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Abstract

Current legal outcome prediction models—a
staple of legal NLP—do not explain their
reasoning. However, to employ these models
in the real world, human legal actors need to be
able to understand the model’s decisions. In the
case of common law, legal practitioners reason
towards the outcome of a case by referring to
past case law, known as precedent. We contend
that precedent is, therefore, a natural way of
facilitating explainability for legal NLP models.
In this paper, we contribute a novel method for
identifying the precedent employed by legal
outcome prediction models. Furthermore, by
developing a taxonomy of legal precedent, we
are able to compare human judges and neural
models with respect to the different types of
precedent they rely on. We find that while the
models learn to predict outcomes reasonably
well, their use of precedent is unlike that of
human judges.

https://github.com/valvoda/under_

the_influence

1 Introduction

Legal outcome prediction models have generated
much interest in the past years (Aletras et al., 2016;
Medvedeva et al., 2020; T.y.s.s et al., 2023; Valvoda
et al., 2023a). Given a text transcript of the facts of
a legal case, a legal outcome prediction model pre-
dicts whether a particular law has been breached.
Researchers have evaluated these models in sev-
eral jurisdictions, including the UK, USA, Switzer-
land, France, China, Japan, India and the European
Court of Human Rights (ECtHR; Şulea et al., 2017;
Chalkidis et al., 2019; Strickson and De La Igle-
sia, 2020; Malik et al., 2021; Niklaus et al., 2021;
Chalkidis et al., 2022; Feng et al., 2022).

While legal outcome prediction models are inter-
esting in the context of academic research (Valvoda
et al., 2021), any real-world deployment of Legal
AI necessitates a certain level of understanding
of how the system works (Valvoda et al., 2023b).
After all, it is the reasoning towards the outcome
of the case, rather than the outcome itself, that is of
tantamount importance in legal outcome prediction.

There are two reasons for this. (1) To be able to use
a legal outcome prediction model system in prac-
tice implicitly assumes explainability: lawyers are
bound to provide advice that the client can depend
on. This obligation is so extreme that a negligent
lawyer themself can be sued for misconduct if
they give faulty advice. Moreover, making legal
decisions without understanding the reasoning
behind them is unethical in many legal systems.
For example, for a model to be used in practice it is
a legal requirement in the EU under GDPR to know
what the decision is based on. Thus, the ability
to double-check any information a hypothetical
legal AI assistant provides is paramount when
building technology for legal professionals. (2)
Explainability can create new use cases for legal
outcome prediction models. Knowing how to
reason towards a desired legal outcome is valuable
for drafting legal arguments and, thus, a legal
outcome prediction system could be deployed
as an assistive technology in areas well beyond
simply predicting outcomes (Sarker et al., 2019).

State-of-the-art legal outcome prediction models
are nearly homogeneous at a technical level—they
are all parameterized as neural network classifiers
on top of pre-trained language models (LM).
While their performance is remarkable at times,
the reasoning embedded in the model is largely
inscrutable. Despite the widespread recognition of
the problem that unexplainable legal NLP systems
pose (Hacker et al., 2020) and emerging work in
the domain of case law summarization (Norkute
et al., 2021), much remains to be done in order
to build effective explainable legal NLP systems
(Branting et al., 2019; Chalkidis et al., 2021). In
particular, the existing work on explainable legal
AI focuses on providing explanations by identi-
fying relevant tokens (Xu et al., 2023), sentences
(Malik et al., 2021) or paragraphs (Chalkidis et al.,
2021), from the facts of the case. However, lawyers
and judges typically reason at the level of a case.

In this paper, we address the lack of explain-
ability of legal outcome prediction models in a
manner inspired by legal reasoning. The law in
the Anglo-American tradition is endowed with
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a natural rationale—precedent—which produces
a legal argument. Precedent is how judges and
lawyers reason with respect to previous cases.
Because precedent is binding, by citing previously
decided cases, legal actors substantiate their
arguments. Unlike existing explainability methods,
our method produces an explanation in terms of
legal precedent. This allows legal practitioners
to easily inspect the legal reasoning the model
employs. Furthermore, we develop a taxonomy
of legal precedent, which allows us to categorize
each training case in terms of its precedential
operation. We can therefore pinpoint which kinds
of precedential reasoning the models rely on.

We validate our proposed method by training
several legal outcome prediction models and
measuring the correlation between the precedent
they use and that used by a human judge. Overall,
our experiments reveal that the precedent used by a
human judge has a weak positive correlation with
the precedent our models rely on (the highest Spear-
man’s ρ we observe is 0.18). We also discover that
the model predictions positively correlate with one
type of precedent in particular—the one where the
outcome of the precedent case is the same as the
outcome of the case at hand. However, for most
of the categories of precedent, we find the models
have a negligible or even negative correlation with
the precedent applied by a human judge. Worse
yet, model F1 performance on predicting the
outcome of a case is a poor proxy for its alignment
with precedential reasoning; see Tab. 2. In other
words, higher F1 does not equal better alignment.
Therefore, our results cast doubt on the real-world
utility of the current outcome prediction models.

2 Precedent-based Interpretability

We now give an argument for why precedent-based
interpretability is the right direction for improving
the usability of legal outcome prediction models.

Why are existing methods insufficient? Many
interpretability methods, such as linguistic probing,
have been developed to investigate the linguistic
capabilities of neural models (Hewitt and Manning,
2019; Belinkov, 2022; Pimentel et al., 2022).
These methods often focus solely on the immediate
input to the model. This is intentional because
the goal of linguistic probing is to analyze the
model in terms of how individual tokens affect the
output. For example, if you want to know if and
how a neural network’s representations relate to

a dependency parse of the input sentence, investi-
gating the network’s use of tokens in a sentence is
a wise choice. In legal NLP, however, despite the
recent rejuvenation of efforts in the field (Xu et al.,
2023; Habernal et al., 2023), there is no generally
accepted legal theory about how individual words
or sentences affect the outcome of a case. We
further elaborate on the related work in §9.

Why precedent? There is already a generally
accepted method of legal reasoning—reasoning
through legal precedent. However, precedent
does not operate on the granularity of individual
words or sentences. Instead, precedent relies on
the relationship between the case at hand and
previously decided cases. Importantly, precedent
is a way of developing law. A decision rendered in
a past case binds future decisions in a common law
system. This binding precedent, which stems from
the doctrine of stare decisis, literally stand by the
decision, ensures the reliability of law by forcing
judges to make consistent decisions (Duxbury,
2008; Lamond, 2016; Black, 2019).1 While
precedent plays an important role in deciding the
outcome of a case in both common and civil law
systems, it occupies the core of legal reasoning
in common law jurisdictions, e.g., UK, USA, and
India, and it is the focus of this paper.

Claims and Outcomes. Because precedent is
binding law, it is used in legal argumentation.
When a new legal case arises, there are two com-
peting points of view presented to a judge: That
of the plaintiff and that of the defendant. These
are typically represented by lawyers working on
behalf of either side. The first step in the process is
establishing the claims, i.e., the laws that the plain-
tiff claims as violated. The claims are a starting
point of the legal argument. The job of the lawyer
on either side is to substantiate their claims. To do
this, the lawyers rely on previous case law, i.e., the
precedent. They will draw analogies to cases where
their side has won, and distinguish their circum-
stances from the instances where their side has lost.
The selection of past cases is therefore a large part

1There is also a non-binding precedent. It is typically
contained in obiter dicta or the other things said in the court
decisions. Its purpose is to hint at what the court might decide
in the future given a legal point that falls outside the scope
of the case under consideration. Another type of non-binding
precedent is in cases that have been overruled by a subsequent
judgment. In such instances, the case is considered outdated
and the law contained within is obsolete. While this kind of
precedent is important, we do not study them in this paper.
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of the reasoning process for the lawyer. Lawyers
present their arguments, substantiated with cita-
tions to precedent cases, to the judge, who again
uses precedent in their argumentation. The judge
will cite past cases, much like lawyers do, as part of
their argument towards the outcome of a case. As
a judge arrives at the decision, the case at hand will
set a binding precedent and the process repeats.

Conclusion. Our position is that the best way to
build explainable legal outcome prediction models
is through the direct use of precedent. This way,
both lawyers and judges can directly interpret and
analyze the rationale provided by the model. More-
over, both lawyers and judges are already trained
in reasoning about new cases with respect to old
cases, so no additional training would be required.

3 Under the Influence

We now turn to the explainability method devel-
oped in this paper, which will allow us to identify
the exact role precedent plays in the decisions
made by neural legal outcome prediction models.

3.1 Preliminaries
Legal outcome prediction is a multilabel classifica-
tion task. We start with the necessary notation and
a generic description of a probabilistic legal out-
come prediction model. Let O = {+,−, ∅} be a
set of legal outcomes, whose elements correspond
to a positive, negative and null outcome of a case,
respectively. The null outcome occurs when a law
has not been claimed by either party to the case.
Let O be an outcome-valued random variable with
instances o ∈ O. Let OK be the K-times Cartesian
product of O where K is the number of legal Arti-
cles we consider. The elements of OK are denoted
as o ∈ OK . Let O is a random variable ranging
over OK . We write Ok for the random variable,
ranging over O, that corresponds to just the kth arti-
cle. For instance, if a judge finds that Article 3 has
been breached, we write Ok = +. Now, let Σ be an
alphabet.2 The random variable F ranges over tex-
tual descriptions of facts, i.e., Σ∗ for a vocabulary
Σ. Elements of Σ∗ are denoted as f . For a case con-
cerned with O5 we might expect the following f .

Example 1 (Article 5 - Right to a fair trial). Nei-
ther the applicants nor any of the other migrants
in their group were provided with any information

2In principle, the alphabet Σ can be constructed over either
characters, words or sub-word tokens, the last of which is
what we do in our experiments.

regarding the reason for or the length of their de-
tention. They did not have a chance to appoint a
lawyer and were not provided with an interpreter
at any point during their detention.

We focus on an article-factored probabilistic
legal outcome predictor, which can be described
by the following probability model

pθ(O = o | F = f)

=

K∏

k=1

pθ(Ok = ok | F = f)
(1)

parameterized by θ ∈ Θ. We further assume that
Θ is a compact subset of Rd. The training dataset
Dtrn = {z(n)}Nn=1 is a set of N outcome–fact pairs
where z(n) = (f (n),o(n)). The test dataset Dtst =
{z(m)}Mm=1 is a set of M outcome–fact pairs where
z(m) = (f (m),o(m)). Each training and test pair
encodes a relationship between facts and law. The
instance-level negative log-likelihood, i.e., the neg-
ative log-likelihood of a single training point z, is
denoted as ℓz(θ) = − log pθ(z). Then, the aver-
age cross-entropy for the training set is given by

L(θ) =
1

N

N∑

n=1

ℓz(n)(θ) (2)

A good value for the parameters θ may be found
by solving the following optimization problem

θ⋆ = argmin
θ∈Θ

L(θ) + αR(θ) (3)

where R(·) is a regularization function with
strength α ≥ 0. Because Θ is assumed to be com-
pact and L(θ) + αR(θ) is a continuous function
of θ the argmin given in Eq. (3) is well-defined.

3.2 Influence Functions
In order to evaluate if and to what extent a model re-
lies on any of the above categories of precedent, we
need a way to identify how precedent cases affect
the model’s decision. In a legal outcome prediction
model, the only cases that can be considered prece-
dent are the training cases. A simple technique to
measure the effect of a training case z on a test case
z′ would be to remove z from the training set Dtrn,
retrain the model, and take z’s importance to be the
change in the loss ℓz(θ) for a test point z. However,
with over N = 8000 training cases, we would have
to retrain the model N times to be able to estimate
the importance of each case in the training set for
the test cases z′. This would be prohibitively slow.
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As a tractable alternative to the above, Koh and
Liang (2017) introduce a simple procedure that
allows us to efficiently estimate the effect of a sin-
gle z on the model parameters without retraining.
We now describe their method, based on influence
functions, in detail. Consider the following opti-
mization problem, a modified version of Eq. (3)

θ⋆
z(ε) = argmin

θ∈Θ
L(θ) + αR(θ)︸ ︷︷ ︸

def
=LR(θ)

+εℓz(θ) (4)

It is not hard to see that Eq. (4) simply modifies the
weight associated with z in the summation found
in Eq. (3). Relying on Koh and Liang’s (2017)
method, we can approximate the effect of a very
small ε on parameters θ by taking a derivative of
θ⋆
z(ε) with respect to ε at evaluating it at ε = 0:

dθ⋆
z

dε

∣∣∣
ε=0

=−
(
∇2

θLR(θ⋆)
)−1∇θℓz(θ

⋆) (5)

See App. F for a derivation of Eq. (5).

Influence score. We are not directly interested
in the new parameters themselves but rather in the
effect of the change in parameters on the loss for a
test point z′. We can calculate this influence score
using the chain rule:

ι(z,z′) def
=

dℓz′(θ⋆
z)

dε

∣∣∣
ε=0

= ∇θℓz′(θ⋆)⊤
dθ⋆

z

dε

∣∣∣
ε=0

(chain rule) (6)

(a)
= −∇θℓz′(θ⋆)⊤

(
∇2

θLR(θ⋆)
)−1∇θℓz(θ

⋆)

where (a) results by plugging in Eq. (5). Thus, we
can leverage Koh and Liang’s method to measure
the extent to which a precedent case bears on a
new legal decision.

4 Taxonomy of Precedent

Precedent is more than just a binary category. Legal
actors use it in a number of different ways to craft
their arguments. To better evaluate how neural
models of outcome use precedent, we develop a
novel taxonomy of types of precedent.

4.1 Applied vs. Distinguished
The simplest way of categorizing the precedential
relationship between two cases is to differentiate
between application and distinction.3

3We focus on the major types of precedent. There are
other forms of precedent we do not consider here. Specifically,
modification of precedent and overruling. In future work, they
would be a natural candidate for further exploration.

Applied Precedent. We call a precedent case
applied when a judge applies the precedent from
a previous case. In such instances, the judge has
relied on similar reasoning to that of the precedent
case. As a result, the outcome of the case at hand
is the same as the outcome of the precedent case.
In practice, these are the precedent cases that a
judge has cited as part of their argument, which
have the same outcome as the case at hand.

Distinguished Precedent. We call a precedent
case distinguished when a judge distinguishes
their decision from a past case. When a precedent
is distinguished, the judge has used the differences
between the cases to inform their decision. In
practice, these are the cases that a judge cites but
have a different outcome than the case at hand.

4.2 Positive vs. Negative Precedent

Valvoda et al. (2023a) introduce a new perspective
on how to model legal outcome prediction. By
considering both the claims and the outcomes of
cases, they define two types of legal outcomes:
positive and negative.4 Following their logic, we
can further sub-divide the applied or distinguished
precedent into the two categories below.

Positive Precedent. An outcome is positive
when a law has been claimed as breached and a
judge finds in favor of the claimant. When a new
case cites a positive outcome case, the judge in-
vokes a positive precedent. In the strictest sense,
this means that if a new case arises from exactly the
same facts as the precedent case before it, the judge
will have to conclude the same law has been equally
breached in both cases. In practice, no two cases
are exactly the same. Therefore the positive prece-
dent affects all subsequent similar cases by increas-
ing the chances of successfully claiming a breach of
the law that has been violated in the precedent case.

Negative Precedent. An outcome is negative
when a law has been claimed as breached, but the
judge finds it has not in fact been broken. When
a new case cites a negative outcome case, the
judge invokes a negative precedent. Much like
with positive precedent, the court is bound by
the negative precedent. Two cases with the same
facts must reach the same outcome—positive or

4This is not a new concept to lawyers or legal AI theorists.
Lawlor (1963) already described these categories of precedent
as pro-precedent and con-precedent.
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Applied Distinguished

Cited Claimed Cited Claimed

Pos. 2,012 643,377 114 54,099
Neg. 296 129,239 79 30,203

Table 1: Total number of cited cases per category of
precedent under the per-case view of the precedent.

negative. Therefore, the scope of the law contracts
through negative precedent.

4.3 Scope

Additionally, there are two axes along which we
can define the scope of the precedent we will
consider in §7.

Claimed vs. Cited. There are two ways to
uncover the relevant precedent for a case. The
first is to consider all the Articles that the lawyer
has claimed as violated. To find these cases,
we can look through all past cases and pick out
those where the same Articles have been claimed.
Because all cases in our corpus deal with the
same subset of law, by the nature of precedent,
all past decisions are all binding with respect to
future ones. We call this the claimed precedent.
However, in practice, considering all claimed
precedent cases yields a large number of precedent
cases. Thus, we also consider a more narrow view.
Specifically, we focus on those cases the judge
cites when drafting their judgment. We call this the
cited precedent. Each approach has its limitations.
Under the narrow view (cited precedent), we have
a non-exhaustive list of cases that only show us the
reasoning of a single judge.5 Under the broader
view (claimed precedent), we consider many cases
that are not directly relevant to the facts of the
case at hand. The claimed–cited distinction plays a
crucial role in our analysis. Correlations are broken
down into cited and claimed precedent in Tab. 2

Per-case vs. Per-article. A lawyer typically
claims multiple Articles as violated, and, likewise,
a judge may find that multiple Articles were
breached. Thus, when selecting precedent cases,
on one hand, we can consider those where all the
claimed Articles are shared. Or, on the other hand,
we can consider a piecemeal approach where we
select all cases that share at least one Article. We

5A judgement may be given by a tribunal of judges, each
giving a different argument. In our dataset, the reasoning
towards the decision is reported as a single argument.

call the former approach the per-article approach
and the latter the per-case approach. The
advantage of the per-case approach is that it selects
for highly related cases because the cases have an
identical set of claimed Articles. The advantage of
the per-article approach is that it allows for a more
detailed analysis—a case might be an important
precedent with respect to a judge’s decision on
only a single Article. While we report our main
results with per-case correlations, we include an
analysis of per-article correlations in §8.2.

4.4 Recovering the Taxonomy

Conveniently, the above taxonomy can be recov-
ered post hoc from the case transcripts. All we need
is to construct a citation network. We can then iden-
tify the relationship between a cited case and the cit-
ing case as follows. First, we identify the outcomes
of both the citing case and the cited case. If the posi-
tive outcomes of the cited case are the same as those
of the citing case, there is a relationship of applied-
positive precedent. If the negative outcomes are the
same, the relationship is that of applied-negative
precedent. To extract cases that constitute a distin-
guished precedent, we first identify if the case at
hand and the cited case share the same claims. If
they do, we move forward to distinguish between
positive and negative outcomes. When the posi-
tive outcomes of the cited case are the same as the
negative outcomes of the citing case, we label the
relationship as distinguished-positive. Conversely,
if the negative outcomes of the cited case are the
same as the positive outcomes of the citing case, we
label the relationship as distinguished-negative.

Note that because we consider positive and
negative precedent separately, the relationship
between any two cases can simultaneously be both
positive and negative, though it can not be both
applied and distinguished. Some cited cases might
not fall under any of the above categories. We
include an example of how we process cases into
the taxonomy in App. B.

5 An Improved ECtHR Corpus

We modify the ECtHR corpus, a popular legal
NLP dataset, for our experiments. Specifically, we
use the scrape of the corpus from Valvoda et al.
(2021). An ECtHR case can be separated into two
sections: facts and arguments. The facts of the
case, denoted f ∈ Σ∗, contain text describing the
events that had brought the claimant to court. This
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section outlines the events that might give rise to
a particular breach of law. Arguments of the case
on the other hand contain a transcription of the
reasoning the judge(s) employed in reaching the
conclusion over whether or not a breach of law has
actually occurred. The argument section is where
the judges cite previous cases, i.e., the precedent.

We first extract the necessary citations to
previous cases. Specifically, for every case in
our dataset, we extract the names of all the cases
cited in the arguments section. We use regular
expressions for this purpose because citations in
the ECtHR corpus follow a regular form.6 The first
author manually inspected the extracted citations
to ensure a high-quality citation network. Then,
we remove all the cases in the training set of our
dataset that have not been cited. This step ensures
that every training case is a precedent of at least one
test case. Then we remove all the cases in the test
set of our corpus which do not cite any precedent.
We do this to ensure that, for each case in our test
set of the corpus, there is a precedent cited from
our training corpus. Details about the number of
cases per Article and the split between the training,
validation, and test set are contained in App. A.

6 Neural Models of Legal Outcome

We consider two different instantiations of Eq. (1),
each of which corresponds to a different legal out-
come prediction approach from the literature.

Simple model. Under Chalkidis et al.’s (2022)
model, legal outcome prediction is treated as a
binary classification task with the outcome of a
case simplistically assumed to be either + or an
amalgamation of − and ∅. Using a pre-trained
language model as an encoder enc, we define the
following model:

h = enc(f) (7a)

e = W
(1)
k ReLU(W(2) h) (7b)

p(Ok = + | f) = sigmoid(ek)+ (7c)

where the multi-layer perceptron (MLP)
is parametrized by W

(1)
k ∈ R1×d2 and

W(2) ∈ Rd2×d1 . The input h ∈ Rd1 is a
high-dimensional representation of the facts
computed by the encoder.

6ECtHR has issued a note on the rules on case citations
here. In the ECtHR corpus, the earliest cases are from the year
2001 and the relevant citation styles they follow are the two
used between 1999-2015 and from 2016 onwards. Both follow
a regular format, allowing us to generate our citation dataset.

Joint model. We also implement Valvoda et al.’s
(2023a) model, which treats outcome prediction as
a three-way classification task:

h = enc(f) (8a)

e = W
(3)
k ReLU(W(4) h) (8b)

p(Ok = ok | f) = softmax(ek)ok (8c)

where W
(3)
k ∈ R3×d2 and W(4) ∈ Rd2×d1 are the

parameters of the MLP. The advantage of this ap-
proach is that it directly models both positive and
negative outcomes, which are closely related to
positive and negative precedent. Thus, we expect
the Joint model to be better at utilizing them.

Choice of enc. For both models, we consider
two choices for the encoding enc : Σ∗ → Rd1 : (1)
BERT (Devlin et al., 2019) and (2) LEGAL-BERT
(Chalkidis et al., 2020). The full experimental de-
tails, e.g., hyperparameters, are given in App. D.

7 Results

We report our results in terms of Spearman’s ρ.
Overall, we find a weak positive correlation be-
tween judges’ precedent and influence scores—the
best correlation we find is 0.180. However, due
to the fine-grained taxonomy, the results vary
between different types of precedent. Inspecting
the main results, contained in Tab. 2, we make the
following six findings.

Finding #1. We observe that influence scores
correlate more strongly with applied precedent
than distinguished precedent. In fact, the distin-
guished precedent is negatively correlated with the
influence scores in the case of the Simple model.
Under the best Joint model, the highest correlation
we find between the distinguished precedent and
influence scores is nearly 4× lower (0.020) when
compared to the highest correlation we obtain
for the applied precedent (0.079). Therefore, we
conclude that current legal outcome prediction
models struggle with distinguished precedent.

Finding #2. We find negative precedent cor-
relates less strongly with influence scores than
positive precedent. In the case of applied precedent,
we observe a correlation with positive precedent of
0.180, which is more than 6× larger than the corre-
lation we observe with negative precedent (0.027).
Therefore, we conclude the models struggle to
utilize negative precedent in comparison.
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Applied Distinguished Overall

Type Language Model F1 Cited Claimed Cited Claimed

Simple BERT 0.64 Positive 0.013 0.148 -0.002 -0.012 0.137
Negative 0.004 0.037 -0.002 -0.023

LEGAL-BERT 0.67 Positive 0.013 0.180 -0.003 -0.026 0.157
Negative 0.003 0.027 -0.002 -0.023

Joint BERT 0.66 Positive 0.008 0.079 0.001 0.020 0.084
Negative 0.003 0.023 0.001 0.002

LEGAL-BERT 0.68 Positive 0.008 0.078 0.000 0.020 0.085
Negative 0.004 0.031 0.000 0.004

Table 2: We report per-case Spearman’s ρ between influence scores and our taxonomy of precedent, F1 scores for
the models under consideration and the overall correlation between influence scores and any type of precedent.

Finding #3. When analyzed through the lens of
influence scores, neither model correctly emulates
the full spectrum of precedential reasoning. While
the influence scores under the Joint model correlate
positively with every type of precedent, we observe
an overall correlation of 0.085, which is weaker
than the overall correlation of 0.157 that we
observe with the Simple model’s influence scores.
Because the Simple model is negatively correlated
with distinguished precedent, neither of the models
under consideration seems to be able to robustly
reason with the full set of precedential operations.

Finding #4. We observe that pre-training on
legal data is beneficial for improving precedent
correlations. The LEGAL-BERT-based models
exhibit higher correlations with precedent when
compared to the BERT-based models. Under the
Simple model, in particular, we see an increase
from a correlation of 0.137 to a correlation of
0.157 when we use LEGAL-BERT.

Finding #5. When we compare the correlation
for cases a judge has cited with the correlation for
claimed precedent cases, we observe that the latter
approach magnifies the results. In the case of a
positive correlation, the correlations become more
positive. In the case of a negative correlation, the
correlations become more negative. The effect is
considerable—in many instances, the difference
is more than an order of magnitude.

Finding #6. We find that higher F1 scores do
not directly translate to more human-like legal
reasoning. Where the Joint models outperform
the Simple models in terms of F1, the overall
ρ is higher for the Simple models. Overall, the
worst model in terms of F1 (Simple BERT: 0.64

F1) exhibits a correlation of 0.14 with precedent.
Whereas the best model in terms of F1 (Joint
LEGAL-BERT: 0.68 F1) exhibits a correlation of
merely 0.085 with the precedent.

Conclusion. In summary, we find that current
models do well at encoding one particular type
of precedent, applied-positive precedent, and
not so well at the other types of precedent. We
believe the culprit is the lack of sophisticated legal
reasoning. To distinguish a case is to identify how
two seemingly similar cases differ. This requires
in-depth legal knowledge. Our work indicates
that this level of legal understanding is beyond the
capabilities of the current neural models of legal
outcome prediction models.

8 Further Analysis

We extend our analysis with the following three
studies to better understand the models’ behavior.
First, we analyze the precedent from the perspec-
tive of the model. Then, we analyze the model
behavior per individual legal Article. Finally, in
App. C, we develop a novel metric, which confirms
the trends we report in §7 from the perspective of
precedent retrieval.

8.1 Model-based Precedent

Current legal outcome predictors often fail to pre-
dict the correct outcomes. Therefore, the weak
correlations reported above might simply be due to
the model relying on the precedent which supports
the outcome the model predicts, rather than the out-
come a human judge has reached. To investigate
this possibility, we develop two ways of selecting
precedent in line with the models’ prediction of the
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Figure 1: Per-article Spearman correlation between influence functions and cited negative-distinguished precedent.
The Simple model is on the left and the Joint model is on the right; both models are LEGAL-BERT based.

Type LM Correct Model

Simple BERT 0.149 0.007
LEGAL-BERT 0.183 0.032

Joint BERT 0.138 0.010
LEGAL-BERT 0.148 0.011

Table 3: Spearman’s correlations for the correctly pre-
dicted cases and model-based precedent. The correla-
tions are based on overall types of precedent.

outcome. First, we compute correlations for only
those instances where the model has correctly pre-
dicted the outcome. Second, we select the prece-
dent cases by taking the model outcome prediction
as the ground truth. We call this approach model-
based. Under both approaches, we study the same
types of correlations as in §7. The overall Spear-
man correlations are reported in Tab. 3.

We find that the correlation with precedent is
higher for correctly predicted cases. The best over-
all correlation for these instances improves from
0.157 to 0.183, a 17% improvement. On the other
hand, the model-based results reveal a decrease
in correlation with precedent. The best model
under this paradigm achieves a correlation of only
0.011, more than an order of magnitude worse
than the best model in Tab. 2. This suggests that
the models agree with a human judge’s choice of
precedent more than with the precedent that would
be consistent with the model’s own predictions.
This finding casts further doubt on the alignment
of the models’ reasoning with the doctrine of
precedent. We report full results in App. G.

8.2 Per-article Analysis

So far, we have considered only per-case correla-
tions. We now turn to the per-article results. We
report our full per-article results in App. E. In

general, we observe the same trends as those set
out in §7. Nonetheless, we find interesting results
for the negative distinguished precedent; see Fig. 9.
We discuss these results in more detail below.

Under the Simple model, we observe that those
Articles that are more heavily represented in the
training data exhibit a lower correlation with
negative distinguished precedent in comparison
with those that are less heavily represented. For
example, Articles 3, 6, 8, 10, 13 and P1-1, each
of which has a large number of examples in
the training set, correlate more negatively with
negative distinguished precedent than their less
well-represented counterparts. Therefore, we con-
tend that it is unlikely that introducing additional
training data will solve the problem of limited
precedential reasoning in neural models of legal
outcome. In fact, scaling up the data seems to result
in less human-like behavior. Instead, our results
suggest that we need to develop new models with
a better legal inductive bias to address this issue.

When it comes to distinguished precedent, Joint
model exhibits some aspects of such inductive
bias. For most Articles, and Articles 8 and 13 in
particular, the model seems to utilize distinguished
precedent. Nonetheless, for Article 6, which is
the most represented Article in the dataset, we still
observe a negative correlation. While Joint model
appears to be a step in the right direction in some
respects, it is still far from using the precedent in
a way a human judge would.

9 Related Work

In the wider NLP context, there is a considerable
amount of research aimed at developing methods
for unraveling what LMs know about language
(Alain and Bengio, 2016; Shi et al., 2016; Ettinger
et al., 2016; Bisazza and Tump, 2018; Liu et al.,
2019; Pimentel et al., 2020). Sub-fields of
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NLP dealing with sensitive information, such as
biomedical NLP (Garcia-Olano et al., 2021; Jha
et al., 2018; Moradi and Samwald, 2021; Sarker
et al., 2019; Mullenbach et al., 2018), have set
out to build their own explainable AI models to
address the concerns about applying a black-box
model to sensitive data.

In the past, legal AI researchers working on sym-
bolic methods built explainable models of legal rea-
soning (Ashley, 1988; Aleven and Ashley, 1997;
Rissland and Skalak, 1991; Branting, 1991). How-
ever, the most recent crop of models utilizing mod-
ern NLP methods are inherently opaque. Regard-
less of whether the domain is Chinese (Feng et al.,
2022), Japanese (Yamada et al., 2023), Indian (Ma-
lik et al., 2021) or UK law (Valvoda et al., 2018),
the machine learning models underlying the work
in the area are not easily interpretable.

To address this shortcoming, straightforwardly
adopting existing methodology from wider NLP
is insufficient. After all, how well a model knows
syntax can only go so far in explaining its legal
decisions. Using more general methods, such as
attention maps, is not particularly viable either. For
instance, using attention to find where the model
looks at legal facts does not provide a legally salient
answer as to what the decision is based on (Mullen-
bach et al., 2018).

Setting aside the question of whether attention
can be used for explainability in the first place
(Serrano and Smith, 2019; Bastings and Filippova,
2020; Meister et al., 2021; Bibal et al., 2022), mod-
els of legal outcome prediction are trained to make
decisions based on the facts of a case alone. While
the facts of the case are important, inspecting the
attention distribution over them can never provide a
sufficient explanation. This is because lawyers and
judges do not argue by highlighting which facts
played a role in their decision. Instead, in their
arguments, they justify their decision by relating
the facts at hand to previous case decisions. This
makes our work different from prior research in
two aspects. (1) Where the existing Legal AI work
focuses on providing explanations by identifying
relevant tokens (Xu et al., 2023), sentences (Malik
et al., 2021) or paragraphs (Chalkidis et al., 2021)
of the facts of the case, we find the entire relevant
cases. (2) Instead of looking inside the input to the
model, i.e., at the facts, we look at the training data
of the model.

10 Conclusion

We introduce a method based on influence
functions for legal explainability. We created a tax-
onomy of precedent, used it to annotate the ECtHR
dataset and ran a series of experiments to identify
what precedential operations might be learned, or
not, by outcome prediction models. We find that
the models we train rely on one type of precedent
in particular: applied precedent. This makes them
very unlike human judges, who employ a full
spectrum of precedential reasoning to justify the
outcome of a case. To construct useful models of
legal outcomes, we need to develop legally faithful
models of law. We hope that our methodology can
help in the search for such models.

Indeed, we see two concrete avenues toward
legal NLP models that could better align with
human precedential reasoning. (1) We can focus
on creating more representative datasets of the
tasks we would like to model. The facts in current
datasets contain superficial indicators of the
outcome—they are written as post-hoc justification.
Using datasets built around legal briefs, instead
of cases, could be a step towards mitigating this
issue (Valvoda et al., 2023b). (2) We can better
incorporate the court processes in our neural
models. To induce precedential reasoning, a
natural step would be to incorporate precedent
retrieval as part of the model architecture. Much
like a judge, the model should be able to explicitly
select the precedent that its decision is based on.

Limitations

There are a number of limitations to our work
which we would like to acknowledge. First, our
work is limited to a study of the English version
of the ECtHR corpus. Future work should investi-
gate the French translations of the caselaw, which
is available for all cases in the corpus. Addition-
ally, one could experiment with the translations
available in other languages, since every case is
also translated into the official language of the de-
fendant. Second, there are potential limitations
to using our methodology in different jurisdictions.
We report the details of our dataset and experiments
in App. A and App. D, respectively. Training of the
models requires a sufficiently large dataset which
could be a limiting factor for smaller jurisdictions
with fewer training cases available.
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that one day legal AI could be a valuable tool in
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A Dataset Details

We report the breakdown of the dataset in Tab. 4
below. As you can see, the dataset is highly imbal-
anced, which is why we conduct our per Article
analysis in §8.

B An Example of Our Taxonomy

To better understand how we taxonomize prece-
dent, let us consider an imaginary case o with five
precedent candidate cases o

′
1, . . . ,o

′
5. For the sake

of simplicity, we will set these cases in an imagi-
nary legal system, which only has four laws (i.e.,
K = 4). Below, we illustrate how we would assign
the type of precedent to each candidate case:

o = [∅,+,−, ∅] (Case at hand)

o′
1 = [∅,+, ∅, ∅] (Applied positive)

o′
2 = [∅, ∅,−, ∅] (Applied negative)

o′
3 = [∅, ∅,+, ∅] (Distinguished positive)

o′
4 = [∅,−, ∅, ∅] (Distinguished negative)

o′
5 = [∅, ∅, ∅,+] (No precedent)

Train Validation Test

No. of Cases 8344 904 913

Art 2 463 56 55
Art 3 1223 169 173
Art 5 1255 176 154
Art 6 4434 276 272
Art 7 24 2 3
Art 8 638 76 111
Art 9 37 4 4
Art 10 268 39 66
Art 11 102 29 33
Art 13 1124 77 71
Art 14 119 17 11
P1-1 1307 130 116
P1-3 43 4 1
P4-2 31 3 4

Table 4: The number of cases in the precedent corpus
and the representation of each ECtHR Article.

C A New Evaluation Metric

We now develop a novel evaluation metric to deter-
mine the degree to which a case’s influence corre-
sponds to whether or not it was used as a precedent
by the model. To map a case’s influence to the
binary decision of whether or not the case was used
as precedent, we design a simple classifier. And,
to deal with the imbalanced nature of the classifi-
cation (there are far more non-relevant cases than
relevant ones), we evaluate the classifier with F1.
We omit this analysis from the main text because
the conclusions drawn from it are nearly identi-
cal to those made in the main with more standard
methods.

We now define the classifier formally. Given
an influence score ι(z, z′) = x, we construct the
classifier:

p(Cn = 1) =
exp(axn + b)

1 + exp(axn + b)
(9)

where Cn = 1 indicates the nth training case is
considered precedent. The function to the right of
Eq. (9) is a sigmoid function. Thus, we know that
the classification boundary induced by Eq. (9) is:

ax+ b ≥ 0 =⇒ x+
b

a
≥ 0 =⇒ x ≥ − b

a
(10)

Therefore, under Eq. (9), any parameters a and b
give us a real value − b

a such that a case is predicted
to be precedent iff its influence is greater than − b

a .

7281

https://doi.org/10.3233/978-1-61499-935-5-141
https://doi.org/10.3233/978-1-61499-935-5-141
https://doi.org/10.3233/978-1-61499-935-5-141
https://arxiv.org/abs/2312.00584
https://arxiv.org/abs/2312.00584
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.594
https://doi.org/10.18653/v1/2023.emnlp-main.594
https://doi.org/10.18653/v1/2023.emnlp-main.594
https://arxiv.org/pdf/2312.00480.pdf
https://arxiv.org/pdf/2312.00480.pdf


Model Rand. Gain

Simple BERT 0.25 0.18 +0.07
L-BERT 0.27 0.18 +0.09

Joint BERT 0.21 0.18 +0.03
L-BERT 0.21 0.18 +0.03

Table 5: The F1 scores achieved by our models on the
precedent retrieval task on the ECtHR corpus.

To learn the two parameters a = θ0, b = θ1, we
optimize the log-likelihood:

N∑

n=1

log p(Cn = 1) + κ||θ||22 (11)

where κ > 0 is a small positive number used to
break ties.

Precedent Classifier Results. We report the re-
sults of the above classifier in Tab. 5. In compar-
ison to the random baseline, the influence scores
are consistently a better predictor of whether or not
a case has been used as a precedent. This finding
holds over all models under consideration. The re-
sults also confirm our previous findings—Valvoda
et al.’s (2023a) model underperforms Chalkidis and
Søgaard’s (2022) model. Furthermore, we find that
a classifier on top of a model’s influence scores
does not score highly on the precedent prediction
task. To contextualize these results, however, we
note the results of Task 1 of the past two years of
COLIEE competition, which is similar to our prece-
dent retrieval above (but over a different dataset),
indicate that this is a difficult problem to solve even
for legal information retrieval models. For context,
the best-performing teams in 2021 and 2022 scored
0.19 F1 and 0.37 F1 respectively on the data from
the Federal Court of Canada case law (Rabelo et al.,
2022; Kim et al., 2023).

D Experimental Details

In this section, we provide the details of our exper-
imental setup.

Language Model Encoders. We use two
Transformer-based (Vaswani et al., 2017) pre-
trained language models for our experiments.
Following Chalkidis et al. (2019, 2022) we
choose to work with base versions of BERT and
LEGAL-BERT architectures.

• We use BERT (Devlin et al., 2019) because it is
both a popular language model for benchmark-
ing NLP models and also places at the top of
LexGLUE (Chalkidis et al., 2022) leaderboard
for Task A—outcome classification, which most
closely resembles what our models are trained
for. It also performs the best in the recent refor-
mulation of the task by Valvoda et al. (2023a).

• Because BERT is not specifically trained on
legal text, we additionally use LEGAL-BERT
(Chalkidis et al., 2020), which has been fine-
tuned on legal data. This allows us to see if
exposure to legal language might affect the use
of precedent by the model.

Training Procedure. The models are trained
end-to-end by minimizing the cross-entropy be-
tween the model and the empirical distribu-
tion of the training data. We conduct a light
hyper-parameter search over the learning rate
{3e−4, 3e−5, 3e−6}, size of hidden states d2 in
the MLP {50, 100, 200, 300} and dropout rate
{0.1, 0.2, 0.3, 0.4}. We train our models for a max-
imum of ten epochs with early stopping on valida-
tion loss.7 The models are trained for a maximum
of 2 hours on a single GPU. We report our results
for the model that achieves the lowest loss on the
validation set.

Influence Implementation. We rely on a Py-
Torch (Paszke et al., 2019) implementation of Koh
and Liang’s (2017) method,8 a re-implementation
of the original TensorFlow code by Pang Wei Koh.9

Calculating Correlations. We report our results
in terms of Spearman’s ρ. By calculating the
influence score of every case in the training corpus
on every decision in the test corpus, we can
begin to quantify the use of precedent in neural
models of legal outcome prediction by studying
the correlation of the influence scores with our
taxonomy of precedent; see §4. We store the scores
as a vector s ∈ RM , where M is the number of
train cases times the number of test cases. Then,
for each of our four categories of precedent, we
create a binary vector c ∈ {0, 1}M . For each
element in s, c encodes whether the training case
is that particular type of precedent 1 or not 0.

7We stop training when validation loss over an epoch stops
improving.

8A GitHub link to the implementation we rely on.
9A GitHub link to the original implementation by Koh.
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We compute the correlation between c and s and
report Spearman’s ρ. Additionally, we compute
the overall correlation over all types of precedent.
To do this, we simply assign 1 in s to a case if it
falls under any of the precedential categories.

E All Per-Article Results

Here we report the results of our per-article
analysis. The correlations for individual legal
Articles follow the trends reported in §7.
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Figure 2: Spearman’s correlation for cited precedent
under the Simple model with a BERT encoder..
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Figure 3: Spearman’s correlation for claimed precedent
under the Simple model with a BERT encoder.
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Figure 4: Spearman’s correlation for cited precedent
under the Simple model with a BERT encoder.
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Figure 5: Spearman’s correlation for all types of prece-
dent under the Simple model with a LEGAL-BERT
encoder.
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Figure 6: Spearman’s correlation for cited precedent
under the Joint model with a BERT encoder.
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Figure 7: Spearman’s correlation for claimed precedent
under the Joint model with a BERT encoder.
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Figure 8: Spearman’s correlation for cited precedent
under the Joint model with a LEGAL-BERT encoder.
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Figure 9: Spearman’s correlation for claimed precedent
under the Joint model with a LEGAL-BERT encoder.
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F Derivation of the Influence Score

We derive Eq. (5) below. Consider the following bivariate function of θ and ε

F (θ, ε)
def
= ∇θL(θ) + αR(θ) + εℓz(θ) = 0 (12)

Under suitable regularity conditions on F (Rudin, 1976, Chapter 9), the implicit function theorem
guarantees us the following:

1. There exists a function θ⋆
z(ε) of ε such that F (θ⋆

z(ε), ε) = 0 in a certain neighborhood;

2. θ⋆
z(ε) is once differentiable with respect to ε on that neighborhood.

See Rudin (1976, Chapter 9) for more detailed treatment. We now seek to derive dθ⋆
z(ε)
dε . We start with the

linearity of the gradient

0 = ∇θ(L(θ
⋆
z(ε))+αR(θ⋆

z(ε))+εℓz(θ
⋆
z(ε))) = ∇θL(θ

⋆
z(ε))+α∇θR(θ⋆

z(ε))+ε∇θℓz(θ
⋆
z(ε)) (13)

Consider the following manipulation based on taking a derivative with respect to ε:

0 =
d0

dε
=

d (∇θL(θ
⋆
z(ε)) + α∇θR(θ⋆

z(ε)) + ε∇θℓz(θ
⋆
z(ε)))

dε
(14a)

=
d∇θL(θ

⋆
z(ε))

dε
+ α

d∇θR(θ⋆
z(ε))

dε
+

dε∇θℓz(θ
⋆
z(ε))

dε
(14b)

=
d∇θL(θ

⋆
z(ε))

dε
+ α

d∇θR(θ⋆
z(ε))

dε
+∇θℓ(z)(θ

⋆
z(ε)) + ε

d∇θℓz(θ
⋆
z(ε))

dε
(14c)

= ∇2
θL(θ

⋆
z(ε))

dθ⋆
z(ε)

dε
+ α∇2

θR(θ⋆
z(ε))

dθ⋆
z(ε)

dε
+∇θℓz(θ

⋆
z(ε)) + ε∇2

θℓz(θ
⋆
z(ε))

dθ⋆
z(ε)

dε
(14d)

Now, we have

−∇θℓz(θ
⋆
z(ε)) = ∇2

θL(θ
⋆
z(ε))

dθ

dε
+ α∇2

θR(θ⋆
z(ε))

dθ

dε
+ ε∇2

θℓz(θ
⋆
z(ε))

dθ

dε
(15a)

=
(
∇2

θL(θ
⋆
z(ε)) + α∇2

θR(θ⋆
z(ε)) + ε∇2

θℓz(θ
⋆
z(ε))

) dθ
dε

(15b)

Evaluating the expression at ε = 0, we arrive at

dθ⋆
z(ε)

dε

∣∣∣
ε=0

= −
(
∇2

θL(θ
⋆) + α∇2

θR(θ⋆)
)−1∇θℓz(θ

⋆) (16)

where θ⋆ are the parameters obtained in Eq. (3).
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G Additional Results

Here are the full results for our analysis in §8.1.

Applied Distinguished Overall

Type Language Model F1 Cited Claimed Cited Claimed

Simple BERT 0.64 Positive 0.013 0.156 -0.001 0.006 0.149
Negative 0.004 0.024 -0.002 -0.011

LEGAL-BERT 0.67 Positive 0.015 0.205 -0.003 -0.024 0.183
Negative 0.004 0.025 -0.003 -0.025

Joint BERT 0.66 Positive 0.011 0.136 0.002 0.031 0.138
Negative 0.002 0.003 0.001 0.003

LEGAL-BERT 0.68 Positive 0.009 0.146 0.002 0.017 0.148
Negative 0.001 0.022 0.001 0.009

Table 6: Spearman correlations between the influence scores and the precedent for cases where the outcome was
correctly predicted.

Applied Distinguished Overall

Type Language Model F1 Cited Claimed Cited Claimed

Simple BERT 0.64 Positive 0.002 0.004 0.004 0.042 0.007
Negative 0.000 -0.027 0.001 0.009

LEGAL-BERT 0.67 Positive 0.005 0.029 0.003 0.038 0.032
Negative 0.000 -0.011 0.000 0.000

Joint BERT 0.66 Positive 0.002 0.002 0.003 0.035 0.010
Negative 0.001 0.004 0.002 0.006

LEGAL-BERT 0.68 Positive 0.003 0.002 0.002 0.032 0.011
Negative 0.000 0.008 0.002 0.013

Table 7: Spearman correlations between the influence scores and the precedent for cases where the precedent is
model-based.
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