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Abstract

Zero-shot cross-lingual transfer, which implies
finetuning of the multilingual pretrained lan-
guage model on input-output pairs in one lan-
guage and using it to make task predictions for
inputs in other languages, was widely studied
for natural language understanding but is under-
studied for generation. Previous works notice
a frequent problem of generation in a wrong
language and propose approaches to address it,
usually using mT5 as a backbone model. In this
work we compare various approaches proposed
from the literature in unified settings, also in-
cluding alternative backbone models, namely
mBART and NLLB-200. We first underline the
importance of tuning learning rate used for fine-
tuning, which helps to substantially alleviate
the problem of generation in the wrong lan-
guage. Then, we show that with careful learn-
ing rate tuning, the simple full finetuning of the
model acts as a very strong baseline and alter-
native approaches bring only marginal improve-
ments. Finally, we find that mBART performs
similarly to mT5 of the same size, and NLLB-
200 can be competitive in some cases. Our
final zero-shot models reach the performance
of the approach based on data translation which
is usually considered as an upper baseline for
zero-shot cross-lingual transfer in generation.

1 Introduction

Multilingual pretrained language models (mPLMs)
such as mBERT (Devlin et al., 2019), mBART (Liu
et al., 2020), and mT5 (Xue et al., 2021) provide
high-quality representations for texts in various lan-
guages and serve as a a universal backbone for
finetuning on language-specific task data. The lat-
ter, however, is not always available for a language
of interest, providing motivation for studying zero-
shot cross-lingual capabilities of mPLMs. In this
setting, the model is adapted, e.g. finetuned, on
input-output pairs in a source language, usually
English, and then applied in a zero-shot manner
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Figure 1: Learning rate plays a key role in cross-lingual
transfer: decreasing LR almost completely eliminates
generation in the wrong language with standard full fine-
tuning, and often brings larger improvements that using
complex adaptation methods developed to overcome
this problem. Full results in Fig. 9–12 in Appendix.

to make predictions for inputs in another target
language, seen only at the pretraining stage.

While the described setting was broadly studied
for natural language understanding tasks (Xue et al.,
2021; Conneau et al., 2020; Artetxe et al., 2020a;
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Pires et al., 2019; Wu and Dredze, 2019; Pfeiffer
et al., 2020), work on zero-shot cross-lingual trans-
fer in generation is more limited (Vu et al., 2022;
Pfeiffer et al., 2023; Maurya et al., 2021; Li and
Murray, 2023). Previous work highlight two main
problems arising in this scenario: producing inco-
herent or irrelevant answers, and generating text
in a wrong language. A series of potential solu-
tions were proposed, such as freezing the parts of
the weights during finetuning, utilizing parameter-
efficient finetuning methods, mixing-in the unsu-
pervised target language data together with the su-
pervised source language data, or using more than
one source language. A common strategy is also
to perform an intermediate tuning of the model on
the language generation task in a self-supervised
manner (as opposed to denoising tasks used for
pretraining).

However, despite listed efforts, the state of zero-
shot cross-lingual generation still remains unclear
and poses open questions:

• Which adaptation method is most effective?
Methods proposed for mitigating generation in
the wrong language, were all tested on different
tasks and benchmarks, and not compared to meth-
ods from other works, making it hard to establish
the best performing one.

• What makes a better mPLM for zero-shot cross-
lingual transfer? Different models have different
pretraining objectives, training and architectural
choices. How do these factors impact the quality
of the cross-lingual transfer in generation?

• Importance of hyperparameters in downstream
task adaptation. None of the previous work stud-
ied the impact of hyper-parameters used during
downstream task adaptation for zero-shot cross-
lingual transfer in generation.

• Finally, if we pick the best solutions from all
of the three listed dimensions, how far in per-
formance can we get? Can we reach the per-
formance of a strong baseline, data translation,
consisting in translating the train data into tar-
get languages? Previous studies either did not
reach its performance or did not compare to this
baseline.

The contribution of this work is conducting a
deep empirical study addressing the listed ques-
tions. We consider most commonly used multilin-
gual encoder-decoder mPLMs, namely mT5 and
mBART, as well as the translation model NLLB-

200. We systematically study six adaptation meth-
ods, investigate the effect of intermediate tuning,
pay attention to adaptation hyperparameters, and
compare models and adaptation methods in a uni-
fied setting. We consider two tasks: summarization
and questions answering (QA). Our main findings
are as follows:

• Hyperparameter tuning plays a very important
role in cross-lingual transfer in generation: while
related works report a severe problem of gener-
ation in a wrong language after full finetuning,
we find that simply reducing the learning rate
helps to alleviate this problem almost completely,
without hurting performance;

• Intermediate tuning substantially improves per-
formance in the majority of cases;

• With carefully chosen learning rates and inter-
mediate tuning when necessary, simple full fine-
tuning is a very strong baseline for zero-shot
cross-lingual transfer in generation. Improve-
ments brought by more advanced methods are
quite modest, and none of the methods consis-
tently outperform full finetuning in all cases. The
notable methods are freezing the model decoder
and embeddings, which performs consistently
well with mBART (but not with mT5), and us-
ing more than one source language, which per-
forms consistently well with mT5 (but not with
mBART);

• mBART and mT5 of similar sizes lead to com-
parable performance. Qualitatively, due to the
specifics of the masking pretraining objective,
mBART is better suited for tasks with long out-
puts while mT5 is for tasks with short outputs;

• NLLB-200 is surprisingly competitive in sum-
marization, reaching performance of mT5 and
mBART for high-resource Latin-alphabet lan-
guages, but lags behind in QA;

• The final performance of the zero-shot approach
is the same or superior to the performance of
the data translation approach, often considered
as an upper baseline for cross-lingual transfer in
generation. Notably, careful learning rate tuning
coupled with intermediate tuning allows the zero-
shot approach closely approach the performance
of data translation simply with the full finetuning
adaptation.
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2 Related Work

All works on zero-shot cross-lingual transfer in
generation underline (and try to address) the severe
problem of generating in a wrong language at the
test time. This problem is also referred to under
terms catastrophic forgetting (of languages not par-
ticipating in finetuning, Vu et al., 2022), source lan-
guage hallucination (Pfeiffer et al., 2023), or acci-
dential translation problem (Li and Murray, 2023).
Vu et al. (2022) propose to overcome generation in
a wrong language by using parameter-efficient fine-
tuning instantiated by prompt-tuning (Lester et al.,
2021). They also mix-in the unsupervised target
language task together with the supervised source
language task, and factorize learnable prompts into
language and task components.

Pfeiffer et al. (2023) propose mmT5 (modu-
lar mT5), allocating a small amount of language-
specific parameters in the model during pretraining
and freezing them during task-specific finetuning.
To alleviate generation in a wrong language, they
freeze some additional mmT5 parameters during
finetuning, e. g. the embedding layer and feed for-
ward layers in Transformer decoder. Li and Murray
(2023) argue that learning language-invariant rep-
resentations during finetuning is harmful for cross-
lingual generation and propose finetuning on the
data from more than one source language to avoid
generation in a wrong language, with mT5 as a
backbone model. ZMBART (Maurya et al., 2021)
is the only work which considers the other back-
bone model than mT5: they perform an intermedi-
ate tuning of mBART on an auxiliary unsupervised
task on Hindi, Japanese and English. To avoid
generation in a wrong language, they freeze embed-
dings and the Transformer decoder, and mix-in the
data from auxiliary pretraining during finetuning.

In our work we are interested to compare all
previously proposed approaches in a unified setting,
to better assess the impact of different factors on
the zero-shot cross-lingual transfer in generation.

Alternative approaches to zero-shot cross-
lingual transfer include data translation approaches,
often referred as translate-train and translate-test
paradigms. The former one implies translating the
train task data to target languages and finetuning
the model on this translated data, and the latter
one implies translating test input examples into the
source language, generating outputs in the source
language and translating them back into the target
language. The drawbacks of these approaches in-

clude a high computational cost either at training or
testing time, lack of high-quality translation mod-
els for low-resource languages, and potential in-
consistencies between sentences in translation (Vu
et al., 2022). Despite its computational cost, data
translation is a strong approach which is usually
considered as an upper baseline for zero-shot ap-
proaches. Another related field is few-shot cross-
lingual transfer in generation which assumes ac-
cess to a small amount of labeled examples in the
target language (Schmidt et al., 2022; Lauscher
et al., 2020; Zhao et al., 2021). This setting is out
of scope of this study, but could be considered in
the future work.

3 Methodology and experimental setup

Adaptation methods. We investigate the follow-
ing adaptation methods:
• Full finetuning: all weights of the model are fine-

tuned on the source language data;

• Prompt tuning (Vu et al., 2022): comprises
prepending several learnable vectors ("prompt")
to the list of embeddings of the text input and
freezing all other model weights during finetun-
ing. Parameter-efficient approaches were shown
in the literature to be better suited for transfer
learning than full finetuning.

• Adapters (Houlsby et al., 2019; Bapna and Fi-
rat, 2019): lightweight tuned modules inserted
after each fully-connected and attention block of
Transformer, when the rest of (pretrained) model
weights are frozen. We consider adapters as the
most widely used parameter-efficient adaptation
approach in the literature;

• Freezing of the decoder and embeddings (Mau-
rya et al., 2021): only weights in the encoder are
finetuned. The motivation behind this approach
is that the decoder should preserve capabilities
of generating in various languages while the en-
coder will adapt the model to the task;

• Mixing-in self-supervised data for target lan-
guages (Lester et al., 2021; Maurya et al., 2021):
during finetuning, task data instances in the
source language will be alternated with self-
supervised data instances in target languages.
The motivation is that such a mixing will pre-
serve model’s capability of generation in target
languages;

• Using several source languages (Li and Murray,
2023): performing finetuning on more than one
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source language to better decouple task knowl-
edge from language knowledge.

In the rest of the text term "full finetuning" refers
to the finetuning of all weights on the English task
data only, even though two last described meth-
ods also finetune all weights. We do not consider
mmT5 as it was not publicly released and requires
substantial resources for pretraining.

We also experiment with intermediate tuning
(IT) of the model, used in several works and per-
formed before finetuning on the task data. Standard
encoder-decoder mPLMs rely on a self-supervised
denoising training, where often the input corre-
sponds to corrupted text (eg. with masked tokens
or permuted sentences), and the output can follow
some very specific structure (eg. a masked span
rather than a full sentence, output containing spe-
cial tokens, etc.). Therefore, in their raw form,
these mPLMs are not necessarily well suited to
receive well-formed text as an input and generate
clean text as an output. IT performs finetuning on
a language modeling-like task, e.g. predicting the
continuation of a paragraph based on its beginning,
to compensate for this gap. IT was shown to be
necessary in Vu et al. (2022) for prompt tuning of
mT5 and in Maurya et al. (2021) for full or partial
finetuning of mBART. We systematically test the
necessity of IT for all methods and models.

Models. We focus on encoder-decoder mPLMs
as they are well suited for generation purposes, as
opposed to encoder-only mPLMs such as mBERT
or XLM-R. We leave the investigation of decoder-
only mPLMs such as BLOOM (Scao et al., 2022)
for future work. We consider mT5 and mBART as
two most widely used mPLMs and NLLB-200 as a
high-quality translation model:

• mT5: pretrained using the masked language
modeling objective where parts of the input se-
quence are masked and the missing fragments
act as targets1. mT5 is pretrained on the mC4
corpora, supports 101 languages, and does
not use any language codes. Among released
sizes from 300M to 13B we experiment with
mT5-base (580M, most of the experiments)
and mT5-Large (1.2B, additional experiment).

• mBART (pt): pretrained using the denoising
objective where parts of the input sequence
are masked and the entire original sequence

1In contrast to English-centric T5, mT5 did not include
supervised tasks in pretraining.

acts as a target (Liu et al., 2020; Tang et al.,
2021). mBART is pretrained on Common
Crawl (Conneau et al., 2020) corpora, sup-
ports 50 languages, has 680M parameters in
total and uses language codes in both encoder
and decoder sides. Both input sequence X
and target sequence Y are prepended with
the language code: [lang_code, X] and
[lang_code, Y], and at the inference time
lang_code is forced as a first generated token.
Our hypothesis is that the use of the language
code in the decoder can help to alleviate the
problem of generation in a wrong language.

• mBART (tr): In addition to the pretrained ver-
sion, we also consider mBART finetuned for
translation (Tang et al., 2021).

• NLLB-200: translation model supporting 200
languages, pretrained on sentence-level data
mined from the web and automatically paired
using multilingual embeddings. NLLB-200
uses the same language code scheme as
mBART and is released in various sizes from
600M to 54.5B, among them we consider
600M (distilled version). Our hypothesis is
that translation-based pretraining may provide
good representations for cross-lingual transfer
as suggested by (Reid and Artetxe, 2023).

Evaluation. We select two generative tasks to
evaluate cross-lingual zero-shot knowledge trans-
fer:

• XL-Sum: news summarization on the XL-Sum
dataset (Hasan et al., 2021). The model needs
to generate a 1–2 sentences summary based
on a 1–2 news paragraphs. The evaluation is
performed with ROUGE-2 metric (Lin, 2004)
computed on the test sets (first 2k examples
per language).

• XQuAD: question answering dataset (Artetxe
et al., 2020b), the model needs to generate
a short phrase answer based on a paragraph
and a question about it appended in the end
of the paragraph. The evaluation is performed
with F-measure comparing tokens in the gold
answer and the model-generated answer, com-
puted on publicly available development sets.
For better metrics interpretability, we only
consider questions for which groundtruth an-
swers do not contain numbers and are cor-
rectly identified to be written in the target lan-
guage.
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We select a representative subset of languages for
each task2, covering Latin- and non-Latin scripts,
and report how do task-specific metrics evolve dur-
ing adaptation. For better interpretability, in addi-
tion to the task metrics, we also consider (1) lang.
correct rate metric (the percentage of outputs gener-
ated in the correct target language) and (2) average
sequence length metric that allows us to spot some
edge behaviour of the models.

Adaptation settings. For all adaptation methods
we train models on English data for 20k steps with
a batch size of 4000 tokens on a single A100 GPU,
and run evaluation each 2k steps. We crop input
sequences to the maximum length supported by
models, which equals to 512 (mT5, NLLB-200) or
1024 tokens (mBART). We grid search the learning
rate (LR) for each task-model-adaptation method
combination, details are given below.

For Intermediate tuning (IT) we finetune mod-
els for 100k steps on the CommonCrawl data uni-
formly sampled across all target languages and En-
glish, with the batch size of 5k tokens and the LR
chosen to optimize fluency of model generations,
inspected manually. We use PrefixLM-inspired
self-supervision from (Vu et al., 2022), where the
continuation of the text needs to be predicted based
on its beginning. It has shown more promising
results in our preliminary experiments compared
to self-supervised objective from (Maurya et al.,
2021) (see details in Appendix B).

• Prompt tuning: we use the prompt dimension
of 100 and initialize the prompt with randomly
selected rows of the embedding matrix, fol-
lowing Vu et al. (2022).

• Adapters: we use the adapter dimension of
64 and insert adapters after each attention and
fully-connected layer, following Bapna and
Firat (2019).

• Mixing-in target languages: we use the same
self-supervised objective as in IT and sample
the corresponding data with probability 1%
(all languages represented uniformly within
this 1%), following Vu et al. (2022). We exper-
imented with higher portions in Appendix C,
as well as with mixing-in the pretraining task
of the base model, and found that they lead to
worse results.

2XL-Sum: Chinese, French, Korean, Russian, and Spanish.
XQuAD: Arabic, Chinese, German, Russian, and Spanish

• Using several source languages: we test
this approach only on XL-Sum, because for
XQuAD only English training data is avail-
able; for XL-Sum we use English, Japanese
and Arabic, selecting them uniformly when
forming mini-batches.

Hyperparameter tuning. We tune LR and de-
cide on the necessity of IT, for each considered task-
model-adaptation method combination. We ini-
tially grid searched LR for full finetuning, adapters
and prompt tuning, for each task and model, with-
out IT. The result of this step is the preliminary LR
(PLR), and we utilize the PLR of full finetuning
for other adaptation methods since they are also
based on full finetuning. PLR usually corresponds
to the highest LR which still enables generation in
the correct language. After finding PLR, for each
task-model-adaptation method combination, we se-
lect the best of four hyperparameter combinations:
two options for LR (PLR and PLR ×10) and two
options for IT (used or not). Our intuition is that
the use of advanced adaptation methodology or IT
could potentially increase the LR which still does
not lead to generation in the wrong language. In
practice, this happened only once, for freezing of
mBART in the summarization task.

For XL-Sum, we perform the described tuning
on the validation sets, looking at the performance
averaged over considered target languages, while
the main evaluation is performed on the test sets.
For XQuAD, only validation sets are publicly avail-
able so we perform tuning using held-out languages
(Thai, Romanian, and Vietnamese). In Appendix D
we show that performance on validation sets in
target languages correlates with performance on
validation sets in held-out languages and validation
sets translated from English into target languages.
This demonstrates that having validation sets in tar-
get languages is not necessary in practice which is
important to enable fully zero-shot setting.

We report the resulting optimal settings in Ta-
ble 3 in Appendix. We could not find information
on the used LR in (Pfeiffer et al., 2023) and (Vu
et al., 2022), to compare our chosen LRs with theirs.
Maurya et al. (2021) and Li and Murray (2023) use
a constant LR for all tasks, which are hard to com-
pare to ours because of different data3.

More details on the experimental setting are
given in Appendix A.

3Maurya et al. (2021) use LR=3e-5 larger than ours 1e-6,
Li and Murray (2023) use LR=7e-5 close to ours 1e-4.
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4 Experiments

First, we investigate the effect of the learning rate,
intermediate tuning and the adaptation method
for two most commonly used models, mT5 and
mBART. Second, we compare them with other
models and consider larger models. Finally, we
present some qualitative examples and observations
from manual inspection of predictions. In general,
model predictions reaching highest metric values
in our plots, form quite meaningful and reasonable
responses to the considered tasks; more details in
Section 5.

Effect of learning rate. We begin our study with
analysing the effect of LR on the full finetuning
on the English task data. With too small or too
large LR the model does not learn even the English
task because of too short steps or divergence. For
the range of LRs when the English task is learned
well, we observe that larger LRs lead to the effect
reported in other works, when the model overfits to
the source English language and generates answers
in English when applied for inputs in other lan-
guages. However, with the reduced LR, this effect
almost completely eliminates and the model mostly
generates in the target language. This effect is
demonstrated in Figure 1 on a subset of languages
and in Fig. 9–12 in Appendix on all considered
languages.

Figure 1 also shows a comparison of enhance-
ments of full finetuning proposed in the literature,
such as mixing-in target languages or freezing the
decoder and embeddings. Even though these en-
hancements improve performance and percentage
of outputs in the correct language with fixed LR, we
find that reducing LR in full finetuning often brings
larger improvements. Reducing LR for other meth-
ods makes them even stronger.

We note that performance in English is usually
a little higher with larger LR. This may raise a hy-
pothesis that for non-English languages, outputs
generated with larger LR in English may be of
higher semantic quality than the ones generated in
the correct target language with smaller LR. In Ap-
pendix E we test this hypothesis and demonstrate
that this is not the case.

Effect of intermediate tuning. For each com-
bination of a task and an adaptation method, we
compare the mT5-base/mBART task adaptation
with and without intermediate tuning (IT).

We choose the best LR between PLR and PLR

XL-Sum XQuAD

Method mT5 mBART mT5 mBART

Full finetuning +0.1 +2.5 +6.3 +9.0
Ft + mix tgt langs 0 +0.6 +3.1 -8.3
Ft + >1 src langs 0 +1 n/a n/a
Freeze emb & dec +4.3 +4.1 +11.2 +1.3
Adapters 0 0 +1.0 +3.9
Prompt tuning +7.5 +7.2 +26.8 +25.1

Table 1: Difference in performance between task adap-
tation with and without intermediate tuning, for various
methods. Rouge-2 for XL-Sum, F-measure for XQuAD.
Main conclusion: intermediate tuning brings perfor-
mance improvements in the majority of cases, in almost
all the rest cases it does not affect performance.

×10 (section 3). Results are presented in Table 1.
We observe that intermediate tuning substantially
increases performance in the majority of cases. In
particular, IT appears to be essential for mBART
with almost all adaptation methods and in all tasks,
and important for mT5 in question answering. For
mT5 in summarization, the use of IT does not in-
crease performance, except with prompt tuning and
freezing methods. We believe this is because these
two approaches do not modify the decoder, which
was trained only on masked spans targets during
mT5 pretraining and was never exposed to realistic
text targets, and IT closes this gap. This result is
consistent with (Vu et al., 2022) and (Maurya et al.,
2021).

Comparison of adaptation methods. Figure 2
shows results (averaged over target languages)
comparing adaptation methods for mT5-base and
mBART models. Detailed per-language results are
presented in Figure 8 in Appendix.

We observe that with carefully chosen learning
rates and intermediate tuning, simple full finetun-
ing is a very strong baseline for zero-shot cross-
lingual transfer in generation. Improvements
brought by the use of more advanced adaptation
methods are rather modest, and none of the adap-
tation methods consistently outperform full fine-
tuning in all cases. The notable approach for
mBART is freezing the decoder and embeddings,
proposed by Maurya et al. (2021) for this base
model: freezing consistently outperforms full fine-
tuning in all target languages in both tasks. How-
ever, this approach does not show such improve-
ments for mT5. For XL-Sum, using more than one
source language proposed in (Li and Murray, 2023)
for mT5, brings consistent improvement over target
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Figure 2: Comparison of adaptation methods, with tuned learning rates and intermediate tuning when it is needed.
Results averaged across target languages and 2 runs. Language correct rate is close to 100% in almost all cases,
due to hyperparameter tuning. The exception is prompt tuning of mT5 in the XQuAD task which is not shown
because of too low performance. Main conclusions: (1) Straightforward full finetuning is a strong approach which
reaches or approaches the performance of data translation in all cases. (2) None of other approaches outperform full
finetuning consistently in all cases: using several sources languages works well for mT5 but not for mBART and
freezing decoder works well for mBART but not mT5. (3) One of zero-shot approaches reaches or outperforms a
strong and computationally expensive baseline, data translation, in all cases.

XL-Sum XQuAD

Method R2 LCR F1 LCR

Large / IT + ft 9.9 99.8% 69.8 94.7%
Large / IT + ft >1 src lg 10.9 99.8% n/a n/a
Large / Data translation 10.8 99.8% 63.6 96.7%

Base / IT + ft 8.0 99.7% 59.4 92.9%
Base / IT + ft >1 src lg 9.0 99.8% n/a n/a
Base / Data translation 8.5 99.6% 53.9 95.3%

Table 2: Results for mT5-large model, averaged over
target languages. Metrics: Rouge-2 for XL-Sum, F-
measure for XQuAD, LCR: language correct rate. LCR
is lower than 100% on XQuAD (partly) because of
language identification errors for short sequences.

languages when used with mT5. For mBART this
approach performs on par with using one source
language. The obvious drawback of this approach
is that multi-lingual data may be not available, e.g.
this is the case for XQuAD.

Mixing-in unsupervised tasks for target lan-
guages often degrades performance and increases
the length of predictions, see Appendix C. Prompt
tuning often has difficulties learning an English
task and substantially underperforms other adap-
tation methods on XQuAD. Adapters usually per-
form on par or slightly worse than full finetuning.

Comparison of models. Figure 2 allows us to
compare mT5-base and mBART after tuning of
hyperparameters and adaptation methods. These
models incorporate comparable numbers of param-
eters. We observe that mT5 and mBART reach
the close level of performance in both tasks. The
same conclusion holds if we simply compare full
finetuning runs of both models.

In Figure 3 we compare all four models we con-

sider, adapted using full finetuning. We compare
models without intermediate tuning, to avoid hin-
dering model capabilities behind this additional
step. We find that translation-pretrained NLLB-
200 performs well in summarization, achieving per-
formance of mT5 and mBART in Latin-language
high-resource languages, French and Spanish, and
performing on par with mBART without interme-
diate tuning in other languages4. We selectively
inspected the predictions of NLLB and found that
they indeed form meaningful summaries. How-
ever, in QA, NLLB-200 performs poorly, often
(but not always) generating non-relevant answers.
Translation-finetuned version of mBART performs
poorly in all tasks, generating a lot of wrong lan-
guage predictions.

Interestingly, the results do not support our initial
hypothesis that the translation pretraining objective
used in NLLB and architectural choices such as the
use of language codes in mBART, could improve
zero-shot knowledge transfer in generation.

Comparison versus data translation. Figure 2
also shows comparison versus the data translation5

approach, when English training data is translated
into target languages using the NLLB-3.3B model.
We translate data sentence-by-sentence and grid
search the LR for finetuning. The results show that
after careful tuning, the zero-shot approach reaches
or outperforms the data translation approach in
both considered tasks. If we consider a simpler
setting when only LR and the use of IT are tuned,
i.e. comparing full finetuning and data translation

4Expect Chinese, for which NLLB-200 generates a lot of
empty predictions. NLLB-200 was noticed previously in the
literature to have issues with processing Chinese.

5Data translation is often referred as translate-train method.
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Figure 3: Comparison of base models with full finetuning. Each plot averaged over 3 runs. Correct language rate is
close to 100%, due to hyperparameter tuning, in almost all cases except the translation-tuned version of mBART. pt:
pretrained version of mBART, tr: translation-finetuned version of mBART. Main conclusion: mBART and mT5 of
similar sizes perform on par; NLLB performs well in summarization for Latin-alphabet languages.

Model Model outputs in French Translation into English Avg len
1 Grountruth Pr Hulda Swai, professeure tanzanienne de sciences de la vie et de bio-

ingénierie, a été désignée lauréate 2020 du prix continental Kwame 
Nkrumah de l'Union africaine (UA) pour l'excellence scientifique.

Pr. Hulda Swai, a Tanzanian female professor of life sciences and 
bioengineering, has been named the 2020 winner of the African Union 
(AU) Kwame Nkrumah Continental Prize for Scientific Excellence. 151

2 mT5-base, 
full ft w/o IT

<extra_id_0> femmes sont très motivées à entreprendre une carrière 
scientifique dans le domaine de la nanotechnologie.

<extra_id_0> women are highly motivated to pursue a scientific career in 
the field of nanotechnology. 101

3 mT5-base, 
full ft with IT

La professeure de nanotechnologie de l'Union africaine a réussi à réunir 
7,5 millions de dollars.

The nanotechnology female professor from the African Union managed to 
raise $7.5 million. 91

4 mT5-base, 
>1 src langs w/o IT

<extra_id_0> une scientifique africaine a reçu une récompense pour son 
travail dans le domaine de la nanotechnologie.

<extra_id_0> an African female scientist has received an award for her 
work in the field of nanotechnology. 107

5 mT5-base, train 
data translation

Un professeur de nanotechnologie a reçu une récompense continentale 
pour son travail dans le domaine des nanotechnologies.

A nanotechnology professor has received a continental award for her work 
in the field of nanotechnology. 112

6 mBART, 
full ft w/o IT

Ancienne professeure de l'université de Durban a reçu un prix de la part 
de la Banque mondiale.

Former professor at the University of Durban received an award from the 
World Bank. 117

7 mBART,
full ft with IT

A ne pas manquer sur BBC Afrique : Une femme motivée et concentrée Not to be missed on BBC Africa: A motivated and focused woman
111

8 mBART, freeze dec 
& emb, with IT

La professeure africaine de nanotechnologie a été lauréate du prix 
Kwame Nkrumah de l'Union africaine.

The African nanotechnology female professor was the recipient of the 
African Union Kwame Nkrumah Prize. 115

9 mBART, train 
data translation

Un scientifique africain a été lauréat du prix Kwame Nkrumah de l'Union 
africaine.

An African scientist has been awarded the African Union Kwame Nkrumah 
Prize. 108

Figure 4: Example predictions for a selection of models. Avg. len. over evaluation corpora in French, in characters.
Red highlights errors or extra tokens.

runs in Figure 2, we observe that the zero-shot
approach closely approaches the data translation
approach in summarization and performs on par in
question answering. The XQuAD dataset is harder
to automatically translate than XL-Sum, e.g. single
words often present in targets may be translated
into short full sentences.

Experiments with larger models. Table 2 re-
ports results for the mT5-large model where we
compare performance achieved with full finetuning
after intermediate tuning versus training on trans-
lated data. We also include the leader approach of
using several source languages for XL-Sum. We
consider only mT5 because mBART is released in
one size. We reduce LR to 0.00001 for the larger
model, as the LR of 0.0001 used for the base model
was sometimes producing English outputs. We also
list mT5-base results for reference.

We find that the same conclusions hold for the
mT5-large model as for mT5-base: reducing LR
eliminates generation in the wrong language, and

the zero-shot approach is on par or better than the
data translation approach.

5 Inspection of predictions

We inspected a subset of predictions in French and
Russian and found that models achieving highest
scores in both tasks generate fluent, meaningful and
reasonable predictions in a lot of cases, but some-
times have issues with factualness, grammaticality
or hallucinations. Examples are shown in Figure 4.
Analyzing effects of LR, we observe that increas-
ing LR leads first to increase in code switching and
then to wrong language generation, while reduc-
ing LR leads to producing rudiments of pretraining
in generation. For example, models sometimes
generate extra tokens used in pretraining, such as
<extra_id_{N}> for mT5 or <sep> for mBART,
see rows 2 and 4 in Figure 4. In most cases this
does not affect meaningfulness of predictions, but
in rare cases leads to mT5 producing incomplete
sentences, which may look unreasonable in sum-
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marization, e.g. “<extra_id_0> Guinea-Bissau
President Alberto Dabo said.” (translated
from French). The reason is that in mT5 pretraining
tokens <extra_id_{N}> were followed by frag-
ments of input sentences. The described effect is
eliminated by intermediate tuning (row 3 in Fig. 4).

In the same fashion, mBART average lengths are
closer to groundtruth average lengths than mT5 in
summarization, and the reverse effect takes place
in QA. The reason is that in mT5 pretraining, the
targets are only fragments masked in the input,
which are shorter than targets in mBART pretrain-
ing represented by full sequences (they need to be
reconstructed from the masked inputs).

Notably, data translation can produce translation-
related errors, e.g. in rows 5 and 9 models generate
a wrong male article "Un", probably because this
was a dominating article in the translated data.

6 Conclusion

In this work, we conducted a deep systematic study
of how to achieve high-performing zero-shot cross-
lingual transfer in generation. Our study highlights
the high importance of careful learning rate tun-
ing and the usefilness of the intermediate tuning.
We show that with these two ingredients, mT5 and
mBART achieve strong results with simple full
finetuning, i.e. closely approach the performance
of translate-train in summarization and reach it in
question answering. The performance gap in sum-
marization is closed by using several source lan-
guages for mT5 and freezing decoder and embed-
dings for mBART. Translation-pretrained NLLB-
200 shows surprisingly good performance in sum-
marization but lags behind in question answering.
We urge future works to pay more attention to
hyperparameter tuning and to report more rigor-
ously their experimental setup, as well as consider
a wider spectrum of models and baselines in the
experiments.

7 Limitations and broader impact

We aim at conducting a deep, thoughtful study of
various design choices in zero-shot cross-lingual
generation, but acknowledge the impossibility of
considering all possible options, given the resource
constraints. In particular, we could not perform full
fine-grained grid search of LR for each task-model-
adaptation method combination. Instead, we use a
well-designed simplified strategy described in Sec-
tion 3, which already gave strong results. In the

same fashion, we had to limit our study to three
models (we picked most commonly used models)
and adaptation methods which do not require model
pretraining, e.g. we do not consider mmT5 model.
Nonetheless, we hope our study provides helpful
insights on zero-shot cross-lingual transfer in gen-
erative tasks and shows that it can achieve the per-
formance of the data translation method, which is
usually considered as an unreachable upper base-
line.

We do not anticipate any negative impact of our
work and on the reverse hope that it will help to
make higher-quality language technologies acces-
sible to a broader set of languages.
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A Experimental setup

Data. We experiment with news summarization
on the XL-Sum dataset (Hasan et al., 2021) (re-
leased under the CC BY-NC-SA 4.0 license) and
question answering on the XQuAD dataset (Artetxe
et al., 2020b) (released under the CC BY-SA 4.0 li-
cense). Both datasets were released for research pu-
poses. The XL-Sum dataset was obtained by crawl-
ing BBC news in 44 languages, with corpus size
per language varying from 1K (Scottish Gaelic)
to 300K (English) article-summary pairs. Inputs
are composed of 1–2 paragraphs and targets are
usually 2–3 sentences. We evaluate on test sets
and crop test sets larger than 2K samples, to 2K.
The XQuAD dataset was obtained by translating
SQuAD validation set (Rajpurkar et al., 2016) into
11 languages, thus all language corpora are parallel.
We use this dataset for evaluation and train on the
training set of SQuAD (80K training instances).
Each input is composed of a paragraph and a ques-
tion about this paragraph appended in the end of the
paragraph. Each output is an answer to a question,
a short segment copied from the paragraph.

Preprocessing and postprocessing. We tokenize
data using each model’s tokenizer. We crop
model inputs and outputs to the maximum lengths
supported by models, which equal to 1024 to-
kens for mBART and 512 tokens for mT5-base
and NLLB-600M. Due to the design of pretrain-
ing, models may generate extra tokens such as
<extra_id_{N}> for or <sep> for mBART. We re-
move such extra tokens from predictions before
computing metrics.

Models and training. We consider three models:
mT5 (base and large, released under the Apache
License 2.0 license), mBART (MIT license), and
NLLB-200 (cc-by-nc-4.0 license). All models al-
low use for research purposes. We train models
on English data for 20k steps with batch size of
4000 tokens on a single A100 GPU, and conduct
validation on considered target languages each 2k
steps. We use Adam optimizer with standard in-
verse square root LR schedule and warm up of 4k
steps, and update model parameters after each mini-
batch. We estimated the total computational budget
of our experiments to be 4K GPU hours.

Hyperparameter search. For full finetuning,
adapters and prompt tuning, we run a search over
a range of LR. For each task and model (without
intermediate tuning), we search the LR best for non

Model Method XL-Sum XQuAD
LR IT? LR IT?

Ft w/o IT 1e-4 1e-4
Ft 1e-4 1e-4 ✓

mT5 + Mix tgt langs 1e-4 1e-4 ✓
(base) + >1 src langs 1e-4 n/a

Freeze 1e-4 ✓ 1e-4 ✓
Adapters 1e-3 1e-3
Prompt tuning 1e-2 ✓ 1e-2 ✓
Ft w/o IT 1e-6 1e-5
Ft 1e-6 ✓ 1e-5 ✓
+ Mix tgt langs 1e-6 ✓ 1e-5

mBART + >1 src langs 1e-6 ✓ n/a
Freeze 1e-5 ✓ 1e-5 ✓
Adapters 1e-5 ✓ 1e-3 ✓
Prompt tuning 1e-2 ✓ 1e-3 ✓

NLLB Ft w/o IT 1e-5 3e-5

mBART
(tr)

Ft w/o IT 1e-6 1e-3

Table 3: Best hyperparameter configurations for non-
English languages: chosen learning rates and whether
intermediate tuning (IT) is used. n/a: not applicable.

English languages on average, looking at ROUGE-
2 for summarization and F-measure for QA. We
start with the set of three LRs: {10−k, k = 3, 4, 5}.
If the optimal k∗ ̸= 4 then we extend search cor-
respondingly to k = 2, 1 or k = 6, 7 until per-
formance stops improving. For full finetuning, af-
ter we find optimal k∗ we also consider 3 · 10−k∗ .
The motivation is that the optimal k∗ usually cor-
responds to the maximal k that still allows gen-
eration in the correct language, and considering
3 · 10−k∗ enables more accurate search for this
maximum. We report chosen LRs for full finetun-
ing and adapters in Table 3. For prompt tuning we
chose LR of 0.01 for both tasks.

Evaluation. For summarization, we report the
ROUGE-2 metric (Lin, 2004), and for QA, we re-
port F-measure. In QA, a lot of answers contain
numbers or English words which could inflate met-
rics even if the model does not generate in the cor-
rect language. Moreover, the accuracy of language
identification decreases on short answers, resulting
in false indication of generation in wrong language.
To avoid these issues, we compute metrics in QA
only over questions for which groundtruth answers
do not contain numbers and are correctly identified
to be written in the target language (∼50% of 1190
questions satisfy this criteria).

For ROUGE metric, we use the gem-metrics
package. For F1 metric in XQuAD, we use the
script provided by the dataset authors. To identify

7233



5000 10000 15000 20000
training steps

0

2

4

6

8
XL-Sum

5000 10000 15000 20000
training steps

0

20

40

60

XQuAD

mt5 pretrained
mt5 w/ IT-prefixLM
mt5 w/ IT-zmbart
mbart pretrained
mbart w/ IT-prefixLM
mbart w/ IT-zmbart

Figure 5: Comparison of self-supervised objectives for
intermediate tuning, with freezing decoder and embed-
dings as an adaptation method. Task metric: Rouge-2
for XL-Sum, F1 for XQuAD. Correct language rate is
close to 100% in all cases except pretrained mBART on
XL-Sum.

language, we use fasttext library (Joulin et al.,
2017, 2016) and its lid.176.bin model6.

B Preliminary experiments with
intermediate tuning

Figure 5 reports comparison of two self-supervised
objectives for intermediate tuning: Prefix-LM and
ZmBART-like objective. PrefixLM objective im-
plies predicting the continuation of the chuck of
text based on its beginning, while ZmBART-like
objective implies citing random sentences from the
input chunk of text. We compare two objectives
using the freezing of the decoder and embeddings
as an adaptation method, applied after intermediate
tuning with the chosen objective, because we found
intermediate tuning to be essential for this adapta-
tion method in the preliminary experiments. Fine-
tuning LR equals to the PLR defined in Section 4,
intermediate tuning LR was chosen to optimize
fluency of model generations, inspected manually.
Intermediate tuning is performed on the Common-
Crawl dataset.

We observe that for XL-Sum, the Prefix-LM ob-
jective leads to substantially higher Rouge-2 values,
while for XQuAD both objectives lead to close re-
sults. Based on these results, we decided to use the
Prefix-LM objective in all experiments.

C Preliminary experiments with
mixing-in target languages

Figure 6 reports results of preliminary experiments
with mixing-in a self-supervised task in target lan-
guages. For each base model, namely mT5-base
and mBART, we consider its pretraining task and a
Prefix-LM task used for intermediate tuning. We

6https://fasttext.cc/docs/en/
language-identification.html

5000 10000 15000 20000
training steps

0

2

4

6

8
mT5 / ROUGE-2

5000 10000 15000 20000
training steps

2

4

6

mBART / ROUGE-2

5000 10000 15000 20000
training steps

0

25

50

75

100
mT5 / avg. len

mt5 / no mix-in
mt5 / span corrupt p=1%
mt5 / span corrupt p=5%
mt5 / span corrupt p=50%
mt5 / prefixLM p=1%
mt5 / prefixLM p=5%
mt5 / prefixLM p=15%

5000 10000 15000 20000
training steps

200

400

600

800
mBART / avg. len

mbart / no mix-in
mbart / denoising p=1%
mbart / denoising p=5%
mbart / prefixLM p=1%
mbart / prefixLM p=5%
mbart / prefixLM p=15%

Figure 6: Preliminary experiments with mixing-in a self-
supervised task for target languages. The probability
in the legend denotes the probability of sampling target
language examples when forming mini-batches. Two
self-supervised tasks considered: Prefix-LM and the
pretraining task of the model. Correct language rate is
close to 100% in all cases

consider several options for the probability of sam-
pling target language examples when forming mini-
batches. CommonCrawl data is used for the self-
supervised task. The experiment is conducted for
the XL-Sum task, with LR being equal to the PLR
defined in Section 4, without intermediate tuning.

For mt5, we observe that using the span corrup-
tion pretraining task leads to empty outputs with
any mixing-in probability (with smaller probabili-
ties this effect happens later in the training). This
is because task examples do not contain any mask
tokens, and empty generation is a default response
of the pretrained mT5 to such inputs. Mixing-in
PrefixLM task examples performs similarly to the
standard finetuning of mT5, with mixing-in proba-
bility of 1% performing best, same as in (Vu et al.,
2022). Qualitatively, mixing-in self-supervised
task increases the length of generated outputs in
the tasks of interest.

For mBART, all mixing-in strategies lead to
modest improvements in performance, with Pre-
fixLM task performing slightly better. All consid-
ered mixing-in probabilities lead to similar results.
Based on these observations, we decided to use the
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Figure 7: Correlation in performance on various val-
idation sets. Each dot represents mT5-base finetuned
on English data, with or without intermediate tuning
(reflected with the shape and color of the point), and the
size of the point reflects the learning rate. Natural valid.
set means the validation set provided by the authors of
the dataset.

PrefixLM task with mixing-in probability of 1% in
our experiments.

D Comparing validation sets

Figure 7 demonstrates the correlation between per-
formance measured on various validation sets. Per-
formance on validation sets in target languages
correlates with performance on validation sets in
held-out languages and validation sets translated
from English into target languages. This shows that
having validation sets in target languages is not nec-
essary in practice which is important to enable fully
zero-shot setting.

E Additional experiment with translating
English outputs into target languages

When reducing the LR for preserving generation
in correct language, a reasonable question could be
whether predictions of higher LR models are higher
quality answers, but just in the wrong language, or
simply hallucinations caused by data distribution
shift. The premise for the former scenario is that
on English data, performance with our chosen LR
is usually slightly lower than with a larger LR.

We find that actually the later scenario takes
place, by comparing performance of our chosen
LR (best for non-English) and of the best LR for

Best-En LR + Tr. Best-non-En LR

LR Score LR Score

mT5 1e-3 4.02 1e-4 7.7
Sum mBART 1e-5 4.06 1e-6 5.34

NLLB-200 1e-4 2.86 1e-5 4.62

mT5 1e-4 46.2 1e-4 58.6
QA mBART 1e-5 41.1 1e-5 46.6

NLLB-200 1e-4 17.4 3e-5 18.2

Table 4: Comparison of best LR for non-English lan-
guages and best LR for English with model outputs
being translated into target languages. Performance av-
eraged over non-English languages, after 20k of full
finetuning. Reported metric: Rouge-2 for summariza-
tion, F-measure for QA. mBART — pretrained version,
no intermediate tuning is used in this experiment.

English with model predictions being translated
into target languages using NLLB-3.3B7, for last
checkpoints of full models finetuning. According
to Table 4, translated predictions of the higher LR
model score lower than the (non-translated) predic-
tions of the lower LR model. This result further
advocates for the importance of careful LR tun-
ing for full finetuning in zero-shot cross-lingual
transfer in generation.

7NLLB-3.3B handles well inputs containing code switch-
ing which are frequent in predictions we are translating, and
simply copies inputs which are already in the target language.
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Figure 8: Per-language results on the comparison of adaptation methods. Each plot averaged over 2 runs. Correct
language rate is close to 100% in all cases, due to the hyperparameter tuning, except prompt tuning of mT5 in the
XQuAD task.
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Figure 9: Per-language results on the effect of learning
rate, for mT5 on XL-Sum.
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Figure 10: Per-language results on the effect of learning
rate, for mBART on XL-Sum.
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Figure 11: Per-language results on the effect of learning
rate, for mT5 on XQuAD.
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Figure 12: Per-language results on the effect of learning
rate, for mBART on XQuAD.

7238


