
nature and varying structures. TodSum is a dia-
logue summarization dataset based on MultiWoz
(Budzianowski et al., 2018). Out of 7 MultiWoz
domains, it contains 5 and totals 9,906 dialogues.
DialogSum is a multi-domain dataset, mostly con-
sisting of casual/spoken style daily conversations.
It is based on top of the existing datasets around En-
glish practice conversations and English listening
comprehension exams. For TodSum and Dialog-
Sum, official validation/test sets are used through-
out this work.

For QA, we use TriviaQA (Joshi et al., 2017)
and Natural Questions (Lee et al., 2019, the NQ-
Open version) datasets. TriviaQA contains 95,956
QA pairs with 40,478 unique answers and 662,659
evidence documents. It contains question-answer
pairs from 14 trivia and quiz-league websites,
with the associated Wikipedia pages as evidence
sources. NQ-Open is an open-domain question an-
swering benchmark, a subset of Natural Questions
(Kwiatkowski et al., 2019) with short answers and
with evidence documents discarded. It contains
91,535 QA pairs. For TriviaQA and Natural Ques-
tions, the official test set is only available for online

3For each scoring dimension, there is a dedicated value of
u.
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benchmarking. We split the official validation sets
into validation/test sets with an 1:1 ratio for our
experiments.

3.2 Baselines and Evaluation Metrics

We choose Vicuna v1.3 (Chiang et al., 2023) and
Llama 2 chat (Touvron et al., 2023) as our base
LLMs. Vicuna is an open-source chatbot, fine-
tuned from Llama with supervised instruction fine-
tuning using around 125K conversations collected
from ShareGPT. Llama 2 was pretrained on pub-
licly available online data sources and trained on
2 trillion tokens, and was initially created through
supervised fine-tuning and then iteratively refined
using Reinforcement Learning from Human Feed-
back (RLHF). Both Vicuna v1.3 and Llama 2 were
released in mid 2023.

Given each input prompt, we generate k LLM
predictions by beam search sampling (Vijayakumar
et al., 2016), while setting a high temperature to
encourage diversity and increase the scope for im-
provement. The beam search sampled predictions
are considered as No-refinement baseline. We fur-
ther considered two baselines. (1) Self-rerank:
In the Self-rerank approach, all predictions gen-
erated by the base LLM and the task context are
fed back into the base LLM itself. The model is
then instructed to select the single best prediction
from the candidate set. The Self-rerank baseline
provides insight into the capabilities of the base
LLM to refine its own output as a straightforward
reranking task. (Prompt templates in Appendix D)
(2) Self-consistency: The Self-consistency (Wang
et al., 2023) approach determines the best predic-
tion through a majority vote among all generated
predictions, after marginalizing out reasoning paths.
This is a cost-effective approach for refinement,
but it can only be applied to tasks with fixed an-
swers. Hence, it is included as a baseline for open
domain QA tasks. Furthermore, we also report
Oracle scores, which represent the upper bound
of refinement/re-ranking performance: Given an
input x, we obtain a candidate prediction set {yi}i,
out of these yi’s, we choose the best one according
to certain evaluation metric (E.g., Rouge, Exact
Match, etc) to compute oracle performance .

On the QA tasks with a closed set of answers,
we evaluate the models against Hit Rate: A pre-
diction receives score 1 if it exactly matches one
of multiple target answers, otherwise score 0 is as-
signed. On the summarization tasks assuming more

open-ended model outputs, we evaluate the models
against Rouge-1/2/L (Lin, 2004) and BERTScore
(Zhang et al., 2020). Rouge4 is a series of metrics
counting the number of overlapping word n-grams
in the reference and the generated summary, work-
ing on top of 1-/2-grams (as the index in the metric
name denotes). Rouge-L is a variant of the met-
ric based on the Longest Common Subsequence
between the reference and the generated summary.
BERTScore5 is a semantic similarity metric work-
ing in the BERT (Devlin et al., 2019) embedding
space by computing pairwise cosine similarities
between each predicted summary’s token and each
reference summary’s token.

3.3 Implementation Details
For the purpose of experimentation, we opt for
13B models for both Vicuna v1.3 and Llama 2. In
the LLM beam search sampling phase, we set the
temperature parameter t to 0.7, and for each in-
put sample, we accumulate the top k = 5 LLM
predictions for subsequent refinement. We acti-
vate the half-precision mode to enhance the effi-
ciency of LLM generation. In order to preserve
generation quality, quantization is not applied to
the LLMs. The entirety of our experiments is per-
formed with NVIDIA A100 GPUs, conducted in a
single run. For TodSum dataset, the LLM genera-
tion time (from input to the end of beam search sam-
pling) is 2.38/2.85 sec for Vicuna 1.3 and Llama 2
respectively.

Regarding the BERT models integrated into
the CERET pipeline, we select base-sized mod-
els for efficiency, namely RoBERTa-base (125M)
and DeBERTa-v3-base-mnli (184M). The coeffi-
cients α, β, γ for final weighted scoring are tuned
on separate validation sets, where a grid search
is conducted with step size of 0.1. In uncertainty
scoring, we found the size of nearest neighborhood
s = 3, 5 generally lead to satisfactory performance
in validation sets, and it is finally set to 5 in all test
settings. Note that after post-processing, the dupli-
cate predictions are merged. A neighborhood of
size 5 may represent more than 5 raw predictions.

4 Results and Analysis

4.1 Effectiveness and Efficiency
Abstractive Summarization. The experimental
results for dialogue summarization are presented in

4https://github.com/pltrdy/rouge
5https://github.com/Tiiiger/bert_score
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TodSum DialogSum
Base LLM Refinement Rouge-1 Rouge-2 Rouge-L BERTScore F1 Rouge-1 Rouge-2 Rouge-L BERTScore F1
Vicuna v1.3 No 38.8 9.9 25.8 22.9 32.7 10.3 26.3 27.6

Self-rerank 39.1 10.2 25.6 22.9 32.7 10.4 26.1 27.3
CERET 40.7 11.1 25.9 24.5 34.0 10.9 27.2 28.5
Oracle 45.7 13.0 29.6 28.6 41.7 15.4 33.3 33.8

Llama 2 chat No 40.1 10.3 26.4 23.2 30.3 9.4 24.5 26.5
Self-rerank 40.5 10.5 26.5 23.2 30.4 9.7 24.6 26.3
CERET 41.4 11.2 26.7 23.8 30.8 9.8 25.0 27.2
Oracle 46.0 13.1 29.6 27.3 38.0 13.2 30.6 31.2

Table 1: Comparison of refinement methods for Abstractive Summarization tasks

Base LLM Refinement TriviaQA Natual Questions
Vicuna v1.3 No 57.8 18.6

Self-rerank 60.0 19.4
Self-consistency 59.7 20.0
CERET 62.0 21.2
Oracle 70.0 27.7

Llama 2 chat No 51.0 15.3
Self-rerank 51.4 15.4
Self-consistency 51.6 15.7
CERET 55.1 17.2
Oracle 66.7 24.5

Table 2: Comparison of refinement methods for Ques-
tion Answering tasks

0.411
0.595

6.311

0

1

2

3

4

5

6

7

Figure 3: Latency (sec) per input sample. From left to
right: *BERT inference, CERET, and LLM self-rerank.

Table 1. The initial performance of Vicuna v1.3 and
Llama 2 chat in TodSum and DialogSum only result
in moderate quality in generated summaries. How-
ever, the introduction of CERET brings obvious
benefits into the enhancement of summarization
outputs. Specifically, CERET achieves a decent im-
provement of 0.5-1.9 in Rouge-1 scores and 0.6-1.6
in BERTScore F1.

The method consistently outperforms Self-
rerank, emphasizing the significance of leveraging
semantic stability, entailment, and inter-sample un-
certainty measures in refining large language model
generations.

Question Answering. As shown in Table 2,
the baseline performance of the LLM on Trivi-

aQA and Natural Questions reflects a gap between
the difficulty of these two tasks. Despite the fact
that they are both evaluated in closed-book set-
ting, Natural Questions dataset has lower hit rate
as it contains various challenging open-ended ques-
tions (e.g., Q: “Philadelphia is known as the city of
what?”. A: “City of Brotherly Love”) Regardless
of the challenges, CERET is able to improve upon
no-refinement baseline for 1.6-4.2 points in hit rate,
which consistently surpasses the both Self-rerank
and Self-consistency approaches, indicating its ef-
fectiveness across diverse knowledge domains.

Inference Efficiency. Efficient inference is a
crucial aspect of deploying language models in
real-world applications. We analyze and compare
the inference efficiency of the proposed CERET
method against LLM Self-rerank. We use latency
(in seconds) per input sample as a metric for assess-
ing the efficiency of different inference pipelines.
We report results on the TodSum dataset. Since the
validation/test sets have size ≤ 1000, we use the
entire sets instead of small batches for Inter-Sample
Uncertainty scoring.

As shown in Figure 3, CERET exhibits remark-
able efficiency advantages compared to LLM Self-
rerank. The latency required by CERET is only
9.4% of the latency observed in LLM Self-rerank6.
The majority of the latency in the CERET pipeline
is attributed to *BERT inference, where *BERT
refers to RoBERTa and DeBERTa models. The
efficient integration of these models within the
CERET framework contributes to its overall effec-
tiveness while maintaining a significantly reduced
latency compared to Self-rerank approaches. The
efficiency improvement is particularly noteworthy,
especially considering the demands of real-time
applications where low latency is imperative.

Overall Observations. Figure 4 provides a com-

6Both CERET and Self-rerank deal with predictions after
LLM generation, and hence they don’t include the beam search
sampling time.
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Figure 4: Relative performance gains on validation and test sets. The best coefficient combination is tuned on
validation sets. Evaluation metrics: Rouge-1 for TodSum and DialogSum, and hit rate for Trivia QA and Natural
Questions.

Summarization - Rouge-1 QA - Hit rate
Base LLM Refinement TodSum DialogSum TriviaQA Natual Questions
Vicuna v1.3 No 38.78 32.67 57.82 18.61

Semantic stability only 40.27 34.17 61.96 21.19
Entailment only 40.67 32.30 57.66 18.51
Uncertainty only 39.27 32.60 59.90 19.46
CERET 40.69 34.27 61.96 21.19

Table 3: Ablation study of individual scoring dimensions

prehensive overview of the relative performance
improvement achieved on both validation and test
sets. The test performance gains observed are gen-
erally on par with the validation settings and, in
certain instances, even surpass them, as in the case
of Natural Questions. This suggests that the weight
tuning strategy employed during validation exhibits
robustness and generalizability when applied to test
sets. The potential explanation for larger gains in
certain test cases could be attributed to the random
split of test sets, providing certain sets with more
room for improvement.

The overall theme in the observed results is
the consistently superior performance of CERET
across all evaluated tasks. Furthermore, the consis-
tency in performance gains between validation and
test settings showcases the reliability and adaptabil-
ity of the proposed CERET method across various
settings in natural language processing tasks.

4.2 Ablations and Hyperparameter Analysis

Ablations. We systematically evaluate the impact
of individual components within the CERET on
both summarization and QA tasks, and present
the findings in Table 3. The results indicate that
all three scoring dimensions have positive con-
tributions in certain task scenario, compared to
no-refinement baseline. Notably, semantic stabil-

ity alone improves summarization Rouge-1 scores
from 38.78 to 40.27 and 32.67 to 34.17 for Tod-
Sum and DialogSum respectively. Similarly, for
question-answering, semantic stability increases
the hit rate from 57.82 to 61.96, and 18.61.67 to
21.19, which are promising improvements.

Various NLP tasks have their own unique char-
acteristics, suggesting that effectiveness of specific
refinement dimensions might vary. For example,
when considering the TodSum task, the nuances
of entailment play a pivotal role in summarization
quality for task oriented dialogues, where entail-
ment scoring leads to the most significant gains.
We further observed uncertainty scoring exhibits
the best improvement in Appendix A.

These insights underscore the synergies between
semantic stability, entailment and uncertainty mea-
sures, highlighting their complementary roles in re-
fining language model outputs. The comprehensive
integration of these aspects in the CERET method
showcases their collective impact, providing a flexi-
ble and contextually relevant refinement framework
for various base LLMs and natural language pro-
cessing tasks.

Hyperparameter Analysis. In Equation 8, co-
efficients α, β, γ are weights for three scoring di-
mensions respectively. To further investigate the
sensitivity of non-trivial coefficients (when all co-
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Figure 5: Sensitivity analysis of coefficients for TodSum

efficients are non-zero), a systematic approach was
employed to assess the impact of individual co-
efficients on the overall model performance (Fig-
ure 5). A sensitivity analysis was conducted by
keeping one coefficient, denoted as x, in a state
of flux, while concurrently setting the other two
coefficients, y and z, to be

y = z =
1− x

2

Consider the green line in Figure 5: γ is set as
the variable, the relationship α = β = 1−γ

2 is
maintained. This variation allows for an in-depth
exploration of the model’s sensitivity to changes
in each specific coefficient. illustrates that when
all coefficients are non-zero, the model’s perfor-
mance remains relatively stable, with a fluctuation
of Rouge-1 within 0.1, indicating the robustness to
variations in individual coefficient values.

5 Related Work

Prompting strategy for LLM improve-
ment/refinement. Improving LLM outputs by
achieving behaviors close to reasoning has been
explored before (Wei et al., 2022; Wang et al.,
2023; Yao et al., 2023a,c; Madaan et al., 2023;
Yao et al., 2023b; Gou et al., 2023; Akyurek et al.,
2023). Wei et al. (2022) introduce a specific
technique of formulating prompts for the model
dubbed Chain-of-Thought. Essentially a series
of intermediate reasoning steps that the model
is asked to explicitly output, Chain of Thought
significantly improves the ability of LLMs to
perform complex reasoning.

Wang et al. (2023) propose a decoding strat-
egy dubbed Self-consistency — under which the
model, prompted in a chain-of-thought way, gen-
erates a set of sample predictions, or reasoning

paths. The paths are then marginalized out, and the
most consistent answer (the one which the most
reasoning paths lead to) is selected as the final one.
Huang et al. (2022) use this approach to improve
LLMs without annotated data — they select the
most consistent answer from the candidates pool,
collect all the reasoning paths leading to that an-
swer, and augment the trainset of the target model
with the resulting data points. In contrast to Self-
consistency, the Self-Refine approach of Madaan
et al. (2023) assumes that the model iteratively
provides verbal feedback on its own outputs, and
incorporates it in the next generation round. More-
over, CRITIC (Gou et al., 2023) empowers Lan-
guage Models (LLMs) to independently verify and
improve their own outputs with external toolkits,
similar to the way humans make use of tools. All
the approaches above require prompt engineering,
while we tackle the problem from another perspec-
tive.

Model confidence/uncertainty without self-
feedback. A parallel line of work in improving
LLM generation outputs is related to assessing the
model confidence and the uncertainty of its predic-
tions without iterative language model calls (Jiang
et al., 2021; Lang et al., 2022; Wang et al., 2022;
Kuhn et al., 2023; Ge et al., 2023; Jiang et al., 2023;
Vernikos et al., 2023). Kuhn et al. (2023) define
semantic entropy, a metric that incorporates linguis-
tic invariance of the individual output candidates
sharing identical meanings. This metric helps iden-
tify the correct model’s predictions as evaluated on
question answering task. LLM-Blender Jiang et al.
(2023) adopts a two-stage design, rank-and-fuse, to
generate highly confident and superior candidate
outputs. Ge et al. (2023) use uncertainty estima-
tion in order to create modified pseudolabels, and
define uncertainty of a pseudolabel (obtained using
stochastic dropout-based model inference) as its
proximity to other different pseudolabels for the
same data point. Training on the selected pseudola-
bels increases performance in binary and multiclass
classification, as well as Natural Language Under-
standing tasks. Selecting high-confidence pseudola-
bels is also a key aspect of the co-training technique
proposed by Lang et al. (2022), where both partial
access and full access settings are studied. All these
methods explore uncertainty/confidence from a cer-
tain perspective, while our approach combines the
uncertainty/confidence with semantic stability and
entailment, and we further proposed a framework
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for these three dimensions and investigated their
synergies.

6 Conclusions

Our proposed CERET is an efficient framework
to enhance text generation without the need for
domain-specific training data or expensive anno-
tations. By considering semantic stability, entail-
ment, and inter-sample uncertainty measures, our
approach significantly improves the quality of text
generation across multiple natural language pro-
cessing tasks. The efficiency and cost-effectiveness
of our approach suggest its potential for wide adop-
tion in real-world applications.

7 Limitations

CERET can be potentially applied to a wide range
of NLP problems, including dialogue response gen-
eration, open-ended common sense reasoning, and
Natural Language Understanding (NLU) by text
filling for text continuation. These topics require
dedicated investigation and are not yet covered by
this paper.

Our experiments show that beam search sam-
pling almost always provides sufficient room for
refinement, according to the oracle performance in
Table 1 and Table 2. Nevertheless, in certain task
or data scenarios, performances of no-refinement
baseline and oracle prediction may be close to each
other. In that case, the performance of CERET will
be limited by oracle results.
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Appendix

A Ethical Considerations

We have reviewed all licenses of public datasets,
which allow the usage for research and paper pub-
lication. All datasets are sets are de-identified to
ensure anonymity.

Our proposed method has a potential for sub-
stantial reductions in both the financial and envi-
ronmental burdens associated with large language
model improvement/refinement. Through minimiz-
ing the reliance on extensive data collection and
human labeling, our approach serves as an effective
safeguard for user and data privacy, mitigating the
risk of information leakage during the construction
of training corpora.

During the paper writing process, Generative AI
was only used for language checking, paraphrasing
and polishing.

B Additional Sensitivity Analysis

As described in 4.2 Hyperparameter Analysis, the
sensitivity analysis is conducted by keeping one
coefficient, x in a state of flux, while concurrently
setting the other two coefficients, y and z, to be
y = z = 1−x

2 . Empirical results on four datasets
show that the performance variations are very lim-
ited, with fluctuations of Rouge-1 within 0.2, and
hit rate within 0.4. This indicates the stability of
the method to variations in individual coefficient
values.

C Qualitative Analysis

Selected qualitative examples from both TodSum
and TriviaQA datasets are presented in Table 4
and Table 5 respectively. Although the top 5 beam
search sampled candidates are considered in exper-
iments, in Table 4 and Table 5 we only present 3
most representative predictions.

In the example from TodSum, CERET is able
to select the summary that contains key informa-
tion “All Saints Church” and also mentions the
phone number was provided. In fact, the prediction
has the highest entailment score, which means it
mostly implies other summaries. Regarding the
examples from TriviaQA, the final score is largely
determined by semantic stability: “Dotheboys Hall”
and “Dotheboys” are close in semantic representa-
tion, and “Sir Cloudesley Shovell” (after parsing)
actually appears 3 times in top 5 predictions.

D Prompt Templates

The relevant prompt templates for Abstractive Sum-
marization, QA and Self-rerank are presented in
Table 6, Table 7 and Table 8 respectively. We adopt
Chain-of-Thought (CoT) prompting for open do-
main QA; while for Abstractive Summarization
datasets, the key information is usually straightfor-
ward, hence we only include a length specification.
Regarding LLM Self-rerank, we tested multiple
additional instructions related to semantic stability,
entailment/implication and uncertainty, and finally
chose to include semantic stability only, as it pro-
duces most robust outcomes.
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Figure 6: Sensitivity analysis of coefficients for Natural Questions, TriviaQA, DialogSum and TodSum (from left to
right in order)

Input dialogue
Hi there. Can you help me find a train from Norwich to Cambridge?
There are several trains on that route. What time would you like to leave/depart?
I would like to leave after 12:15 on a Sunday.
I have a 12:16 departure from Norwich. Would you like me to book this for you?
I’m not sure if I need to book just yet. Can you tell me the travel time for this please?
Sure, TR5225 is a 79 minute trip and each seat costs 14.08 pounds. Can I help you with anything else today?
Is there an All Saint’s Church? I would like to visit it as well.
Yes, all saints church is located t city cenre. It has free entrance.
That sounds wonderful. Could I get the phone number along with the attraction type?
It is listed as architecture, and their phone number is 012345678
Thank you so much! That is all the help I need for now.
You are very welcome! Have a great day and I hope you enjoy your visit! Call for help anytime.

LLM prediction score
A person is seeking help to book a train ticket from Norwich to Cambridge on a Sunday at 12:16,
and the agent provides information on the travel time, ticket cost, and the location of All Saints Church in the city center,
with free entrance and a listed phone number for architecture enthusiasts.

0.83

A person is seeking information about trains from Norwich to Cambridge and asks about travel time, seat prices,
and the location of All Saints Church, and the customer service representative provides the necessary information and offers to book the ticket.

0.61

The text is a conversation between a person looking for train information from Norwich to Cambridge and a train information provider,
who provides information on train schedules, fares, and nearby attractions.

0.12

Ground truth
The user asks duration of the train.
This train leaves at 12:15 on sunday, departure is norwich and destination is cambridge.
The user wants to know the phone number and type of the attraction. the attraction’s name is All Saints Church.

Table 4: Qualitative example: TodSum

Input question
In the novel, "Nicholas Nickelby", by Charles Dickens, what was the name of the school, run by Wackford Squeers?

LLM prediction Score
Dotheboys Hall 0.55
Dotheboys 0.41
Squeers School 0.29

Ground Truth
Dotheboys Hall

Input question
Who was the British Admiral who died in 1707 when four of his ships were wrecked in the Scilly Isles?

LLM prediction Score
Sir Cloudesley Shovell 0.68
Russell 0.45
Viscount Nicholas Boyle 0.39

Ground Truth
[Cloudesley Shovell, Sir Cloudesley Shovell]

Table 5: Qualitative examples: TriviaQA
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The following is a conversation between two individuals. Provide a brief summary
in [LENGTH] sentence(s). Output the summary only.

Input example: [Input example]
Output example: [Output example]

Input: [INPUT]

Table 6: Prompt template for Abstractive Summarization

The following input is a question from an open domain Question-and-Answering task.
Provide a succinct answer to the question in a single phrase (1-3 words).
In addition, provide supporting reasons step by step in the following format:

Input example: Who was the first man to walk on the Moon?
Output example: Answer: Niel Armstrong. Reasoning: Neil Armstrong became the first human to walk
on the moon during NASA’s Apollo 11 mission on July 20, 1969. This historic event is well-documented
through photographs, videos, audio recordings, and historical records, providing irrefutable
evidence of his achievement.

Input: [INPUT]

Table 7: Prompt template for QA

The following input consists of generated predictions from a Large Language Model(LLM).
Besides standard criteria like correctness and helpfulness, take semantic stability into account:
We prefer the candidate that is semantically closer to the majority of predictions.
Please choose exactly one best prediction, and output the item number (For example “(8)”).
If there are multiple identical best answers, choose a random one.

Input: [<TASK CONTEXT> Candidates: (1) ... (2) ... (k) ...]

Table 8: Prompt template for LLM Self-rerank
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