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Abstract

Retrieval-Augmented Large Language Models
(LLMs), which incorporate the non-parametric
knowledge from external knowledge bases into
LLMs, have emerged as a promising approach
to enhancing response accuracy in several tasks,
such as Question-Answering (QA). However,
even though there are various approaches deal-
ing with queries of different complexities, they
either handle simple queries with unnecessary
computational overhead or fail to adequately
address complex multi-step queries; yet, not
all user requests fall into only one of the sim-
ple or complex categories. In this work, we
propose a novel adaptive QA framework that
can dynamically select the most suitable strat-
egy for (retrieval-augmented) LLMs from the
simplest to the most sophisticated ones based
on the query complexity. Also, this selec-
tion process is operationalized with a classi-
fier, which is a smaller LM trained to predict
the complexity level of incoming queries with
automatically collected labels, obtained from
actual predicted outcomes of models and in-
herent inductive biases in datasets. This ap-
proach offers a balanced strategy, seamlessly
adapting between the iterative and single-step
retrieval-augmented LLMs, as well as the no-
retrieval methods, in response to a range of
query complexities. We validate our model
on a set of open-domain QA datasets, cov-
ering multiple query complexities, and show
that ours enhances the overall efficiency and
accuracy of QA systems, compared to rele-
vant baselines including the adaptive retrieval
approaches. Code is available at: https://
github.com/starsuzi/Adaptive-RAG.

1 Introduction

Recent Large Language Models (LLMs) (Brown
et al., 2020; OpenAI, 2023; Touvron et al., 2023;
Anil et al., 2023) have shown overwhelming per-
formances across diverse tasks, including question-
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Figure 1: QA performance (F1) and efficiency (Time/Query)
for different retrieval-augmented generation approaches. We
use the GPT-3.5-Turbo-Instruct as the base LLM.

answering (QA) (Yang et al., 2018; Kwiatkowski
et al., 2019). However, they still generate factu-
ally incorrect answers since their knowledge solely
relies on their parametric memory (Kasai et al.,
2022; Mallen et al., 2023). Meanwhile, memoriz-
ing all the (ever-changing) world knowledge may
not be possible. To address this problem, retrieval-
augmented LLMs (Borgeaud et al., 2022; Izacard
et al., 2023; Shi et al., 2023), which incorporate
non-parametric knowledge into LLMs with addi-
tional retrieval modules, have gained much increas-
ing attention. Specifically, these models access
a knowledge base, which serves as an extensive
repository of information across various subjects
and disciplines, to retrieve information relevant to
the given input, and then incorporate the retrieved
information into LLMs, which enables them to stay
accurate and current with the world knowledge.

A particularly salient application of retrieval-
augmented LLMs is to handling QA tasks, whose
goal is to provide correct answers in response to
user queries, especially those of high complexity.
Early work on retrieval-augmented LLMs focuses
primarily on single-hop queries (Lazaridou et al.,
2022; Ram et al., 2023), whose answers are typ-
ically found within a single document; therefore,
this approach involves retrieving a relevant doc-
ument based on the query and subsequently inte-
grating this information into QA models to formu-
late a response. However, unlike this single-hop
QA, some queries require connecting and aggregat-
ing multiple documents, which are, furthermore,
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Figure 2: A conceptual comparison of different retrieval-augmented LLM approaches to question answering. (A) In response to
a query, this single-step approach retrieves relevant documents and then generates an answer. However, it may not be sufficient
for complex queries that require multi-step reasoning. (B) This multi-step approach iteratively retrieves documents and generates
intermediate answers, which is powerful yet largely inefficient for the simple query since it requires multiple accesses to both
LLMs and retrievers. (C) Our adaptive approach can select the most suitable strategy for retrieval-augmented LLMs, ranging
from iterative, to single, to even no retrieval approaches, based on the complexity of given queries determined by our classifier.

often not answerable through a single-step pro-
cess of retrieval-and-response. An example query
is ‘When did the people who captured Malakoff
come to the region where Philipsburg is located?’,
which requires four reasoning steps to solve. There-
fore, to effectively handle such complex queries,
recent studies have concentrated largely on multi-
step and multi-reasoning QA, which requires itera-
tive accesses to both LLMs and retrievers multiple
times (Press et al., 2023; Trivedi et al., 2023), at
the cost of heavy computational overheads.

Yet, we should rethink: In a real-world scenario,
are all the requests from users complex? Instead,
users might often ask simple and straightforward
questions, while only occasionally asking complex
ones. Specifically, a query such as ‘Paris is the
capital of what?’ is likely to be asked more fre-
quently, compared to the aforementioned multi-
step query, and this simpler query might also be
easily answered by the LLMs themselves, without
accessing external knowledge. In other words, a
multi-step QA approach could give rise to unnec-
essary computational overhead for simple queries,
even though it would be vital for complex queries
(see Figure 2 (A)). On the other hand, handling
complex queries with single-step-retrieval or even
non-retrieval strategies would be largely insuffi-
cient (Figure 2 (B)). This suggests the need for an
adaptive QA system, which can dynamically adjust
the operational strategies of retrieval-augmented
LLMs based on the query complexity. While some
recent approaches are capable of doing this based
on the frequency of entities in queries (Mallen et al.,
2023; Zhao et al., 2023) or on the generated out-
puts from models for multi-step QA (Trivedi et al.,
2023), they are still suboptimal: the former meth-
ods are overly simplistic, failing to consider multi-
hop queries; meanwhile, the latter are excessively
complex, terminating answer solving steps after
several rounds of module access.

In this work, considering diverse complexity lev-
els of real-world queries, we argue that previous
one-size-fits-all approaches might be inadequate to
cover all of them. Instead, we propose to select the
most suitable strategy from a range of (retrieval-
augmented) LLMs, each of which is tailored to the
specific complexity of the input query. Notably,
a critical step in this process is pre-defining the
query complexity, which is instrumental in deter-
mining the most fitting model to it. In this work,
we operationalize this process with a novel classi-
fier, which is a smaller model trained to predict the
complexity level of incoming queries (see Figure 2
(c)). Moreover, we automatically collect its training
datasets without human labeling, by leveraging the
predicted outcomes (i.e., which models accurately
respond to which queries) as well as by capitalizing
on the inherent biases in existing datasets (i.e., sam-
ples in the datasets are designed either for single-
step or for multi-step QA scenarios). This proposed
method can offer a robust middle ground among the
iterative LLM augmentation methods for complex
queries, single-step methods for simpler queries,
and even no-retrieval-augmented methods for the
most straightforward queries (answerable by LLMs
themselves), thus significantly enhancing the over-
all efficiency and accuracy, as shown in Figure 1.
We refer to our framework as Adaptive Retrieval-
Augmented Generation (Adaptive-RAG).

We validate Adaptive-RAG using benchmark
open-domain QA datasets, covering a wide range
of query complexity from single-hop (Rajpurkar
et al., 2016; Joshi et al., 2017; Kwiatkowski et al.,
2019) to multi-hop (Yang et al., 2018; Ho et al.,
2020; Trivedi et al., 2022b) queries. The exper-
imental results show that ours significantly im-
proves the overall accuracy and efficiency, com-
pared to the prior adaptive strategies, on multiple
LLMs, such as GPT-3.5 (Brown et al., 2020) and
FLAN-T5 series (Chung et al., 2022).
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Our contributions and findings are threefold:

• We point out the realistic scenario of queries of
varying complexities, and find out that existing
retrieval-augmented generation approaches tend
to be overly simple or complex.

• We adapt retrieval-augmented LLMs to the query
complexity assessed by the classifier, which en-
ables the utilization of the most suitable approach
tailored to each query.

• We show that our Adaptive-RAG is highly effec-
tive and efficient, balancing between the com-
plexity and the simplicity for diverse queries.

2 Related Work

Open-domain QA Open-domain QA is the task
of accurately answering a query by sourcing for
query-relevant documents, and then interpreting
them to provide answers (Chen et al., 2017; Zhu
et al., 2021), which, thus, generally involves two
modules: a retriever (Karpukhin et al., 2020; Xiong
et al., 2021) and a reader (Yang et al., 2019; Izac-
ard and Grave, 2021; Jeong et al., 2023). Along
with the emergence of LLMs with superior rea-
soning capabilities thanks to their billion-sized pa-
rameters (Wei et al., 2022a), a synergy between
LLMs and retrievers has led to significant advance-
ments (Lazaridou et al., 2022; Ram et al., 2023).
Specifically, this integration has been shown to
enhance Open-domain QA by mitigating the hallu-
cination problem from LLMs through strengthened
reasoning abilities of the reader, as well as utiliz-
ing the retrieved, external documents (Cho et al.,
2023). Despite these advancements for single-hop
retrieval-augmented LLMs, however, the complex-
ity of some queries needs a more complex strategy.

Multi-hop QA Multi-hop QA is an extension of
conventional Open-domain QA, which addition-
ally requires the system to comprehensively gather
and contextualize information from multiple docu-
ments (often iteratively), to answer more complex
queries (Trivedi et al., 2022a; Yang et al., 2018). In
the realm of multi-hop QA, the approach to itera-
tively access both LLMs and the retrieval module
is generally employed. Specifically, Khattab et al.
(2022), Press et al. (2023), Pereira et al. (2023)
and Khot et al. (2023) proposed to first decom-
pose the multi-hop queries into simpler single-hop
queries, repeatedly access the LLMs and retriever
to solve these sub-queries, and merge their solu-
tions to formulate a complete answer. In contrast

to this decomposition-based approach, other re-
cent studies, such as Yao et al. (2023) and Trivedi
et al. (2023), explored the interleaving of Chain-of-
Thought reasoning (Wei et al., 2022b) — a method
where a logical sequence of thoughts is generated
— with document retrieval, repeatedly applying this
process until the reasoning chain generates the an-
swer. In addition, Jiang et al. (2023) introduced an
approach to repeatedly retrieving new documents
if the tokens within generated sentences have low
confidence. However, the aforementioned methods
overlooked the fact that, in real-world scenarios,
queries are of a wide variety of complexities. There-
fore, it would be largely inefficient to iteratively
access LLMs and retrievers for every query, which
might be simple enough with a single retrieval step
or even only with an LLM itself.

Adaptive Retrieval To handle queries of varying
complexities, the adaptive retrieval strategy aims to
dynamically decide whether to retrieve documents
or not, based on each query’s complexity. In this
vein, Mallen et al. (2023) proposed to decide the
query’s complexity level based on the frequency of
its entities and suggested using the retrieval mod-
ules only when the frequency falls below a cer-
tain threshold. However, this approach, focusing
solely on the binary decision of whether to retrieve
or not, may not be sufficient for more complex
queries that require multiple reasoning steps. Ad-
ditionally, Qi et al. (2021) proposed an approach
that performs a fixed set of operations (retrieving,
reading, and reranking) multiple times until the an-
swer is derived for the given query, which is built
upon traditional BERT-like LMs. However, unlike
our Adaptive-RAG which pre-determines the query
complexity and adapts the operational behavior of
any off-the-shelf LLMs accordingly, this approach
applies the same fixed operations to every query
regardless of its complexity but also necessitates
additional specific training to LMs. Concurrent to
our work, Asai et al. (2024) suggested training a so-
phisticated model to dynamically retrieve, critique,
and generate the text. Nevertheless, we argue that
all the aforementioned adaptive retrieval methods
that rely on a single model might be suboptimal in
handling a variety of queries of a range of differ-
ent complexities since they tend to be either overly
simple or complex for all the input queries, which
demands a new approach that can select the most
suitable strategy of retrieval-augmented LLMs tai-
lored to the query complexity.
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3 Method

In this section, we describe our approach to adapt-
ing retrieval-augmented LLMs, by pre-determining
the query complexity and then selecting the most
fitting strategies for retrieval-augmented LLMs.

3.1 Preliminaries

We begin with preliminaries, formally introducing
different strategies of retrieval-augmented LLMs.

Non Retrieval for QA Let us first define an LLM
as a model LLM, which takes a sequence of tokens
x = [x1, x2, ..., xn] as an input and then generates
a sequence of tokens y = [y1, y2, ..., yn] as an out-
put, which is formalized as follows: y = LLM(x).
Then, in our problem setup for QA, x and y be-
come the input query (q) from the user and the
generated answer (ā) from the LLM, respectively:
q = x and ā = y. Also, subsequently, the most
naïve LLM-powered QA model can be represented
as follows: ā = LLM(q). Ideally, ā should match
the actual correct answer a. This non-retrieval-
based QA method is highly efficient and could be
a somewhat promising approach to handling easy
queries, as the size of LLMs becomes extremely
large with its effect on storing a large amount of
knowledge. However, this approach is largely prob-
lematic on queries that require precise or concur-
rent knowledge of specific people, events, or any
subjects beyond the LLMs’ internal knowledge.

Single-step Approach for QA To address the
aforementioned scenarios where LLM may struggle
with queries that are not answerable by LLM itself,
we can utilize the external knowledge d, which
includes useful information for queries, retrieved
from the external knowledge source D that could
be an encyclopedia (e.g., Wikipedia) consisting
of millions of documents. Specifically, to obtain
such d from D, a specific retrieval model is nec-
essary, which returns documents based on their
relevance with the given query. This process can
be formulated as follows: d = Retriever(q;D),
where Retriever is the retrieval model, with
d ∈ D. Here, we can use any off-the-shelf re-
triever (Robertson et al., 1994; Karpukhin et al.,
2020).

After the retrieval step is done, we now have a
pair of query q and its relevant documents d. Then,
in order to augment LLMs with this retrieved exter-
nal knowledge, we can incorporate it into the input
of LLMs, represented as follows: ā = LLM(q,d).

This process allows LLMs to gain access to exter-
nal information contained in d, which can provide
the supplementary context that the internal knowl-
edge of LLM lacks, which can subsequently improve
the accuracy and concurrency of LLMs for QA.

Multi-step Approach for QA Even though the
aforementioned single-step approach offers signif-
icant improvements over non-retrieval for q that
requires external knowledge, it encounters notable
limitations, particularly when dealing with com-
plex queries that necessitate synthesizing informa-
tion from multiple source documents and reasoning
over them. This is where a multi-step approach and
reasoning for QA become essential.

In this multi-step approach, LLM interacts with
Retriever in several rounds, progressively refin-
ing its understanding of q, until it formulates the fi-
nal answer from findings accumulated across these
multiple steps. Specifically, the process begins
with the initial query q, and at every retrieval step
i, new documents di are retrieved from D and then
incorporated into the input of LLMs, as follows:
āi = LLM(q,di, ci), where the additional context
ci can be composed of previous documents and
outcomes (d1,d2, ...,di−1, ā1, ā2, ..., āi−1), and
di = Retriever(q, ci;D)1. We would like to
note that this iterative, multi-step process enables
LLM to construct a more comprehensive and exten-
sive foundation to solve queries effectively, specif-
ically adept at complex multi-hop queries where
answers depend on interconnected pieces of infor-
mation. However, it is important to recognize that
this multi-step approach can be resource-intensive
due to the repeated accesses to Retriever and LLM,
which entail substantial computational costs.

3.2 Adaptive-RAG: Adaptive
Retrieval-Augmented Generation

We now introduce our adaptive retrieval-augmented
LLMs, which are built upon three different strate-
gies described in the previous section, and which
are designed to select the most suitable strategy
according to the complexity of queries.

Adapting Retrieval-Augmented LLMs Note
that in real-world scenarios, not all q from users
have the same level of complexity, necessitating

1It is worth noting that implementations of the LLM and
retriever vary across different multi-step retrieval-augmented
LLM approaches (Trivedi et al., 2023; Press et al., 2023; Yao
et al., 2023); therefore, the context ci may incorporate none,
some, or all of the previous documents and answers.
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tailored strategies for handling each query. In other
words, employing the most basic, non-retrieval-
based approach LLM(q) to respond to the complex
query q would be also ineffective (Figure 2, A);
conversely, using a more elaborate multi-step ap-
proach LLM(q,d, c) for simple q would be ineffi-
cient (Figure 2, B). Therefore, our adaptive frame-
work is designed to dynamically adjust the query-
handling strategy of retrieval-augmented LLMs,
which is achieved by determining the complexity of
each query before attempting a solution. Notably,
this framework can offer a robust middle ground
with a range of solutions, from the simplest ap-
proach for the most straightforward queries, to the
one-step approach for moderate queries, and up to
the most comprehensive and rigorous approach for
complex queries. In addition, since the operations
of LLM and Retriever remain consistent regard-
less of inputs to them, our method can seeming-
lessly go back and forth across queries of different
complexities, without changing the internal model
architecture or parameters during adaption.

Query Complexity Assessment To operational-
ize our adaptive retrieval-augmented LLM frame-
work, we should determine the query complexity,
and to achieve this, we propose to model a com-
plexity classifier, whose goal is to return the appro-
priate complexity level of the given query. Specif-
ically, given the query q, our classifier can be for-
mulated as follows: o = Classifier(q), where
Classifier is a smaller Language Model that is
trained to classify one of three different complexity
levels and o is its corresponding class label. In our
classifier design, there are three class labels: ‘A’,
‘B’, and ‘C’, where ‘A’ indicates that q is straight-
forward and answerable by LLM(q) itself, ‘B’ in-
dicates that q has the moderate complexity where
at least a single-step approach LLM(q,d) is needed,
and ‘C’ indicates that q is complex, requiring the
most extensive solution LLM(q,d, c)2.

Training Strategy The remaining step is to train
the smaller Language Model for Classifier, to
accurately predict its complexity o in response to
the given query q. Yet, there is no annotated dataset
available for query-complexity pairs. Hence, we
propose to automatically construct the training
dataset with two particular strategies.

To be specific, we first aim at labeling the query
2We consider three levels of query complexity, and leave

the exploration of more fine-grained complexities as future
work.

complexity based on the results from three different
retrieval-augmented LLM strategies, in order to
determine the label by its needs. For example, if
the simplest non-retrieval-based approach correctly
generates the answer, the label for its corresponding
query is assigned ‘A’. Also, to break the tie between
different models in providing the label to the query,
we provide a higher priority to a simpler model.
In other words, if both single-step and multi-step
approaches produce the same correct answer while
the non-retrieval-based approach fails, we assign
label ‘B’ to its corresponding query.

However, this labeling strategy has a limita-
tion in that not all the queries are assigned labels,
since the three retrieval-augmented approaches
may all fail to generate the correct answer. On
the other hand, the benchmark datasets may al-
ready have meaningful inductive biases about the
most appropriate retrieval-augmented LLM strate-
gies for their queries, considering the ways they
are created (e.g., QA datasets that require sequen-
tial reasoning usually necessitate a multi-step ap-
proach; while queries of those with labeled sin-
gle documents can be ideally answerable with the
single-step approach). Therefore, for those queries
that remain unlabeled after the first labeling step,
we assign ‘B’ to queries in single-hop datasets
and ‘C’ to queries in multi-hop datasets. Finally,
we train Classifier with these automatically-
collected query-complexity pairs3, by using a cross-
entropy loss. Then, at inference, we can deter-
mine the complexity of the query, which is one of
{‘A’, ‘B’, ‘C’}, by forwarding it to Classifier:
o = Classifier(q).

4 Experimental Setups

In this section, we explain datasets, models, met-
rics, and implementation details. We provide addi-
tional details in Appendix A.

4.1 Datasets

In order to simulate a realistic scenario, where dif-
ferent queries have varying complexities, we use
both the single-hop and multi-hop QA datasets si-
multaneously, in the unified experimental setting.

Single-hop QA For simpler queries, we use three
benchmark single-hop QA datasets, which consist

3As we automatically assign classifier labels, there might
be errors in labeling and might be more advanced strategies to
automatically assign labels, which we leave as future work.
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Table 1: Averaged results on a collection of benchmark datasets for open-domain question answering including the single-hop
and multi-hop queries, with different LLMs. Self-RAG∗ is trained with a different base LLM, namely LLaMA2 (Touvron et al.,
2023); therefore, we compare the results of FLAN-T5-XL (3B) with the results from Self-RAG with LLaMA2 (7B) and the
results of others with the results from Self-RAG with LLaMA2 (13B). We emphasize our results in bold, for easy comparisons.

FLAN-T5-XL (3B) FLAN-T5-XXL (11B) GPT-3.5 (Turbo)

Types Methods EM F1 Acc Step Time EM F1 Acc Step Time EM F1 Acc Step Time

Simple No Retrieval 14.87 21.12 15.97 0.00 0.11 17.83 25.14 19.33 0.00 0.08 35.77 48.56 44.27 0.00 0.71
Single-step Approach 34.83 44.31 38.87 1.00 1.00 37.87 47.63 41.90 1.00 1.00 34.73 46.99 45.27 1.00 1.00

Adaptive
Adaptive Retrieval 23.87 32.24 26.73 0.50 0.56 26.93 35.67 29.73 0.50 0.54 35.90 48.20 45.30 0.50 0.86
Self-RAG∗ 9.90 20.79 31.57 0.72 0.43 10.87 22.98 34.13 0.74 0.23 10.87 22.98 34.13 0.74 1.50
Adaptive-RAG (Ours) 37.17 46.94 42.10 2.17 3.60 38.90 48.62 43.77 1.35 2.00 37.97 50.91 48.97 1.03 1.46

Complex Multi-step Approach 39.00 48.85 43.70 4.69 8.81 40.13 50.09 45.20 2.13 3.80 38.13 50.87 49.70 2.81 3.33

Oracle Adaptive-RAG w/ Oracle 45.00 56.28 49.90 1.28 2.11 47.17 58.60 52.20 0.84 1.10 47.70 62.80 58.57 0.50 1.03

of queries and their associated documents contain-
ing answers, namely 1) SQuAD v1.1 (Rajpurkar
et al., 2016), 2) Natural Questions (Kwiatkowski
et al., 2019), and 3) TriviaQA (Joshi et al., 2017).

Multi-hop QA To consider more complex query
scenarios, we use three benchmark multi-hop QA
datasets, which require sequential reasoning over
multiple documents, namely 1) MuSiQue (Trivedi
et al., 2022a), 2) HotpotQA (Yang et al., 2018),
and 3) 2WikiMultiHopQA (Ho et al., 2020).

4.2 Models
We compare our Adaptive-RAG against relevant
models, including three retrieval-augmented LLM
strategies (in Section 3.1) and the adaptive re-
trieval approaches (Mallen et al., 2023; Asai et al.,
2024), which can be grouped into one of three cat-
egories: Simple, Adaptive, and Complex. Specif-
ically, Simple approaches include the 1) No Re-
trieval and 2) Single-step Approach-based meth-
ods. Adaptive approaches include the 3) Adaptive
Retrieval (Mallen et al., 2023), 4) Self-RAG (Asai
et al., 2024), and our 5) Adaptive-RAG, which
can adaptively perform retrieval based on the
question complexity. For the 6) Multi-step Ap-
proach, we use the most sophisticated state-of-
the-art method (Trivedi et al., 2023), iteratively
accessing both the retriever and LLM with Chain-
of-Thought reasoning (Wei et al., 2022b), for every
query. Note that models across different categories
are not directly comparable. Yet, in the ideal set-
ting, Adaptive approaches should be more effective
than those in the Simple category while simultane-
ously being more efficient than the Complex one.
Therefore, we also report the performance in an
ideal scenario, 7) Adaptive-RAG w/ Oracle, using
the oracle classifier with our Adaptive-RAG.

4.3 Evaluation Metrics
When it comes to evaluating adaptive models, it
is essential to simultaneously consider both the

task performance and efficiency along with their
trade-offs. Thus, we report the results with five
metrics, where three of them measure the effective-
ness and the other two measure the efficiency. In
particular, for effectiveness, we use F1, EM, and
Accuracy (Acc), following the standard evaluation
protocol (Mallen et al., 2023; Baek et al., 2023;
Asai et al., 2024), where F1 measures the number
of overlapping words between the predicted an-
swer and the ground truth, EM measures whether
they are the same, and Acc measures whether the
predicted answer contains the ground-truth answer.
For efficiency, we measure the number of retrieval-
and-generate steps and the average time for answer-
ing each query relative to the one-step approach.

4.4 Implementation Details

For a fair comparison and following Mallen et al.
(2023) and Trivedi et al. (2023), we use the same re-
triever, a term-based sparse retrieval model known
as BM25 (Robertson et al., 1994), across all differ-
ent models. For the external document corpus, we
use different sources depending on the dataset type:
the Wikipedia corpus preprocessed by Karpukhin
et al. (2020) for single-hop datasets, and the pre-
processed corpus by Trivedi et al. (2023) for multi-
hop datasets. Regarding the LLMs that are used
to generate answers, we use the FLAN-T5 series
models (Chung et al., 2022) of XL with 3B pa-
rameters and XXL with 11B parameters, and the
GPT-3.5 model (gpt-3.5-turbo-instruct). For the
retrieval-augmented LLM design, we follow the
implementation details from Trivedi et al. (2023),
which include input prompts, instructions, and the
number of test samples for evaluation (e.g., 500
samples per dataset). In our Adaptive-RAG, for the
query-complexity classifier, we use and train the
T5-Large model (Raffel et al., 2020). Specifically,
the classifier is trained using the epoch that shows
the best performance until 100 training iterations
from the validation set, with the learning rate of 3e-
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Table 2: Results on each of a collection of datasets with FLAN-T5-XL (3B) as the LLM. We emphasize our results in bold.
SQuAD Natural Questions TriviaQA

Data Types Methods EM F1 Acc Step Time EM F1 Acc Step Time EM F1 Acc Step Time

Single-step

Simple No Retrieval 3.60 10.50 5.00 0.00 0.11 14.20 19.00 15.60 0.00 0.13 25.00 31.80 27.00 0.00 0.13
Single-step Approach 27.80 39.30 34.00 1.00 1.00 37.80 47.30 44.60 1.00 1.00 53.60 62.40 60.20 1.00 1.00

Adaptive
Adaptive Retrieval 13.40 23.10 17.60 0.50 0.55 28.20 36.00 33.00 0.50 0.56 38.40 46.90 42.60 0.50 0.56
Self-RAG∗ 2.20 11.20 18.40 0.63 0.50 31.40 39.00 33.60 0.63 0.17 12.80 29.30 57.00 0.68 0.45
Adaptive-RAG (Ours) 26.80 38.30 33.00 1.37 2.02 37.80 47.30 44.60 1.00 1.00 52.20 60.70 58.20 1.23 1.54

Complex Multi-step Approach 24.40 35.60 29.60 4.52 9.03 38.60 47.80 44.20 5.04 10.18 53.80 62.40 60.20 5.28 9.22

Oracle Adaptive-RAG w/ Oracle 32.00 45.60 38.20 1.24 1.60 47.40 57.10 53.60 1.10 1.55 61.60 70.20 66.40 0.79 1.10

MuSiQue HotpotQA 2WikiMultiHopQA

Data Types Methods EM F1 Acc Step Time EM F1 Acc Step Time EM F1 Acc Step Time

Multi-step

Simple No Retrieval 2.40 10.70 3.20 0.00 0.11 16.60 22.71 17.20 0.00 0.11 27.40 32.04 27.80 0.00 0.10
Single-step Approach 13.80 22.80 15.20 1.00 1.00 34.40 46.15 36.40 1.00 1.00 41.60 47.90 42.80 1.00 1.00

Adaptive
Adaptive Retrieval 6.40 15.80 8.00 0.50 0.55 23.60 32.22 25.00 0.50 0.55 33.20 39.44 34.20 0.50 0.55
Self-RAG∗ 1.60 8.10 12.00 0.73 0.51 6.80 17.53 29.60 0.73 0.45 4.60 19.59 38.80 0.93 0.49
Adaptive-RAG (Ours) 23.60 31.80 26.00 3.22 6.61 42.00 53.82 44.40 3.55 5.99 40.60 49.75 46.40 2.63 4.68

Complex Multi-step Approach 23.00 31.90 25.80 3.60 7.58 44.60 56.54 47.00 5.53 9.38 49.60 58.85 55.40 4.17 7.37

Oracle Adaptive-RAG w/ Oracle 24.80 38.50 27.00 1.98 3.99 51.20 64.00 54.80 1.59 2.77 53.00 62.30 59.40 1.01 1.69
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Figure 3: Performance on QA and query-complexity assessment of different adaptive approaches for retrieval-augmented LLMs
with FLAN-T5 XL (Left) and XXL (Center). For labeling the complexity of queries, we use the silver data annotated from the
prediction outcomes of models (described in Section 3.2). We also provide the confusion matrix across three labels (Right).

5 and the AdamW (Loshchilov and Hutter, 2019)
as an optimizer. Regarding its training data, we
sample and annotate 400 queries from 6 datasets
based on its inductive bias (single-hop for one-step
approach and multi-hop for multi-step). In addition,
we use predicted outcomes of three different strate-
gies over 400 queries sampled from each dataset.
Note that those queries used for classifier training
do not overlap with the testing queries for QA.

5 Experimental Results and Analyses

In this section, we show the overall experimental
results and offer in-depth analyses of our method.

Main Results First of all, Table 1 shows our main
results averaged over all considered datasets, which
corroborate our hypothesis that simple retrieval-
augmented strategies are less effective than the
complex strategy, while the complex one is sig-
nificantly more expensive than the simple ones. In
addition, we report the more granular results with
FLAN-T5-XL on each of the single-hop and multi-
hop datasets in Table 2 (and more with different
LLMs in Table 7 and Table 8 of Appendix), which
are consistent with the results observed in Table 1.

However, in a real-world scenario, not all users
ask queries with the same level of complexity,
which emphasizes the importance of the need for
adaptive strategies. Note that among the adaptive
strategies, our Adaptive-RAG shows remarkable

effectiveness over the competitors (Table 1). This
indicates that merely focusing on the decision of
whether to retrieve or not is suboptimal. Also, as
shown in Table 2, such simple adaptive strategies
are particularly inadequate for handling complex
queries in multi-hop datasets, which require ag-
gregated information and reasoning over multiple
documents. Meanwhile, our approach can consider
a more fine-grained query handling strategy by fur-
ther incorporating an iterative module for complex
queries. Furthermore, in a realistic setting, we
should take into account not only effectiveness but
also efficiency. As shown in Table 1, compared to
the complex multi-step strategy, our proposed adap-
tive strategy is significantly more efficient across
all model sizes. This is meaningful in this era of
LLMs, where the cost of accessing them is a critical
factor for practical applications and scalability. Fi-
nally, to see the upper bound of our Adaptive-RAG,
we report its performances with the oracle classifier
where the classification performance is perfect. As
shown in Table 1 and Table 2, we observe that it
achieves the best performance while being much
more efficient than our Adaptive-RAG without the
oracle classifier. These results support the valid-
ity and significance of our proposal for adapting
retrieval-augmented LLM strategies based on query
complexity, and further suggest the direction to de-
velop more improved classifiers to achieve optimal
performance.
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Table 3: The exact elapsed time per query and the percentage
of the predicted labels from the classifier over all samples.

Labels Time/Query (Sec.) Percentage (%)

No (A) 0.35 8.60
One (B) 3.08 53.33
Multi (C) 27.18 38.07

Classifier Performance To understand how the
proposed classifier works, we analyze its perfor-
mance across different complexity labels. As Fig-
ure 3 (Left and Center) shows, the classification
accuracy of our Adaptive-RAG is better than those
of the other adaptive retrieval baselines, which
leads to overall QA performance improvements. In
other words, this result indicates that our Adaptive-
RAG is capable of more accurately classifying the
complexity levels with various granularities, which
include not performing retrieval, performing re-
trieval only once, and performing retrieval multiple
times. In addition to the true positive performance
of our classifier averaged over all those three la-
bels in Figure 3 (Left and Center), we further re-
port its confusion matrix in Figure 3 (Right). We
note that the confusion matrix reveals some notable
trends: ‘C (Multi)’ is sometimes misclassified as
‘B (One)’ (about 31%) and ‘B (One)’ as ‘C (Multi)’
(about 23%); ‘A (No)’ is misclassified often as
‘B (One)’ (about 47%) and less frequently as ‘C
(Multi)’ (about 22%). While the overall results in
Figure 3 show that our classifier effectively cate-
gorizes the three labels, further refining it based
on such misclassification would be a meaningful
direction for future work.

Analyses on Efficiency for Classifier While Ta-
ble 1 shows the relative elapsed time for each of the
three different RAG strategies, we further provide
the exact elapsed time per query for our Adaptive-
RAG and the distribution for predicted labels from
our query-complexity classifier in Table 3. Similar
to the results of the elapsed time in Table 1 (relative
time), Table 3 (exact time) shows that efficiency
can be substantially improved by identifying sim-
ple or straightforward queries.

Analyses on Training Data for Classifier We
have shown that the classifier plays an important
role in adaptive retrieval. Here, we further analyze
the different strategies for training the classifier by
ablating our full training strategy, which includes
two approaches: generating silver data from pre-
dicted outcomes of models and utilizing inductive

Table 4: Results on QA and complexity classification with
varying the data annotation strategies for training the classifier.

QA Classifier (Accuracy)

Training Strategies F1 Step All No One Multi

Adaptive-RAG (Ours) 46.94 1084 54.52 30.52 66.28 65.45
w/o Binary 43.43 640 60.30 62.19 65.70 39.55
w/o Silver 48.79 1464 40.00 0.00 53.98 75.91

bias in datasets (see Section 3.2). As Table 4 shows,
compared to the training strategy relying solely on
the data derived from inductive bias, ours is sig-
nificantly more efficient. This efficiency is partly
because ours also takes into account the case that
does not consider any documents at all, as also
implied by the classification accuracy; meanwhile,
queries in the existing datasets do not capture the
information on whether the retrieval is required or
not. On the other hand, in the case of only using the
silver data annotated from the correct predictions,
while its overall classification accuracy is high, the
overall QA performance implies that relying on
the silver data may not be optimal. This may be
because this silver data does not cover complex-
ity labels over incorrectly predicted queries, which
leads to lower generalization effect on queries rel-
evant to them. Meanwhile, by also incorporating
complexity labels from dataset bias (single-hop vs
multi-hop), the classifier becomes more accurate in
predicting multi-hop queries, leading to the better
performance. It is worth noting that our automatic
labeling strategies are two particular instantiations
for training the classifier, and that there could be
other instantiations, which we leave as future work.

Analyses on Classifier Size To investigate the
sensitivity of our classifier according to its varying
sizes, we conducted further experiments. As shown
in Table 6, we observe no significant performance
differences among classifiers of various sizes, even
with reduced complexity and fewer parameters in
smaller classifiers. This indicates that our proposed
classifier can contribute to resource-efficient set-
tings in real-use cases with smaller sizes without
compromising the performance.

Case Study We conduct a case study to qualita-
tively compare our Adaptive-RAG against Adap-
tive Retrieval. Table 5 shows the classified com-
plexity and the query handling patterns for both
simple and complex questions. First, for the simple
single-hop question, our Adaptive-RAG identifies
that it is answerable by only using the LLM’s para-
metric knowledge about ‘Google’. By contrast,
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Table 5: Case study with GPT-3.5 (Turbo), where we represent the factual error in red and the accurate information in blue.

Dataset Question Adaptive Retrieval Adaptive-RAG (Ours)

NQ
(Single-hop)

Which famous corpo-
rate logo changed to a
flat colour/color sans
serif font in its first ma-
jor change since 1999?

Query Type: B (Single-step Approach)
Reasoning: The famous corporate logo that
changed to a flat color sans-serif font in its first
major change since 1999 is Microsoft. Microsoft
changed its logo in 2012, replacing the italicized,
multi-colored font with a simple, flat, grey font. So
the answer is: Microsoft.

Query Type: A (Non Retrieval)
Reasoning: The famous corporate logo that
changed to a flat color sans serif font in its first ma-
jor change since 1999 is Google. Google changed
its logo in 2015. So the answer is: Google.

MuSiQue
(Multi-hop)

Who is the child of the
Italian navigator who
explored the eastern
coast of the continent
César Gaytan was born
in for the English?

Query Type: A (Non Retrieval)
Reasoning: César Gaytan was born in the conti-
nent of North America. The Italian navigator who
explored the eastern coast of North America for the
English was Giovanni Caboto, also known as John
Cabot. So the answer is: Giovanni Caboto/John
Cabot.

Query Type: C (Multi-step Approach)
Reasoning: Césarr Gaytan was born in Guadalajara,
Jalisco, Mexico. The Italian navigator who explored
the eastern coast of the continent for the English is
John Cabot. John Cabot’s son is Sebastian Cabot.
So the answer is: Sebastian Cabot.

Table 6: Results with varying model sizes for classifiers.

QA Classifier (Accuracy)

Sizes F1 Step All No One Multi

Small (60M) 45.83 964 53.48 26.65 70.62 53.18
Base (223M) 45.97 983 53.41 26.42 69.46 56.82
Large (770M) 46.94 1084 54.52 30.52 66.28 65.45

Adaptive Retrieval fetches additional documents,
leading to longer processing times and occasion-
ally producing incorrect responses due to the inclu-
sion of partially irrelevant information about ‘Mi-
crosoft’. Meanwhile, faced with a complex ques-
tion, Adaptive-RAG seeks out relevant information,
including details like ‘a son of John Cabot’, which
may not have been stored in LLMs, while Adaptive
Retrieval fails to request such information from
external sources, resulting in inaccurate answers.

6 Conclusion

In this work, we proposed the Adaptive Retrieval-
Augmented Generation framework, referred to
as Adaptive-RAG, to handle queries of various
complexities. Specifically, Adaptive-RAG is de-
signed to dynamically adjust its query handling
strategies in the unified retrieval-augmented LLM
based on the complexity of queries that they en-
counter, which spans across a spectrum of the non-
retrieval-based approach for the most straightfor-
ward queries, to the single-step approach for the
queries of moderate complexity, and finally to the
multi-step approach for the complex queries. The
core step of our Adaptive-RAG lies in determin-
ing the complexity of the given query, which is
instrumental in selecting the most suitable strat-
egy for its answer. To operationalize this process,
we trained a smaller Language Model with query-
complexity pairs, which are automatically anno-
tated from the predicted outcomes and the inductive
biases in datasets. We validated our Adaptive-RAG

on a collection of open-domain QA datasets, cover-
ing the multiple query complexities including both
the single- and multi-hop questions. The results
demonstrate that our Adaptive-RAG enhances the
overall accuracy and efficiency of QA systems, al-
locating more resources to handle complex queries
while efficiently handling simpler queries, com-
pared to the existing one-size-fits-all approaches
that tend to be either minimalist or maximalist over
varying query complexities.

Limitations

While our Adaptive-RAG shows clear advantages
in effectiveness and efficiency by determining the
query complexity and then leveraging the most
suitable approach for tackling it, it is important
to recognize that there still exist potential avenues
for improving the classifier from the perspectives
of its training datasets and architecture. Specifi-
cally, as there are no available datasets for training
the query-complexity classifier, we automatically
create new data based on the model prediction out-
comes and the inductive dataset biases. However,
our labeling process is one specific instantiation
of labeling the query complexity, and it may have
the potential to label queries incorrectly despite its
effectiveness. Therefore, future work may create
new datasets that are annotated with a diverse range
of query complexities, in addition to the labels of
question-answer pairs. Also, as the performance
gap between the ideal classifier in Table 1 and the
current classifier in Figure 3 indicates, there is still
room to improve the effectiveness of the classifier.
In other words, our classifier design based on the
smaller LM is the initial, simplest instantiation for
classifying the query complexity, and based upon
it, future work may improve the classifier archi-
tecture and its performance, which will positively
contribute to the overall QA performance.
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Ethics Statement

The experimental results on Adaptive-RAG vali-
date its applicability in realistic scenarios, where a
wide range of diverse user queries exist. Nonethe-
less, given the potential diversity of real-world user
inputs, it is crucial to also consider scenarios where
these inputs might be offensive or harmful. We
should be aware that such inputs could lead to the
retrieval of offensive documents and the genera-
tion of inappropriate responses by the retrieval-
augmented LLMs. To address this challenge, de-
veloping methods to detect and manage offensive
or inappropriate content in both user inputs and re-
trieved documents within the retrieval-augmented
framework is essential. We believe that this is a
critical area for future work.
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Figure 4: QA performance (F1) and efficiency (Time/Query)
for different retrieval-augmented generation approaches. We
use the FLAN-T5-XL (3B) as the base LLM.

A Additional Experimental Setups

A.1 Datasets

We use publicly open datasets for both single-
hop and multi-hop QA datasets, referring to
as Karpukhin et al. (2020) and Trivedi et al. (2023),
respectively. We describe the characteristics of
each dataset:
1) SQuAD v1.1 (Rajpurkar et al., 2016) is created
through a process where annotators write questions
based on the documents they read.
2) Natural Questions (Kwiatkowski et al., 2019) is
constructed by real user queries on Google Search.
3) TriviaQA (Joshi et al., 2017) comprises trivia
questions sourced from various quiz websites.
4) MuSiQue (Trivedi et al., 2022a) is collected by
compositing multiple single-hop queries, to form
queries spanning 2-4 hops.
5) HotpotQA (Yang et al., 2018) is constructed by
having annotators create questions that link multi-
ple Wikipedia articles.
6) 2WikiMultiHopQA (Ho et al., 2020) is derived
from Wikipedia and its associated knowledge graph
path, needing 2-hops.

A.2 Models

We describe the details of models as follows:
1) No Retrieval. This approach uses only the LLM
itself, to generate the answer to the given query.
2) Single-step Approach. This approach first re-
trieves the relevant knowledge with the given query
from the external knowledge sources and then aug-
ments the LLM with this retrieved knowledge to
generate the answer, which iterates only once.
3) Adaptive Retrieval. This baseline (Mallen et al.,
2023) adaptively augments the LLM with the re-
trieval module, only when the entities appearing
in queries are less popular. To extract entities, we
use the available entity-linking method (Li et al.,
2020), namely BLINK, for questions.
4) Self-RAG. This baseline (Asai et al., 2024)
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Figure 5: QA performance (F1) and efficiency (Time/Query)
for different retrieval-augmented generation approaches. We
use the FLAN-T5-XXL (11B) as the base LLM.

trains the LLM to adaptively perform retrieval and
generation, where the retrieval is conducted once it
predicts the special retrieval token above a certain
threshold, and the answer generation follows.
5) Adaptive-RAG. This is our model that adap-
tively selects the retrieval-augmented generation
strategy, smoothly oscillating between the non-
retrieval, single-step approach, and multi-step ap-
proaches4 without architectural changes, based on
the query complexity assessed by the classifier.
6) Multi-step Approach. This approach (Trivedi
et al., 2023) is the multi-step retrieval-augmented
LLM, which iteratively accesses both the retriever
and LLM with interleaved Chain-of-Thought rea-
soning (Wei et al., 2022b) repeatedly until it derives
the solution or reaches the maximum step number.
7) Adaptive-RAG w/ Oracle This is an ideal sce-
nario of our Adaptive-RAG equipped with an or-
acle classifier that perfectly categorizes the query
complexity.

A.3 Implementation Details
For computing resources, we use A100 GPUs
with 80GB memory. In addition, due to the sig-
nificant costs associated with evaluating retrieval-
augmented generation models, we perform experi-
ments with a single run. Finally, we implemented
models using PyTorch (Paszke et al., 2019) and
Transformers library (Wolf et al., 2020).

B Additional Experimental Results

Performance vs Time We further provide a com-
parison of different retrieval-augmented genera-
tion approaches with FLAN-T5-XL and FLAN-T5-
XXL models in Figure 4 and Figure 5, respectively,
in the context of performance and efficiency trade-
offs. Similar to the observation made from the GPT-
3.5 model in Figure 1, our proposed Adaptive-RAG
is significantly more effective as well as efficient.

4For the multi-step approach, we use the state-of-the-art
question answering strategy from IRCoT (Trivedi et al., 2023).
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Table 7: Results on each of a collection of datasets with FLAN-T5-XXL (11B) as the LLM. We emphasize our results in bold.
SQuAD Natural Questions TriviaQA

Data Types Methods EM F1 Acc Step Time EM F1 Acc Step Time EM F1 Acc Step Time

Single-step

Simple No Retrieval 7.00 14.40 8.40 0.00 0.08 18.80 25.50 20.40 0.00 0.08 32.80 39.20 35.40 0.00 0.08
Single-step Approach 28.80 40.80 35.00 1.00 1.00 41.40 51.20 47.60 1.00 1.00 56.00 64.70 61.80 1.00 1.00

Adaptive
Adaptive Retrieval 15.60 25.60 20.00 0.50 0.54 31.00 39.70 35.00 0.50 0.54 44.80 52.20 48.60 0.50 0.54
Self-RAG∗ 1.60 11.90 20.80 0.59 0.31 39.20 47.10 42.40 0.75 0.09 14.60 33.70 60.20 0.76 0.22
Adaptive-RAG (Ours) 27.80 39.80 34.00 1.17 1.50 41.20 51.00 47.40 1.00 1.00 52.00 60.30 57.20 1.03 1.33

Complex Multi-step Approach 24.60 36.90 30.20 2.13 3.83 39.60 49.60 46.40 2.16 3.94 52.60 61.10 59.40 2.17 4.03

Oracle Adaptive-RAG w/ Oracle 32.80 46.90 38.20 0.85 0.94 51.20 61.00 57.00 0.71 0.91 63.40 71.30 68.20 0.51 0.60

MuSiQue HotpotQA 2WikiMultiHopQA

Data Types Methods EM F1 Acc Step Time EM F1 Acc Step Time EM F1 Acc Step Time

Multi-step

Simple No Retrieval 4.20 13.40 5.40 0.00 0.08 17.40 25.44 18.40 0.00 0.09 26.80 32.93 28.00 0.00 0.08
Single-step Approach 16.80 25.70 19.20 1.00 1.00 37.60 49.27 39.60 1.00 1.00 46.60 54.13 48.20 1.00 1.00

Adaptive
Adaptive Retrieval 8.40 17.80 10.20 0.50 0.54 26.60 36.01 27.80 0.50 0.54 35.20 42.68 36.80 0.50 0.54
Self-RAG∗ 1.20 8.20 11.80 0.68 0.27 5.60 17.86 30.60 0.76 0.26 3.00 19.14 39.00 0.90 0.25
Adaptive-RAG (Ours) 20.60 28.50 23.20 1.89 3.12 44.20 54.78 46.80 1.58 2.53 47.60 57.36 54.00 1.46 2.55

Complex Multi-step Approach 19.40 27.50 21.80 2.09 3.66 47.00 57.81 49.40 2.08 3.73 57.60 67.65 64.00 2.17 3.63

Oracle Adaptive-RAG w/ Oracle 24.20 37.20 26.60 1.22 1.71 52.20 64.80 54.60 0.92 1.33 59.20 70.40 68.60 0.82 1.14

Table 8: Results on each of a collection of datasets with GPT-3.5 (Turbo) as the LLM. We emphasize our results in bold.
SQuAD Natural Questions TriviaQA

Data Types Methods EM F1 Acc Step Time EM F1 Acc Step Time EM F1 Acc Step Time

Single-step

Simple No Retrieval 16.00 29.20 23.80 0.00 0.62 39.80 55.70 55.00 0.00 0.56 64.00 75.60 75.80 0.00 0.68
Single-step Approach 18.00 33.80 29.20 1.00 1.00 32.40 46.80 54.80 1.00 1.00 55.20 66.50 65.80 1.00 1.00

Adaptive
Adaptive Retrieval 15.40 30.00 24.40 0.50 0.81 36.40 51.20 56.60 0.50 0.78 62.00 71.90 72.20 0.50 0.84
Self-RAG∗ 1.60 11.90 20.80 0.59 1.91 39.20 47.10 42.40 0.75 0.52 14.60 33.70 60.20 0.76 1.59
Adaptive-RAG (Ours) 19.80 34.40 30.00 0.87 1.21 36.80 52.00 56.60 0.68 0.86 62.40 73.80 73.80 0.22 0.79

Complex Multi-step Approach 17.40 31.50 26.20 2.50 3.24 35.60 49.70 57.80 2.58 3.79 54.80 67.10 68.00 2.30 2.65

Oracle Adaptive-RAG w/ Oracle 28.00 45.90 39.40 0.54 0.93 50.00 65.40 67.00 0.28 0.8 70.80 81.00 80.00 0.11 0.73

MuSiQue HotpotQA 2WikiMultiHopQA

Data Types Methods EM F1 Acc Step Time EM F1 Acc Step Time EM F1 Acc Step Time

Multi-step

Simple No Retrieval 20.40 31.30 24.40 0.00 0.81 37.40 51.04 43.20 0.00 0.74 37.00 48.50 43.40 0.00 0.90
Single-step Approach 16.40 26.70 23.60 1.00 1.00 39.60 50.44 45.60 1.00 1.00 46.80 57.69 52.60 1.00 1.00

Adaptive
Adaptive Retrieval 18.80 30.30 24.80 0.50 0.90 38.60 50.70 43.20 0.50 0.87 44.20 55.11 50.60 0.50 0.95
Self-RAG∗ 1.20 8.20 11.80 0.68 1.66 5.60 17.86 30.60 0.76 1.67 3.00 19.14 39.00 0.90 1.81
Adaptive-RAG (Ours) 21.80 32.60 29.60 1.90 2.29 40.40 52.56 47.00 0.93 1.48 46.60 60.09 56.80 1.59 2.23

Complex Multi-step Approach 23.00 32.50 31.60 3.41 3.61 45.80 58.36 52.20 2.73 3.18 52.20 66.08 62.40 3.36 3.35

Oracle Adaptive-RAG w/ Oracle 29.60 44.70 35.60 0.90 1.45 55.60 69.90 62.80 0.54 1.08 52.20 69.90 66.60 0.65 1.21

Performance per Dataset In addition to detail-
ing the performance of each dataset with the FLAN-
T5-XL model, as shown in Table 2, we also present
the results for each dataset with the FLAN-T5-
XXL and GPT-3.5 models in Table 2 and Table 8,
respectively. The experimental results show that
our Adaptive-RAG consistently balances between
efficiency and accuracy. It is worth noting that
while the GPT-3.5 model performs effectively in
addressing straightforward queries even without
document retrieval, it benefits significantly from
our Adaptive-RAG in terms of effectiveness when
solving complex multi-hop queries.

7050


