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Abstract

Generating factual responses is a crucial re-
quirement for dialogue systems. To promote
more factual responses, a common strategy
is to ground their responses in relevant doc-
uments that inform response generation. How-
ever, common dialogue models still often hal-
lucinate information that was not contained
in these documents and is therefore unfaith-
ful. In this work, we propose to alleviate such
hallucinations by ‘subtracting’ the parameters
of a model trained to hallucinate from a dia-
logue response generation model in order to
‘negate’ the contribution of such hallucinated
examples from it. Extensive automatic and hu-
man evaluation shows favourable results when
compared to state-of-the-art methods that com-
bine the distributions of multiple models, such
as DExperts (Liu et al., 2021), and others that
change the training procedure, such as Quark
(Lu et al., 2022a). Finally, we show how we
can not only reduce hallucinations but also dis-
courage extractive responses, which are often
a consequence of reducing hallucinations by
encouraging copy-pasting of document spans.
We publicly release our code for reproducibility
and facilitating further research.

https://github.com/UKPLab/
naacl2024-ewr

1 Introduction

Current-day large language models (LLMs) impres-
sively generate coherent, grammatical, and seem-
ingly meaningful text, but are prone to hallucinat-
ing incorrect information. While grounding them
in relevant documents can alleviate this (Shuster
et al., 2021), models still tend to generate informa-
tion that conflicts these documents, which would
again be classified as hallucination (Dziri et al.,
2022a). This raises major safety concerns. Such
hallucinations could impair student learning, or
proliferate convincing-but-inaccurate news articles.
Therefore, ensuring trustworthiness is crucial for

K: The Flash first appeared in “Show-
case” #4 (October 1956) [...]
uT : What comic series is he from?
uT+1 F A
He first appeared in “Showcase” #4
(November 1956).

✗ ✗

He first appeared in “Showcase” #4
(October 1956).

✓ ✗

His first appearance was in Showcase
#4 in October 1956.

✓ ✓

Figure 1: Constructed example of responses uT+1 that
are i) hallucinated (words contradicting the knowledge
K in red); ii) faithful but not abstractive (longest copied
n-gram in blue); and iii) both Faithful and Abstractive
based on Wizard-of-Wikipedia (Dinan et al., 2019).

the safe deployment of LLMs at scale, particularly
in high-stakes domains.

Modelling solutions to mitigate hallucination
often take inspiration from methods used to dis-
courage other undesirable behaviours in LLMs,
for example, contradictions (Keskar et al., 2019),
repetitions (Lu et al., 2022a), or toxicity (Ilharco
et al., 2023). One group of methods achieves this
by fine-tuning an LLM conditioned on special to-
kens (Niu and Bansal, 2018; Keskar et al., 2019),
which can be assigned to model generations by a
learned reward model during training (Lu et al.,
2022a). Another re-weights the predictive distribu-
tion with models that are specialised for positive
or negative behaviour (Liu et al., 2021; Daheim
et al., 2022), called ‘experts’ or ‘anti-experts’ re-
spectively. While successful, these methods are
either inefficient to train, as a large number of gen-
erations needs to be sampled during training, or
inefficient in inference, as multiple models have
to be stored and evaluated. In this work, we ex-
plore a different family of methods (Choubey et al.,
2023; Ilharco et al., 2023) that uses modular deep
learning (Ponti et al., 2021; Pfeiffer et al., 2023)
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by interpolating parameters without altering the
model architecture. This is efficient during infer-
ence, because only one interpolated model needs
to evaluated, and for training the models that are in-
terpolated no new data needs to be sampled during
the training procedure. Concretely, a new model
is obtained as the weighted difference between a
pretrained LLM and a model finetuned from it, for
example, as an anti-expert (Ilharco et al., 2023).
One drawback of this strategy is that parameters
are weighted uniformly even though they might
have differing contributions to hallucinations. Fur-
thermore, it might result in catastrophic interfer-
ence between the specialised models (McCloskey
and Cohen, 1989). To address this, we propose
Elastic Weight Removal (EWR), a novel method
for parameter interpolation that weights the impor-
tance of each parameter by using the Fisher Infor-
mation Matrix (FIM) as a measure of importance,
similar to previous works in continual learning
(Kirkpatrick et al., 2017), sample-efficient learning
(Ponti et al., 2019), or merging models for different
tasks (Matena and Raffel, 2022). In our experi-
ments, we show how this can be used to discourage
hallucinations by first training an anti-expert on
synthetically created data and then interpolating it
with the baseline model.

We compare our method with state-of-the-art
methods for removing hallucinations and other
undesired behaviours, which we adapt to remov-
ing hallucinations. Namely, we adapt Quark (Lu
et al., 2022a), DExperts (Liu et al., 2021), and
task arithmetic (Choubey et al., 2023; Ilharco et al.,
2023). Our findings show consistent improvements
in faithfulness, which can be combined with those
of others, such as CTRL (Rashkin et al., 2021). Of-
tentimes, an increase in faithfulness comes at an
increase in extractiveness from copy-pasting docu-
ment spans into the response. Based on this insight,
we finally highlight how EWR can be extended to
reducing hallucinations and extractiveness at the
same time. Our results are confirmed using a hu-
man evaluation with the Attributable to Identified
Source (AIS) framework (Rashkin et al., 2023). We
will release the code for all methods and metrics in
a comprehensive framework.

2 Background

The goal of dialogue response generation is to con-
tinue a dialogue uT

1 := (u1, . . . ,uT ) of T turns by
generating a new turn uT+1. Here, each turn ut is

just a sequence of Nt tokens [ut]
Nt
1 ∈ VNt from

the model vocabulary V . In document-grounded
response generation, uT+1 is grounded in one or
more documents K̂ ⊆ K from a document knowl-
edge base K, meaning that K̂ informs the infor-
mation content of uT+1. Therefore, uT+1 should
also faithfully reflect it. This means that neither
contradicting nor unverifiable information should
be added. In this work, we assume that K̂ is given.

A common strategy for generating uT+1 is using
language generators that model the distribution

pθ(uT+1 | uT
1 , K̂) =

NT+1∏

n=1

pθ([uT+1]n | [uT+1]
n−1
1 ,uT

1 , K̂), (1)

parameterised by weights θ, for next-token pre-
diction paired with a search algorithm like beam
search. We focus on different methods of obtaining
θ while maintaining the same model architecture.

2.1 Parameter Combination for Faithful
Generation

Previous works have explored combining model
parameters with different goals, for example, to in-
crease robustness (Gao et al., 2022) but also to pro-
mote or discourage different behaviours by merg-
ing specifically trained model instances (Ilharco
et al., 2023).

In this work, we use it to discourage hallu-
cinations in dialogue models. By letting Θ =
{θ1, . . . ,θN}, where θi ∈ Rd, denote the parame-
ters of a set of models that should be merged and
share a common architecture, and λi ∈ Rd their
respective scaling factors, many such methods can
be expressed by:

θ′ =
N∑

i=1

λi ⊙ θi
Z

, (2)

where ⊙ denotes element-wise multiplication and
Z can be used to re-scale parameters.

One such method is task arithmetic (Ilharco et al.,
2023), which bases on the idea that essential infor-
mation about a task can be captured by the change
of the parameter values between pretrained initiali-
sation θ0 and the finetuned θft, called task vector.
Given this information, the behaviour needed for
this task can be added to the model θ0 by adding
a task vector and also removed by subtracting it.
Concretely, the task vector can be expressed as:

τ := θft − θ0. (3)
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Then, task arithmetic (Ilharco et al., 2023) uses the
following for model combination:

θ′ = θ0 +
∑

i

λiτi, (4)

where the scalar λi promotes the behaviour cap-
tured by τi if λi > 0 and discourages it if λi < 0.

We will use the latter to discourage hallucina-
tions by training a model to hallucinate and then
discouraging its behaviour through subtraction. In-
tuitively, this can be understood as a form of data
removal (Daheim et al., 2024), where unwanted
training data is (approximately) removed from a
model by subtracting a model trained on this data.
We will refer to such a model as ‘anti-expert’ (θAE)
and then use the following task arithmetic:

θ′ = θ0 − λ · τ
= θ0 − λ · (θAE − θ0)

= (1 + λ) · θ0 − λ · θAE. (5)

We would expect a model parameterised by θ′ to
hallucinate less than one parameterised by θ0.

We could also add an expert model θE, for exam-
ple, trained on abstractive data which significantly
rewrites the documents content:

θ′ = θ0−λAE · (θAE −θ0)+λE · (θE −θ0). (6)

Setting λ = λAE = λE is equivalent to using
Contrastive Parameter Estimation (CaPE; Choubey
et al., 2023) with the following simplified update:

θ′ = θ0 + λ · (θE − θAE). (7)

We will discuss how to train θAE and θE later.
Both task arithmetic and CaPE use scalars λ for

parameter combination and therefore assume equal
parameter importance. Intuitively, though, only
a subset of parameters might be responsible for
hallucinations. For example, anomalous encoder–
decoder attention patterns correlate strongly with
hallucinations (Raunak et al., 2021; Guerreiro et al.,
2023, inter alia). Hence, only these specific param-
eters might be required to change. Moreover, com-
posing multiple task vectors might lead to catas-
trophic interference (Ansell et al., 2022). Next, we
show how parameters can be weighed individually
which we hope will improve task arithmetic.

3 Elastic Weight Removal

In our proposed method, Elastic Weight Removal
(EWR), we use the Fisher Information matrix

(or Fisher) to combine models with importance-
weighted scaling factors for each parameter.
Thereby, we aim to preserve positive behaviour in
the model fine-tuned for dialogue response genera-
tion while removing the most important parameters
in the anti-expert task vector, which lead to halluci-
nated generations. We take inspiration from prior
works that successfully use the Fisher for similar
parameter-specific scaling, for example, against
catastrophic forgetting (Kirkpatrick et al., 2017),
for merging checkpoints of the same model trained
independently on different tasks (Matena and Raf-
fel, 2022), or preconditioning updates in stochastic
optimization (Amari, 1998; Martens, 2020). We
refer the reader to prior works (Schraudolph, 2002;
Martens, 2020; Kunstner et al., 2019) for more in-
formation about theoretical properties of the Fisher.
Of practical importance is that the Fisher has size
d2 for a neural network model with d parame-
ters. Therefore, it is commonly approximated by
its diagonal (Matena and Raffel, 2022, inter alia).
The diagonal can be estimated efficiently by sum-
ming or averaging the squared gradients of the
model over the training data. Here, the label is
sampled from the model at each step instead of
taking the annotated token (cf. Kunstner et al.
(2019)). For a model pθ(y | x) this means calcu-
lating: fθ = 1

|D|
∑

x∈D[∇ log pθ(y
′ | x)]2, where

y′ ∼ pθ(· | x) is sampled from the model.
We start by taking Equation (2) and setting λ0,

which scales pre-trained parameters θ0, to λ0 · fθ
(note that λ0 is equal to 1 in Equation (5) for task
arithmetic). Similarly, for each task vector τi, we
replace the scalar factor λi with λi · fτi . This way,
we can still control the influence of each model
with a scalar hyper-parameter, while the diago-
nal Fisher estimate controls individual parameters.
Since the entries in f can have different magnitudes
than the entries in θ, we use a scaling constant Z.
Then, our parameter combination is defined as:

θ′ =
λ0 · fθ0 · θ0 +

∑N
i=1 λi · fτi · τi

Z
, (8)

One choice is to set Z := λ0 · fθ0 +
∑

i |λi| · fτi ,
similar to Matena and Raffel (2022). Then, using
only a hallucination anti-expert θAE, we can rewrite
the update as:

θ′ = θ0 −
λAE · fτAE

λ0 · fθ0 + λAE · fτAE

θAE. (9)

Therefore, fθ0 and fτAE determine how much each
parameter should be changed—parameters with
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large fθ0 are preserved and parameters with large
fτ1 are changed more due to their contribution
to negative behaviour. When an expert model
is added, as well, it is only possible to obtain a
similar rewrite when the sign of the correspond-
ing αi is flipped in the denominator, i.e. Z :=
λ0 · fθ0 +

∑
i(−λi) · fτi . We have found this to be

more stable empirically. However, it can introduce
divisions by 0 which can be avoided by adding a
small constant. Finally, we have found calculating
the Fisher at τ to perform well empirically, even
though calculating it at θAE or θE, respectively, is
theoretically better grounded. Next, we describe
how we train the expert and anti-expert models.
Pseudocode for EWR is shown in Appendix A.1.

3.1 Training Data for (Anti-)Experts

The subtraction of a model trained to hallucinate
in EWR can be understood as removing training
examples which contain hallucinations. Similarly,
adding a model trained on abstractive examples can
be seen as data addition. Therefore, the data used
to train the (anti-)expert models also determines the
behaviour of EWR. In particular, the data for the
anti-expert influences which kinds of hallucinations
can be reduced: precisely those that are captured
in the anti-expert training data.

We use different strategies to create halluci-
nated examples DAE. For Wizard-of-Wikipedia
(WoW), we use all examples from Faithdial (Dziri
et al., 2022a) which humans rated as hallucinations
according to the BEGIN taxonomy (Dziri et al.,
2022c). That is, we use the hallucinated examples
from the training data which we want to remove.
Since such annotations often do not exist for other
data, we try lightweight data augmentation tech-
niques to artificially create hallucinated data which
should capture different forms of hallucinations.
We find that replacing the ground-truth documents
by randomly sampled ones performs similarly to
using human hallucination annotations. Potentially,
this forces the model to hallucinate, as the input
does not contain the correct information for the
response. We use this strategy for all other datasets
than WoW. CaPE and DExperts (which we intro-
duce in detail in the following Section 4.2) also
use a faithfulness expert in addition to a hallucina-
tion anti-expert. For training this expert, we use
responses that are assigned an entailment token
when training CTRL, because such examples are
unlikely to contain hallucinations.

To create a dataset of abstractive examples DE,
we use the density and coverage metrics introduced
in Grusky et al. (2018). Coverage measures the
ratio of unigrams from the grounding documents
that appear in the response and density measures
the average length of copied text spans. Intuitively,
we would like to have low density, because this
indicates paraphrasing, but such examples might
be hallucinated. Therefore, we pick examples that
also have high coverage to ensure that the infor-
mation from the document is used. We do this by
splitting the dataset into buckets and assigning low,
medium, and high density or coverage tokens to
them, similar to Keskar et al. (2019), and taking the
high density examples. Future work can explore
further methods for data augmentation.

4 Experiments

We experiment on multiple datasets outlined in Sec-
tion 4.1. We compare EWR to CaPE and task arith-
metic, as well as a set of other unlearning methods,
which we apply for faithful dialogue generation for
the first time. Furthermore, we compare to state-
of-the-art methods for faithful dialogue generation.
We list these baselines in Section 4.2. Crucially,
parameter combination can be added independently
on top of many of the other baselines.

All experiments are implemented using Hug-
gingface transformers (Wolf et al., 2020) and mod-
els are initialised from publicly available Flan-
T5 checkpoints (Longpre et al., 2023), which we
have found to perform substantially better than pre-
viously introduced encoder-decoder models like
BART (Lewis et al., 2020) or T5 (Raffel et al.,
2020). We organise our experiments using Sisy-
phus (Peter et al., 2018) and release configuration
files to reproduce our results. Further experimental
details, such as learning rate or number of epochs,
are given in Appendix B.1. We use beam search
with a beam size of 10 for decoding.

4.1 Datasets

We evaluate all methods on Wizard-of-Wikipedia
(Dinan et al., 2019, WoW), an open-domain dataset
for information-seeking dialogue where turns are
grounded in Wikipedia snippets. WoW contains
a seen and an unseen split. Furthermore, we use
the DSTC9 (Kim et al., 2020) extension of Multi-
WoZ 2.1 (Eric et al., 2020), which augments the
original dialogues by turns that are grounded in
short FAQ documents. For further experiments, we
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WoWseen DSTC9
BLEU(↑) Critic(↓) Q2(↑) BERT(↑) F1(↑) Dens.(↓) BLEU(↑) Critic(↓) Q2(↑) BERT(↑) F1(↑) Dens.(↓)

Model (y, ŷ) (y, K̂) (y, ŷ) (y, K̂)

Flan-T5 18.5 24.3 76.2 84.4 78.6 12.4 18.5 6.2 62.3 61.3 45.2 1.73
+ TA 19.1 19.4 75.9 82.2 74.4 11.1 18.5 2.5 79.6 63.6 53.9 2.80
+ EWR 18.1 (↓-0.4) 18.1 (↓-6.2) 78.0 (↑1.8) 86.2 (↑1.8) 80.8 (↑2.2) 13.5 (↑1.1) 20.0 (↑1.5) 4.3 (↓-1.9) 78.4 (↑16.1) 64.4 (↑3.1) 55.6 (↑10.4) 3.22 (↑1.49)

CaPE 18.8 13.2 78.2 83.7 75.9 11.2 17.3 2.3 72.5 63.3 52.6 2.63
+ EWR 19.0 (↑0.2) 9.4 (↓-3.8) 78.7 (↑0.5) 88.2 (↑4.5) 83.0 (↑7.1) 13.6 (↑2.4) 16.7 (↓-0.6) 2.6 (↑0.3) 79.2 (↑6.7) 64.3 (↑1.0) 54.0 (↑1.4) 2.76 (↑0.13)

CTRL 19.5 10.3 83.9 87.8 82.3 13.9 17.6 5.3 79.8 64.5 57.8 3.30
+ TA 19.3 8.9 82.7 87.0 81.2 13.0 18.0 1.2 89.5 66.5 63.6 4.53
+ EWR 18.4 (↓-0.8) 5.7 (↓-4.6) 86.8 (↑2.9) 91.3 (↑3.5) 87.7 (↑5.4) 16.3 (↑2.4) 19.4 (↑1.7) 2.3 (↓-3.0) 85.3 (↑5.5) 65.5 (↑1.0) 60.6 (↑2.8) 3.80 (↑0.5)

DExperts 18.0 14.8 79.6 87.0 82.2 14.3 17.1 2.9 74.9 63.6 55.7 2.83
Quark 17.2 7.9 91.9 92.6 90.2 18.6 19.0 5.7 73.1 62.7 49.8 2.03
Noisy Channel 18.4 24.0 78.6 85.0 79.8 13.1 18.6 5.1 67.1 62.7 48.4 2.18
Dial-BeInfo 18.2 23.0 78.2 85.6 80.7 13.1 19.5 5.7 74.9 63.0 51.7 2.86
Loss Truncation 18.4 24.9 77.3 84.0 77.9 12.0 18.4 4.9 63.0 61.2 45.6 1.68

Table 1: Main results on WoWseen and DSTC9 indicating: i) performance in dialogue generation comparing true ŷ
and predicted y responses (BLEU); ii) faithfulness of predicted response y to ground-truth knowledge K̂ (Critic,
Q2, BERT, F1); 3) abstractiveness (Dens.). We report several baselines adapted for faithful generation and show
how Task Arithmetic (TA) and Elastic Weight Removal (EWR, ours) can be deployed on top of vanilla pre-trained
models, like Flan-T5, or on top of other methods like CTRL. Relative improvements and degradations are indicated
in green and red, respectively.

use DSTC11 (Zhao et al., 2023; Kim et al., 2023),
which extends DSTC9 to multi-document settings,
and FaithDial (Dziri et al., 2022a), which is a de-
hallucinated subset of WoW. Statistics are shown
in Appendix B.2.

4.2 Baselines

CTRL (Rashkin et al., 2021) (Keskar et al.,
2019) introduce CTRL, which uses a sequence of
control tokens c to steer the model towards desir-
able generations:

pθ(uT+1 | uT
1 , K̂, c). (10)

Rashkin et al. (2021) adapt the model in Equa-
tion (10) to promote faithfulness in document-
grounded dialogue by introducing entailment, lex-
ical overlap and first-person tokens. We employ
the first two. Entailment indicates whether the re-
sponse is entailed by the documents, determined
by an MNLI model, and lexical overlap splits
the responses into three buckets according to low,
medium, and high lexical overlap. CTRL is trained
on examples from all three buckets and both entail-
ment labels but only conditioned on desired ones
at inference time (high-overlap and entailment).

Quark (Lu et al., 2022a) uses a similar strategy
as CTRL for unlearning. The difference is that
not only the original training data but also model
generations which are taken after each epoch are
augmented with special tokens and used for train-
ing. Noting this similarity to CTRL, we therefore
employ the same tokens to adapt it to faithful di-

alog generation, allowing for a direct comparison.

DExperts (Liu et al., 2021) makes use of an
expert and anti-expert model in order to reduce
toxicity. The expert model is trained to generate
non-toxic text and the anti-expert to generate toxic
text. However, instead of combining models in pa-
rameter space, as in our method, they are combined
at inference time as a density ratio:

p(uT+1 | uT
1 , K̂) ∝ (11)

pθ0(uT+1 | uT
1 , K̂) · pθE(uT+1 | uT

1 , K̂)

pθAE(uT+1 | uT
1 , K̂)

.

Tokens with high expert probability are encouraged
and tokens with high anti-expert probability are
discouraged. We use the same expert and anti-
expert models as in CaPE to adapt it to faithful
dialog generation and fairly compare both methods.

Noisy Channel Model (Daheim et al., 2022)
introduce a noisy channel model for document-
grounded dialogue:

p(uT+1 | uT
1 , K̂) ∝ (12)

pθ1(K̂ | uT
1 ,uT+1) · pθ2(uT+1 | uT

1 ).

Here, pθ1(K̂ | uT
1 ,uT+1) can be seen as a faithful-

ness and pθ2(uT+1 | uT
1 ) as a fluency expert. We

use their reranking method to rescore generations
obtained from our baseline model.

Dial-BeInfo (Razumovskaia et al., 2023) uses
two strategies for behavioural finetuning: 1) adding
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Figure 2: Metrics for EWR with Flan-T5base on WoWseen. (a) Faithfulness and abstractiveness can be traded-off by
varying both the influence of the abstractivness expert (a) and hallucination anti-expert (b).

distractor documents to the ground-truth knowl-
edge to teach the model to discern relevant infor-
mation in the input and 2) creating unanswerable
responses without any relevant knowledge to teach
the model to not attempt to answer them. We use
the first strategy with n = 2 distractor documents.

Loss truncation (Kang and Hashimoto, 2020)
proposes to remove high-loss examples to improve
language generation. In our setting, it is reason-
able to assume that such examples are more likely
hallucinated than low-loss examples. Therefore,
we adopt this strategy, similar to prior works on
document-grounded dialogue (Dziri et al., 2022a).

4.3 Metrics

We measure the lexical similarity of the generated
and the ground-truth responses with the sacrebleu
(Post, 2018) implementation of BLEU (Papineni
et al., 2002). To evaluate faithfulness, we em-
ploy the hallucination critic introduced by Dziri
et al. (2022a)1, which classifies responses as hallu-
cinated or not, Q2 (Honovich et al., 2021), which
uses a question generation and question answering
pipeline, as well as token-level F1 and BERTScore
(Zhang* et al., 2020)2. To measure abstractiveness,
we again use Density (Grusky et al., 2018). Further
details are found in Appendix B.3.

5 Results

We first introduce our main results on WoW and
DSTC9 in Section 5.1. Then, we characterise trade-
offs between faithfulness and abstractiveness in

1https://huggingface.co/McGill-NLP/
roberta-large-faithcritic.

2We use the deberta-large-mnli checkpoint.

Section 5.2 before discussing the controllability
of model interpolation in Section 5.3. Finally, we
discuss ablations on various datasets in Section 5.4,
provide a qualitative analysis in Section 5.5, and
report human evaluation results in Section 6.

5.1 Main Results on Faithfulness

We start with results for de-hallucinated models
using Flan-T5base in Table 1. Results with Flan-
T5large are found in the Appendix C.1 and show a
similar trend: subtracting anti-experts from vari-
ous base models can improve faithfulness at minor
degradation in other metrics. Increases in faith-
fulness from EWR are often stronger than from
task arithmetic, except for Flan-T5base on DSTC9,
especially in terms of BERT and token-level F1,
but can also lead to decreased BLEU. EWR on top
of CTRL provides state-of-the-art performance in
faithfulness, comparable to strong baselines like
Quark. While the additional faithfulness expert
used in CaPE generally improves over using only
an anti-expert, we observe fast degradation in terms
of BLEU and BERTScore on DSTC9, potentially
stemming from comparatively small amounts of
expert training data after partitioning the dataset.

CTRL and Quark confirm the effectiveness of
control tokens and iteratively applying them to
model generations during training. DExperts and
noisy channel reranking are mostly outperformed
by EWR, task arithmetic, and CaPE, except for
Flan-T5base on WoW. This is notable, as they re-
quire keeping multiple models but all others use
just one at inference time. Nevertheless, the perfor-
mance of noisy channel model reranking increases
with beam size (Daheim et al., 2022) which we
keep identical for all methods. Behavioural fine-
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Figure 3: Improvements in faithfulness (Critic) tend to
incur an increase in extractiveness (LCS) on WoW.

tuning improves performance on both datasets and
could be combined with EWR. Loss truncation, on
the other hand, mainly improves results on DSTC9,
but not as much on WoW, possibly because exam-
ples containing opinions might not be truncated.

Improvements of CTRL and Quark are much
more conspicuous in WoW than DSTC9. We at-
tribute this to the fact that in DSTC9, the ground-
truth documents are FAQs, in which the question
might not be as important for the control tokens.
Furthermore, gold responses contain follow-up
questions at every turn, which might decrease the
effectiveness of the special tokens and might affect
automatic metrics.

Nevertheless, our results in Table 1 also illustrate
that increased faithfulness comes at the cost of
increased extractiveness, as measured by Density.
We investigate this further in the next subsection.

5.2 Faithfulness–Abstractiveness Trade-Off

As our main experiments show that improvements
in faithfulness also increase extractiveness, we now
outline experiments using an additional abstrac-
tiveness expert to reduce this effect. Figure 2 a
highlights our results on WoW using Flan-T5base,
when only varying the scaling factor of the abstrac-
tion expert. From the plot, it emerges that we can
control the trade-off between faithfulness and ab-
stractiveness to improve over the baseline in both
dimensions, in the interval indicated by the greyed
area. To further quantify this trade-off, which has
also been described in related works (Dziri et al.,
2022a; Daheim et al., 2022; Aksitov et al., 2023),
we use the ratio of the length of the longest com-

BLEU(↑) Critic(↓) Q2(↑) BF1(↑) F1(↑)
Model (y, ŷ) (y, K̂)

WoWunseen
Flan-T5base 18.1 22.7 74.0 84.8 78.7

+ TA 18.8 19.2 75.7 82.8 75.0
+ EWR 17.4 (↓-0.7) 17.7 (↓-5.0) 78.4 (↑4.4) 86.9 (↑2.1) 81.6 (↑2.9)

DSTC11
Flan-T5base 7.9 76.6 49.7 54.6 37.1

+ TA 8.0 60.0 51.0 59.9 43.6
+ EWR 9.6 (↑1.7) 41.1 (↓35.5) 57.3 (↑7.6) 60.0 (↑5.4) 38.6 (↑1.5)

FaithDial
Flan-T5base 15.1 0.3 66.4 80.9 73.7

+ TA 15.3 0.1 57.5 77.3 67.6
+ EWR 14.9 (↓-0.2) 0.1 (↓-0.2) 66.4 (-0.0) 81.7 (↑0.8) 75.0 (↑1.3)

Table 2: EWR improves faithfulness on unseen topics
(WoWunseen), multi-document corpora (DSTC11), and
datasets with cleaned ground-truth annotations (Faith-
Dial).

mon subsequence between uT+1 and K̂ and the
length of uT+1 (LCS). We plot the dependency of
LCS and Critic in Figure 3 for Flan-T5base-based
models on WoW. There is a clear trend towards
more extractiveness with increased faithfulness but
a better Critic score does not always imply an in-
crease in LCS.

5.3 Scaling Factors & Controllability
Next, we assess how much control EWR pro-
vides over faithfulness scores within an acceptable
range of BLEU, which measures overall perfor-
mance. Figure 2 b highlights that there is a larger
region of factors along which faithfulness con-
stantly improves within a narrow range of BLEU
scores. However, corresponding to the previously
discussed trade-off, density increases with faithful-
ness, indicating that the scaling factor also controls
how much of the knowledge is copied into the re-
sponse.

5.4 Generalisation to Additional Datasets
In this section, we study the performance of EWR
in challenging settings, namely on: i) unseen topics
that require generalisation (WoW unseen), ii) multi-
document corpora (DSTC11), and iii) cleaned train-
ing and test data that does not contain hallucina-
tions in ground-truth annotations (FaithDial). We
report the results in Table 2.

In summary, we observe the following: 1) EWR
shows improvements in all settings, especially in
terms of generalisation and in a multi-document
setting. Furthermore, we can even improve faithful-
ness metrics when training and evaluating on the
cleaned FaithDial dataset. 2) task arithmetic can
improve results on multi-document corpora and
some metrics on the unseen set but fails to improve
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BERT F1 and F1 on WoW unseen and FaithDial.

5.5 Qualitative Analysis

We provide here a qualitative analysis that high-
lights which forms of hallucinations are reduced
on WoW and DSTC9 when using EWR instead of
Flan-T5base. Examples are shown in Table 6. On
WoW, hallucinated examples are often made up of
opinions and disclosures, as shown in (Dziri et al.,
2022a), where, for example, around 60% of the
partially-hallucinated ground-truth responses of a
WoW audit were annotated as “Disclosure” accord-
ing to the VRM taxonomy (Stiles, 1992). We find
that using EWR reduces the amount of such per-
sonal opinions. Furthermore, the number of state-
ments that conflict the given ground-truth knowl-
edge is reduced. These make up the remaining
around 40% of annotated partial hallucinations in
FaithDial’s WoW audit, classified as “Edification”
in VRM. This highlights how EWR performs an
approximate form of training data removal, where
the types of hallucinations present in the training
data of the anti-expert are reduced.

On DSTC9, we find that, similarly to WoW, less
conflicting statements are generated. For example,
Flan-T5base often generates “No” or “Yes” when a
specific type of question appears, such as whether
a place sells alcohol, even though the knowledge
says the opposite. Furthermore, EWR gives more
specific responses. The first DSTC9 example in
Table 6 shows this: Flan-T5base only mentions that
pets on a train should fit into a specifically-sized
basket but EWR mentions that they can also simply
be kept on a short lead.

6 Human Evaluation

In addition to the automatic evaluation, we con-
duct a human evaluation on WoW and DSTC9 with
the help of three expert annotators 3, using the At-
tributable to Identified Source (AIS) framework
(Rashkin et al., 2023). First, we ask them to score
responses as attributable (A) only if all their con-
tent can be attributed to the knowledge that grounds
the dialogue response. Furthermore, we ask anno-
tators to rate cooperativeness (C), i.e. the ability of
the model to connect with and follow up on user
turns on a 3-point Likert scale. Here, 1 indicates a
response that does not cooperate with the dialogue,
2 a response that brings the dialogue forward, and

3All annotators are graduate students in NLP and paid
above minimum wage.

Model WoW DSTC9
A (↑) C (↑) P (↑) A (↑) C (↑) P (↑)

Flan-T5base 72.3 1.74 1.19 89.7 2.83 1.71
+ EWRabs 75.1 1.62 1.25 94.7∗ 2.41 1.49

CTRL 85.5∗ 1.58 1.12 94.7∗ 2.72 1.42
+ TA 88.8∗ 1.58 1.16 97.0∗ 2.63 1.40
+ EWR 96.8† 1.50 1.08 98.0† 2.50 1.36

Quark 93.1† 1.51 1.05 86.0 2.89 1.66

Table 3: Human evaluation on 218 examples annotated
by 3 expert annotators each. We measure attributability
(A), Co-cooperativeness (C), and paraphrasing (P). ∗

indicates significance wrt. Flan-T5base and † wrt. to the
next best method with p < 0.05.

3 a response that acknowledges the previous ut-
terances and responds with a follow-up question.
Lastly, annotators rate paraphrasing (P) on a binary
scale, where 2 indicates non-trivial paraphrasing of
the knowledge and 1 substantial copying. Detailed
instructions can be found in Appendix B.4.

Table 3 shows the results for the A, C, and P cate-
gories with agreements of 0.61, 0.51, 0.53, respec-
tively, in terms of Fleiss’ κ. Generally, we observe
that human evaluation results for attributability con-
firm results based on automatic faithfulness metrics
as they display similar patterns. In particular, all
methods improve over vanilla Flan-T5, with CTRL
and Quark performing similarly on average and out-
performing each other on the two different datasets.
Task arithmetic and EWR give improvements over
CTRL on both datasets. Most notably, EWRCTRL
improves over all other methods, including task
arithmetic and Quark, by a statistically significant
margin in human evaluation.

Our results also emphasize the trade-off be-
tween faithfulness and both paraphrasing (which
reflects abstractiveness) and cooperativeness. In-
creased attributability often leads to a decrease
in both other criteria. Nevertheless, EWR with
a faithfulness anti-expert and an abstraction ex-
pert, labelled EWRabs, improves both paraphras-
ing and attributability on WoW and attributabil-
ity on both datasets compared to vanilla Flan-T5.
While EWRabs does not outperform this baseline
in paraphrasing on DSTC9, we believe that this
stems from the way the expert dataset DE is con-
structed, related to the comparatively less strong
performance of Quark and CTRL. As the ground-
truth responses in DSTC9 contain longer follow-up
questions, it is likely that density-based binning
does not pick up nuances, such as the difference
between non-paraphrased responses and follow-up
questions independent from the knowledge.
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7 Related Work

Hallucination in LMs The impressive abilities
of LMs are offset by the potential for generating
hallucinated text (Ji et al., 2022; Thoppilan et al.,
2022; Bang et al., 2023; Qin et al., 2023) which
sparked an increasing interest in tackling this prob-
lem in the context of grounded language generation
(Ji et al., 2022), encompassing several tasks such
as data-to-text generation (Wiseman et al., 2017;
Parikh et al., 2020), machine translation (Wang and
Sennrich, 2020; Raunak et al., 2021), summarisa-
tion (Durmus et al., 2020; Kang and Hashimoto,
2020), generative question answering (Li et al.,
2021), and dialogue generation (Dziri et al., 2021,
2022c; Rashkin et al., 2021; Ji et al., 2022; Razu-
movskaia et al., 2022). Different studies aim to
address the issue of hallucination by either develop-
ing automatic metrics to detect it (Wiseman et al.,
2017), or by identifying potential causes, such as
out-of-domain generalisation, noisy training data,
and exposure bias (Kang and Hashimoto, 2020;
Raunak et al., 2021; Wang and Sennrich, 2020;
Dziri et al., 2021).

For neural dialogue models it has been shown
that retrieving relevant knowledge can reduce –but
not completely eliminate– hallucinations (Shuster
et al., 2021). Therefore, different methods have
been proposed to tackle it, such as token-level crit-
ics (Dziri et al., 2021), or control token- (Rashkin
et al., 2021) and reranking-based methods (Daheim
et al., 2022). Lastly, as hallucinations in training
data can greatly exacerbate those in models (Dziri
et al., 2022b), a hallucination-free dialogue bench-
mark has been proposed (Dziri et al., 2022a).

Controllable text generation Different works
steer model behaviour by controlled generation, for
example by combining models at decoding time
(Liu et al., 2021) or in parameter space (Ilharco
et al., 2023), conditioning on reward tokens as-
signed to model generations in training (Lu et al.,
2022a) or the initial training data (Keskar et al.,
2019; Niu and Bansal, 2018). Finally, different
methods constrain text generation with logical con-
straints (Lu et al., 2021, 2022b) or by forcing spe-
cific words to appear (Pascual et al., 2021).

8 Conclusion & Future Work

We introduce Elastic Weight Removal (EWR), a
novel method for steering the behaviour of lan-
guage generation models by combining their pa-

rameters with those of (anti-)experts, weighted
by Fisher Information. We show how EWR can
be used to reduce hallucinations in document-
grounded dialogue response generation across dif-
ferent settings. We compare it to other state-of-the-
art methods, many of which we adapt to faithful
response generation for the first time. Automated
metrics and human evaluation show that EWR im-
proves faithfulness over multiple baselines, and can
furthermore provide complementary improvements
with them. Moreover, we show that faithfulness
comes at the expense of abstraction. Therefore, we
combine an abstraction expert with the hallucina-
tion anti-expert to promote responses that are both
more faithful and abstractive than the baseline.

The main contribution of this work is that it out-
lines an unexplored way of promoting faithfulness
in document-grounded dialogue by using experts
and anti-experts not at inference time—and thereby
incurring significant overhead—but rather to navi-
gate the parameter space towards an improved set
of parameters without altering the model architec-
ture. This opens up many potential areas for future
work, such as controlling for further dimensions, or
developing more sophisticated data augmentation
techniques to create data for (anti-)experts.
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9 Limitations

One limitation of our work is that we assume the
ground-truth knowledge K̂ to be given. This as-
sumption does not hold in general, when a dialogue
system is used, because for a new user query it is
unknown. We might then expect that our method
stays more faithful to the retrieved knowledge, too,
but could generate erroneous responses to the user
query if this knowledge is incorrect.

A further limitation is the scale at which we con-
duct experiments, which do not go beyond 1B pa-
rameters due to the large number of baselines that
we evaluate on multiple corpora. On the other hand,
models used in production are often significantly
larger, often having tens of billions of parameters.

Connected to this, many of such models are
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now trained using parameter-efficient finetuning
techniques, which either introduce a new subset of
model parameters that are trained, while all exist-
ing ones are kept fixed, or train a subset of model
parameters. Our method should be amenable to this
setting, because the task vector will also be 0 for
parameters that are not trained. However, we did
not experiment using parameter-efficient finetuning
techniques in this work.

Finally, we only evaluate a small set of (data
augmentation) techniques for creating hallucinated
and abstractive data and future work could evaluate
more such methods.

While we only study english datasets, we expect
the techniques to be similarly applicable for other
languages.

Ethics and Broader Impact Statement

Our work relies on LLMs to generate responses in
dialogue. Since such LLMs are prone to producing
errors, it can not be guaranteed that our methods
also do not produce erroneous outputs, such as
hallucinations, or output toxic or biased data. How-
ever, this work aims to mitigate hallucinations and
therefore we think that there is no direct ethical
concern.
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Edoardo M. Ponti, Ivan Vulić, Ryan Cotterell, Marinela
Parovic, Roi Reichart, and Anna Korhonen. 2021.
Parameter space factorization for zero-shot learning
across tasks and languages. Transactions of the Asso-
ciation for Computational Linguistics, 9:410–428.

Edoardo Maria Ponti, Ivan Vulić, Ryan Cotterell, Roi
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Appendix

A Details on Method

A.1 Pseudocode

Algorithm 1 Pseudocode for removing hallucina-
tions and promoting abstraction with EWR. Note
that we apply (·)2 element-wise.
Input Dialogues D, hallucinated anti-expert dataset DAE, ab-
stractive expert dataset DE, initial parameter set θ
Output θ′

θ0 ← finetune(θ,D)
θAE ← finetune(θ0,DAE)
τAE ← θAE − θ0

θE ← finetune(θ0,DE)
τAE ← θE − θ0

fθ0 ←
1

|D|
∑

D
(∇ log pθ0(uT+1 | uT

1 , K̂))2

fτAE ←
1

|DAE|
∑

DAE

(∇ log pτAE(uT+1 | uT
1 , K̂))2

fτE ←
1

|DE|
∑

DE

(∇ log pτE(uT+1 | uT
1 , K̂))2

θ′ ← λ0·fθ0 ·θ0−λAE·fτAE ·τAE+λE·fτE ·τE

Z

Algorithm 1 outlines the steps for using EWR to
reduce hallucinations while promoting abstractive-
ness. Concretely, a dialogue response generation
model is trained first. Then, an anti-expert and
expert model are trained on hallucinated and ab-
stractive (and not hallucinated) data, respectively.
Both models are the subtracted and added to the di-
alogue response generation model, respectively, but
weighted by Fisher information. The Fisher infor-
mation is estimated by its diagonal with a squared
gradient approximation over the training, where
labels are sampled. We have found that calculat-
ing this by parameterising the model with the task
vectors τAE and τE performs empirically well, but
it is theoretically better motivated to calculate it
at the anti-expert θAE or expert θE, respectively.
Both strategies provided similar performance in
our experience.

B Details on Experiments & Evaluation

B.1 Further Experimental Details
All models, with the exception of Quark and
(anti-)experts, which we train for 5 epochs, are
trained for 10 epochs using an initial learning rate
of 6.25e−5, linear learning rate decay without
warmup, and a batch size of 32, following prior
work (Daheim et al., 2022). We take checkpoints
after each epoch and pick the one with smallest
validation loss. For Task Arithmetic and EWR

Dataset #train #val #test
WoW (Dinan et al., 2019) 83247 4444 {4356, 4380}
DSTC9 (Kim et al., 2020) 19184 2673 1981
FaithDial (Dziri et al., 2022a) 18357 3417 3539
DSTC11 (Zhao et al., 2023) 14768 2129 -

Table 4: Dataset statistics showing the number of train,
validation, and test examples counted in number of ut-
terances. For WoW test, we first show the seen and then
unseen split in curly brackets. For DSTC11, the test set
was not available yet at the time of writing.

we do a grid search to determine the scaling
factors on a validation set on WoW, FaithDial,
and DSTC9. For DSTC11 we did not perform
such a grid set because we only had a validation
but not a test set, and the hyperparameters
seemed to be consistent across datasets. We
chose 1.0 for Task Arithmetic and 0.15 for EWR
for all experiments with only a hallucination
anti-expert, since these factors performed best.
We use Flan-T5base and Flan-T5large with 250M
and 780M parameters, respectively. We use the
checkpoints that are available on the hugging-
face hub under https://huggingface.
co/google/flan-t5-base and
https://huggingface.co/google/
flan-t5-large. All experiments are per-
formed on NVIDIA A100 or V100 GPUs and each
model takes at most half a day to finetune.

All code for reproducing the experiments will be
made publicly available in a comprehensive soft-
ware repository under Apache License 2.0 4.

B.2 Further Details on Datasets

In this section we provide details on the splits of
all used datasets. The statistics are shown in Table
4. For Wizard-of-Wikipedia, we have used the
train, dev and both test splits (seen and unseen).
For DSTC11 we have only used validation split,
because the test set was not yet available at the time
of our experiments.

For the hallucination anti-expert model, the
training data is exactly the same size as for the
document-grounded response generation model,
just with the knowledge switched out. For all ex-
pert models we subsample the data according to
the assigned control tokens which depend on the
used metric and NLI model.

All datasets are in English and might there-
fore represent predominantly the demographics of

4https://www.apache.org/licenses/
LICENSE-2.0
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english-speaking countries. WoW was collected
by crowdsourcing dialogues in a roleplaying game.
DSTC9 was collected by asking crowdworkers to
fill in dialogues from MultiWoZ 2.1 (Eric et al.,
2020). DSTC11 was collected using crowdwork-
ers on Amazon MTurk, who stem from the USA,
Canada, and Great Britain (Zhao et al., 2023). Fi-
nally, FaithDial was created by asking crowdwork-
ers, also on Amazon MTurk, to clean dialogues
from WoW (Dziri et al., 2022a).

B.3 Further Details on Used Metrics

We evaluate BLEU (Papineni et al., 2002) on
the corpus-level using the sacrebleu package
(Post, 2018). Other metrics are calculated on an
example-level and averaged to obtain a global
score. Concretely, for critic model taken from Dziri
et al. (2022a), this means that we classify each
utterance as hallucination or not, with 1 indicating
hallucination and 0 otherwise. The score is aver-
aged over these classifications and can therefore be
seen as calculating the percentage of hallucinated
examples in the model predictions. The model
used for this is finetuned from RoBERTA (Liu
et al., 2019) and released as part of Dziri et al.
(2022a). It is openly available on the hugging-
face hub and can be found under https:
//huggingface.co/McGill-NLP/
roberta-large-faithcritic. For
Q2 (Honovich et al., 2021), a pipeline of steps is
performed for each generated example to arrive at
a score. First, answer candidates are determined
for the generated response, which often correspond
to spans of entities. Then, questions are generated
for each answer candidate and answered based
on the knowledge documents. If the answer
is the same by string match, a score of 1 is
assigned. If there is no string match, a score of 1
is assigned if an NLI model judges one answer
to entail the other, and a score of 0 otherwise.
Questions are also filtered, and if no valid question
is found, entailment between the knowledge
and the generated response is calculated as a
fallback. We base our implementation on the
open-source implementation found in https:
//github.com/orhonovich/q-squared
which was released with Honovich et al. (2021)
and will open-source our reproduction under
Apache License 2.0.

Our adoption of density (Grusky et al., 2018)
calculates the average squared length of extrac-

tive spans that were copied from the knowledge
documents into the generated response. We aver-
age the densities of all predictions. Similarly, F1
calculates the token-level overlap between gener-
ated response and document, and we again take
the average over predictions. Again, all the imple-
mentations of these metrics will be made publicly
available by us.

For BertScore (Sun et al., 2022), we use the
open-source implementation found at https:
//github.com/Tiiiger/bert_score
and use the ‘deberta-large-mnli’ checkpoint, which
was recommended at the time of implementation.

B.4 Details on Human Evaluation

In this section, we detail the instructions and re-
cruitment for our human evaluation. All of the
annotators are graduate students in NLP from one
of the authoring institutions and are all paid well
above minimum-wage. All annotators voluntarily
agreed to participating in our study and were in-
formed, and agree to, that no personal data would
be released and only the human judgements would
be stored. The annotators were instructed to score
218 randomly sampled examples generated with
different models from WoW and DSTC9 accord-
ing to three criteria: Faithfulness, Coherence, and
Paraphrasing, abbreviated with F, C, and P, respec-
tively, in Table 3. The instructions for Faithful-
ness follow the well-established Attributable to
Identified source framework (AIS) (Rashkin et al.,
2023). We follow the exact definitions from their
work and show these as guidelines to the anno-
tators, who were instructed to carefully read the
paper. This is feasible, because all annotators have
graduate-level knowledge of NLP. Following the
frame work, we instructed users to only annotate
interpretable responses, others were to be left out.
Then, a score of one should be assigned if the con-
ditions in (Rashkin et al., 2023, Definition 8) are
met. We repeat the definition here verbatim for
completeness and refer the reader to their work for
more information about the framework.

Definition 1. AIS, full definition (Rashkin et al.,
2021) A pair (s, c), where s is a sentence and cl, t
is a pair consisting of a linguistic context and a
time, is Attributable to Identified Sources (AIS) iff
the following conditions hold:

1. The systems provides a set of parts P of some
underlying corpus K, along with S.
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2. s in the context c is interpretable (i.e.,
E(c, s) ̸= NULL.

3. The explicature E(c, s) is a standalone propo-
sition.

4. The pair (E(c, s), t) is attributable to P .

The pair E(c, s), t) is attributable to a set of parts
P of some underlying corpus K iff: A generic
hearer will, with a chosen level of confidence, af-
firm the following statement: “According to P ,
E(c, s), where E(c, s) is interpreted relative to
time t.”

According to this, a binary label is assigned,
where 1 indicates ‘faithful’ and 0 ‘not faithful’. We
only make a slight change in definition for DSTC9,
where the FAQ documents are short and give rele-
vant information to a customer in customer service
conversations, for example, for hotel booking. The
change is as follows: “If important information for
the user in K is left out, the response should be
scored as ‘not faithful’.”

For Coherence, we ask the annotators to only
score such responses that were annotated with 1 in
the previous step on a 3-point Likert scale. The
instructions are as follows:

3: The response is highly co-operative and, for
example, explicitely acknowledges the pre-
vious turn (e.g. ""Yes,.."".) and contains a
follow-up question.

2: The response follows up logically to the pre-
vious dialog and / or shows some degree of
co-operativeness.

1: The response is standalone and does not
follow-up logically to the previous dialog.

Here, the listing item (e.g. “3:”) indicates the rat-
ing.

For Paraphrasing, we chose a two-point scale
with the following instructions:

2: Response paraphrases the evidence to a suffi-
cient extent.

1: The response copy-pastes the evidence into
the response verbatim or almost verbatim.

As noted in Section 6, we achieve agreements of
0.61, 0.51, 0.53, respectively, in terms of Fleiss’ κ,
for the three categories above in order of writing.

C Further Results

C.1 Additional Experiments Using
Flan-T5large

Table 5 shows results obtained using the same set-
up as in Section 5.1 but using Flan-T5large instead
of Flan-T5base. We find the results from the smaller
checkpoint to be confirmed and find much larger
improvements for EWR on DSTC9 than using the
base checkpoint. Again, parameter interpolation
methods can be used effectively to reduce halluci-
nations at minor costs of fluency and abstractive-
ness, also on top of other methods that promote
faithfulness. However, we find CTRL and Quark
less effective for DSTC9, potentially because the
overlap and entailment tokens have more errors
than in WoW due to the structure of the used FAQ
documents.

C.1.1 Qualitative Examples
Qualitative examples for EWR and a Flan-T5base
baseline on WoW and DSTC9 are shown in Table
6. A discussion is found in Section 5.5

7111



WoWseen DSTC9
BLEU(↑) Critic(↓) Q2(↑) BERT(↑) F1(↑) Dens.(↓) BLEU(↑) Critic(↓) Q2(↑) BERT(↑) F1(↑) Dens.(↓)

Model (y, ŷ) (y, K̂) (y, ŷ) (y, K̂)

Flan-T5large 18.6 26.7 77.8 83.8 77.5 12.3 18.6 6.9 64.0 61.2 44.7 1.81
+ TA 19.1 16.7 80.2 84.6 77.8 12.6 19.0 3.7 74.3 64.4 55.6 3.50
+ EWR 17.3 (↓-1.3) 16.9 (↓-9.8) 80.3 (↑2.5) 88.3 (↑4.5) 83.9 (↑6.4) 14.9 (↑2.6) 19.1 (↑0.5) 2.8 (↓-4.1) 83.8 (↑19.8) 64.8 (↑3.6) 57.3 (↑12.6) 3.48 (↑1.67)

CaPE 19.0 13.0 79.5 83.7 75.4 11.3 17.2 4.3 73.3 64.4 53.2 2.82
+ EWR 18.2 (↓-0.8) 9.3 (↓-3.7) 80.4 (↑0.9) 89.4 (↑5.7) 84.9 (↑9.5) 15.2 (↑3.9) 16.2 (↓-1.0) 1.1 (↓-3.2) 74.9 (↑1.6) 64.1 (↓-0.3) 54.1 (↑0.9) 3.00 (↑0.18)

CTRL 19.8 11.3 82.0 87.3 81.5 13.4 19.5 6.8 77.4 63.8 52.7 2.73
+ TA 19.2 7.2 84.3 86.8 80.6 13.0 19.3 2.6 79.3 65.9 57.5 3.37
+ EWR 18.6 (↓-1.2) 7.0 (↓-4.3) 85.8 (↑5.4) 90.5 (↑3.2) 86.8 (↑5.3) 16.8 (↑3.4) 18.1 (↓-1.4) 0.8 (↓-6.0) 84.3 (↑6.9) 65.2 (↑1.4) 59.5 (↑6.8) 3.83 (↑1.1)

DExperts 18.3 17.9 79.8 81.7 71.4 12.7 18.2 4.2 70.5 63.9 54.9 2.78
Quark 18.0 9.1 91.4 91.2 88.1 16.9 20.3 6.0 74.7 64.9 54.3 3.09
Noisy Channel 18.8 22.3 77.2 85.5 80.2 13.3 18.4 6.1 67.2 62.2 47.4 2.20
Dial-BeInfo 18.3 28.8 74.7 81.6 73.5 11.2 18.7 8.5 64.7 61.5 51.7 1.83
Loss Truncation 18.3 24.5 78.0 84.1 78.1 12.2 18.4 5.7 65.0 61.1 45.4 1.70

Table 5: Main results on WoWseen and DSTC9 using Flan-T5large.

WoW
ut wow, do you know the name of his first novel?
K̂ Sparks was born in Omaha, Nebraska and wrote his first novel, "The Passing", in 1985,

while a student at the University of Notre Dame.
Flan-T5base Yes, it was called "The Passing" and was published in 1985.
EWR Yes, it was called "The Passing" and it was written while he was a student at Notre

Dame.

uT Interesting! Has she been a vegan for her entire life? I think it would be hard to give up
meat!

K̂ Many people object to eating meat out of respect for sentient life.
Flan-T5base I don’t think she’s been a vegan for a long time. Many people object to eating meat out

of respect for sentient life.
EWR I don’t know how long she’s been a vegan, but I know many people object to eating

meat out of respect for sentient life.
DSTC9

ut What is the exact size limit of pets onboard
K̂ You may bring 2 domestic pets, they must be 1 kept on a short lead, or 2 carried in a

basket size 85x60x60cm.
Flan-T5base 2 They must be able to be carried in a basket sized 85x60x60cm. Is there anything else

I can help you with?
EWR 1 Pets must be kept on a short lead or 2 carried in a basket size 85x60x60cm. Is there

anything else I can help you with?

ut Do they serve alcohol?
K̂ Frascati serves beer and wine only.
Flan-T5base No, they only serve beer and wine. Anything else I can do for you?
EWR Yes, they serve beer and wine. Is there anything else I can help you with?

Table 6: Qualitative examples for Flan-T5base and EWR on WoW and DSTC9. We find that faithfulness is improved
due to various reasons. On WoW, EWR tends to generate less conflicting and opinionated outputs. On DSTC9,
EWR generates more specific outputs that, for example, point out alternative options, and less generic responses
that are often hallucinated.
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