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Preface by the General Chair

Welcome to the proceedings of the 1st Machine Learning for Ancient Languages (ML4AL) Workshop,
held as part of the Annual Conference of the Association for Computational Linguistics (ACL) 2024. Ta-
king place on August 15th, 2024, this is a hybrid event with virtual and on-site participation in Thailand.

ML4AL showcases the scientific opportunities at the intersection of the Humanities and ML, repre-
senting a unique convergence between the two and spotlighting promising directions for future endeavors
within this rising field. By leveraging advances in AI and by focusing on the study and preservation of
ancient texts, ML4AL aims to inspire collaboration and support research momentum in the emerging
field of ML for the study of ancient languages.

On its 1st year, ML4AL received 50 submissions from a global community of researchers. The submis-
sions concerned multiple languages, including Ancient Greek, Latin, Sumerian and Akkadian, Classical
and Old Chinese, ancient Egyptian, Coptic, etc. 18 papers were accepted for oral presentation (36%)
and 10 were accepted as posters (20%). The accepted submissions covered diverse topics, such as di-
gitization, restoration, attribution, linguistic analysis, textual criticism, translation, and decipherment of
ancient texts. These contributions reflect the depth and breadth of current research and highlight the
innovative approaches being developed to tackle the unique challenges posed by ancient languages.

Besides the oral and poster presentations, ML4AL features two distinguished keynote talks to provi-
de valuable perspectives on the integration of machine learning for the study of ancient texts. The talk of
Dr Stephen Parsons from Educe Lab, University of Kentucky, USA concerns the virtual unwrapping of
the Herculaneum Scrolls. The talk of Professor JinYeong Bak from the Department of Computer Scien-
ce and Engineering, Sungkyunkwan University, South Korea focuses on monarchical ruling styles when
applying ML to historical corpora.

The ML4AL Organising Committee is grateful: to the keynote speakers for their stimulating talks; the
authors for their valuable contributions; the members of the Program Committee for their hard work. We
would like to particularly thank our emergency reviewers, who provided very valuable expertise in a very
limited time window. We would also like to extend our gratitude to the ACL 2024 Workshop Chairs for
their kind assistance, and to our sponsors and supporting organization for their generous contributions.
Specifically, Google DeepMind was our diamond-tier sponsor, the Vezuvius Challenge was our silver-tier
sponsor, and Archimedes/Athena RC was our supporting organization.

Hopefully, the discussions and collaborations initiated at this workshop will lead to significant advance-
ments in the study of ancient languages and foster a deeper understanding of our shared human heritage.

Sincerely,

John Pavlopoulos, General Chair
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Abstract

Automatic correction of errors in Handwritten
Text Recognition (HTR) output poses persis-
tent challenges yet to be fully resolved. In
this study, we introduce a shared task aimed
at addressing this challenge, which attracted
271 submissions, yielding only a handful of
promising approaches. This paper presents the
datasets, the most effective methods, and an ex-
perimental analysis in error-correcting HTRed
manuscripts and papyri in Byzantine Greek,
the language that followed Classical and pre-
ceded Modern Greek. By using recognised and
transcribed data from seven centuries, the two
best-performing methods are compared, one
based on a neural encoder-decoder architecture
and the other based on engineered linguistic
rules. We show that the recognition error rate
can be reduced by both, up to 2.5 points at the
level of characters and up to 15 at the level of
words, while also elucidating their respective
strengths and weaknesses.

1 Introduction

The digitisation of ancient texts plays a crucial role
in both analysing ancient corpora and preserving
cultural heritage. However, transcribing ancient
handwritten text using optical character and text
recognition methods remains a challenging task.
Handwritten text recognition (HTR) concerns the
conversion of scanned images of handwritten text
into machine-readable text. In contrast to recently
printed materials, the analysis of images contain-
ing handwritten documents presents more intricate
difficulties, particularly when dealing with histori-
cal and premodern manuscripts. These challenges
may result in recognised text containing numerous
errors or, at times, a complete inability to recog-
nise the text. This is especially true when there is a
low availability of suitable training data for specific
scripts, such as medieval scripts.

1.1 Motivation
Natural language processing (NLP) can assist with
the task of detecting and correcting erroneous text.
When errors come from human learners of well-
resourced languages, the task is undoubtedly chal-
lenging, yet notable advancements have been doc-
umented in recent research (Bryant et al., 2017,
2022). In the case of low-resource languages, how-
ever, the task can be more difficult and expensive,
posing an additional hurdle not only to experts but
also to systems. An example is the correction of
recognition errors in historical newspapers, where
recognition error rates of 10% (Chiron et al., 2017)
have been reported. In this study, we escalate the
difficulty by concentrating on the task of rectifying
recognition errors in handwritten text. These errors
tend to pose a greater challenge compared to those
in printed text, primarily owing to the diversity in
letter shapes and the distinct scripts employed by
scribes. Error correction algorithms are applicable
to HTRed material, benefiting macro-analytical ap-
plications, such as collation (Perdiki, 2022). They
also concern transcribed text, e.g. by proposing
corrections arising, for instance, due to distraction
or fatigue during the annotation process.

1.2 Background
The written language of the Byzantine manuscripts
and papyri,1 such as the ones we shared with the
challenge (see Section 3.2.3), reflects the language
of the Byzantine times, following classical Greek
and preceding the modern Greek language. Within
these texts, morphological categories such as the
optative, the pluperfect, and the perfect have disap-
peared, while others, such as the dative case have
gradually decreased. Infinitives and participles are
still there in the texts, serving as remnants of the

1We refer to Byzantine Greek, also known as Medieval or
Middle Greek.
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classical tradition, prompting one to regard the lan-
guage as a distinct variant, separate from modern
Greek. There are several spelling conventions that
deviate from the older orthographic rules while the
ancient punctuation signs are still in use, albeit
not always with the same function. A more de-
tailed description of this language is available in
Papaioannou (2021).

1.3 Contributions
We study the benefits of error-correcting HTRed
Byzantine text from the 10th to the 16th cent. CE.
To conduct our research, we utilised a collection
of transcribed images of Byzantine papyri and
manuscripts documented by Platanou et al. (2022).
For recognition, we used Transkribus (Kahle et al.,
2017) to train an HTR model on seven images,
one per century, and we used the trained model to
recognise approx. one hundred pages. By using the
recognised and transcribed images,2 we introduced
and successfully ran a shared task, challenging sys-
tems to correct errors in HTRed material (Fig. 1).
Here:

• we present an overview of this challenge,
which attracted 271 submissions, discussing
the timeline, the evaluation, and the task dif-
ficulty that was introduced by a recognition
error rate that varied across centuries;

• we introduce and publicly release a machine-
actionable dataset for the correction of errors
in HTRed Byzantine text.3 Additionally, we
offer three other resources: a synthetic dataset
for evaluating error correction algorithms, and
two corpora created specifically for this chal-
lenge, which we also make publicly available;

• by benchmarking the two best ap-
proaches—one based on engineered
linguistic rules and the other on deep
learning (the developers are co-authors)—we
demonstrate that both effectively reduce the
recognition-error rate, also outlining and
analysing the merits of each approach.

2 Related work

Most studies approach the task of post-correction
by focusing on printed text and by employing

2To distinguish between the two, we will refer to ‘tran-
scribed’ when the text is generated by a human expert and to
‘recognised’ when it is generated by a system.

3https://github.com/htrec-gr/challenge.

encoder-decoder architectures (Chiron et al., 2017;
Rigaud et al., 2019; Schaefer and Neudecker, 2020;
Lyu et al., 2021). The underlying idea is to encode
the recognized erroneous text and then decode it
into the corrected text, frequently employing meth-
ods from machine translation (Nguyen et al., 2020;
Amrhein and Clematide, 2018).

2.1 Error correction
Error-correcting recognised text is a common ap-
proach when working with printed text (Schulz and
Kuhn, 2017), where techniques such as spell check-
ing, edit distance from lexicons, and the output
of a statistical machine translation (SMT) model
(Koehn et al., 2007) have been employed. A lan-
guage model (i.e., the SMT decoder) decides the
most probable correction, and to prevent the false
alteration of a correct word, the authors introduce
an additional input feature to the decision module.
This feature indicates whether a word was found
in a corpus alongside the preceding or following
word. More generally, SMT is preferred in error
correction while neural machine translation (NMT)
has been reported advantageous in error detection
(Amrhein and Clematide, 2018). More recently, an
encoder-decoder model has been used to correct
recognised printed text (on a character level) from
historical books in German (Lyu et al., 2021). All
the aforementioned studies pertain to printed text,
where a recognition error rate of 10% is deemed
challenging (Chiron et al., 2017). While we also
experiment with statistical and neural error correc-
tion methods, our primary focus is on handwritten
text, where the error rate is often higher (Figure 4).

2.2 Error detection for error correction
Error detection benefits error correction (Pavlopou-
los et al., 2023). In 2017, ICDAR organised a com-
petition focused on post-correcting recognised out-
put (Chiron et al., 2017). The competition used a
dataset comprising 12 million characters of printed
text in English and French, and consisted of two
subtasks. The first concerned error detection, aim-
ing at the accurate identification of the position and
the length of the errors. The second concerned error
correction, where the errors were already provided
to the participants (Chiron et al., 2017; Rigaud
et al., 2019). The organisers noted 35 registrations,
indicating a substantial interest from the commu-
nity. However, it was also noted that only half of
the submissions were deemed successful, under-
scoring the challenging nature of the task.

2
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Figure 1: Overview of the organised shared task (details hidden to preserve anonymity)

In 2019, the competition was repeated, and the
dataset’s size was doubled, with the introduction of
ten European languages (Rigaud et al., 2019). The
texts used in both competitions were sourced from
collections of national libraries or universities and
encompassed a variety of formats, such as news-
papers, historical books, and shopping receipts. In
the 2017 edition, the most effective error correc-
tion method consisted of an ensemble combining
statistical and neural machine translation models.
In contrast, in the 2019 competition a character-
level neural encoder-decoder took the top position,
based on BiLSTM (Hochreiter and Schmidhuber,
1997) and BERT (Devlin et al., 2018).

BERT, fine-tuned on a named entity recognition
task, was also used to perform error detection at
the token level (Nguyen et al., 2020). After the
subtoken tokenisation, the authors obtained GloVe
or fastText word embeddings; combined with seg-
ment and positional embeddings, these were given
as input to BERT. The hidden states were fed to
a dense layer on top that classified each token as
erroneous or not. Error correction, then, followed
with a character-based NMT model. Error detec-
tion has been considered a reasonable first step to
avoid the false alteration of already correctly recog-
nised lines (Schaefer and Neudecker, 2020). The
authors used a recurrent neural network (RNN) as a
first step to detect erroneous characters in the recog-
nised printed text. Then, a neural encoder-decoder
translation model was fed only with sentences that
comprised (detected) erroneous characters. Their
two-step post-correction resulted in an 18.2% rela-
tive improvement in the recognition error rate.

3 The Shared Task

We used a dataset (§3.2) to set up a shared task
on error-correcting the HTR output of Byzantine
papyri and manuscripts. The challenge lasted from
May 1st to July 1st, 2022, counting one hundred
thirty-six registered participants from around the
world,4 and 271 submissions.

3.1 The language

We used images from Byzantine papyri and
manuscripts from seven centuries (10th-16th c.
CE). As was discussed already (§1.2), the written
text reflects the language of the Byzantine times, a
language during an intermediary phase of linguistic
evolution between Classical and Modern Greek.

We employed the Handwritten Paleographic
Greek Text Recognition (HPGTR) dataset (Pla-
tanou et al., 2022), comprising images from the
digitised Barocci manuscript collection of the
Bodleian Library that display text dating back from
10th to 17th c. CE. The scripts found in the respec-
tive manuscripts are the Greek minuscule script
and the cursive style of the minuscule script, an ex-
ample of which is shown in Figure 2(a). As shown
in Figure 2(b), characters may join each other, dis-
allowing empty space between words and leading
to joined words that often characterise the cursive
style. Also, joined characters can form ligatures, as
shown in Figure 2(c), while the character position
is not strict, as is shown with the character ‘α’ at
the end of the word ‘τάλαινα’ in Figure 2(d).

Figure 2 also shows that lowercase and upper-
case letters appear interchangeably in the text.
Scriptura continua exists (not consistently) along

4India had the most participants (26), followed by the
United States (7), Russia (6), Greece (6), and Japan (3).

3



(a)

(b) (c) (d)

Figure 2: Visual examples of the language in the
HPGTR dataset. An example of the cursive style of
the minuscule script (a). The words ‘πολλά’ and ‘γί-
νεσθαι’ are joined, leaving no empty space between
them (b). In the word ‘ώστε’, the characters ‘σ’, ‘τ’
and ‘ε’ are combined to form the ligature ‘στε’ (c). The
words ‘κλύουσα’ and ‘τάλαινα’ are shown in (d), with
the final ‘α’ written above the latter.

with abbreviations. Furthermore, characters of vari-
ous sizes may appear regardless of their neighbour-
ing ones, such as in Figure 2(d) where the bigger
letter ‘Τ’ is written between two small letters ‘α’.

3.2 The dataset
The dataset of the challenge comprises texts that are
recognised (HTRed) and transcribed, with the latter
serving as ground truth (hidden during evaluation).

3.2.1 The HTR model
To recognise text from images of handwritten
Byzantine papyri and manuscripts, we opted for
Transkribus (Kahle et al., 2017).5 This is an in-
dustrial platform that encompasses a wide range
of functions (e.g., layout analysis, transcription,
HTR training/prediction). To yield a rich ma-
terial for our task and, hence, a diversity of
recognition errors, we trained our model only on
seven randomly-selected images (and transcrip-
tions) from the HPGTR dataset, one per century.
The centuries from 11th to 13th are better supported
when counting words compared to the next three
centuries, with the 16th being the least supported.

3.2.2 Training data
We used the lines from ninety-eight HPGTR im-
ages. Each was transcribed by both a human expert,
yielding the ground truth, and by our HTR network,
yielding the input (see Fig. 1). To ensure a balanced
representation across centuries, we randomly se-
lected ten images per century (from the 10th to
the 16th c. CE). However, the images from the
16th century contained fewer lines compared to
other centuries, which we addressed by including

5https://readcoop.eu/transkribus, Version 1.15.1.

additional images from that period. Overall, the
training dataset comprises a (parallel) corpus of
1,800 lines (see also Table 5 in Appendix A).
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Figure 3: CER of recognised lines per century

CER per century When we group the character
error rate (CER) by century, we notice that the rate
tends to be higher for lines originating from the
three most recent centuries (Fig. 3). This trend is
consistent with findings from recognition systems
trained on larger datasets (Platanou et al., 2022).
Here, however, it is worth noting that lines with
low CER present a more manageable correction
task, whereas those with high CER pose greater
challenges for parsing and correction.

HTR error analysis A common error in lines
with a low CER is mistaken word division (i.e.,
space mistakenly added, e.g., by pushing away the
final “s” of a word) and merging. Figure 4 shows
that approx. 200 lines have a CER that is lower
than 10% (fifty of which have less than 5%), while
500 have less than 20%. Further, approximately
400 lines have a CER of 50% or higher.

Figure 4: Number of recognised lines per CER
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3.2.3 Evaluation data
For evaluation purposes, a held-out test set was
created, comprising 180 recognised lines but ex-
cluding their respective 180 transcriptions (hidden
ground truth). These lines were taken from seven
randomly selected HPGTR images, one per cen-
tury, different from the ones used for creating the
training set.

Synthetic data The test set comprised also syn-
thetic recognised lines, designed by “attacking” hu-
man transcriptions of seven randomly selected im-
ages (153 lines), one per century (synthetic test
set), as outlined in Table 5. Synthetic data had been
shared also with the participants to serve validation
purposes while avoiding overfitting the evaluation
data. Our error-introducing attacks are based on
five categories, shown in Table 1. We remove (I)
or add (II) words in the text; add (III) or swap (IV)
characters, and merge consecutive words (V).6 Al-
though different in nature when compared to data
coming from an HTR system, we opt for this syn-
thetic dataset to unlock a detailed error analysis.

Error type Example
I. Remove randomly selected
words

this is a test > this
is a __

II. Add random words at random
positions

this is a test > this
is word a test

III. Add random characters at
random positions

this is a test > this
is a teskt

IV. Swap random characters this is a test > thiis
__s a test

V. Merge random consecutive
words

this is a test > this
is atest

Table 1: Types of errors introduced (attacks) to yield
the synthetic dataset. Instead of transcriptions, the same
example sentence is shown to highlight the error types.

3.3 The evaluation metric

For evaluation we employ relative error reduction
(ERr), which is applicable to CER and WER. We
consider a (human) transcription tDi for line i in
document D; the recognised text rDi for the same
line, and the corrected text C(rDi ), assuming the
application of an error correction system. Then,
assuming an error rate method ER (e.g., CER), we
define ERr for line i of D as:

ERr(i,D) = ER(tDi , r
D
i )− ER(tDi , C(r

D
i ))

(1)

6The positions of the attacks are selected randomly.

A positiveERr means that the error rate is reduced
and that the applied correction (by C) yields a text
that is closer to the human transcription. Negative
values, on the other hand, mean that errors are
introduced, increasing the edits needed to reach the
transcribed text.

3.4 Leaderboard

A leaderboard was set up using the character er-
ror rate reduction (CERr) as the official evaluation
metric but also reporting the word error rate reduc-
tion (WERr). The scores of the leaderboard were
computed on the whole evaluation set, comprising
system and synthetic transcriptions. The official
ranking, however, ignores the synthetic transcrip-
tions. We opted for adding instead of hiding data
(i.e., using only a small part of the data for the
leaderboard), for two reasons. First, synthetic er-
rors provide valuable information regarding the
generalisation ability of systems. Second, a small
evaluation set is easier to overfit, which could yield
a deceiving leaderboard.

4 Methods

For our error correction task, which aims to push
the system transcription closer to the respective
human transcription, we opted for three baselines
(§4.1), which were shared with the participants
of the challenge. Upon the evaluation of all the
submissions, using the system and the synthetic
transcriptions as input, we investigate further the
two best-performing submitted approaches: one
based on predefined rules and the other utilising a
text-to-text Transformer.7

4.1 Baselines

We considered three baselines, which were based
on edit distance (EDDI), a language model (LAMO),
and linguistic rules (LMR).
EDDI replaces unknown words in the text by using
the edit distance and a lexicon. Tokens that are
not in the lexicon are replaced by the word in the
lexicon with the lowest edit distance. As a lexicon,
we use all the words of the training set.8

LAMO is similar to EDDI in that it uses a lexicon
7The developers of these two algorithms are co-authors of

this paper. Other submissions were excluded due to their lower
performance and a lack of accompanying system descriptions.

8The method returns the input text when the count of un-
known words is larger than three, and only lexicon entries
with low distance (lower than twenty-five) are considered for
replacements. Thresholds are based on preliminary experi-
ments.

5



to recognise unknown words in the text. However,
word replacement is performed by a word-based
statistical language model. We use a window of
three words for the language model.
LMR is the third baseline, which is based on lin-
guistic rules. Specifically, it focuses on the final “s”
letter that is frequently the subject of wrong word
division. Then, a character-based statistical lan-
guage model decides whether it would be deleted
(i.e., assuming it was mistakenly added) or merged
with the previous word (a mistaken word division).

4.2 Deep learning with ByT5

ByT5 (Xue et al., 2022) is a byte-level pre-
trained text-to-text Transformer (Raffel et al., 2020;
Vaswani et al., 2017) that allows fine-tuning on vari-
ous downstream tasks. For small model sizes, it out-
performs MT5, which is the multilingual version
of T5 (Xue et al., 2020) 9. We fine-tuned the ByT5
“large” model variant by feeding it with recognised
and transcribed texts, in order for it to learn to en-
code the former and decode the latter. We used
a gradient accumulation of four steps, a standard
cross-entropy loss, and the efficient Adafactor opti-
miser (Shazeer and Stern, 2018). At inference time,
we used greedy decoding as it produced the best
results. More details can be found in Appendix B.

4.3 Linguistic engineering with RBS

The rule-based correction system (RBS) is designed
by making use of different rules, derived based on a
qualitative analysis of what kind of errors typically
occur in hand-written text recognition of Greek
texts. These rules are described in more detail
below (the algorithm is provided in Appendix C).
Word subset (R1): Any token comprising a word
in a lexicon (formed by the transcriptions) is di-
vided into two tokens with a white space.10

Edit distance (R2): Tokens that had an edit dis-
tance of one with (a) any possible valid alternation
of the conjunction “και”, and (b) a term in the lex-
icon (R1), are replaced with these two terms. For
tokens of eight characters or more, not affected by
this rule, we use an edit distance of two.
Word bigrams (R3): Recognition often produces
white spaces at the wrong positions (e.g., “δικαι
ονπερι” instead of “δικαιον περι”). To address such

9In preliminary experiments, MT5 performed considerably
worse than ByT5.

10A more strict version of this rule uses a list of pronouns
(e.g., αυτου) and conjunctions (e.g., και), testing if the token
concatenates words from the two resources.

errors, any bigram in the text is merged (removing
the white space) and passed to R1.
Single-character tokens (R4): Single-character
tokens that weren’t known articles are merged with
the end of the previous token, if the merged token
exists in the lexicon, and with the start of the next
token otherwise.
Duplicate characters (R5): Tokens comprising
two (or more) identical consecutive characters, and
that are not present in the lexicon, are collapsed to a
single character (e.g., “εεστιν” becomes “εστιν”).
Misspelled pronouns (R6): Character order issues
of pronouns are fixed by specific replacements. For
example, “τνω” is replaced by “των”.
Joint pronouns (R7): Pronouns merged with the
next token (e.g., “τηνκαρδιαν”) are searched and
replaced by two words (e.g., the previous token
would become “την καρδιαν”).
Main prepositions (R8): Words beginning with
specific prefixes (e.g., “ειντοις”, “εντοις”, “ηκ-
τοις”, “εκτης”) can bypass the previous rules.
Hence, a mapping is used to address such tokens.

5 Empirical analysis

5.1 Error rate reduction results

In Table 2, we present the ERr for characters
(CERr) and words (WERr), achieved by error-
correcting the HTR output or synthetic data. EDDI

and LAMO display negative scores in both metrics
on both input types. This means that such - rather
simplistic - baselines introduce new errors instead
of addressing existing ones. The third baseline,
LMR, reduces slightly the CER and WER of the
HTR output. The focus of this baseline is on a
single letter (final “s”), which is a common recog-
nition error, though not the only one. The attacks
that are used to create the synthetic data, on the
other hand, are applied to random text positions
(see §4), none of which concerns this letter. Hence,
no correction is made and both scores are zero.

BYT5 and RBS achieve a positive reduction in
both metrics. RBS scores higher than LMR when
the input is the HTR output. Also, it achieves a pos-
itive reduction when the input is synthetic (0.10 in
CERr and 1.29 in WERr). Obviously, this method
handles many error types, covering more than typi-
cal HTR mistakes. BYT5 is the best overall when
applied to HTR output. It is more than five times
better in terms of CER and more than eight times
better in terms of WER compared to RBS. When
evaluated on synthetic input, however, the error
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HTR OUTPUT SYNTHETIC

CERr ↑ WERr ↑ CERr ↑ WERr ↑
EDDI -0.19 -0.29 -0.54 -2.48
LAMO -5.88 -0.80 -5.95 -3.13
LMR 0.02 0.06 0.00 -0.00

RBS 0.44 1.82 0.10 1.29
BYT5 2.53 14.97 -7.72 -23.14

Table 2: CERr and WERr scores of the baselines (top
three rows), of the neural encoder-decoder (BYT5), and
the rule-based error correction approach (RBS).

rates increase considerably, displaying a lower per-
formance than RBS and all three baselines, most
probably because the model is not trained on syn-
thetic data. This is an indication that the synthetic
data may not be very natural, and that rule-based
systems are less useful in ‘real-world’ situations.

5.2 Inter-corrector agreement

In order to investigate closer the relationship be-
tween BYT5 and RBS, we compute the CER be-
tween the two corrected texts, one per system, of
each recognised line. Low scores reflect a high
agreement between the two approaches while high
scores indicate very different outputs. By sorting
the lines based on this score, we can assess the two
approaches in different agreement zones. Figure 5
presents these results. Overall, BYT5 is more of-
ten above zero and bars are also much higher than
RBS. When we look at the left of the diagram, there
are almost no differences between the two in their
performance, which is reasonable given that the
two approaches agree (i.e., they will both be cor-
rect or they will both be wrong). As we move to
the right, however, we can see that BYT5 achieves
more and deeper negative bars. On the other hand,
RBS follows a low-risk, low-gain strategy.
Manual investigation of the best and worst han-
dled lines per method (Table 3) reveals that in the
worst-case scenario per method (line 8 for RBS, hal-
lucination in 15 for BYT5), the corrections of the
other method were minimal (lines 7 and 16, resp.).

5.3 Sensitivity analysis on synthetic data

As was shown in Table 2, RBS achieves a positive
CERr in the synthetic data while BYT5 underper-
forms in this setup. To explore the performance of
the two methods further, we computed the mean
CERr per attack type (Table 4). For all attack types,

Figure 5: CERr (moving average for better readability
with a window of size 5) of BYT5 and RBS per line.
Lines have been sorted from the least (left) to the highest
(right) agreement (CER) between the two.

BYT5 yields a negative average CERr, with its
weakest performance observed when characters are
added (Type III), and relatively better results when
words are merged (Type V). On the other hand, RBS

also struggles with two attack types, specifically
when words are removed (Type I) and added (Type
II). Its performance remains relatively consistent
for the remaining three types of attack.

5.4 Enhanced HTR vs. post-correction

Enhancing HTR with more training data can allow
a direct comparison between the performance gains
from neural error correction and from increasing
the HTR training data.

For the purposes of this experiment, we trained a
new HTR model. To avoid the financial cost of train
multiple instances, we opted for an open-source
alternative to Transkribus. For the experiment de-
scribed in §5.4, our HTR model achieved a similar
performance with Transkribus on the same seven
training pages. We release this model publicly at:
https://github.com/htrec-gr/htr. The archi-
tecture of this HTR model is a Swin (Liu et al.,
2021) encoder with a BERT-based decoder (Devlin
et al., 2019). For the experiment we used a sin-
gle GPU card, i.e., NVIDIA Tesla V100 (16GB),
and the model had 142 million parameters. It was
trained for 75 epochs (12 hours). We used as seed
42, batch size of 48, AdamW optimizer, and Trans-
formers V4.25.1. For language generation, we used
a max-length of 200 characters, early stopping and
a greedy decoding strategy.

Figure 6 shows the CERr and WERr as we tran-
sition from 7 pages of training data (our baseline)
to 70 pages overall. When training with 28 (+21)
pages, CERr goes up to 9.73 and WERr to 12.62.
This means that the WERr of BYT5 (correcting the
errors of a 7-page-trained HTR model) is better by
two points (14.97; Table 2). When training with
more pages (e.g., 70), however, CERr and WERr
reach up to 15.72 and 27.15 respectively, outper-
forming the gains from error correction. It is worth
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Transcribed, Recognised, or Corrected line CERr
Human: σωματος κρειττων τοσουτον των χρημασι βοη
HTRed: ωματος κρειτγων τοσουτον των χρημασιβοη
BYT5: εωματος κρειται το σουτον των χρημασι βοη -4.88

B RBS: σωματος κρειτγων τοσουτον των χρημασι βοη 4.88

Human: λεντιον διεζωσεν εαυτον
HTRed: λεντιον διεζωσενεαυτόν
BYT5: λεντιον διεζωσεν εαυτον 0.00

W RBS: λεντιον διεζωσενε αυτόν -4.37

Human: ψεκτως ποιουσιν εαυτους σαρκα
HTRed: ψκε κτω̃ς ποι ουσιν εαύτοις σάλρ κα

B BYT5: ψκεκτως ποιουσιν εαυτοις σαλοκα 17.24
RBS: ψκε κτω̃ς ποι ουσιν εαύτοις σάλρ κα 0.00

Human: ω̃ν δὲ συνεπινοουμενην έχων τη̃ ὺπαρξει
HTRed: ω̃ω̃ν δὲ συνεπινοουμενην ὸέχων τη̃ ὺπαΈρξει

W BYT5: συνεπινοουμενην συνεπινοουμενην συνεπινοουμενη. . . -108
RBS: ω̃ω̃ν δὲ συνεπινοουμενην ὸέχων τη̃ ὺπαΈρξει 0.00

Table 3: Error analysis by focusing on the best (B) and worst (W) correction per method based on the achieved
CERr. The first two rows per quadruplet show the respective transcription and recognition.

Type of attack BYT5 RBS

I. Remove words -6.36 0.00
II. Add words -7.95 -0.06
III. Add characters -12.28 0.18
IV. Swap characters -8.42 0.21
V. Merge words -3.54 0.18

Table 4: Average CERr per attack type.
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Figure 6: CERr and WERr scores (vertically) when the
HTR model is trained on more pages (horizontally).

noting that this improvement requires a substantial
increase of HTR training material, which may not
be available (e.g., lack of images or transcriptions),
making error correction a promising alternative.

6 Discussion

The challenge in error-correcting the HTR output
of Byzantine manuscripts and papyri has attracted a
significant number of registrations and submissions
(§3.2.3), the best of which were discussed in this
work. Characteristics of Byzantine Greek and the

respective scripts have been discussed in §3.1, in
order to highlight the difficulties that recognition
and error-correction algorithms need to tackle. The
variety of scripts and scribes in this language, along
with its evolution, is likely to have caused a varying
recognition error rate over time (Figure 3). This
error rate variety poses a significant challenge to
post-correction methods, which should be able to
handle lines that comprise from few to many errors
(different types).

When assessing error correction in recognized
printed and handwritten material, it’s crucial to con-
sider the error rate. As detailed in §2, prior studies
have predominantly focused on printed material,
characterised by relatively low recognition error
rates. However, our findings illustrate a significant
variation in the error rate for HTR output, encom-
passing both accurate recognitions and those with
numerous errors (Fig. 4).

We also show that a rule-based approach out-
performs the baselines (Table 2), or even a neural
encoder-decoder in the case of synthetic data (Ta-
ble 4). Therefore, error-correcting the HTR output
can also be seen as a knowledge-intensive NLP
task, for which knowledge-based approaches can
be successful (Lewis et al., 2020).

The experimental results presented in Table 2,
show that post-correcting the HTR output for
Byzantine Greek can reduce the error rate by ap-
proximately 2.5 units at the character and 15 units
at the word level. This means that error correc-
tion can be employed during the recognition of
the text in the images of Byzantine manuscripts
and papyri, to facilitate human experts with the
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tedious semi-automated transcription task (i.e., cor-
recting the HTR output). This gain is recorded by
post-correcting errors, but the encoding-decoding
of BYT5 could possibly be integrated also into the
HTR pipeline, incorporated as one of the tasks in a
multitask approach (i.e., image to text to text).

7 Conclusions

We presented a challenge of error-correcting HTR
output for Byzantine Greek, publicly releasing data
with both synthetic and actual HTR errors. A pre-
trained BYT5 encoder-decoder model, fine-tuned
on recognised (input; encoded) and transcribed
(output; decoded) texts, achieves a notably high
performance, effectively reducing errors. A compa-
rable reduction of errors could have been achieved
if the HTR model had been trained on approxi-
mately 30 additional pages. However, generalisa-
tion remains a concern, as evidenced by the model’s
performance on synthetic data, where errors were
introduced instead of corrected. A rule-based ap-
proach, on the other hand, showed promise by well
performing on synthetic data but not on real-world
data. Future work will focus on challenging error-
correction systems based on HTR models trained
on data from specific centuries, aiming to address
the diverse range of errors encountered.
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• As observed in the results, the performance
of the systems varies significantly across cen-
turies, suggesting that century-specific factors
need to be considered when designing effec-
tive error-correcting systems.

• It’s evident that post-correction is often hin-
dered by the low quality of the HTR output.
Therefore, there is a need for more advanced
approaches that incorporate error detection
(Pavlopoulos et al., 2023) and correction be-
fore the output is generated, possibly in con-
junction with a post-correction module.

• While the results demonstrate the potential of
error-correcting systems for some Byzantine

Greek corpora, the generalisation potential in
the context of low-resource data remains to be
explored. This can be achieved by extending
this approach to additional corpora and other
languages, allowing for a more comprehen-
sive understanding of its effectiveness across
different linguistic domains. Still, we hope
that this study will be beneficial for the de-
velopment of new error-correction strategies
aimed at improving the quality of recogni-
tions, especially in scenarios with limited data
availability.
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A Dataset configuration

As is shown in Table 5, we compiled a parallel
corpus of 1,800 lines for training purposes. Each
line comprises a transcription (ground truth) and a
recognition, resulted from an under-trained HTR
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model (trained on the transcriptions of seven held-
out pages). Evaluation was performed on synthetic
(153 lines) and actual (180 lines) data, resulting to
a parallel corpus of 2,133 lines, overall, which we
publicly release, along with the HTR model that
we used to produce the recognitions.

Purpose # Pages # Lines Dataset
Training 98 1800 HPGTR

Evaluation 8 180 HPGTR
Evaluation 7 153 Synthetic

Total 113 2,133 —

Table 5: Data configuration for the challenge. Each
page comprises several lines (texts) and each line has
been transcribed and recognised. The transcription of
lines used for evaluation was kept hidden from the par-
ticipants during the testing phase.

B ByT5

We (i.e., a participant at the time of the challenge)
opted for a batch size of 1 (i.e., a single line) and a
learning rate of 1e-4. Optimum performance was
achieved at one and a half epochs. As is shown
in Table 6, BYT5 was trained for more epochs but
results deteriorated.

Table 6: CERr and WERr of ByT5 when it was trained
for more epochs.

HTR OUTPUT SYNTHETIC
EPOCHS CERr ↑ WERr ↑ CERr ↑ WERr ↑

1.5 2.53 14.97 -7.72 -23.14
3 -2.91 8.62 -15.41 -36.05

12 -8.45 6.08 -18.85 -43.40

C RBS

Algorithm 1 presents the pseudocode for RBS. A
rule based system, however, is only as good as the
corpus size it has access to. We hypothesize that the
system’s performance would improve with a bigger
corpus. To that end, we provide over 100 books of
text in ancient Greek 11 and Byzantine 12, scraped
from various online sources. Due to time con-
straints, these were not utilized by RBS, a task that
will be explored in future work. The biggest col-
lection, titled ’Σύνοψις Ιστοριών’ from I.Skylitzis

11http://users.uoa.gr/~nektar/history/tributes/
ancient_authors/index.htm

12https://byzantium.gr/keimena/keimena.php

totals 5 books, 153,709 words and 885,259 char-
acters 13. Furthermore, we provide a lexicon 14 of
over 42,107 ancient Greek words independent of
the collection of books, which was also not utilized
by RBS.

13https://wordcounter.tools/
14https://www.greek-language.gr/

digitalResources/ancient_greek/tools/
liddel-scott/search.html?start=20&lq=

11
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Algorithm 1 Rule-Based System (RBS)
Require: corpus← list(words) ≥ 0

for sent← example_system_transcr do
sent← drop_duplicate_char(sent)
for token← sent do

for gold← corpus_1 do
if token in gold then

gold, subtoken← split_token(token)
sent ←

replace_token_in_sentence(token, [gold, subtoken])
end if

end for
list[(gold1, gold2)]← create_pairs(corpus)
for pair ← list[(gold1, gold2)] do

combination← pair[0] + pair[1]
if token in combination then

gold1, gold2 ←
split_combination(token)

sent ←
replace_token_in_sentence(token, [gold1, gold2])

end if
end for
token← replace_freq_tokens(token)
list_and← [’και’, ’καὶ’, ’καί’]
for gold← corpus+ list_and do

if edit_distance(gold, token) == 1 and (to-
ken not in list_and) then

if gold in list_and) then
if gold not in

(begin/end_of_the_sentence) then
token← gold

end if
else if N is odd then

token← gold
end if

end if
if edit_distance(gold, token) == 2 and

length(token) ≥ 8 then
token← gold

end if
end for
list_articles← [’τὴν’, ’κατα’, ’τὰ’, ’τῶν’]
if token in list_articles then

if position(token,gold) in
begin_or_end_of_token then

gold, subtoken← split_article(token)
sent ←

replace_token_in_sentence(token, [gold, subtoken])
end if

end if
if length(token)==1 then

sent← drop_token(token)
end if
for i← range(0, len(sent_tokens)−1) do # R3

w1, w2 ← sent_tokens[i], sent_tokens[i +
1]

bigram = w1 + w2 # no white space between
the consecutive words

for g ← corpus do # for each gold word in the
corpus

if edit_distance(g, bigram) == 1 & w1
not in {’ο’,’η’,’το’,’τα’} then

token←g+‘ ’+w2
end if

end for
end for

end for
end for
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Abstract

Hebrew manuscripts provide thousands of tex-
tual transmissions of post-Biblical Hebrew
texts. In many cases, the text in the manuscripts
is not fully decipherable, whether due to
deterioration, perforation, burns, or other-
wise. Existing BERT models for Hebrew
struggle to fill these gaps, due to the many
orthographical deviations found in Hebrew
manuscripts. We have pretrained a new ded-
icated BERT model, dubbed MsBERT (short
for: Manuscript BERT), designed from the
ground up to handle Hebrew manuscript text.
MsBERT substantially outperforms all existing
Hebrew BERT models regarding the predic-
tion of missing words in fragmentary Hebrew
manuscript transcriptions in multiple genres, as
well as regarding the task of differentiating be-
tween quoted passages and exegetical elabora-
tions. We provide MsBERT for free download
and unrestricted use, and we also provide an
interactive and user-friendly website to allow
manuscript scholars to leverage the power of
MsBERT in their scholarly work of reconstruct-
ing fragmentary Hebrew manuscripts.1

1 Introduction

Hebrew manuscripts preserve thousands of textual
transmissions of post-Biblical Hebrew texts from
the first millennium (Richler, 2014). In many cases,
the text in the manuscripts is not fully decipherable,
whether due to deterioration, perforation, burns, or
otherwise. Hebrew Studies scholars spend hours
upon hours attempting to determine these missing
words, in order to reconstruct the original texts.

Prima facie, BERT models are optimally suited
for this task, given their Masked Language Model-
ing objective (Devlin et al., 2019a). Indeed, a vari-
ety of high-performing BERT models for Hebrew

1Link to model: https://huggingface.co/dicta-il/
MsBERT
Link to website: https://mss--dicta-bert-demo.
netlify.app/

texts have been released over the last few years,
including AlephBERT (Seker et al., 2021), Aleph-
BERTGimmel (Gueta et al., 2023), and BEREL
(Shmidman et al., 2022). A recent study even
showed that these models can be leveraged to com-
plete Biblical verses (Fono et al., 2024). However,
as we will show, these models are not adequately
equipped to handle Hebrew manuscript texts. In or-
der to address this need, we have pretrained a new
BERT model specifically for Hebrew manuscript
transcriptions. Our new model is dubbed MsBERT,
short for: Manuscript BERT.

2 Reconstruction of Textual Lacunae via
Deep Learning in Other Languages

Over the last few years, deep learning techniques
have been utilitized for reconstruction of textual
lacunae in a number of other languages. For in-
stance, Assael et al. (2019) applied such techniques
to Greek epigraphy; Bamman and Burns (2020)
did so with Latin; and Fetaya et al. (2020) did so
regarding Akkadian texts found in Mesopotamian
cuneiform tablets. For a full survey of existing re-
search regarding computational textual restoration,
see Sommerschield et al. (2023, Section 4).

3 Challenges of Hebrew Manuscript Texts

Most existing Hebrew BERT models, including
AlephBERT and AlephBERTGimmel, were trained
on modern Hebrew alone. The historical texts
found in Hebrew manuscripts admit to a very differ-
ent writing style. Differences abound regarding vo-
cabulary, morphology, syntax, semantics, and more.
It is therefore not surprising that these models stum-
ble when faced with historical Hebrew texts.

One notable exception is BEREL. This model
was specifically trained on a corpus of historical
Hebrew texts, and it is thus suited to handle the
linguistic norms of such texts. However, although
it can handle the morphology and syntax of these
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texts, it falls flat when confronted with the orthog-
raphy of the manuscript transcriptions. Virtually all
of BEREL’s training data originates from printed
editions of historical Hebrew texts. Although these
printed editions date as far back as the cradle of
printing at the end of the fifteenth century, they
still conform to a narrow set of orthographic norms
assumed by the Hebrew printing press.

In contrast, the scribes of the Hebrew
manuscripts did not adhere to such norms. Exam-
ples of where the orthography of the manuscripts
deviates from that of the printing press include:

• Matres lectionis (consonants representing
vowels). Manuscripts use matres lectionis in
a far more varied set of positions (e.g. !Pמיצטר
rather than !Pמצטר).

• Acronyms. Manuscripts tend to use multiple
apostrophes rather than a single double quote
mark (e.g. 'ה!' ה!'ק!'ב! rather than "ה! .(הקב!

• Truncated words. The manuscript scribes of-
ten transcribed only one or two letters of a
given word, relying on the reader to fill in the
rest from context. Hebrew manuscripts often
contain long sequences of such minimal word
subsets (e.g. ' ה! ' ק! ' כי! ' א! ד!' rather than דבר
הוא! קדוש כי 2.(אחר

• Treating the preposition של! ("of") as a pro-
clitic rather than as an independent word (e.g.
שלתרומה! vs. תרומה! .(של

Needless to say, these orthographic discrepan-
cies lead to a situation wherein texts of Hebrew
manuscripts are not well supported in the BEREL
model. Many of the words in the texts (including
words noted above, such as !Pמיצטר, ,שלתרומה! and
' 'ה! 'ב! 'ק! ,(ה! end up as sequences of word-pieces that
the model was simply not trained for. The ortho-
graphic deviations noted above are not occasional
but rather rampant throughout these texts, and thus
they take their toll on BEREL’s ability to handle
the text.

Due to all of the foregoing, there is a need for
a new specialized model for Hebrew manuscript
texts, designed from the ground up - from the tok-
enization level and through all phases of training
- specifically to handle the type of text found in

2This particular sequence is attested in a Cairo Genizah
fragment of mekhilta de-rashbi, a legal midrash; see Kahana
(2005), p. 25.

Hebrew manuscripts.3 The present paper does pre-
cisely this.

4 Model

4.1 Tokenizer
The first stage of our model design involves the
training of a new word-piece tokenizer to build
a BERT vocabulary that is optimally suited for
Hebrew manuscript texts. For the training cor-
pus for the tokenizer we start with our full set of
manuscript transcriptions (section 4.3.1). Addition-
ally, we add in a corpus of standard editions of
Hebrew texts from before the printing era (sec-
tion 4.3.2), to widen the vocabulary with addi-
tional words that are likely to be found in Hebrew
manuscripts, even if they aren’t in our particular
corpus of manuscript transcriptions.

We use the Word-Piece tokenization method pro-
posed by Song et al. (2021), with adjustments to
handle the apostrophe and double-quote marks,
which otherwise would have been tokenized into
separate word pieces. Specifically, we avoid break-
ing on a double-quote between Hebrew letters (e.g.,

), or on apostrophes which succeed Hebrew
letters (e.g., 'ע!'ג!' .(א!

Following previous work (Gueta et al., 2023),
the tokenizer was trained with a vocabulary size
of 128,000 tokens. In addition, in order to prop-
erly represent the fragmentary nature of Hebrew
manuscripts, we add two special tokens to the vo-
cabulary: [GAP] (indicating a large gap, or a gap
of an unknown number of words) and [ONEGAP]
(indicating a single missing word).

4.2 Architecture
The model’s architecture is based on the BERT-
base architecture (Devlin et al., 2019b), trained

3To be sure, to a certain extent, challenges of manuscript
orthography can be addressed with existing models if normal-
ization is applied during preprocessing. However, the oddities
of manuscript orthography often result in ambiguous forms
which must be disambiguated prior to normalization, and ag-
gressively normalizing such forms would likely result in errors
early on in the pipeline, adversely impacting the model’s ca-
pabilities overall. Furthermore, the oddities of manuscript
orthography are not entirely predictable, and constructing a
completely comprehensive normalization routine would prove
difficult. Additionally, for downstream tasks such as handwrit-
ten text recognition, it is desirable to have a model which can
predict the specific orthographic forms which fits the ortho-
graphic norms of the context words; this would not be possible
if everything was normalized in advance. For these reasons,
we opted to produce the new model presented here, tokenized
and pretrained from scratch. Nevertheless, in future work we
hope to explore the preprocessing normalization approach as
well, and to properly compare the results.
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on a DGX-A100 with 4xA100 40GB cards. The
training was done with the fused lamb optimizer
combined with AMP (Automatic Mixed Precision).
A polynomial warmup learning rate scheduler was
used to warm up for a portion of the training steps
and then decay the learning rate over the total steps.

4.3 Training Data

On the one hand, we wish to train the model specif-
ically for Hebrew manuscript texts; yet our corpus
of Hebrew manuscript texts is not sufficiently large
to train a BERT model alone, and thus we need
to augment it with larger corpora of Hebrew. We
first describe the multiple corpora which we used
as part of this process, and then describe how we
combine them together during the training process.

4.3.1 Hebrew Manuscript Corpus
We collected transcriptions of Hebrew manuscripts
from Hebrew Studies scholars who generously
agreed to provide their transcriptions for this
project. All in all, this corpus consists of over 67
million words, representing texts authored between
the 3rd and 13th centuries.

4.3.2 Pre-Print Rabbinic Corpus
The Pre-Print Rabbinic Corpus is a collection of
digitized Rabbinic texts authored before the age of
printing (that is, before the end of the 15th century).
This corpus contains a total of 49 million words.

4.3.3 Comprehensive Rabbinic Corpus
This corpus contains a maximally comprehensive
set of digitized Rabbinic Hebrew texts from all
available time periods, stretching from the 3rd cen-
tury until today. It contains over 400 million words,
including the full corpus of texts from Sefaria 4,
plus many texts which we have scanned and digi-
tized in-house.

4.4 Training Objectives

We train our model on the Masked Language Mod-
eling objective. We implement two restrictions
when selecting the random tokens to mask:

1. We don’t allow masking of word-piece tokens
which are not full words. The task of predicting just
one part of a word given the rest of the word is too
easy and does not result in significant optimization.

2. We don’t allow masking of the [GAP] and
[ONEGAP] tokens, since we wish to train the model
to predict actual Hebrew words.

4sefaria.org.il

During training we chunk the texts into se-
quences of up to 256 tokens. To ensure we train on
sentences of substance, we remove sentences with
fewer than 3 words or where most of the sentence
consisted of [GAP] tokens.

4.5 Training Phases

In order to leverage the larger Hebrew corpora,
while still placing the emphasis specifically on the
manuscript transcriptions, we used a three-stage
procedure, as follows:

Phase 1: For the first phase of the training -
when the model is most malleable - we trained
only on the manuscript Corpus (4.3.1) and the Pre-
Print Corpus (4.3.2). We trained for one full epoch
over these corpora, using a global batch size of
2048 examples per iteration, for a total of 4200
iterations. The learning rate was initialized to 0,
and was warmed up to 6e-5 by the end of this phase.
Total training time was 7 hours.

Phase 2: For the second phase of the training,
we continued training with all three corpora. We
trained for a total of 5.5 epochs of the corpora,
using a global batch size of 8192 examples, for a
total of 15,400 iterations. We continued warming
up the learning rate until 6e-3 and then applied a
polynomial scheduler with a degree of 0.5. Total
training time was 2.1 days.

Phase 3: For the third phase of the training,
we confined the training corpus solely to our set
of Hebrew manuscript transcriptions. We ran this
corpus for 3.5 epochs with a batch size of 1024,
for a total of 15,800 iterations. We used a learning
rate of 5e-5, with the same scheduler as in phase 2.
Total training time was 5.5 hours.

5 Experiments and Results

We evaluate the performance of MsBERT in com-
parison with the three BERT models discussed
above. We evaluate MsBERT both in its final form
(MsBERT-Full), as well the checkpoint upon com-
pleting phase 2 (MsBERT-Ph2), before the final
training phase on the dedicated manuscript corpus,
in order to evaluate the impact of that final training
phase.

Our first test evaluates the models’ ability to pre-
dict a masked word within a Hebrew manuscript
transcription. We tested the models on Hebrew
manuscript transcriptions from two separate gen-
res: first, manuscripts of a homiletic text from the
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5th-6th century (shir hashirim rabba),5 and sec-
ond, a manuscript of a Hebrew legal text from the
fourth quarter of the first millennium dubbed me‘en
sh’iltot (Emanuel, 2019, 82-148). These transcrip-
tions were not part of the training corpus of any of
the BERT models.

It should be emphasized that this word prediction
task is particularly difficult due to the fragmentary
nature of the aforementioned manuscripts. Many
words are damaged or indecipherable throughout
both manuscripts, and many of the extant words
are truncated. It should also be noted that although
MsBERT was trained with the special GAP and
ONEGAP tokens in order to provide it with opti-
mal knowledge of the type of gaps found in Hebrew
manuscript, here we avoided use of those tokens,
to allow for a fair comparison with the other mod-
els in which those tokens are not available. In-
stead, we replace any single-word gaps with the
universal MASK token, and we treat GAP tokens
as paragraph separators, cutting the input samples
at that points. We run the word-prediction test on
all full words within the text (we don’t include trun-
cated words in the test, because they can potentially
match multiple forms). In all, we test predictions
for 9333 words in the first corpus, and 9475 words
in the second corpus.

We report accuracy indicating how often the
masked word was correctly predicted within the
top 1, top 3, or top 10 (ignoring predictions of trun-
cated words, word pieces, or punctuation). When
we test for word equivalence, we ignore medial
vav and yod characters, because words that differ
only in their matres lectionis are essentially the
same word. The results can be seen in Tables 1 and
2. MsBERT outperforms all models on both tests.
As expected, BEREL (184M params) performs far
better than both AlephBERT (120M params) and
AlephBERTGimmel (184M params), due to its ex-
posure to a large Rabbinic Hebrew corpus. Yet, at
the same time, the substantial gap between BEREL
and MsBERT (also 184M params) demonstrates
the critical importance of our new training corpus
which reflects the orthographic range of Hebrew
manuscripts. Furthermore, the results demonstrate
that the final phase of manuscript-only training
does in fact provide a boost in the model’s ability
to handle these fragmentary transcriptions.

Our second test evaluates the models’ ability to

5https://schechter.ac.il/midrash/shir-hashirim-raba/; we
use the set of 16 Cairo Genizah fragments downloadable there.

analyze the content of the texts, by testing whether
the models can identify the words that comprise
quoted citations. Our evaluation involves two gen-
res: legal midrash and homiletic midrash. Many
citations of Biblical verses are interspersed through-
out such texts. Unlike modern texts, these texts
do not use any form of quotation marks or braces
to mark the citations; rather, the reader must fig-
ure this out from context. Thus, this test poses
an ample challenge for our BERT models, to de-
termine how well they are able to parse the con-
text and to thus determine which words comprise
the claims and discussion, and which words are
source material interwoven within. The test set
includes manuscripts transcriptions of mekhilta
de-rashbi (a legal midrash),6 and shir hashirim
rabah (a homiletic midrash).7 The training set in-
cludes excerpts from standard print editions of sifre
Deuteronomy (a legal midrash) and kohelet rabba
(a homiletic midrash). We selected training texts
from printed editions in order to increase the chal-
lenge: the BERT models must apply the lessons
learned from standard Hebrew texts to Hebrew
manuscripts with their nonstandardized orthogra-
phy. This challenge is particularly acute when it
comes to identifying citations, because print edi-
tions tend to quote sources in full, whereas the
manuscript scribes, painstakingly writing by hand,
generally sufficed with more subtle references of
only two or three words.

All of these texts were annotated by our in-house
expert who marked the words that comprise the
source citations. We include both full words and
truncated words in the experiment. In total, the test
set includes 1753 words, 288 of which are citations;
the train set includes 3976 words, 1122 of which
are citations.

We fine-tune each of the BERT models on the
task of classifying words as "Citation" or "Not Cita-
tion". We input sequences of 64 tokens (batch size
= 2, LR = 5e-5, Epochs = 30). We report the results
in Table 3. Although precision is similar across the
various models, MsBERT far outperforms all of the
other models on the recall.

6 Conclusion

The BERT model we present here is the first of
its kind: a model specifically trained to handle

6We test on fragment 13 from Kahana (2005), p. 161-162.
7We test on Cairo Genizah fragments 15 and 16 from

https://schechter.ac.il/midrash/shir-hashirim-raba/.
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Model Top Top 3 Top 10
AlephBERT 22.90 31.95 40.86
AlephBERTGimmel 25.57 34.89 43.96
BEREL 47.33 58.99 67.91
MsBERT-Ph2 56.77 69.50 77.25
MsBERT-Full 59.99 71.99 79.10

Table 1: Word prediction on mss of shir hashirim rabba

Model Top Top 3 Top 10
AlephBERT 26.37 37.27 46.80
AlephBERTGimmel 31.18 42.91 53.11
BEREL 56.24 68.88 76.89
MsBERT-Ph2 62.43 74.5 82.06
MsBERT-Full 63.99 75.85 82.99

Table 2: Word prediction on the me‘en sh’iltot
manuscript.

the orthographic oddities of Hebrew manuscript
transcriptions. As we have shown, our model sub-
stantially outperforms all existing Hebrew BERT
models on a variety of tests regarding Hebrew
manuscript texts. We release the model for un-
restricted use and free download.

We expect that this new model will aid Hebrew
manuscript scholarship in a number of ways. First
and foremost, this model provides a computational
foundation to aid scholars in deciphering and re-
constructing Hebrew manuscript text. As noted, we
have in fact already developed an interactive and
user-friendly website to bridge the gap between
the scholar and the technology; scholars can input
their text as they have deciphered it so far, and then
receive predictions from the model which fit the
context and any additional extant letters. Moreover,
in addition to the basic word-prediction task, we
have demonstrated that this model also excels be-
yond other models in its ability to classify parts
of the text. Thus, this model provides a critical
foundation for researchers who wish to build deep
learning models for automatic analysis of Hebrew
manuscripts. Finally, because this model is so
keenly aware of the orthographic reality of He-
brew manuscripts, it provides an ideal foundation
on which to build Handwritten Text Recognition
systems for Hebrew manuscripts.

7 Limitations

When building the training corpus of Hebrew
manuscript transcriptions, we endeavored to in-

Model Precision Recall
AlephBERT 76.99 20.21
AlephBERTGimmel 77.40 47.60
BEREL 78.67 81.94
MsBERT-Ph2 79.31 87.85
MsBERT-Full 78.20 89.93

Table 3: Evaluation on the citation identification test.

clude as many genres as possible, to ensure maxi-
mal applicability of the model. However, we note
that there is one specialized genre found in He-
brew manuscripts which is not at all covered in
the present model: the genre of Hebrew liturgical
poetry. These Hebrew poems draw upon all sorts
of unusual and unique words which are not rep-
resented in the present model, and which really
require a separate specialized model in and of it-
self. We don’t expect this model to perform well on
manuscripts containing Hebrew liturgical poetry.
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Abstract

This paper explores the possibility to exploit
different Pretrained Language Models (PLMs)
to assist in a manual annotation task consist-
ing in assigning the appropriate sense to ver-
bal predicates in a Latin text. Indeed, this
represents a crucial step when annotating data
according to the Uniform Meaning Represen-
tation (UMR) framework, designed to anno-
tate the semantic content of a text in a cross-
linguistic perspective. We approach the study
as a Word Sense Disambiguation task, with
the primary goal of assessing the feasibility
of leveraging available resources for Latin to
streamline the labor-intensive annotation pro-
cess. Our methodology revolves around the
exploitation of contextual embeddings to com-
pute token similarity, under the assumption that
predicates sharing a similar sense would also
share their context of occurrence. We discuss
our findings, emphasizing applicability and lim-
itations of this approach in the context of Latin,
for which the limited amount of available re-
sources poses additional challenges.

1 Introduction

Word Sense Disambiguation (WSD), i.e. the task of
identifying the correct sense of a word in a specific
instance or sentence, poses non-trivial challenges
especially in the context of languages where re-
sources are relatively scarce. This is the case of
Latin, whose few existing resources confront the
inherent complexity of the task and often resort to
a binary approach revolving around the assumption
that the several senses of a word can be reduced
to two primary senses. This inevitably leads to re-
sources that are overly coarse-grained. While such
simplifications serve as valuable starting points for
future experiments, their granularity may not uni-
versally cater to the diverse research needs.

The present work originates from the needs of a
distinct project, which focuses on the annotation of

Latin data according to the Uniform Meaning Rep-
resentation framework (UMR) (Van Gysel et al.,
2021). The text to be annotated is De Coniuratione
Catilinae ‘Conspiracy of Catiline’ by Sallust. The
UMR framework is designed to annotate the se-
mantic content of a text, and was developed with
cross-linguistic scope in mind. It is primarily based
on Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013), and aims at extending it to
other languages – in particular to morphologically
complex, possibly low-resource languages – in a
cross-lingual and typological perspective. In AMR
and UMR graphs, nodes represent semantic con-
cepts. If word senses are available, semantic con-
cepts are defined as word senses; participant roles
associated to each predicate (e.g., ARG0, ARG1)
are included in the graph if realized in the sentence.
For instance, the predicate utimur in the sentence
Corporis servitio magis utimur ‘Of the body we
rather employ the service’ corresponds to the se-
mantic concept utor-03, i.e. the sense "put into
service; make work or employ for a particular pur-
pose or for its inherent or natural purpose" to which
ARG0 (first person plural, not overtly realized) and
ARG1 (servitio) are associated. Within the whole
annotation process, manual selection of the correct
sense constitutes a time-consuming and demand-
ing sub-task. We thus aim to investigate whether
the existing resources allow to develop a strategy
to expedite this process, by deriving annotation
suggestions for unannotated predicates based on
already manually annotated ones.

The paper is structured as follows. Section 2
presents an overview of related work, while Sec-
tion 3 discusses Latin Vallex as the main linguistic
resource that has been exploited, as well as the lim-
itations it presents. Section 4 describes the method-
ology designed for the task, while its outcomes are
evaluated in Section 5. Section 6 highlights some
conclusive remarks and possible future research
directions.
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2 Related Work

The exploration of WSD tasks for classical lan-
guages, and notably Latin, has recently gained at-
tention, especially from a diachronic perspective
with regard to lexical semantic change (Beelen
et al., 2021; McGillivray, 2021; McGillivray et al.,
2022, 2023a; Marongiu and McGillivray, 2023).
However, the granularity of available resources re-
mains a significant obstacle to successful WSD,
as discussed by Navigli (2006) and McGillivray
et al. (2023b). In the context of introducing the
Latin BERT model, Bamman and Burns (2020) dis-
cuss a WSD task framed as a binary classification
task, where only the first two major senses are se-
lected for each headword and, thus, the sense to be
predicted has to be chosen out of two possible can-
didates only. Building on their work, Lendvai and
Wick (2022) create a new dataset based on a subset
of sense representations from the Thesaurus Lin-
guae Latinae,1 and use it to fine-tune Latin BERT
on a supervised WSD task. Despite achieving more
robust performances, the task remains configured
as binary classification, retaining only the first two
sense groups for each lemma.

Pivoting a low-resource language to a high-
resource one via parallel corpora has been observed
to be a valid strategy to obtain WSD annotations in
the under-resourced language (Pasini et al., 2021).
As the issue of data scarcity applies to Latin as
well, Ghinassi et al. (2024) extend such approach
to historical languages, leveraging parallel corpora
to pivot Latin to English. Propagating WSD an-
notations from English to Latin then helps tackle
the challenge represented by the lack of large sense
annotated corpora.

The need for automated WSD has been observed,
particularly for historical languages, in light of
the increasing size of corpora to annotate and
of the subjectivity involved in the intuitive judg-
ment required by sense disambiguation, even more
so when native speakers cannot be exploited, as
noted by Manjavacas Arevalo and Fonteyn (2022).
However, efforts to expedite the annotation pro-
cess do represent a more general need. For in-
stance, in the context of expanding an event-type
ontology Straková et al. (2023) try to exploit fine-
tuned LLMs to generate annotation suggestions
that could expedite the manual annotation process
of verbs to be included in the ontology. Despite not
working with a historical language – as their focus

1https://tll.degruyter.com/about.

is on Czech – their remarks about the necessity of
manual post-inspection and annotation of sugges-
tions as an indispensable step can be generalized.

Furthermore, Scarlini et al. (2020) experiment
with developing a semi-supervised approach2 to ob-
tain sense embeddings for lexical meanings within
a lexical knowledge base like WordNet. Although
their approach does not include Latin and thus can-
not be leveraged in our work, it interestingly builds
upon the semantic information already carried by
contextual word embeddings.

In general – as it provides a comprehensive lexi-
cal inventory for the identification of the different
word senses – WordNet is a crucial resource for
WSD. The current Latin WordNet3 (WN) (Franzini
et al. 2019; Mambrini et al. 2021) is the outcome of
an ongoing and substantial revision of the original
LatinWordNet (Minozzi, 2010) as initiated within
the MultiWordNet project (Pianta et al., 2002).
In WordNet, diverse senses of a polysemic word
are assigned to distinct synsets. Within the LiLa
Knowledge Base (Passarotti et al., 2020), these
WN synsets are mapped with valency frames of
the valency lexicon Latin Vallex4, thanks to the
shared lexical entries between the two resources.
As a result, the Latin Vallex contains not only va-
lency frames but also synset definitions associated
to them.

3 In between Latin Vallex and WordNet

Let us delve deeper into the examination of the
linguistic resources exploited, and notably Latin
Vallex.5 Nonetheless, speaking of Vallex implies
speaking of WordNet as well, as the two resources
are interlinked in LiLa (Section 2).

For each lemma, Vallex contains information
about the synset definition (taken from WordNet)
and the valency frame associated to it. A closer
look at the entries immediately reveals how some
synsets are semantically close. In many cases, their
strikingly similar definitions are not justified by
diverging valency frames. Among the many exam-
ples, two senses of porto, both with frame ACT
(Actor), PAT (Patient), are defined respectively as

2ARES (context-AwaRe Embeddings of Senses).
3https://lila-erc.eu/lodview/data/

lexicalResources/LatinWordNet/Lexicon.
4http://lila-erc.eu/lodview/data/

lexicalResources/LatinVallex/Lexicon.
5https://github.com/CIRCSE/Latin_Vallex2.0.
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definition synset_id
have on one’s person v#00047745
have with oneself;
have on one’s person

v#02717102

Three very similar entries are associated to augeo,
all with the same valency frame ACT, PAT:

definition synset_id
make strong or stronger v#00220869
make stronger v#00222472
make more intense, stronger,
or more marked

v#00227165

The examples just mentioned represent instances
of extremely high similarity of synset definitions.
Although not infrequent, such cases are not the ma-
jority. Metior can serve as a less extreme example,
yet still informative about Vallex/WN granularity;
see a list of its 9 synsets, all with frame ACT, PAT:

1. measure (distances) by pacing
2. determine the measurements of something or

somebody, take measurements of
3. judge tentatively or form an estimate of (quan-

tities or time)
4. evaluate or estimate the nature, quality, ability,

extent, or significance of
5. set, mark, or draw the boundaries of some-

thing
6. determine the capacity, volume, or contents of

by measurement and calculation
7. travel across or pass over
8. give out as one’s portion or share
9. administer or bestow, as in small portions

Although with different nuances, synsets 1-6 all
revolve around the concept of measuring, being
possibly too fine-grained for automatic detection.
Metior does not represent an isolated occurrence,
but a standard entry in Vallex/WN: in light of this
consideration, it becomes apparent how Vallex it-
self poses additional challenges to such task of
automatic synset detection.

4 Methodology

In response to the aforementioned need of deriv-
ing annotation suggestions for verbal senses, we
develop a Predicate Sense Disambiguation (hence-
forth PSD) workflow leveraging contextual embed-
dings.6 As the core of the approach, we try to

6Code is available at https://github.com/fjambe/
PSD-Latin-UMR.

assess the similarity7 between the verbal tokens in
the target text and those in the reference corpus,
with the goal of disambiguating the token sense by
virtue of its contextual surroundings. Reference
and target corpus8 are defined based on text para-
graphs (reference: par. 1-30 + par. 41-61; target:
par. 31-40). The workflow consists of the following
steps:

Extracting of verbal tokens. We collect a list
of all verbal tokens by extracting them from our
source text, i.e., Sallust’s De Coniuratione Catili-
nae annotated in the XML-based format Prague
Markup Language (PML).9 The PML files of the
treebank are organized by annotation layers and
linked to each other through stand-off annotation;
we exploit the morphological (lemmatization and
morphological tagging) and the tectogrammatical
(semantic and pragmatic annotation) layers in com-
bination. We retrieve all verbs by extracting nodes
with a valency frame and the required POS.10

The extracted verbs are split according to the refer-
ence/target corpus partition,11 and are then manu-
ally annotated by a single annotator.

Storing annotated synsets. For each of the
extracted tokens in the reference corpus, we store
the synset definition that was manually assigned to
it. Three cases can occur: i) Most verbs receive a
synset from the Latin WN/Vallex, as linked in the
LiLa Knowledge Base. For instance, dominor in
lubidinem dominandi ‘lust of dominion’ is assigned
the synset v#02442106 "be master; reign or rule".
ii) When no appropriate synset can be found in the
resource, a new one is defined. The definition of
the new synset can consist either of an existing WN
synset which was not yet assigned to the verb, or
of a new definition modeled on a dictionary entry
for the verb. E.g., for vivo there is no entry in
WN; to its occurrence in alii alio more viventes
‘living with different customs’ we assign a new
frame with synset v#02614387 "lead a certain kind

7Measured in terms of cosine similarity.
8Since we are not training any model, we decided not to

call them training and test.
9The text is available at https://itreebank.

marginalia.it/view/download.php as part of the
Latin Dependency Treebank (LDT).

10Based on the guidelines of the Prague Dependency Tree-
bank, whose annotation the LDT replicates, valency mainly
applies to verbs, yet not exclusively. See https://ufal.mff.
cuni.cz/pdt2.0/doc/manuals/en/t-layer/html/.

11The respective sizes of reference and target corpus are:
i) tokens: 13,297 and 1,775 tokens; ii) extracted predicate
tokens: 1,787 and 259. The division approximately conforms
to a 9:1 ratio, while preserving the paragraph structure of the
original work.
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Figure 1: Comparison of different PLMs (mBERT, LatinBERT, PhilBERTa, PhilTa) with lemma constraint. For
each of the four defined settings, the number of suggested candidates before retrieving one with same lemma is
shown.

of life; live in a certain style". iii) Some tokens lack
assigned synsets, as they can be treated as UMR
abstract predicates;12 for instance, the verb sum ‘to
be’ can be treated e.g. as identity-91, belong-91,
have-mod[ification]-91. We proceed to exclude
such tokens from the corpus.

Computing and comparing embeddings. For
each verbal token in its respective sentence, both in
reference and target corpus, embeddings are com-
puted exploiting the Flair library.13 We then com-
pute cosine similarity to compare embeddings, and
more precisely to quantify the degree of similarity
between each target token and each reference token.
Similarity scores are then sorted in descending or-
der, so that we can extract the five closest tokens
(those with the highest scores — even if the scores
are generally low). The synsets of these tokens are

12UMR features 9 types of abstract predicates, used to rep-
resent predication of properties, possession, location. They
are identified by special labels serving as artificial lemmas and
have their own roleset. For example, identity-91 has an ARG1
role for the theme, and ARG2 for the equated referent.

13https://flairnlp.github.io/. We employ Trans-
former embeddings with default arguments; we only choose a
different pooling operation to generate the final token represen-
tation from subwords – for which we select mean, calculating
a torch.mean over all subword embeddings.

then extracted as candidate synsets.
Further constraining candidate tokens. Addi-

tionally, we retrieve all the tokens that are extracted
as candidates before the first one with the same
lemma as the target token14 is found, i.e. those
tokens with higher similarity score than the first
one with constrained lemma. As preliminary re-
sults did not appear very promising, we decide to
apply this additional lemma-based constraint on
the candidate extraction. Specifically, we hence-
forth select as candidates only those tokens which
share the lemma with the target token. The same-
lemma requirement is merely an artificial constraint
intended to facilitate the task, as in a real-case sce-
nario it is possible to derive a correct synset even
when the lemma differs. For instance, the synset
v#00406243 "make ready or suitable or equip in
advance for a particular purpose or for some use,
event, etc." is shared by pario, instituo, and fa-
cio among other verbs. In theory, such tokens
that share synsets should be retrievable aside from
whether they share the same lemma or not. Yet, the
necessity of defining a simplified scenario through
the imposition of a lemma constraint becomes ap-

14By target token we mean the token to be annotated.
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parent from the initial results of the experiments.
Output. As a result, the output file provides all

retrieved information about each token: five anno-
tation suggestions; i.e. the most plausible synsets;
the number of incorrect guesses before suggesting
a token with the same lemma;15 the list of lemmas
retrieved before a correct one was found.

4.1 Pretrained LMs for Embeddings
The following pretrained language models have
been exploited to produce embeddings:

• mBERT (Devlin et al., 2018): multilingual
BERT model (base, cased) pre-trained on 104
languages including Latin.

• Latin BERT (Bamman and Burns, 2020): pre-
trained on 642.7 million words from a variety
of sources spanning the Classical era to the
21st century.

• PhilBERTa (Riemenschneider and Frank,
2023): RoBERTa (Liu et al., 2019) model,
pre-trained on Latin, Ancient Greek, and En-
glish, and tailored for classical philology (like
PhilTa).

• PhilTa (Riemenschneider and Frank, 2023):
T5 (Raffel et al., 2020) model, pre-trained on
Latin, Ancient Greek, and English.

5 Evaluation

In this section we present and discuss a compar-
ison between outputs yielded by different PLMs
(Subsection 4.1), with respect to various criteria.
Additionally, we manually evaluate a subset of the
target corpus so as to complement the evaluation
metrics with a qualitative analysis.

5.1 Quantitative Analysis
OOV. A key observation concerns out-of-
vocabulary predicates, i.e. verbs that occur in the
target corpus only. The amount of such verbs, for
which a candidate with same lemma cannot be
retrieved, is considerably high (20%). The per-
centage of target predicates whose lemma occurs
only once in the reference corpus is quite high as
well (13.7%). These figures would strongly argue
against the constrained-lemma setting, when only
candidates with the same lemma as the target token
are retrieved. However, as mentioned before, the
constraint on the lemma was deemed reasonable
since preliminary results did not seem promising.

15Of course, the fact that the lemma is shared does not
guarantee that the sense is shared as well.

Criteria. We identify four criteria to extract
some patterns from the data (see Figure 1). For all
four metrics, lower scores are indicative of better
performance.

1. guess_tot: average number of suggested
candidates before retrieving one with the same
lemma.

2. guess_no_hapax: average number of sug-
gested candidates before retrieving one with
same lemma, excluding hapax legomena.16

3. guess_seen: average number of suggested
candidates before retrieving one with same
lemma, considering only lemma-synset pairs
which occur in the reference corpus. In
other words, we try to observe what hap-
pens when evaluating only cases where there
was a chance that the synset could have been
guessed correctly. The results of this arti-
ficially simplified setup will be analyzed in
greater depth also with respect to retrieval of
synsets, by exploiting such a controlled setup
to lift the lemma constraint and evaluate re-
trieval of synsets instead of lemmas.

4. guess_freq: average number of suggested
candidates before retrieving one with same
lemma, computed only on the 10 most fre-
quent lemmas17 of the whole corpus.

In light of the criteria defined, and assuming their
representativeness, we observe how PhilBERTa ten-
dentially performs best in all settings, while the
worst results are achieved with PhilTa. A pattern
emerges when progressively limiting the evalua-
tion scope to ‘known’, i.e. more frequent, predi-
cates: all four PLMs output slightly improved re-
sults, highlighting the effect of frequency on such
a task. Specifically, the number of retrieved can-
didates before finding one with shared lemma is
highest in case of overall evaluation, and it gradu-
ally decreases first when hapax are excluded, then
when only lemma-synset pairs occurring in the ref-
erence corpus are considered, and finally when the
evaluation is limited to the 10 most frequent verbs.
In particular, the guess_frequent setting seems
to impact results to a greater extent, as the number
of retrieved candidates is here conspicuously lower.

16Lemmas occurring only once, namely only in the target
corpus.

17Facio ‘make’, dico ‘say’, video ‘see’, paro ‘prepare’, fio
‘become’, do ‘give’, cognosco ‘know’, coepio ‘begin’, capio
‘take’, valeo ‘be strong’. Sum ‘be’ and habeo ‘have’ have been
discarded as they often correspond to UMR abstract concepts.
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Figure 2: Evaluation of different PLMs (mBERT, Lat-
inBERT, PhilBERTa, PhilTa) in synset retrieval. The
y axis reports the number of candidates suggested be-
fore retrieving the correct synset, without any lemma
constraint and by considering only lemma-synset pairs
occurring in the reference corpus.

In addition to the evaluation settings based on
lemma constraint, we then design an artificially
simplified setting to analyze how PLMs behave
when retrieving the correct synset without being
limited by shared lemma. As mentioned when pre-
senting the guess_seen evaluation criterion, in this
controlled setup we focus only on lemma-synset
pairs which occur in the reference corpus, exclud-
ing from the evaluation all those that do not meet
this requirement. A similar setup should allow to in-
vestigate actual performances without being overly
affected by data scarcity. In principle, it should be
possible to retrieve tokens sharing the same synset
regardless of whether they share the same lemma,
as explained through the example of pario, facio,
instituo, all sharing the synset v#00406243 (Sec-
tion 4). However, Figure 2 highlights how the num-
ber of attempts before a correct guess is still very
high. The pattern is similar to what already ob-
served when constraining on lemma, with PhilTa
performing the worst. Yet, here PhilBERTa and
multilingual BERT are inverted, with the latter re-
sulting to be the model that on average needs the
lowest number of attempts before a correct one.

5.2 Manual Evaluation

To further investigate the performance of the mod-
els, we also conduct a manual evaluation of a sub-
set of the results. As a sample, we extract the
first 20 predicates that occur in the target text. We
first assess how the models perform on this sub-
set within the default lemma-constrained setting
(guess_tot). We ignore the number of attempts
before retrieving the correct lemma, as it is already
reflected by evaluation metrics, and focus on the
assignments of synsets given a shared lemma. Re-
sults are presented in Table 1, to be interpreted
in the following way: 1/2 means that two synset
candidates are retrieved by the model (given a con-
strained lemma), and the first out of the two is the
correct one based on manual annotation. 1=2/2 im-
plies that two candidates are retrieved, and that they
are identical and both correct, while 0/n means
that none of the n retrieved candidates is correct.
1=n=5/5 corresponds to a situation where all five
retrieved candidates are identical and correct.

The analysis of results shows that the models’
performances do not differ substantially one from
another in the defined setting. Lemmas for which
none of the retrieved candidates are correct (e.g.
0/5 in the table) can be explained by the fact that
the sense they have been manually annotated with
never occurs in the reference corpus, either at all
or in association to that specific lemma. It is e.g.
the case of credo ‘to believe’ and moveo ‘to move’,
despite both being quite frequent verbs. The same
happens with diffido ‘to distrust’; the sense ob-
served in the target corpus (v#00687926, "regard as
untrustworthy; regard with suspicion; have no faith
or confidence in") never occurs in the reference cor-
pus. In this way, even a classification that should
be relatively simple -— like the binary classifica-
tion of diffido, for which only two senses are stored
in Latin WordNet – fails. In the case of permota,
from permoveo ‘to stir up’, we can observe the
similarity of definitions that was already discussed
in Section 3, as the sense definitions of retrieved
candidates are highly similar: "move deeply" and
"disturb in mind or make uneasy or cause to be
worried or alarmed" (retrieved twice).
The case of gerere, from gero ‘to manage’, offers
interesting insights as well, since all the five re-
trieved candidates are assigned the same sense "di-
rect the course of; manage or control". Such cases
of candidates leading to the same sense sugges-
tion could probably be grouped, in order to inves-
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Figure 3: Evaluation of different PLMs in synset retrieval on two examples (permota, peperit).

token lemma hapax mBERT Latin BERT PhilBERTa PhilTa
permota permoveo 1=3/3 2=3/3 2=3/3 2=3/3
pepererat pario 1/2 2/2 2/2 2/2
invasit invado 2/3 3/3 1/3 3/3
festinare festino 1=2/2 1=2/2 1=2/2 1=2/2
trepidare trepido x
credere credo 0/5 0/5 0/5 0/5
gerere gero 1=n=5/5 1=n=5/5 1=n=5/5 1=n=5/5
metiri metior x
incesserat incedo 1=2/2 1=2/2 1=2/2 1=2/2
adflictare afflicto x
tendere tendo 0/1 0/1 0/1 0/1
miserari miseror 0/1 0/1 0/1 0/1
rogitare rogito x
pavere paveo x
adripere arripio x
omissis omitto 2/2 2/2 2/2 2/2
diffidere diffido 0/1 0/1 0/1 0/1
movebat moveo 0/5 0/5 0/5 0/5
parabantur paro 1=3=5/5 1=2=3=5/5 1=2=3=4/5 1=2=3=5/5
interrogatus interrogo 0/2 0/2 0/2 0/2

Table 1: Manual assessment of PLMs’ performances (with lemma constraint).
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tigate whether additional and different senses are
retrieved after the main one; then, retrieved sense
suggestions could possibly be weighted by the num-
ber of times they are proposed. However, in this
specific case in the reference corpus we can find
ten occurrences of the verb gero, all assigned that
same sense. The effect of frequency can be ob-
served with gero in the number of total guesses
before a token with the same lemma is retrieved:
459 for PhilBERTa and 304 for mBERT, consider-
ably lower than the average number (Figure 1).
Hapax legomena, marked as such in Table 1, have
been set aside also in the manual evaluation, as the
lemma-constrained setting inevitably prevents the
retrieval of any candidate.
Overall, what emerges from Table 1 is that no PLM
consistently outperforms the others, with all mod-
els exhibiting similar performance within the de-
fined setting.18

Within the proposed manual assessment, we
also evaluate the sub-task of synset retrieval. Let
us take again the token permota19 as an exam-
ple. mBERT and PhilBERTa, the two models that
have proved to perform better, take respectively
328 and 1168 guesses before retrieving the cor-
rect synset. Their performances differ substan-
tially here, with mBERT outperforming PhilBERTa
by much. Nonetheless, the synset definitions of
the first 5 out of the 328 candidates suggested by
mBERT are sufficient to highlight the absence of
a clear, reliable rationale in such retrieval, as they
appear uncorrelated: "give a certain impression or
gave a certain outward aspect", "enter or assume
a certain state or condition", "from a critical opin-
ion of", habitually do something (used only in past
tense)", "have with oneself; have on one’s person".

Moreover, deriving discernible patterns from the
outputs of PLMs presents considerable challenges
(see Figure 3). In the case of permota, beside per-
formances by mBERT and PhilBERTa, we observe
the number of guesses by PhilTa and Latin BERT
amounting to 592 and 1240 respectively – not to-
tally consistently with the pattern observed e.g. in
Figure 1. However, if we take into account the
second token of the target corpus, i.e. peperat from

18It is important to note that these results may be influenced
by the limited sample size.

19Occurring in the sentence Quibus rebus permota civ-
itas atque inmutata urbis facies erat (Sall., De Coniura-
tione Catiline XXXI), translated as "By such proceedings
as these the citizens were struck with alarm" in Perseus, at
https://www.perseus.tufts.edu/.

pario with the meaning of "cause to happen, oc-
cur or exist", the number of suggestions before
retrieving the correct sense does not mirror what
has been observed so far (PhilBERTa: 15 suggested
candidates; Latin BERT: 28; mBERT: 68; PhilTa:
324). Once again, it is hard to interpret why spe-
cific senses associated to candidate suggestions are
retrieved. For instance, mBERT retrieves the fol-
lowing: 1) "be willing to concede", 2) "spur on",
3)"impose a penalty on; inflict punishment on", 4)
"confess to a punishable or reprehensible deed, usu-
ally under pressure", 5) "take or capture by force".
PhilBERTa, i.e. the model with lowest retrieval
score in this specific case, outputs these candidates:
1) "make a solicitation or entreaty for something;
request urgently or persistently", 2) "order, request,
or command to come", 3) "get to know or become
aware of, usually accidentally", 4) "assign a speci-
fied (usually proper name) proper name to", 5) "de-
cide with authority". Not only their similarity to the
actually assigned one ("cause to happen, occur or
exist") is irrelevant, but the two sets of candidates
do not look mutually similar in any way.

6 Conclusions

The complexity of the task has been apparent from
the beginning, and is confirmed by observations
from related studies. Bamman and Burns (2020)
already discuss comparable challenges, emphasiz-
ing the inherent difficulty of the WSD task and
the lack of suitable resources for Latin – an obser-
vation also echoed by Keersmaekers et al. (2023).
In light of such complexity, our study was never
truly conceived as a solution to a specific task, but
rather as a qualitative assessment of the available
resources as well as of the results they can lead
to. Therefore, our main objective revolved around
a thorough examination of the task, its objectives,
and challenges, with the intention of critically ana-
lyzing and identifying realistic possibilities within
the constraints of the available resources. One of
the key questions concerned whether we can actu-
ally exploit available resources: in particular, can
Latin Vallex represent a suitable resource for PSD?
At its present stage, its exploitation for PSD does
not appear to be feasible; its fine-grained granular-
ity definitely presents challenges for this specific
task. Nevertheless, adopting a binary classification
approach, as suggested by previous works (Bam-
man and Burns, 2020; Lendvai and Wick, 2022),
may not offer a satisfactory solution either. As an
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illustrative example, the verb postulo demonstrates
the need for at least three distinct frames, even un-
der a coarse-grained granularity: i) ’to ask, demand,
require’ (ACT, ADDR, PAT); ii) ’arraign before a
court, to prosecute, accuse’ [juridical] (ACT, PAT,
REG); iii) ’to contain, measure’ [of things] (ACT,
PAT). Currently, Latin Vallex/WN provides nine
frames for postulo. The granularity of Latin Vallex
and the simplicity of a binary classification demand
a thoughtful exploration of alternative strategies to
address such challenges. A possibility could be
represented by sense clustering, as described e.g.
by Navigli (2006) and Martelli et al. (2022).

Additionally, an important limitation of the study
arises from the decision not to fine-tune PLMs,
whose performances would most probably be en-
hanced through fine-tuning. However, fine-tuning
requires training data, and the annotated dataset cur-
rently at our disposal is of limited size. The quanti-
tative results, as illustrated in Figure 1, clearly high-
light the substantial impact of the limited amount
of available data on results. Therefore, what can
be also inferred from the present study is the need
for a larger reference corpus, to be obtained by
enlarging the existing dataset with additional data.

An envisioned extension to the presented work-
flow involves the computation of sentence embed-
dings for definitions. Without constraining either
on same lemma or on same synset, and thus han-
dling even OOV cases, cosine similarity could be
leveraged to identify the most probable synset by
comparing all the synset definitions associated to
the target token against the synset definition of the
extracted candidates, to find the most similar one(s).
In other words, embeddings for the synset defini-
tion of retrieved candidates could be generated, as
well as for the list of synset definitions as available
in Vallex/WN for the lemma under scrutiny. We
could then select candidate synset definitions by
computing cosine similarity between all synsets
associated in Vallex/WN to the target lemma and
synsets of the extracted candidate tokens in the
reference corpus, in order to be able to deal not
only with synsets shared by verbs with different
lemma, but also with synsets that do not occur in
the reference corpus. However, we expect the is-
sues encountered so far (to name one, the dataset
size) to pose similar challenges even in this further-
defined setting.

Acknowledgments

This work has been supported by the Charles Uni-
versity, project GAUK No. 104924. It has also been
partially supported by the SVV project number 260
698 and by the grant Language Understanding:
from Syntax to Discourse (No. 20-16819X) of the
Czech Science Foundation.

The project has been using data and tools pro-
vided by the LINDAT/CLARIAH-CZ Research In-
frastructure (https://lindat.cz), supported by the
Ministry of Education, Youth and Sports of the
Czech Republic (Project No. LM2023062).

References
David Bamman and Patrick J. Burns. 2020. Latin BERT:

A contextual language model for classical philology.
CoRR, abs/2009.10053.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Kaspar Beelen, Federico Nanni, Mariona Coll Ar-
danuy, Kasra Hosseini, Giorgia Tolfo, and Barbara
McGillivray. 2021. When time makes sense: A
historically-aware approach to targeted sense disam-
biguation. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
2751–2761, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Greta Franzini, Andrea Peverelli, Paolo Ruffolo, Marco
Passarotti, Helena Sanna, Edoardo Signoroni, Vi-
viana Ventura, Federica Zampedri, et al. 2019. Nunc
Est Aestimandum: Towards an Evaluation of the
Latin WordNet. In Proceedings of the Sixth Italian
Conference on Computational Linguistics (CLiC-it
2019), Bari, Italy.

Iacopo Ghinassi, Simone Tedeschi, Paola Marongiu,
Roberto Navigli, and Barbara McGillivray. 2024.
Language pivoting from parallel corpora for word
sense disambiguation of historical languages: A case
study on Latin. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 10073–10084, Torino, Italia.
ELRA and ICCL.

27

https://arxiv.org/abs/2009.10053
https://arxiv.org/abs/2009.10053
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://doi.org/10.18653/v1/2021.findings-acl.243
https://doi.org/10.18653/v1/2021.findings-acl.243
https://doi.org/10.18653/v1/2021.findings-acl.243
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://aclanthology.org/2024.lrec-main.880
https://aclanthology.org/2024.lrec-main.880
https://aclanthology.org/2024.lrec-main.880


Alek Keersmaekers, Wouter Mercelis, and Toon
Van Hal. 2023. Word Sense Disambiguation for
Ancient Greek: Sourcing a training corpus through
translation alignment. In Proceedings of the Ancient
Language Processing Workshop, pages 148–159.

Piroska Lendvai and Claudia Wick. 2022. Finetuning
Latin BERT for Word Sense Disambiguation on the
Thesaurus Linguae Latinae. In Proceedings of the
Workshop on Cognitive Aspects of the Lexicon, pages
37–41, Taipei, Taiwan. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Francesco Mambrini, Marco Passarotti, Eleonora Litta,
and Giovanni Moretti. 2021. Interlinking valency
frames and wordnet synsets in the LiLa knowledge
base of linguistic resources for Latin. In Further with
Knowledge Graphs, pages 16–28. IOS Press.

Enrique Manjavacas Arevalo and Lauren Fonteyn. 2022.
Non-parametric word sense disambiguation for his-
torical languages. In Proceedings of the 2nd Interna-
tional Workshop on Natural Language Processing for
Digital Humanities, pages 123–134, Taipei, Taiwan.
Association for Computational Linguistics.

Paola Marongiu and Barbara McGillivray. 2023. Pre-
liminary guidelines for manual annotation of word
senses in Latin and ancient Greek corpora.

Federico Martelli, Marco Maru, Cesare Campagnano,
Roberto Navigli, Paola Velardi, Rafael-J. Ureña-Ruiz,
Francesca Frontini, Valeria Quochi, Jelena Kallas,
Kristina Koppel, Margit Langemets, Jesse de Does,
Rob Tempelaars, Carole Tiberius, Rute Costa, Ana
Salgado, Sanni Nimb, Sussi Olsen, Simon Krek, Jaka
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Abstract
Cuneiform is the oldest writing system used for
more than 3,000 years in ancient Mesopotamia.
Cuneiform is written on clay tablets, which are
hard to date because they often lack explicit ref-
erences to time periods and their paleographic
traits are not always reliable as a dating cri-
terion. In this paper, we systematically anal-
yse cuneiform dating problems using machine
learning. We build baseline models for both vi-
sual and textual features and identify two major
issues: confounds and distribution shift. We ap-
ply adversarial regularization and deep domain
adaptation to mitigate these issues. On tablets
from the same museum collections represented
in the training set, we achieve accuracies as
high as 84.42%. However, when test tablets
are taken from held-out collections, models
generalize more poorly. This is only partially
mitigated by robust learning techniques, high-
lighting important challenges for future work.

1 Introduction

Computational paleography (Vidal-Gorène and
Decours-Perez, 2021; Srivatsan et al., 2021) is a
growing interdisciplinary field that uses compu-
tational algorithms to decipher and analyse an-
cient writing systems. We investigate using ma-
chine learning to automate large-scale dating of
cuneiform1, the oldest writing system from around
3,500 BCE. Similar to general chronicle attribution
tasks in paleography, cuneiform dating involves
classifying cuneiform tablets into specific time pe-
riods rather than precise years. For example, Figure
1 shows a tablet comes from Ur III. Different from
other historical languages, such as ancient Greek
(Assael et al., 2022) or ancient Arabic (Adam et al.,
2018), cuneiform tablets are more challenging to
convert into a machine readable format because the
writing system continually evolved over the 3,000
years it was in use.

1Code is available at https://github.com/taineleau/
CuneiML/tree/main/ml4al_2024_dating.
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Figure 1: An overview of the cuneiform dating task.
Tablets from different collection (museum or private
collector) usually in different time period distribution
and there is confound (undeier features to machine learn-
ing models) from different cameras. The transliteration
is usually exhibit bias towards specific time periods.

For many writing systems, historians and pale-
ographers have been able to identify distinguishing
features in textual content and writing style that
allow for inferences about date of origin for indi-
vidual artifacts. For some writing systems, these
processes have even been automated with machine
learning to some extent. For example, Assael et al.
(2022) showed encouraging results using neural
networks trained on ancient Greek text to restore
and date digitized ancient Greek artifacts.

Can we train similar textual models for
cuneiform dating using accompanying manual tran-
scriptions or transliterations? We conduct experi-
ments with a series of light-weight recurrent mod-
els that show this is indeed possible. However,
relying on manual transcriptions for the purpose of
dating is somewhat circular: for Cuneiform, tran-
scription and transliteration is as time-intensive as
manually dating tablets. Further, transliterations
themselves might exhibit bias—for example, an
expert’s approach to transliterating a tablet may al-
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ready be influenced by preconceived notions about
its time period—allowing models to overfit to the
tendencies of individual transliterators.

Thus, we also study whether visual representa-
tions of Cuneiform tablets can be used effectively
for automatic dating. Visual representations skirt
the issues of manually-intensive transcription and
confounds due to transliteration style. Further, vi-
sual representations may even allow models to auto-
matically extract information about the visual style
of writing, which paleographers have found useful
for manual dating. In past work, Bogacz and Mara
(2020) has shown that relatively accurate dating
of cuneiform tablets using 3D scans is possible.
However, currently it is not feasible to produce 3D
scans of over 100,000 remaining tablets, which are
dispersed among museums and private collections
around the world.

Therefore, instead we explore the use 2D pho-
tographs from CDLI (CDLI contributors, 2024)
to address the dating problem—a task that as far
as we are aware has not been previously studied.
Our experiments using convolutional neural models
trained on 2D images demonstrate a new problem
however: the different imaging setups used by dif-
ferent collections presents a confound that leads
to poor generalization (shown in Figure 3). We
find that the gap between performance on tablets
from collections that were attested in training data
versus those that were not is extremely large. Thus,
we also evaluate to what extent robust learning
methods that attempt to address out-of-distribution
(OOD) generalization can mitigate this issue. We
find that while these methods do help, they do not
increase generalization to the point where accurate
dating of tablets from unseen collections can be
performed reliably. Thus, our empirical study high-
lights this important challenge as an area for future
research. We summarize our primary contributions
below:

1. We identify and analyze several challenging is-
sues in cuneiform dating related to confounds,
distribution shift, and domain generalization.
These challenges are likely also present in the
classification of other ancient artifacts with
text.

2. We study a range of modeling approaches in-
cluding simple methods like Naive Bayes, as
well as neural methods for both images and
text features. We demonstrate strong perfor-
mance when using data splits that reduce dis-

tribution shift and OOD effects, but poor per-
formance across museum collections.

3. We applied multiple robust learning tech-
niques to mitigate distribution shift and the
effect of confounds. While our results demon-
strate improvements from these techniques,
overall OOD generalization performance is
still prohibitive for broader use.

In the following sections, we first formulate the
problem and then describe the data collection splits
we created to address our core research questions.

2 Problem Formulation

Technically, the dating task can be formulated as ei-
ther a classification or a regression problem. How-
ever, after careful examination, we concluded that
treating inferred dates as continuous variables (us-
ing regression) does not make sense in this domain
because the annotation standard used for manual
dating (the source of supervision for learning and
evaluation) includes date categories with overlap-
ping time intervals (see Figure 5). Instead, we
represent each time period as a categorical class
ID and treat dating as a multi-class classification
problem.

Next, we layout the core research questions we
attempt to answer in this empirical study. To ad-
dress each, we will carefully design data splits that
contain three separate test sets, each measuring a
specific aspect of OOD generalization, along with
a train and validation set.

RQ1: What models, configurations, and
features—either visual or textual—are most
effective for automatically dating cuneiform
tablets?

RQ2: How much of a problem do OOD effects
pose for generalization in this domain? For exam-
ple, do models overfit to specific features present in
individual museum collections? How well do mod-
els generalize to tablets from previously unseen
museum collections?

RQ3: How well do existing robust learning
techniques address the issue of distribution
shift and OOD generalization in the context of
cuneiform tablet dating?

In later sections, we will specify the datasets
we use, which specific input representations
we compare, and which modeling approaches
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the same time period. This supports the hypothesis of distribution shifts between training and testing datasets. For a
high-resolution version, see Appendix Figure 8.
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Figure 3: An overview one of the dating tasks using
major-face cutouts of photographs to predict time pe-
riods. We held out several museums for the out-of-
distribution (OOD) setting (e.g., the Cairo Museum),
while the ID Testing set contains tablets from the same
museums as the training set.

we evaluate. We will also carefully design test
splits to answer specific questions about OOD
generalization. Next, we describe and define some
of the potential OOD effects in this domain and
distribution shifts we seek to analyze.

Generally speaking, distribution shift occurs
whenever the underlying distribution that gener-
ated the training data diverges from the distribution
that will generate future test instances. Distribu-
tion shift poses a substantial challenge for learning
systems: patterns that hold true on the training
data may not generalize to the test set, leading to
poor generalization performance. In the domain
of cuneiform data the are two important types of
distribution shift.

First, cuneiform datasets tend to exhibit substan-
tial label shift due to how tablets are distributed
across museum collections. We depict the distri-
bution of tablet dates in museum collections in the
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Figure 4: Visualization of label shift for the
collection shift train/test split setting.

CuneiML dataset (Chen et al., 2023) (which we use
in experiments) in Table 2. Most museums contain
tablets from a small range of time periods. Thus, if
train and test setups for validating computational
approaches are selected based on i.i.d. sampling
from this dataset, the test performance may not
accurately reflect expected performance on tablets
from new, unseen museum collections. In Figure 4
we visualize actual label distribution shift in a i.i.d.
train/test split.

Second, the input representations from individ-
ual museum collections may have properties that
make the collection itself identifiable. For instance,
as shown in Figures 1 and 3, the scanning method-
ologies used by separate museums leave artifacts
like different amounts of color saturation and blur-
ring. Similarly, it is possible that different translit-
eration styles may also be identifiable. Because
individual collections are biased towards specific
date ranges, the confounds mentioned above may
cause covariate shift—a type of distribution shift
where the distribution on the input variables and the
relationship between input and output vary between
train and test. For example, a model may learn to
identify the collection based on properties of the
scanning hardware in order to determine date. This
may work on training data, but will not generalize
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Figure 5: Time period overlapping visualization. The
x-axis is years for BCE. Two time period classes can
be parallel in time, for example, Middle Babylonian is
almost completely overlaps in time with Middle Assyr-
ian.

to new collections. Thus, one of our primary goals
is to measure the effects of label and covariate shift
for cuneiform dating and to evaluate to what extent
robust learning methods may address these issues.

3 Data

We obtain 38,937 tablet images with translitera-
tions from CDLI (CDLI contributors, 2024), using
prepossessing from CuneiML (Chen et al., 2023).
An example is shown in Figure 6. Besides transliter-
ation and 2D images, we use several other attributes
from the metadata entries, including provenience,
collection, and genre, which we use in later exper-
iments for both simple baselines and as additional
supervision to mitigate distribution shift.

Figure 6: Left: Cuneiform Tablet images with six face
photographs. Right: Example of transliteration in ATF
format and the tokenization in cuneiform glyph. We use
a special token <S> to separate the word in cuneiform.

Split % Count Note
all 100% 38,937 -
train 80% 30,626 -

test 1 5% 2,065 OOD , p(y) shift

valid 5% 2,116 OOD , p(y) shift

test 2 5% 2,065 ID , p(y) shift

test 3 5% 2,065 ID

Table 1: Dataset split statistics. OOD stands for Out-of-
distribution compared to training set, and ID stands for
in distribution compared to training set.

3.1 Data split

Inspired by Koh et al. (2021), we identify two kinds
of distribution shift and would like to create splits
that disentangle the issues and better answer the
research questions. As we can see in Figure 2, most
museum collections only own tablets from one or
two time periods and most time periods are col-
lected by a specific museum. To better study the
distribution shift across collections, we split the
data with regard to the collection id, i.e. tablets
from the same collection only present in one split.
This split we call OOD test split (test 1). We use
p(y) shift to denote a split where the label distri-

bution p(y) is significantly different from that of
the training set. We describe briefly how we split
the data (Table 1) below.

1. Step 1: Getting an OOD and p(y) shift set
S1 from the full data. We sampled about 10%
from the full dataset using the following rules:
(i) We sample by collections, meaning tablets
from an entire collection are either included or
excluded. (ii) For a given time period, we do
not select collections that constitute more than
30% of the data for that time period, ensuring
that we do not remove most of the tablets
for certain time periods from the training set.
We named the remaining 90% of full data S2.
Figure 4 shows the shift of p(Y ).

2. Step 2: Getting valid and test 1 set. we
evenly split S1 We obtained from step 1 and
we now have valid and test 1 set.

3. Step 3: Getting test 2. We sampled 5% of
the data from the subset S2 against the label
distribution of test 1. Therefore, test 2 has the
same sub-population shift from the training
set as test 1, but consists of in-domain (ID)

33



data instead of OOD data. We named the
remaining 85% of the full data S3.

4. Step 4: Getting test 3 and train set. We
randomly sampled 5% of the data from S3 to
constitute test 3, and the remaining 80% is the
final training set.

Therefore, we have three testing splits setup as
shown in Table 1.

4 Methods

We describe the baseline models we used in experi-
ments and also several training strategies, adversar-
ial regularization and , to mitigate the distribution
shift issues.

4.1 Baseline models

1. Naive Bayes. We use discrete categorical fea-
tures, including genre, collection, provenance,
and size, to predict the time period as a cate-
gorical prediction problem. Note that when
there is only one feature, the performance in-
dicates a correlation between the feature and
the predicted class.

2. Char-LSTMs. We use a character-level
two-layer bi-directional LSTMs to process
cuneiform transliterations and sign tokens for
dating ancient texts. The model has a hidden
size of 128 and an embedding size of 256. We
train for 200 epochs using the ADAMW opti-
mizer with a learning rate of 5e-4 and a weight
decay of 1e-3.

3. ResNet. Our study utilizes the ResNet (He
et al., 2016) architecture, specifically ResNet-
50 and ResNet-101. We apply these models
to classify images of cuneiform inscriptions,
leveraging their powerful feature extraction
capabilities. The models are trained using a
cross-entropy loss function, with adjustments
made to the final layer to suit our specific class
labels. The training regimen includes a batch
size of 16, 30 epochs, ADAM with a learning
rate of 3e-5, and no weight decay.

4.2 Baseline Objective

For all the neural models, we use cross entropy
(CE) loss to train the models.

L = CE(y(t), p(t))

4.3 Advanced Algorithms

To address the aforementioned issues, we explore
several different robust training algorithms in this
paper.

Adversarial Regularization. We use other at-
tributes such as provenience and genre, to optimize
a min-max objective. We attach a new branch of
MLP to calculate the p(adv).
L = CE(y(t), p(t)) + KLD(y(const), p(adv))

where CE is cross entropy loss and KLD is the
KL Divergence loss.

Correlation Alignment for Deep Domain Adap-
tation (CORAL). CORAL (Sun and Saenko,
2016) measures the divergence of means and co-
variance between batches of feature representations.
The goal of CORAL is to match the feature distri-
butions from different domains.

Invariant risk minimization (IRM). IRM (Ar-
jovsky et al., 2019) penalizes feature distributions
that result in different optimal linear classifiers
across different domains. where where Φ is the
entire invariant predictor, w = 1.0 is a fixed classi-
fier, and the gradient norm penalty is the measure
of the classifier at each environment.

5 Experiments and Results

5.1 Input Features

We have four different input features for training,
describing as below.

1. Raw image. The raw images downloaded
from CDLI. Each image usually contains pho-
tographs of six faces for each tablet.

2. Major-face image. The major-face cutout of
the raw images, which are usually the front
faces of the tablets.

3. Raw transliteration. We use the post-
processed version from CuneiML, which re-
moves formatting string such as line numbers,
broken markers and etc.

4. Cuneiform sign (glyph) token. We tokenize
cuneiform glyph at a character-level, with a
vocabulary size of 764. See Figure 6 for an
example. We keep the space between words
and line break.
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Features Model test 1 OOD p(y) shift test 2 ID p(y) shift test 3 ID

F1 Acc. F1 Acc. F1 Acc.

- random 2.92 7.80 2.91 7.12 2.96 6.30
- majority 6.56 74.29 6.56 74.29 6.02 72.93

provenience NBayes 39.48 83.63 51.09 79.95 61.15 89.20
genre NBayes 15.31 72.88 19.77 75.11 22.72 80.63

provenience & genre NBayes 37.94 83.49 56.98 83.24 62.72 91.91

museum (collection) NBayes 6.56 74.29 13.92 75.16 21.78 77.85

transliteration char-LSTM 16.14 10.72 26.52 10.87 84.42 95.73
sign token char-LSTM 16.59 11.45 24.25 11.89 78.13 95.39

raw image ResNet-50 28.46 82.03 64.33 93.51 78.73 94.26
+ OOD mitigate 29.42 83.24 47.46 92.13 48.63 88.17

major cutout ResNet-50 34.82 87.36 68.69 94.74 80.60 95.19
+ OOD mitigate 41.06 88.37 49.55 91.62 54.78 88.03

Table 2: Main result table for cuneiform dating. Macro F1 and Accuracy (Acc.) are reported. Macro F1 denotes the
average F1 score calculated across all classes. Best F1 scores for each subgroup are in bold face and the second best
ones are underlined. Colored background highlight the best overall model for each setting.

The bounding boxes for major-face images and
the Cuneiform sign (glyph) tokens are obtained
from Chen et al. (2023)2.

5.2 Metrics
As the label distribution p(y) imbalance exists and
there is a distribution shift, we primarily use the
F1 score and accuracy to evaluate our methods.
Specifically, we use Macro F1 and accuracy3 as our
major evaluation metrics.

Macro F1 score computes the F1 score indepen-
dently for each class and then takes the average,
thus treating all classes equally regardless of their
frequency. This dual approach allows us to address
both the overall accuracy and the individual class
performance, ensuring a thorough evaluation in the
face of skewed class distributions and shifts.

5.3 Results and Analysis
The main results for two split settings are shown
in Table 2 and several key observation are summa-
rized as follows.

1. Random and Majority Baseline Models.
These models provide basic benchmarks with
the majority model performing based on the
most frequent class, note that the majority
class contains more than 70% of the models,
which accounts for the big discrepency be-
tween macro F1 and accuracy. The low F1

2https://github.com/taineleau/CuneiML
3For single-label classification, Micro F1 is equal to accu-

racy

scores, indicating poor performance across all
classes evenly.

2. Neural models perform the best across all
settings. Both visual and textual neural mod-
els work fairly good in ID setting (test 3),
showing that both textual and visual features
provide sufficient information to date tablets.

3. Raw images contain confounded undesired
features: collection. When using a ResNet-
50 model, features extracted from the raw im-
ages outperformed those obtained from front
face cutouts on ID split (test 3). However, this
performance was reversed on an OOD split
(test 1). This reversal clearly indicates that
raw images include collections as a confound-
ing factor.

4. Textual features are not effective for dating
when label shift exists. From test 3 to test
2, only the label distribution changes, while
the data remains in-domain. However, textual
models experience a dramatic drop in perfor-
mance by 57.9%, revealing that textual fea-
tures are not robust to label imbalance issues.
In contrast, image models are not affected as
significantly.

5. Textual models are not robust to OOD shift;
visual models are better but still have room
for improvement. Textual models exhibit
nearly a 50% relative decrease in macro F1

for the OOD setting (test 1) compared to vi-
sual models. With the application of OOD
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mitigating algorithms (see section 6.3 for de-
tails), visual models improve from 34.82% to
41.06%, achieving the best F1 score on test 1.
This aligns with our earlier concerns that tex-
tual features do not capture any writing style
of the tablet, making it difficult to determine
the time period under OOD shift conditions.

6 Further Analysis

6.1 Zooming in on Textual Models
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Figure 7: Analysis on best context length for textual
features using char-LSTM on three test split.

As shown in Figure 7, we conducted extensive
experiments on the number of lines per example fed
into the models. As mentioned earlier, we use ma-
jority vote by default to ensemble predictions when
we divide a full document. The performance of the
glyph token features (sign token) increases as the
number of lines in an example increases, while the
transliteration features typically achieve the best
performance with only one or two lines. This obser-
vation aligns with our understanding that transliter-
ation already encodes some contextual knowledge,
as signs are transliterated into Latin depending on
the context. In contrast, for sign token features,
the machine learning model requires more lines to
discern the underlying information effectively.

6.2 Mitigating Label Imbalance Issues

Table 3 presents the results of label imbalance meth-
ods using char-LSTM on transliteration and glyph
token features, with loss reweighing (LR) and up-
sampling (US). While both methods show varied
effects on the performance metrics, loss reweighing
generally improves F1 scores and accuracy across
the test sets, particularly for transliteration features,
achieving a F1 86.06% on test 3.

Features test 1 test 2 test 3

F1 Acc. F1 Acc. F1 Acc.

trans. 15.77 10.53 26.52 10.87 74.89 92.62
+ LR 16.54 11.45 24.98 11.89 86.06 85.33
+ US 12.63 9.89 25.32 10.63 81.75 94.61

glyph 15.00 8.82 19.14 9.52 67.56 92.08
+ LR 17.63 12.04 18.63 12.52 74.08 94.85
+ US 15.57 10.92 19.17 12.38 73.22 94.66

Table 3: Result for label Imbalance methods using char-
LSTM on transliteraion and glyph token features. LR:
loss reweighing, US: up sampling. The models trained
with num_of_line=1.

6.3 Distribution shift and Confounds

Adversarial Regularization. Table 4 show re-
sults using adversarial regularization. Macro F1

does not change as much as the accuracy. We also
found that adversarial training requires very care-
ful hyper-parameter tuning; otherwise, the model
may completely underfit due to the noisy gradients
provided by the adversarial branch.

Input adv. feat Macro F1 Acc.

raw none 25.73 58.34
raw collection 25.44 62.12

cutout none 29.09 64.91
cutout collection 30.39 68.64

Table 4: Adversarial study on image features. ResNet-
50 is used for all experiments in this table. We run each
experiments five time and report the mean F1 scores.
Note that the result is trained on a slightly different split
than the main table.

OOD mitigation. Table 5 shows results using
OOD methods. Among the OOD mitigating algo-
rithms, CORAL consistently improves the perfor-
mance across all test sets for both raw and cutout
features. Notably, CORAL achieves the best F1

scores of 29.42% and 40.46% on test 1 for raw
and cutout features, respectively. The other algo-
rithms, IRM and groupDRO, generally show a de-
cline in performance, with groupDRO performing
the worst, especially for the cutout features. Over-
all, the results indicate that while textual models
struggle with domain shifts, visual models, par-
ticularly those enhanced with cutout features and
CORAL, demonstrate a more robust performance,
albeit with room for further improvement.
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Features test 1 test 2 test 3

F1 Acc. F1 Acc. F1 Acc.

raw 28.46 82.03 64.33 93.51 78.73 94.26
+ IRM 26.97 85.28 47.28 90.91 48.63 88.17

+ CORAL 29.42 83.24 47.46 92.13 46.94 90.08
+ groupDRO 24.02 77.97 35.18 87.69 56.54 89.54

cutout 34.82 87.36 68.69 94.74 80.60 95.19
+ IRM 28.31 87.46 43.42 91.11 44.34 88.81

+ CORAL 40.46 89.39 52.51 93.05 48.61 90.92
+ groupDRO 27.94 80.77 50.47 86.82 60.50 86.99

Table 5: OOD setting results trained on images features
using ResNet-50.

Num of
Examples

ResNet-50 char-LSTM

F1 Acc. F1 Acc.

Full 85.34 94.40 53.19 85.89
10,000 67.18 90.86 49.46 84.73

5,000 59.17 89.99 32.93 82.24
1,000 40.89 82.39 17.28 75.09

500 28.03 77.77 7.44 70.62
100 13.21 55.49 5.66 65.67

Table 6: Ablation study on different number of training
data, on test 3 using ResNet-50 and BERT. Note that
this table is running on a slightly different data split
from the main table.

6.4 Cuneiform Dating at Scale

It is not possible to make an apple-to-apple compar-
ison on 2D and 3D scans features because most of
the HeiCuBeDa dataset (Bogacz and Mara, 2020)
does not accompany with a 2D photo. The paper
reported a weighted F1 of 83% (which is roughly
comparable to accuracy in our case). We conduct a
set of experiments by varying the number of train-
ing examples, as shown in Table 6. Both models
show a clear trend of improved performance with
increased training data.

7 Related work

7.1 Automated classification for ancient
languages

Sommerschield et al. (2023) provides a detailed
overview of ancient languages processing using
machine learning. Resler et al. (2021) classified
artifact images using CNNs and nearest neighbors.
Assael et al. (2022) train a BE to restore ancient
Greek. There have been work on dating documents
in various ancient languages, like Arabic, Korean
and Chinese oracles bones among others (Sommer-

schield et al., 2023)

7.2 Cuneiform studies

There have been important efforts in cuneiform
sign recognition, language identification (Bernier-
Colborne et al., 2019), and machine translation for
Akkadian have been explored (Gutherz et al., 2023).
Bogacz and Mara (2020) use high resolution 3D
scans to classify time periods, and more recently
Yugay et al. (2024) have explored the dating of first
millennium Assyrian and Babylonian documents,
using stylistic criteria and CNN. As mentioned ear-
lier, it is non-trivial to tokenize the transliteration.
Gordin et al. (2020) uses HMM and neural models
to automatically transliterate Unicode cuneiform
signs. On the contrary, in our paper, we reverse this
process by converting the transliteration back to
Unicode cuneiform signs to reduce transliteration
bias.

7.3 Distribution shift

Historical data always suffers from noise and there-
fore it is hard to have good generalization on held
out data. Specially for cuneiform, the systematic
distribution shift is the most salient one. The sys-
tematic distribution shift is a special cases in do-
main adaptation, and therefore can be mitigated
by general domain adaptation methods (Koh et al.,
2021)). Ahmed et al. (2020) analyses group invari-
ant predictions, where dominant simpler correla-
tions with the target variable. Zare and Nguyen
(2022) studied similar scenario in medical diag-
nosis, which has a shift on several attributes such
as sex, age and race. They use invariant risk min-
imization (IRM) (Arjovsky et al., 2019) to learn
invariant features. Another branch of methods is
adversarial regularization, which uses adversarial
training (Gokhale et al., 2021) to improve the gen-
eralization ability. Li et al. (2018) uses Maximum
Mean Discrepancy (MMD) to align loss in different
class.

8 Conclusion

In this paper, we explore end-to-end cuneiform
dating at scale using machine learning. We have
identified three major challenges—label imbalance,
distribution shift, and circular reasoning—that are
prevalent in cuneiform dating. These issues and
solutions explored in our paper are broadly applica-
ble to the classification of other ancient artifacts as
well. We hope our initial analysis will inspire the
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community to further adopt machine learning for
addressing problems in ancient language process-
ing.
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A Appendix

A.1 Tokenization

There are 7, 000 glyphs across different time pe-
riods. We use Chen et al. (2023) tokenization of
text.

1. word boundary. Empty space is manually
inserted between word. We by default keep
the space by inserting.

2. Logogram. A tilde sign before a sign indicate
it is a logogram. By default we differentiate
whether a sign is syllable or logogram.

3. Intrusions. (...) indicates unknown num-
ber of signs is missing.

4. Modifier. In ATF, at-sign precedes a sign or
group. For example, @c means curved.

5. Compound. |GA2 ∼ a×EN|, means: “the
a-allograph of the sign GA2 containing sign
EN”.

6. Breakage. Hash tag is used to mark breakage.

B Details

B.1 OOD Experiments Details

1. Raw

(a) IRM. We train for 30 epochs with a learn-
ing rate of 3e-5, an IRM lambda 1, and
seed 2.

(b) CORAL. We train for 30 epochs with a
penalty weight 10 and seed 0.

(c) groupDRO We train for 30 epochs with
a learning rate of 3e-5 and seed 1.

2. Front

(a) IRM. We train for 30 epochs with a learn-
ing rate of 3e-5, an IRM lambda 1, and
seed 2.

(b) CORAL. We train for 30 epochs with a
penalty weight 10 and seed 2.

(c) groupDRO We train for 30 epochs with
a learning rate of 3e-5 and seed 2.

B.2 Hyperparameters and ablation study

We provide further analysis and conduct a com-
prehensive ablation study in the following section,
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exploring the effects of hyperparameters, input fea-
ture selection, and the number of training examples
on our model’s performance.

As shown in Table ??, larger model or larger
resolution of input can boost model performance.

C Visualization of tablets counts

A full resolution with number annotated heatmap
for the time periods preserved in each museum
collection is shown in Figure 8.

40



0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time periods

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

M
us

eu
m

 / 
Co

lle
ct

io
n 

ID

2272 39 162 77 120 592 0 0 1 0 0 0 0 0
2636 247 33 6 0 51 0 0 1 0 0 0 0 0
1315 868 194 91 115 63 0 22 76 0 0 0 2 0
1577 43 266 7 5 124 0 0 1 5 0 0 0 0
1757 101 0 0 0 3 0 0 0 0 0 0 21 0
746 36 0 322 182 0 22 162 162 149 0 0 3 1
1372 0 16 307 0 0 0 0 0 0 0 3 0 0
1279 10 61 47 0 6 0 105 1 0 0 0 0 0
310 80 158 322 329 4 2 1 13 0 0 47 0 0
1108 32 67 29 0 24 0 0 1 0 0 3 0 0
1020 38 79 2 33 29 0 14 1 0 0 1 3 0
20 471 25 3 130 2 497 1 0 1 0 0 3 38

1018 2 0 0 0 2 1 0 1 0 0 0 0 0
944 3 9 1 0 0 0 0 1 0 0 1 0 0
723 1 8 0 0 49 0 1 0 0 0 0 2 0
500 1 239 12 0 0 0 0 1 0 0 0 0 1
703 0 6 0 0 0 0 0 0 0 0 0 0 0
650 9 6 2 1 4 0 0 0 0 0 2 4 0
658 1 0 0 0 0 0 0 0 0 0 0 0 0
628 1 0 0 0 0 0 0 0 0 0 0 1 0
531 4 0 0 0 26 0 0 0 0 0 1 1 0
367 2 18 126 0 0 0 0 0 0 0 0 0 0
479 0 0 0 0 0 0 0 0 0 0 0 0 0
293 63 9 7 47 5 0 0 0 0 0 2 0 0
421 0 0 0 0 0 0 0 0 0 0 0 1 0
164 29 85 131 1 1 1 0 5 0 0 1 0 1
241 69 3 1 0 74 0 0 0 0 0 0 4 0
317 34 2 7 0 1 0 0 0 0 0 27 0 0
369 1 3 0 0 6 0 0 0 0 0 2 0 0
18 0 0 0 354 0 0 0 0 0 0 0 0 0
304 0 4 0 0 0 0 0 0 0 0 0 0 0
296 5 0 0 0 1 0 0 0 0 0 1 0 0
301 1 1 0 0 0 0 0 0 0 0 0 0 0
0 214 0 0 0 50 0 0 0 0 0 0 0 0

226 1 0 0 0 0 0 0 0 0 0 0 0 0
165 12 13 12 1 23 0 0 0 0 0 0 0 0
177 1 32 1 12 0 0 0 0 0 0 0 0 0
144 1 59 9 0 0 0 0 8 0 0 2 0 0
137 4 19 25 0 2 0 0 6 0 0 0 0 0
150 0 0 0 0 2 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 150 0 0 0
0 0 138 13 0 0 0 0 0 0 0 0 0 0
20 124 0 0 0 3 0 1 0 0 0 0 2 0
132 0 2 0 0 0 0 0 0 0 0 0 0 0
120 0 1 0 4 1 0 0 0 0 0 0 0 0
106 4 1 1 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0
54 56 0 0 0 1 0 0 0 0 0 0 0 0
94 4 1 0 0 2 0 0 0 0 0 0 0 0
96 0 1 0 0 1 0 0 0 0 0 0 0 0
91 0 0 0 0 1 0 0 0 0 0 0 0 0
88 0 0 0 0 0 0 0 0 0 0 0 0 0
85 0 0 0 0 2 0 0 0 0 0 0 0 0
84 1 0 0 0 0 0 0 0 0 0 0 0 0
73 2 0 1 0 0 0 0 0 0 0 4 0 0
16 11 12 1 7 9 0 0 0 0 0 0 0 0
39 15 0 1 0 0 0 0 0 0 0 0 0 0
14 36 0 0 1 1 0 0 0 0 0 0 0 0
47 3 0 0 1 1 0 0 0 0 0 0 0 0
50 2 0 0 0 0 0 0 0 0 0 0 0 0
48 0 1 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 1 1 0 1 0 0 0 0 0 0
8 36 0 0 0 1 0 0 0 0 0 0 0 0
43 0 1 0 0 0 0 0 0 0 0 0 0 0
41 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 38 0 0 0 0 0 0 0 0 0 0 0
31 4 0 0 0 0 0 0 0 0 0 0 0 0
2 28 1 1 0 0 0 0 0 0 0 0 0 0
27 2 0 0 0 1 0 0 0 0 0 1 0 0
9 0 17 1 0 0 0 0 0 0 0 0 0 0
7 9 0 0 5 0 1 1 1 1 0 0 0 0
22 1 0 0 0 1 0 0 0 0 0 0 1 0
4 20 0 0 0 0 0 0 0 0 0 0 0 0
20 0 3 0 0 1 0 0 0 0 0 0 0 0
20 0 1 0 0 1 0 0 1 0 0 0 0 0
22 0 0 0 0 0 0 0 1 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 20 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 1 0 0 0 0 0 0 0 0
4 12 0 2 0 0 0 0 0 0 0 0 0 0
13 3 1 0 0 0 0 0 0 0 0 1 0 0
14 2 0 0 0 1 0 0 0 0 0 0 1 0
16 0 2 0 0 0 0 0 0 0 0 0 0 0
15 1 1 0 0 1 0 0 0 0 0 0 0 0
13 1 0 0 0 1 1 0 0 0 0 0 1 0
15 0 1 0 0 1 0 0 0 0 0 0 0 0
13 2 1 0 0 1 0 0 0 0 0 0 0 0
16 0 0 0 0 1 0 0 0 0 0 0 0 0
14 2 0 0 0 0 0 0 0 0 0 0 0 0
12 2 1 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 11 0 0 0 0 0 0 0 0 0
2 0 0 0 5 4 1 0 0 0 0 2 1 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 4 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 9 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 2 0 0 1 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 5 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 1 0
4 0 0 0 1 1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 8: Visualization of the time periods preserved in each museum collection.
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Abstract
The complex Ancient Egyptian (AE) writing
system was characterised by widespread use of
graphemic classifiers (determinatives): silent
(unpronounced) hieroglyphic signs clarifying
the meaning or indicating the pronunciation of
the host word. The study of classifiers has in-
tensified in recent years with the launch and
quick growth of the iClassifier project, a web-
based platform for annotation and analysis of
classifiers in ancient and modern languages.
Thanks to the data contributed by the project
participants, it is now possible to formulate
the identification of classifiers in AE texts as
an NLP task. In this paper, we make first
steps towards solving this task by implementing
a series of sequence-labelling neural models,
which achieve promising performance despite
the modest amount of training data. We dis-
cuss tokenisation and operationalisation issues
arising from tackling AE texts and contrast our
approach with frequency-based baselines.

1 Introduction

The Ancient Egyptian language and writing sys-
tem, which belong to the earliest stratum of intan-
gible cultural heritage available to researchers, pos-
sess a range of interesting features. One of them
is widespread use of classificatory signs, called
determinatives in earlier literature. These classi-
fiers (hereafter CLFs in ambiguous contexts, in
order to avoid confusion with classifier models)
are hieroglyphic signs attached, singly or in com-
binations, to words of different parts of speech
and used mostly to highlight some aspect of the
host word’s meaning or pronunciation (Goldwasser,
2023; Goldwasser and Grinevald, 2012). Egyptian
graphemic classifiers are usually understood to be
a purely written phenomenon, i.e., unlike classi-
fiers in contemporary spoken languages (Grinevald,
2015), they were not pronounced. Classifiers of
this type have been most intensively studied in An-
cient Egyptian, but they have been also described

in Sumerian (Selz et al., 2017) and Luwian (Payne,
2017), and it is argued that the ancient Chinese writ-
ing system was built on similar principles (Gold-
wasser and Handel, 2024).

The computational research on the Ancient
Egyptian language is in its infancy. A compre-
hensive overview of studies of ancient languages
utilising machine-learning methods, prepared by
Sommerschield et al. (2023), mentions only a cou-
ple of works on Egyptian, and all of them deal with
technical tasks, such as optical character recogni-
tion and spectrography-based dating. Neither do
we know of any computational works tackling clas-
sifiers/determinatives in other ancient scripts.

At the same time, the field of classifier studies
has been progressing rapidly in recent years. To a
large extent this is due to the launch of iClassifier
(Harel et al., 2024), a dedicated platform for analy-
sis of classifiers in ancient and spoken languages,
which ensures comparability between annotated
corpora. By providing such a platform, the project
aims to facilitate both the study of individual clas-
sification traditions and, by means of semantic an-
notations with CONCEPTICON labels (List et al.,
2024), cross-cultural analyses of classification sys-
tems.

The particular structure of any given corpus is
dependent on its creator, and the project includes
resources of two basic types:

1. Full-text corpora, which include annotations
for both classified and unclassified wordforms
from a particular text or set of texts.

2. Topical corpora, which include data points of
a particular type, e.g., lexical borrowings or
items from a particular lexical class.

Corpora of the first type are more informative, but
in practice they presuppose the existence of already-
digitised texts that can be imported in iClassifier
wholesale and then annotated. In some cases, the
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target texts have not yet been digitised, and only
words or phrases of particular interest are manually
entered.

Work on projects of both types could be facili-
tated by the existence of a trained classifier model,
which would highlight potential CLF tokens in in-
puts. If such a classifier attains a high degree of
accuracy, it will then be possible to conduct fast
analyses of large digitised textual corpora, which
have been published for, e.g., Ancient Egyptian
(Richter and Werning, 2024), Sumerian,1 Luwian,2

and ancient Chinese (Xu, 2024). From the research
perspective, an accurate discriminative classifier
model will serve as a first step towards building a
more interpretable generative model for word clas-
sification in ancient complex scripts and spoken
languages.

In this study, we take first steps towards develop-
ing such a classifier on the basis of the Coffin Texts
corpus, as of today the largest annotated full-text
corpus in the iClassifier system.

2 Data

2.1 The corpus

The main dataset used in this study is a subset of
the so-called Coffin Texts (de Buck, 1935–1956),
a collection of spells painted on burial coffins of
the First Intermediate period (c. 2130–1938 BCE)
and the Middle Kingdom (1938 – c. 1630 BCE).
A subset of the spells forms one of full-text projects
in iClassifier, i.e. it includes both classified and un-
classified data points in the proportions reflecting
the linguistic usage of the time, which makes it suit-
able for training a classifier-identification model.
The corpus is word based: individual data points
are wordforms, which is the standard annotation
practice for ancient texts in iClassifier.3

This corpus, similarly to other corpora in the
project, relies on a broad definition of the term
classifier that encompasses not only semantic
CLFs4 but also phonograms presenting redundant
phonological information, such as phono-repeaters.
These sign functions can be tagged in the UI as

1https://etcsl.orinst.ox.ac.uk/
2http://web-corpora.net/LuwianCorpus/search/
3Modern languages usually need sentences as data points,

while the ancient Chinese corpora, conversely, decompose
individual signs into the phonetic and semantic component
and treat the latter as a classifier. See Xu (2024) for details.

4Including so-called ‘repeater CLFs’, where an unpro-
nounced pictorial logogram expresses the same meaning as
that conveyed by a phonologically-encoded word.

Figure 1: A form of the verb trr ‘to race’ represented in
hieroglyphs and in the Manuel de Codage transcription.
The last two signs are unpronounced semantic classifiers
putting ‘race’ in the [MOVEMENT] category.

‘semantic classifiers’ and ‘phonetic classifiers’, re-
spectively. Additional tagged signs pertain to com-
mon ‘grammatical classifiers’, which represent the
number or gender of the host word. As a first step
we do not distinguish between different CLF types
but try and identify all non-autonomous signs (Po-
lis and Rosmorduc, 2015, 157).

The fully-annotated subset of the Coffin Texts
corpus contains 74106 data points. However, many
wordforms are repeated several times with the
same CLFs, which reduces the effective size of
the dataset to 8423 types, randomly split into 6739
train, 842 development, and 842 test data points.
Table 2 shows the statistics of the number of CLFs
per data point.

The setting therefore can be characterised as ex-
tremely low resource since not only the dataset
itself is small, but there are no language models
pre-trained on the target language.5

We also use a small (404 data points) corpus
of wordforms from Late Egyptian narratives6 as a
separate out-of-domain test set. This smaller cor-
pus represents a different textual genre, a folktale,
and was compiled later, in the 13th century BCE,
compared to the Coffin Texts, which are dated to
22nd–17th c. BCE.

2.2 The transcription system
The representation format for Ancient Egyptian
texts used in iClassifier is the Manuel de Codage
(MdC; Buurman et al., 1988) transcription, which,
despite some criticism (Nederhof, 2013), remains
the standard in Egyptology. Hieroglyphic signs in
MdC are represented with their Gardiner numbers
(Gardiner, 1957, 438–548),7 with additional sym-

5The most closely related language with a sizeable cor-
pus is Coptic, which was written in an alphabetic script and
presents a tough low-resource scenario in itself, cf., e.g.,
Gessler and Zeldes (2022).

6https://thesaurus-linguae-aegyptiae.de/text/
MTBRL3MIIJDKXAOF2336WRLMZA

7https://en.wikipedia.org/wiki/Gardiner%27s_
sign_list
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bols used for denoting relative positions of signs,
damaged signs, ligatures, and other information.
An example transcription is shown in Figure 1.

Classifier signs in iClassifier are sur-
rounded with ~’s, so the annotated ver-
sion of the example from Figure 1 is
U33-Z4-D21-Z1-D21-Z1-~D56~-~D54~.8 The
simplest operationalisation of the classifier-
identification problem is therefore seq2seq
transduction with bare transcriptions (in MdC
or any other suitable scheme) as inputs and the
same encodings with tildes added when necessary
as outputs. As we discuss below, however, this
operationalisation makes the transduction task
unnecessarily hard for the models and consid-
erable gains may be made by means of some
straightforward simplifications.

3 Methods

In this section, we describe our approaches to input
tokenisation and output formatting (§ 3.1), the base-
lines (§ 3.2), and the experimental setup (§ 3.3).

3.1 Preprocessing

The aim of the Manuel de Codage transcription
system is not only to represent several hundred
signs of Egyptian hieroglyphics using numbers and
Latin letters but also, as far as possible, to describe
their spatial relations in the original inscriptions
since the Ancient Egyptian writing was inherently
two-dimensional. Additional complexity comes
from the ability of the transcription system to han-
dle damaged inscriptionts, empty space, and edito-
rial emendations, among other things. As a result,
although it is possible to represent (a somewhat
simplified version of) MdC as a context-free gram-
mar,9 which is used, for example, in the standard
MdC-visualisation tool JSesh,10 this grammar is
quite complex and it seems unreasonable to expect
seq2seq classifiers to learn it implicitly. Therefore
we preprocessed the input by (i) parsing it with a
simplistic CFG powerful enough to distinguish be-
tween signs, delimiters, and other elements,11 and
(ii) replacing everything except for hieroglyphs and
tildes, used to mark CLFs, with spaces.

8https://thesaurus-linguae-aegyptiae.de/
sentence/IBUBdWH5CJXKnkyQhOCrlBiZSCA

9https://mjn.host.cs.st-andrews.ac.uk/
egyptian/res/mdc.html

10http://jseshdoc.qenherkhopeshef.org/
11The parser was implemented using the Python package

Lark. The CFG for the grammar is given in the Appendix.

Tokenisation. The output of the previous step
is a sequence of hieroglyphs in MdC, with CLFs
flanked by tildes, separated by spaces. When fine-
tuning a pre-trained model with its own tokeniser,
the input must be represented as a string. If we train
a model from scratch, however, a trade-off can be
made between, on one hand, longer inputs and a
very small vocabulary (Latin letters, digits, and the
tilde) and, on the other hand, short inputs and a
large vocabulary, where each hieroglyph from the
dataset gets its own token (784 tokens in total in
our data). We call models using the small vocab-
ulary character based and models using the large
vocabulary sign based.

Output formatting. Regardless of the tokenisa-
tion approach, reference outputs can be represented
in several different ways, for example:

1. In the (simplified) original notation: U33 Z4
D21 Z1 D21 Z1 D56 D54→ U33 Z4 D21 Z1
D21 Z1 ~D56~ ~D54~

2. Without the first tilde, since each classifier
in the data is unambiguously identified by a
single marker: U33 Z4 D21 Z1 D21 Z1 D56
D54→ U33 Z4 D21 Z1 D21 Z1 D56~ D54~

3. As a sequence of binary labels: U33 Z4 D21
Z1 D21 Z1 D56 D54→ 0 0 0 0 0 0 1 1

While the first approach preserves the structure of
the data, it forces the models to learn complicated
well-formedness constraints. The second approach
considerably simplifies them since the models can
always first copy the sign and then add a tilde when
necessary. However, copying can still be imperfect,
especially with character-based models. The third
approach completely dispenses with the original
data format, but it makes enforcing the structural
constraints almost trivial. Preliminary experiments
showed that resorting to binary labels gives a strong
boost in performance, and we used this approach
in all reported experiments.

3.2 Baselines

The existence of frequent classifiers and other im-
balances in the sign distribution suggest that we
may dispense with using complicated machine-
learning methods altogether and predict classifiers
using sign statistics. In this study, we use the fol-
lowing approaches as baselines to which we com-
pare our sequence-to-sequence methods:

1. Top-N: we mark N = 5, 10, 20, 30, 50, 100
signs that are most-frequent classifiers in the
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training set as classifiers. N is selected using
the validation set.

2. CLF-only: we mark signs as classifiers if they
only appear as such in the training set.

3. CLF-majority: we mark signs as classifiers
if they appear more frequently in this function
in the training set.

3.3 Experimental setup
Models and training. We contrast the perfor-
mance of sign-frequency-based baselines with
three neural seq2seq models: a character-based 3-
layer encoder-decoder LSTM with a hidden dimen-
sion of 512, a sign-based 3-layer encoder-decoder
LSTM with the same hidden size, and ByT5-small
(Xue et al., 2022). We thus cover both RNN-based
and Transformer-based models. Given relatively
short input lengths, we keep RNNs simple and do
not equip them with attention.

Importantly, the small version of ByT5 is still a
considerably larger model compared to the seq2seq
LSTMs and therefore harder to train on a small
dataset. However, there is a possibility that its
extensive pre-training on data from other languages
gives it enough inductive bias to tackle a novel
language, even with a non-orthodox transcription.

The batch size and learning rate for the models
reported below were selected using grid search on
the development set, and the models were trained
until there was no improvement on the development
set for 5 epochs.12

Evaluation metric. As the evaluation metric, we
use the average number of mistakenly classified
signs in the test-set data points.

More precisely, we split the output of the de-
coder on whitespaces, pad the resulting vector of
labels with zeros if it is too short, and convert any
non-1 elements to zeros as well. This corresponds
to a conservative procedure that, given an input
sequence of signs, outputs a sequence of signs with
marked classifiers and without NAs, which is how
the system is arguably supposed to work in prac-
tice.

4 Results

The performance of the trained models on the de-
velopment and test subsets of the Coffin Texts cor-

12The code and the dataset used for the analy-
ses are available at https://git.sr.ht/~macleginn/
ml4al-iclassifier-paper-code/tree

Model Dev Test Narratives

CLF only 1.23 1.23 1.39
Top-50 CLF 0.46 0.47 1.07
CLF majority 0.27 0.28 0.49
LSTM (char) 0.2 0.21 3.07
LSTM (sign) 0.14 0.11 0.38
ByT5 small 0.08 0.1 0.35

Table 1: Average number of misclassified signs per
data point on the Coffin Texts corpus (dev and test)
and the Late Egyptian narratives (out-of-domain). CLF
only: signs only found as CLFs in the training set are
marked as CLFs. Top-50 CLF: 50 signs that are most
frequently found as CLFs marked as CLFs. CLF ma-
jority: signs that are more frequently found as CLFs
than as regular signs marked as CLFs. LSTM (char):
character-based 3-layer encoder-decoder model with the
hidden dimension of 512. LSTM (sign): sign-based
3-layer encoder-decoder with the hidden dimension of
512.

pus and on the out-of-domain (OOD) data from
the Late Egyptian corpus is reported in Table 1.
Several observations can be made.

First, the Coffin Texts are shown to be quite
homogeneous: the performance drop between the
development and test sets is marginal, with one
model (sign-based seq2seq LSTM) even gaining 3
performance percentage points.

Secondly, the character-based LSTM model does
not perform well: it barely beats the CLF-majority
baseline and suffers performance collapse on the
OOD data. The sign-based LSTM, on the other
hand, is very competitive, even on the OOD test
dataset, where, unlike ByT5, it had to contend with
UNK tokens, mapped to SOS tokens.

Thirdly, ByT5, despite not being trained on any
directly comparable data and being character based,
beats the sign-based seq2seq LSTM model both
on the in-domain and on the out-of-domain test
sets. This suggests that there may be a decent pos-
sibility for knowledge transfer between classifier
languages.

Finally, the CLF-majority baseline, despite its
conceptual simplicity, demonstrates tolerable per-
formance and with some additional tuning may be
used as a lightweight method that can dynamically
respond as new data points are added.

It must be pointed out that the array of possible
CLFs is very wide, given the existence of phonetic
classifiers. Despite the homogeneity of the Coffin
Texts data, the test set contains 19 CLFs not found
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0 1 2 3 4 5 6 7 8
1403 4113 2195 573 112 20 6 0 1

Table 2: Counts of data points with different number of
CLFs in the train and dev subsets of the Coffin Texts
dataset.

in either test or dev subsets; 17 of them are only
used once. Conversely, 156 CLFs were encoun-
tered only once in the combined test and dev set.
The OOD test set, despite being twice smaller than
the in-domain one, also has 13 new CLFs. This
does not preclude the possibility of ever identifying
such classifiers (human expert annotators can do
this by, e.g., analysing the structure of different
lexical items across contexts), but this considerably
raises the demands on the size of the training set.

5 Conclusion

This study is a first step towards creating a trained
system for identification and analysis of classifiers
and other sign functions in ancient complex scripts.
It demonstrates that it is possible to achieve re-
spectable error rates on this task on in-domain data,
with ≈ 0.1 mistakenly identified classifiers per
data point. Given a high number of data points
with several classifiers (cf. Table 2), this translates
to correct analysis of most wordforms. The accu-
racy falls significantly on out-of-domain data, but it
must be noted that our OOD test set is distinguished
from the training set not only by a different genre
(narratives vs. religious texts) but also by at least
400 years of language evolution.

Future work, in addition to improving model
accuracy, could be directed toward providing a
more fine-grained classification of sign functions
by leveraging the distinction between semantic and
grammatical classifiers and phono-repeaters.
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Appendix: A CFG for parsing MdC

In Lark notation:
token : sequence (delimiters sequence)*

delimiters : delimiter+

sequence : left_paren sequence right_paren
| tilde sequence tilde
| sequence delimiters sequence
| classified_sign

left_paren : "("
right_paren : ")"

classified_sign : code suffix?
| tilde code tilde suffix?

suffix : ligature_pos
| damage
| ligature_pos damage
| damage ligature_pos

code : /[a-zA-Z]+[0-9]*[a-zA-Z]*/
| /[0-9]+/
| "#b-..#e"
| "#b"
| "#e"
| "[&"

| "&]"
| "."

damage : /#\d+/

ligature_pos : /\{\{\d+,\d+,\d+\}\}/

delimiter : "-"
| ":"
| "\\"
| "\\\\"
| "\\\\\\\\"
| "_GROUPING_"
| "^"
| "("
| ")"
| "&"
| "{"
| "}"
| ","
| "*"
| "_"

tilde : "~"
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Abstract

In Japanese, “bunsetsu” is the natural mini-
mal phrase of a sentence; it serves as a natu-
ral boundary of a sentence for native speakers
rather than words, and thus grammatical anal-
ysis in Japanese linguistics commonly oper-
ates on the basis of bunsetsu units. By contrast,
because Japanese does not have delimiters be-
tween words, there are two major categories of
word definitions: Short Unit Words (SUWs)
and Long Unit Words (LUWs). SUW dictio-
naries are available, whereas LUW dictionar-
ies are not. Hence, this study focuses on pro-
viding deep learning-based (or LLM-based)
bunsetsu and LUWs parser for the Heian pe-
riod (AD 794-1185) and evaluating its perfor-
mances. We model the parser as a transformer-
based joint sequential labels model that com-
bines the bunsetsu BI tag, LUW BI tag, and
LUW Part-of-Speech (POS) tag for each SUW
token. We trained our models on the corpora
of each period including contemporary and
historical Japanese. The results ranged from
0.976 to 0.996 in the f1 value for both bun-
setsu and LUW reconstruction indicating that
our models achieved comparable performance
with models for a contemporary Japanese cor-
pus. Through statistical analysis and a di-
achronic case study, it was found that the esti-
mation of bunsetsu could be influenced by the
grammaticalization of morphemes.

1 Introduction

In Japanese, “bunsetsu” (base-phrase) is the nat-
ural minimal phrase of a sentence. It serves as a
natural boundary of a sentence for native speak-
ers rather than words; thus grammatical analy-
sis in Japanese linguistics commonly operates on
the basis of bunsetsu units. For example, in Uni-
versal Dependencies (UD; Nivre et al., 2020), a
framework for the consistent annotation of lexi-
cal dependency grammar across different human
languages, some Japanese corpora have been con-

verted from dependency relations between bun-
setsu (Asahara et al., 2018; Omura and Asahara,
2018).

In contrast, because Japanese does not have
delimiters between words, there are many def-
initions of “words” in Japanese. The National
Institute for Japanese Language and Linguistics
defines two hierarchical word tokenization cate-
gories: Short Unit Words (SUWs) and Long Unit
Words (LUWs). SUW is a minimal word to-
ken in Japanese, and is defined by a bottom-up
method that consists of at most two morphological
units. In contrast, LUW is defined by a top-down
method that divides a bunsetsu into two parts, and
it may contain several SUWs. For example, the
LUW “北西大西洋 (Northwest Atlantic)” consists
of two SUWs “北西 (Northwest)” and “大西洋
(Atlantic).”

Dictionaries of SUWs for historical and con-
temporary Japanese are already publicly avail-
able 1, whereas there is no dictionary for LUWs.
Hence, a parser that outputs bunsetsu and LUWs
for historical Japanese is necessary to analyze the
grammatical changes in Japanese.

For existing historical Japanese literature, a suf-
ficient amount of bunsetsu and LUW annotated
text to train the parser is primarily available from
the Heian period (AD 794-1185) and later. There-
fore, this study mainly focuses on the Heian pe-
riod, with the subsequent Kamakura (AD 1185-
1336) and the Muromachi (AD 1336-1573) peri-
ods chosen for comparison.

The existing bunsetsu parser (Kozawa et al.,
2014) for these periods is based on Conditional
Random Field (CRF), which was used to create
the annotated corpus. Thus, this study focuses on
providing a deep learning-based (or LLM-based)
bunsetsu and Long Unit Words (LUW) parser and
evaluating its performances. We model the parser

1https://clrd.ninjal.ac.jp/unidic/
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主な 項⽬ に 関する 最終 案 の 内容 は 以下 の とおり
(The contents of the final draft regarding the main items is as follows)

main items regarding final draft of contents follows as

ADJ NOUN ADP VERB NOUN NOUN ADP NOUN ADP NOUN ADP NOUN

SUW

LUW

ADJ NOUN ADP NOUN ADP NOUN ADP NOUN ADP NOUN

Bunsetsu

B B B I B I B B B B B B

B B I I B I I B I B I B

BI

POS

POS

BI

Subword
Tokenization

Transformer-based Language Model

Pooling

Joint Sequence label prediction

Figure 1: Overview of bunsetsu and Long Unit Words (LUWs) tokenization.

as a joint sequential label that combines the bun-
setsu BI tag, LUW BI tag, and LUW Part-of-
Speech (POS) tags for each SUW token. We used
a Transformer-based Language Model (TLM) to
output an SUW token representation by taking the
appropriate pooling of subword representations
for the last layer of the transformer. We preserved
the SUW boundaries when tokenizing a given sen-
tence into subwords. We trained our models on
the corpora of each period including contemporary
and historical Japanese.

The results indicate that the models trained
on historical Japanese achieve comparable perfor-
mance (0.976-0.996 f1 values) to a model for a
contemporary Japanese corpus. To trace gram-
matical changes in Japanese, we evaluated the
zero-shot transfer performance of the Heian, Ka-
makura, and Muromachi periods for each other.
The models trained with a corpus of the Heian and
Kamakura periods performed well on each other,
whereas the model trained with a corpus of the
Muromachi period did not. These results sup-
port the consensus among Japanese liguists that
the large grammatical changes occurred during the
Muromachi period. Furthermore, the analysis fo-
cusing on sentence-ending particles revealed that
new sentence-ending particle usage has emerged
in the Muromachi, and they are difficult to predict
by the models of the prior periods.2

2Our code is publicly available at https://github.com/
komiya-lab/monaka

2 Related Work

Parser for Historical Japanese Comainu, a
Japanese bunsetsu and LUW parser, was originally
provided for contemporary Japanese (Kozawa
et al., 2014), although it can also be applied to his-
torical Japanese. Comainu takes SUW tokens as
input, which are tokenized by a CRF-based mor-
phological analyzer MeCab3, and then outputs the
bunsetsu and LUW tokens. As mentioned above,
Comainu is a CRF-based parser; thus, we focused
on deep-learning-based methods.

Parser for Contemporary Japanese Recent
Japanese corpora of UD contain bunsetsu and
LUW annotations (Omura et al., 2023); thus, some
parsers trained on these corpora support bunsetsu
segmentation and LUW tokenization. For exam-
ple, the spaCy-based 4 Japanese UD parser5 sup-
ports LUW tokenization (Matsuda et al., 2022).
The parser was trained with a Transformer-
based language model (TLM) through the spaCy
pipeline, and it achieved better performance than
Comainu by adding some rules. GiNZA (Mat-
suda, 2020), which is also a spaCy-based parser,
supports bunsetsu output.

3 Bunsetsu and Long Unit Word

3.1 Short Unit Word
Short Unit Word (SUW) is a token close to the
granularity of typical Japanese word tokens. A

3https://taku910.github.io/mecab/
4https://spacy.io/
5https://github.com/megagonlabs/UD_

Japanese-GSD/releases/tag/r2.9-NE/
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Heian Kamakura Muromachi UD-Japanese-GSD
Number of
Sentence 196,680 332,575 154,080 8,100
SUW 5,084,245 6,519,090 2,077,960 193,654
LUW 4,576,115 6,003,790 1,923,300 150,244
Bunsetsu 1,986,150 2,700,520 881,015 65,966
Average numbers in a sentence
Characters 43.029 27.779 21.511 39.371
SUW 25.850 19.602 13.486 23.908
LUW 23.267 18.052 12.482 18.549
Bunsetsu 10.098 8.120 5.718 8.144

Table 1: Statistics of the Corpus of Historical Japanese (CHJ) (Heian, Kamakura, and Muromachi) and UD-
Japanese-GSD.

UD-Japanese-GSD CHJ
dropout rate 0.5 0.5
dim. POS emb. 256 256
learning rate 2e-05 5e-06
batch size 28 24
num. of epocsh 50 20
gradient clip 5.0 5.0
gradient decay 0.75 0.75
decay step 5000 5000

Table 2: Hyperparamters

dictionary (UniDic) was established for SUWs,
enabling high-performance morphological analy-
sis based on UniDic (Den et al., 2008). As shown
in the overview Figure 1, bunsetsu and LUWs are
also composed of SUWs.

3.2 Bunsetsu (Base-pharase)

A bunsetsu is a (natural) minimal phrase that con-
sists of a Japanese sentence. Generally, a bun-
setsu boundary occurs after a particle or a se-
quence of particles. This is because Japanese func-
tional words typically follow their content words,
on which they depend. In Figure 1, all LUW noun
(NOUN) and adposition (ADP) pairs are com-
posed into bunsetsu segments.

3.3 Long Unit Word

The Long Unit Word (LUW) is a word unit based
on a bunsetsu. Identification of LUW involves
identifying bunsetsu and then dividing each bun-
setsu into independent and attached LUWs. For
example, in Figure 1, bunsetsu “項目に関する” is
divided into an independent LUW “項目 (items)”
and attached LUW “に関する (regarding),” which

is categorized as adposition even if it contains
SUW verb “関する.”

4 Corpus

We used the Corpus of Historical Japanese (CHJ;
NINJAL 2024), which collects documents from
the Nara (AD 710-794) to the Meiji (AD 1868-
1912). Bunsetsu and LUW annotations were per-
formed on sampled sentences sampled from the
CHJ.

We also used UD-Japanese-GSD6, a contempo-
rary Japanese corpus, for the model comparison
and searching for the best model, because there is
a deep-learning-based parser that can output bun-
setsu and LUW labels (Matsuda et al., 2022).

Table 1 shows the statistics of both the CHJ and
UD-Japanese-GSD. There is not a large difference
in the number of sentences in each historical pe-
riod, while that of UD-Japanese-GSD is one-tenth
of them. From the Heian to the Muromachi pe-
riods, the number of characters, SUWs, LUWs,
and bunsetsu per sentence gradually decreases. In
UD-Japanese-GSD, the average numbers of char-
acters and SUWs per sentence are almost the same
as those of the Heian period, although the average
numbers of LUWs and bunsetsu are less than those
of the Heian period.

5 Method

5.1 Bunsetsu and LUW Analyzer Model
Figure 1 shows the architecture of our model.
We used joint BI (beginning and inside) tagging-
based sequential modeling with a Transformer-
based language model (TLM). We combined the

6https://github.com/UniversalDependencies/UD_
Japanese-GSD
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sequential labels of LUW BI, LUW POS, and
Bunsetsu BI. For example, the target label of the
adposition “は” in Figure 1 is “I-B-ADP,” where
the first “I” represents the target SUW located in-
termediate of the bunsetsu, and the second “B-
ADP” represents the beginning of the LUW and
its POS tag. The total number of target labels is
237 for CHJ and 224 for UD-Japanese-GSD.

We first tokenized each SUW token into sub-
words instead of tokenizing a sentence directly, to
avoid breaking the SUW boundary. We then fed
each subword token to the TLM. We added a pool-
ing layer to combine each subword representation
produced by the TLM into SUW-level representa-
tion. We then fed the pooled SUW-level represen-
tations into an additional fully connected layer to
output the likelihood of the labels with a softmax
activation function. The variants of the pooling
layers are as follows:

sum Suppose the j-th subword representation
vi,j corresponds to the i-th SUW token output
from TLM, the sum pooling ui is calculated as
ui =

∑
j vi,j .

max The max pooling layer takes the max func-
tion instead of the summation of the sum pooling.

head The head pooling layer outputs the first
subword representation (vi,1).

We incorporate SUW POS information into the
model in a two-pronged way:

Embedding We concatenated POS embedding
with the pooled output ui. The POS embedding
was determined through the training.

Incontext We appended a text representing the
POS information to each word before subword
tokenization. For example, when the SUW “項
目 (item)” is tokenized into subwords, the input
SUW text representation is “項目 NOUN”7. This
method increases the number of subword tokens
fed into the TLM.

5.2 Evaluation Method
Because our model requires SUW tokens as the in-
put, we feed gold SUWs to the model, throughout
the entire evaluation process.

We used span-based precision, recall, and f1
values to evaluate the segmentation of both bun-
setsu and LUW. We also used labeled span-based

7Though example POS tag is written in English, we add
POS tag name in Japanese with sub-tags; “名詞-普通名詞-一
般”.

Pooling P R F1
Emb. sum .98425 .98264 .98344

max .98446 .98446 .98446
head .98532 .98456 .98494

Incontext sum .98433 .96394 .97403

(a) LUW, span-based

Pooling P R F1
Emb. sum .97487 .97330 .97408

max .97228 .97228 .97228
head .97348 .97279 .97313

Incontext sum .97478 .95377 .96416

(b) LUW, labeled span-based

Pooling P R F1
Emb. sum .97524 .97459 .97492

max .97158 .97350 .97254
head .97505 .97591 .97548

Incontext sum .97408 .95488 .96434

(c) Bunsetsu

Table 3: Precision, recall and f1 values of LUW and
Bunsetsu tokenization on UD-Japanese-GSD.

P R F1
MeCab + Emb. + sum 0.978 0.978 0.978
Matsuda et al. 2022

Comainu 0.976 0.969 0.973
SudachiPy + spaCy 0.987 0.985 0.986

Table 4: Span-based LUW score comparison with the
previous study.

precision, recall, and f1 values for the LUW evalu-
ation. The labeled span-based evaluation is based
on a triple (b, e, l) reconstruction score, where b,
e, and l represent the start, the end, and the POS
labels of the span, respectively.

To evaluate UD-Japanese-GSD, we used the
original train, dev, and test sets as intended. We
also compare the precision, recall, and f1 values
of LUW with the existing parse. Because the prior
work tokenized the SUW tokens by a morpholog-
ical analyzer, we also used predicted SUW tokens
by MeCab, instead of the gold SUW tokens.

To evaluate the CHJ samples, we calculated
these metrics through five times cross-validations
and averaged them to obtain the final scores. We
randomly sampled 5% of the sentences from the
corpus to create the dev and test sets for each CV.
In this procedure, we selected each test set not to
overlap.
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Heian Kamakura Muromachi
P R F1 P R F1 P R F1

Trained on Heian
LUW span .99647 .99622 .99635 .98184 .97890 .98036 .90478 .91416 .90945
LUW labeled .99304 .99279 .99291 .95451 .95165 .95308 .76438 .77231 .76832
Bunsetsu .96445 .97612 .97025 .93377 .94094 .93734 .74055 .80871 .77313
Trained on Kamakura
LUW span .99060 .99147 .99103 .99492 .99452 .99472 .91162 .92650 .91900
LUW labeled .98252 .98338 .98295 .99089 .99049 .99069 .82257 .83600 .82923
Bunsetsu .94324 .96250 .95278 .97385 .97997 .97690 .79196 .85138 .82059
Trained on Muromachi
LUW span .94672 .95750 .95208 .96079 .95897 .95988 .98913 .98996 .98954
LUW labeled .88427 .89435 .88928 .91468 .91295 .91381 .98039 .98122 .98080
Bunsetsu .80727 .86853 .83678 .87293 .89999 .88625 .97810 .97927 .97869

Table 5: Span-based precision, recall, and f1 values on CHJ.

5.3 Hyperparameters

Table 2 lists the hyperparameters. We did not per-
form an intense hyperparameter search, thus there
is a possibility for further performance improve-
ments. Since the number of sentences in CHJ
corpora is more than ten times compared to that
of in UD-Japanese-GSD, we decreased the total
number of epochs and the learning rate when we
trained on the CHJ. We used “cl-tohoku/bert-base-
japanese-whole-word-masking”8 for the TLM.

6 Results and Discussions

6.1 Contemporary Japanese

We first compared the model variants using UD-
Japanese-GSD, as shown in Table 3. The variant
with the Embedding and sum pooling layers gen-
erally performed well. The head pooling layer
performed well for boundary predictions. This
suggests that sum pooling provides a better rep-
resentation of the entire SUW content, while head
pooling adequately preserves the boundary infor-
mation.

The variant with incontext and the sum pooling
achieved the highest precision, but a lower recall
value. This is because the incontext method in-
creases the number of subword tokens and often
exceeds the maximum subword token limit (512)
to represent an entire sentence. Table 4 presents a
span-based LUW score comparison with that in a
previous study (Matsuda et al., 2022). Our model
and that of Comainu used MeCab(Kudo et al.,

8https://huggingface.co/tohoku-nlp/
bert-base-japanese-whole-word-masking

Heian Kamakura Muromachi

LUW span .74684 .78141 .77547
labeled .62969 .68091 .66623

Bunsetsu .62397 .67525 .67230

(a) F1 values of UD-Japanese-Models on samples of each pe-
riod.

Heian Kamakura Muromachi

LUW span .84759 .85769 .88904
labeled .52768 .56726 .57092

Bunsetsu .57181 .65828 .75237

(b) F1 values of the models of each period on UD-Japanese-
GSD.

Table 6: Evaluations of zero-shot transfer between con-
temporary and historical Japanese.

2004) for the SUW tokenization using a UniDic
dictionary. The spaCy model uses SudachiPy 9

for SUW tokenizer instead of MeCab. Our model
showed an improvement compared to Comainu,
while spaCy outperformed the other models. This
is because of the difference in the SUW tokeniz-
ers.

Because SudachiPy only supports contempo-
rary Japanese, we are supposed to use MeCab for
the SUW tokenizer and decided to use Embed-
ding + sum pooling model for historical Japanese
models.

6.2 Historical Japanese

Table 5 lists the overall results for the CHJ. The re-
sults evaluated on samples from the same period as

9https://github.com/WorksApplications/
SudachiPy
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(a) Trained on the Heian period
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(b) Trained on the Muromachi period

Figure 2: POS tags contained in bunsetsu versus error rate and normalized frequency.

during training ranged from 0.976 to 0.996. Thus,
our historical models have comparable or even su-
perior results to those of contemporary Japanese
(UD-Japanese-GSD), as shown in Table 3. This
was because the data size of the CHJ was sig-
nificantly larger than that of UD-Japanese-GSD.
The LUW performances degrades with time, while
the bunsetsu segmentation performances increase.
As time progresses and vocabulary becomes more
complex, it is suggested that styles that are more
conscious of syntactic structures such as bunsetsu,
increase.

Focusing on the transferability between the CHJ
corpora, the model trained on samples of newer
periods and applied to older periods yielded higher
performance than the reverse case. This is because
the vocabulary coverage of the newer samples is
larger than that of the older samples. The Heian
and Kamakura models work well on samples from
each other, however, they do not perform well on
samples from the Muromachi period, particularly
for labeled LUW and bunsetsu evaluations. This
implies drastic grammatical changes occured in
Japanese during the Muromachi period.

6.3 Transferability between Contemporary
and Historical Japanese

Table 6 shows the transferability performances of
contemporary and historical Japanese. In this eval-
uation, the POS embeddings may not work, be-
cause there is a large difference in fine-grained
POS categories between contemporary and histor-
ical Japanese. Thus, we used the highest level of
POS tags for the labeled LUW evaluations. The
model trained on UD-Japanese-GSD performed

similarly in each period (Table 6a). However,
the performances of the models on samples from
each period increased with time, specifically for
the bunsetsu segmentation. This indicates that
the syntactic structure of sentences gradually ap-
proaches modern syntactic structures over time,
while the morphology of LUW is not as high.

6.4 Grammatical Changes during the
Muromachi Period

Figure 2 plots the error rates of bunsetsu contain-
ing the SUW of a particular POS tag. Figure 2
presents the results of the models trained on sam-
ples from the Heian and Muromachi periods. We
also plotted the normalized error frequency corre-
sponding to each POS tag for all errors in the same
period in Figure 2.

The model trained on Heian period data exhib-
ited a particularly higher error rate when it pre-
dicted bunsetsu containing auxiliary verbs or verbs
when evaluated on samples from the Muromachi
period. This tendency was also observed when
samples from the Heian period were evaluated us-
ing the Muromachi model. This indicates that
there may have been significant changes in sen-
tence endings that usually contained both verbs
and auxiliary verbs.

When evaluating samples from the Muromachi
period using the Heian model, the error frequency
relatively increased in bunsetsu-containing nouns
compared with the reverse scenario. This is be-
cause the newer model partially contains old vo-
cabularies.

In both cases, the bunsetsu-containing particles
resulted in a high error rates and frequencies.
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Gold (Heian) and the Kamakura model prediction:
En One doesn’t do such things, there will surely be regrets
Ja さる わざ せ ず は 、 恨むる こと も あり な む など

such things do not regrets there be surely will
LUW V N V A P S V N P V A A P
The Muromachi model prediction:
LUW C V A P S V N P V V A P

Table 7: An example of bunsetsu and LUW analysis. V, N, A, P, S, and C stand for verb, noun, auxiliary verb,
particle, symbol, and conjunction, respectively. Vertical bars represent bunsetsu boundaries.

Evaluated on Heian Muromachi
C R C R

Sentence-ending 95 13.67 1835 43.74
Adverbial 1521 15.41 462 27.26
Case-marking 11577 10.46 7395 11.22
Binding 5216 11.55 2026 10.27
Conjunctive 2966 15.99 1615 12.49

Table 8: Error counts (C) and error rate (R) of bunsetsu
ending with a particle. We show a result of the Muro-
machi model evaluated on data in the Heian period, and
vice versa.

Case Study: Verbs and Auxiliary Verbs Ta-
ble 7 presents a sample sentence from the Heian
period data and the outputs of our models. The
Japanese space-separated tokens in Table 7 are
SUW tokens. In this case, the LUWs and SUWs
are identical. V, N, A, P, S, and C denote verb,
noun, auxiliary verb, particle, symbol, and con-
junction, respectively. Vertical bars represent the
bunsetsu boundaries.

The Heian and the Kamakura models output
perfect LUW and bunsetsu boundaries, respec-
tively. The first word “さる (saru; do such)” is
a verb, however, it is often used as an adversative
conjunction, and thus the Muromachi model mis-
classified it as a conjunction. The second verb “
せ (se; do)” often composes a LUW with an an-
tecedent noun. The first noun “わざ (waza; thing)”
has several senses, such as “ceremony” and “tech-
nique”; thus “わざせ” is misunderstood as “do-
ing a ceremony” or “doing the technique” by the
Muromachi model. This is because a case marker
“を (wo; objective)” is required just after “わざ”
to retain the meaning in the Muromachi period.

Both “さる” and “せ” are common words; thus,
it is conceivable that the grammaticalization of
those words was progressing during the Muro-
machi period. Since the verbs and auxiliary verbs
are often contained in mispredicted bunsetsu in

Figure 2, the grammaticalization of those words
would be a major part of the grammatical changes.

The auxiliary verb “な (na; complete)” is mis-
classified as a verb. This may be because the
expression “なむ” became less common in the
Muromachi period.

Analysis of Particles Table 8 lists the error
counts and error rates of bunsetsu prediction when
the target bunsetsu ends with a particle for all par-
ticle subcategories. During the Heian period, ad-
verbial particles were frequently used. However,
during the Muromachi period, they became less
common. Conversely, while there were a few ex-
amples of sentence-ending particles in the Heian
period, they became commonly used in the Muro-
machi period 10. The error rates of bunsetsu pre-
diction ending with these particles significantly in-
creased when the Heian model was applied to data
from the Muromachi period. This could be be-
cause new usages for these particles emerged dur-
ing the Muromachi period alongside the changes
in verb conjugation forms, which often appear
with the sentence-ending particles.

7 Conclusion

This study focuses on providing a deep learning-
based (or LLM-based) bunsetsu, which is a min-
imal phrase in Japanese, and Long Unit Words
parser for the Heian period (AD 794-1185) to the
Muromachi period (AD 1336-1573) and evaluat-
ing its performances.

We model the parser as a joint sequential label
that combines the bunsetsu BI tag, LUW BI tag,
and LUW POS tags for each SUW token. We used
the transformer-based language model to output an
SUW token representation by taking the appropri-

10The samples of the Muromachi period are mainly
informal conversations, which used sentence-ending par-
ticles frequently. https://clrd.ninjal.ac.jp/chj/
muromachi-en.html
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ately pooling of the subword representations for
the last layer of the transformer. We trained our
models on the corpora of each period, including
contemporary and historical Japanese.

The results ranged from 0.976 to 0.996 in the
f1 value for both bunsetsu and LUW reconstruc-
tions indicating that our models achieved compa-
rable performance to models trained on a contem-
porary Japanese corpus.

Through the statistical analysis and case stud-
ies comparing each period, the bunsetsu estima-
tion can be influenced by the grammaticalization
of morphemes.

In the future, we will expand the applicable pe-
riods. We will build a syntactic parser by annotat-
ing the dependencies between bunsetsu segments.
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Abstract 

The Machine-Actionable Ancient Text 
(MAAT) Corpus is a new resource provid-
ing training and evaluation data for restor-
ing lacunae in ancient Greek, Latin, and 
Coptic texts. Current text restoration sys-
tems require large amounts of data for train-
ing and task-relevant means for evaluation. 
The MAAT Corpus addresses this need by 
converting texts available in EpiDoc XML 
format into a machine-actionable format 
that preserves the most textually salient as-
pects needed for machine learning: the text 
itself, lacunae, and textual restorations. 
Structured test cases are generated from the 
corpus that align with the actual text resto-
ration task performed by papyrologists and 
epigraphist, enabling more realistic evalua-
tion than the synthetic tasks used previ-
ously. The initial 1.0 beta release contains 
approximately 134,000 text editions, 
178,000 text blocks, and 750,000 individ-
ual restorations, with Greek and Latin pre-
dominating. This corpus aims to facilitate 
the development of computational methods 
to assist scholars in accurately restoring an-
cient texts. 

1 Introduction 

For the papyrologist and epigraphist, a fundamen-
tal task is the creation of an accurate transcription 
of the text under consideration. Often the physical 
medium supporting the text has undergone decay, 
leaving gaps, or “lacunae,” in the text. Filling these 
gaps is a painstaking task. Kleve and Fonnes 
(1981) first recognized the potential of computer 
science for assisting with text restorations of this 
type, specifically by leveraging string-searching 
algorithms. Advances in computational approaches 
to text analysis, especially deep learning and large 
language models, may be able to aid scholars in the 
task of textual restoration.  Developing such 

systems typically requires large amounts of data, 
both for training, and ideally for providing task-
relevant means for evaluation. 

Here we introduce the 1.0 beta version of the 
Machine-Actionable Ancient Text Corpus (MAAT 
Corpus), which provides training and evaluation 
data for the development of machine learning mod-
els that aid in the restoration of ancient Greek, 
Latin, and Coptic texts.  

2  Current text restoration corpora 

There are several different corpora used in creating 
systems for text restoration of ancient text. Two ex-
isting systems, Pythia (Assael et al., 2019) and its 
successor Ithaca (Assael et al., 2022) use Greek in-
scription data from the Packard Humanities Insti-
tute (Packard Humanities Institute, 2023) that have 
been converted to a modified Leiden Convention 
(Wilcken, 1932) format. Papavassiliou et al. 2020 
created a corpus of Mycenaean Linear B texts for 
the restoration of Linear B tablets. Background 
large-language models have been trained on cor-
pora as well, such as Latin BERT (Bamman & 
Burns, 2020) and AristoBERTo (Myerston, 2022), 
GreBerta (Riemenschneider & Frank, 2023).  

A new machine-actionable corpus for ancient text restoration 
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Figure 1: Leiden Transcription of P.Flor. 3 324, from 
Aegyptus.89.240, 2011.  
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3 Corpora of interest  

Papyrologists and epigraphists have generally 
agreed upon using a specialized schema developed 
originally for epigraphy, EpiDoc (Elliott et al., 
2006), based on the TEI format (TEI, 1994). The 
largest corpus of epigraphy stored in EpiDoc for-
mat is maintained by the Epigraphic Database Hei-
delberg (Epigraphic Database Heidelberg, 1993), 
which focuses primarily on Latin inscriptions from 
the Roman Empire. The largest corpus of papyro-
logical texts is Papyri.info, a collaboration among 
several institutions that hosts papyrological data in 
Greek, Latin, Coptic, and Arabic (Papyri.Info, 
2007). 

The EpiDoc format provides extensive capabili-
ties for describing metadata for inscriptions and pa-
pyri. It also has an XML-structured format as an 
alternative to the Leiden Conventions. Texts are de-
scribed in ab blocks (originally standing for “anon-
ymous block”) and provide a richer description lan-
guage for text editions than the Leiden Conven-
tions. Because the Leiden Conventions format is 
more compact, we will use this format for exam-
ples printed in this paper. 

4 Features of MAAT corpus  

Unfortunately, for many machine learning and 
large language models, the structure of the ab 

blocks is too rich, since it provides internal struc-
ture for annotations, stylistic information and so on 
(the Leiden Conventions also communicate some 
of these features). With respect to building systems 
for text restoration, a simpler system is required. As 
Assael et al. 2022 note, these corpora need to be 
“machine-actionable.” For this reason, they ought 
to be easy to feed into machine learning systems for 
learning and for evaluation. 

Figure 1 shows the text from a typical edition 
(P.Flor 3 324) from Papyri.info, a contract for the 
sale of property (Aegyptus.89.240, 2011). For this 
paper, three things should be noted. First, text res-
torations are provided in square brackets. For ex-
ample, in line three, the brackets in the phrase [ἢ 
ὅ]σων̣ indicate that “ἢ ὅ” has been supplied by the 
papyrologist and that the letter forms are not visible 
on the papyrus itself. Second, missing text that the 
editor has not restored is indicated by dots. One dot 
corresponds to one missing letter; therefore, the 
number of dots signifies the approximate number 
of letters known to be missing. The marking “-ca.?”  
or “- - -” indicates a gap of unknown extent. Third, 
alternate restorations of the text are sometimes 
given in the apparatus criticus. These alternate 
readings represent viable textual conjectures, 
which were not ultimately chosen by the editor as 
their preferred reading. While digital editions print 
alternative restorations less commonly than print 
editions, they are sometimes encoded in the XML 

{ 
 "corpus_id": "EDH", 
 "file_id": "HD056774", 
 "block_index": 1, 
 "id": "EDH/HD056774/1", 
 "title": "Epitaph from Municipium Claudium Virunum, bei – S. Andrä/Lavanttal 

(Noricum)", 
 "material": "gesteine", 
 "language": "la", 
 "training_text": " Ursuius vius sibi \nfecit et <gap/>\niurae uxo[ri]", 
 "test_cases": [ 
   { 
     "case_index": 1, 
     "id": "EDH/HD056774/1/1", 
     "test_case": " Ursuius vius sibi \nfecit et <gap />\niurae uxo[..]", 
     "alternatives": [ 
       "ri" 
     ] 
   } 
 ] 

} 

Figure 2: Example JSON representation of a single ab block with one test case; \n reflects a lb element. 
 

57



 

 
 

data.  In our sample text from Figure 1, two appa-
ratus notes appear for line two of the transcription.  

To make a corpus machine-actionable for learn-
ing, especially for large language models, we 
stripped away all but the most textually salient as-
pects of the text, using Unicode UTF-8 encoding. 
Our corpus includes the preserved text, as well as 
unclear letters and restorations. Although typo-
graphical conventions such as casing, interlinear 
word space, punctuation, accents, breathing marks, 
and other diacritics are typically not found on the 
source material, such typography is retained. Line 
breaks (indicated by the lb element in EpiDoc 
XML) are also preserved. Unclear text, indicated 
by Leiden Conventions with a sublinear dot, is 
treated no differently than preserved text; text that 
has been restored by an editor is bracketed. For ex-
ample, the text “καὶ ε[ἰ]σ̣ό̣δ̣ου̣” converted to “καὶ 
ε[ἰ]σόδου.” Occasionally (as in Figure 1) there are 
alternative readings of a restored text, but since al-
ternative readings are difficult to process, the first 
primary text restoration is chosen. Abbreviations, 
especially prevalent in Latin inscriptions, are not 
expanded. 

Gaps in the text that have not been restored by 
an editor must also be indicated. There are, essen-
tially, three types of gaps: gaps of known length, 
gaps of approximately known length, and gaps of 
unknown length. Gaps of known length are con-
verted to a dot for each missing letter. Similarly, 
gaps of approximate length are treated as if the gap 
length is known. The EpiDoc XML tag <gap/> is 
used for gaps of unknown length. Gaps are some-
times indicated within a restored text, and such 
gaps are moved outside. For example, the text “τὸν 
πωλοῦντ̣[α  -ca.?- παρὰ]” is converted to “τὸν 
πωλοῦντ[α]<gap/>[παρὰ]”. 

In the end, all texts in the MAAT corpus are writ-
ten in a simplified format for easier use by machine 
learning models. Texts from the ab blocks in Epi-
Doc XML format are converted to a light, Leiden-
like format, but with a bare minimum of annotative 
markings: text and gaps of known and unknown 
length, with restored text in brackets. Figure 2 pro-
vides our data for a 1st-2nd century CE epitaph from 
the Roman province Noricum (EDH HD056774, 
2014). 

Typically, in machine learning tasks, a portion of 
a training corpus is set aside for evaluation. In the 
most successful system to date for inscription res-
toration, Ithaca (Assael et al., 2022), one to ten 
characters are artificially hidden during the testing 
phase, and the machine (or parallel human evalua-
tor) is tasked with restoring these artificial lacunae. 
A similar text-masking evaluation method is used 
in Papavassileiou et al., 2023 for Mycenaean Lin-
ear B tablets, although they also ask the model to 
perform text restoration of some  real lacunae. 

The large number of restorations created by pap-
yrologists and epigraphists found in the base cor-
pora of Greek, Latin, and Coptic texts provide a 
rich opportunity to create evaluation data that are 
aligned with the actual text restoration task. Alt-
hough it may be useful to train a system using arti-
ficial lacunae, it is more valuable to evaluate on the 
text restorations done by working papyrologists 
and epigraphists. These practitioners do not work 
with random lacunae, since lacunae in situ are not 
random: they follow a logarithmic distribution in 
length (see Figure 3), and tend to occur in certain 
locations. The immediate textual context of real la-
cunae also tends to be much deteriorated and un-
certain, in comparison to the sites of artificial lacu-
nae. 

 

Figure 3: Distribution of gap lengths of text restora-
tions in the MAAT Corpus, logarithmic scale 
 

Corpus Edi-
tions 

Blocks Resto-
rations 

DCLP (Digital Corpus of Liter-
ary Papyri in EpiDoc XML) 

1,938 11,581 129,806 

DDbDP (Duke Databank of 
Documentary Papyri) 

59,693 85,626 507,985 

EDH (Epigraphic Database Hei-
delberg) 

72,353 80,753 113,944 

Totals 133,984 177,960 751,735 
Table 1: Counts of Editions, Blocks, and Restorations 
from the corpora represented in the Machine-Actiona-
ble Ancient Text Corpus 
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To that end, we can create test cases by using the 
actual lacunae and text restorations that are present 
in papyrological and epigraphic sources and use the 
(retained) training data with the restored text for 
evaluation. Because there are possible alternative 
readings for a restored gap, though, it is better to 
have a structured test case that retains those read-
ings. This will slightly complicate the evaluation 
metrics. Rather than using, for example, character 
error count for a single restoration, we need to use 
the minimum character error count for a (possibly 
singleton) set of alternatives. Similarly, calculating 
the top-n rate will need to consider the presence of 
the proposed restoration in the set of alternatives. 

Thus, a single test case needs a little more struc-
ture, containing at least the text with a gap to be 
filled, plus its alternatives. For example, for the text 
“ὠνουμένη Ἰσα[....]” the two alternative readings 
“ροῦς” and “ριον” are required. Note that, because 
letter forms of different types take up different 
amounts of space on the material substrate (and 
therefore calculations of the number of missing let-
ters are approximate), alternatives might, in fact, 
have different character lengths. In these cases, the 
mask to be restored will comprise the mode of al-
ternative lengths. 

5 Format and distribution of data 

Data in the MAAT Corpus is structured as a set of 
JavaScript object notation (JSON) records (Bray, 
2014), one record for each ab block. Each record 
contains metadata about the block (an id field, 
source corpus, source file id, block index within the 
file, material, and language). It also has the training 
text, as described above. For each restored text, a 
test case is created, also containing an id, test case 
index within the text, the test case itself, and the set 
of alternatives. For statistical purposes, the number 
of alternatives, the number, mode, maximum, and 
minimum lengths of the alternatives are also de-
scribed. 

Currently, there are approximately 134,000 edi-
tions processed in the MAAT Corpus, representing 
approximately 178,000 ab blocks and 750,000 in-
dividual text restorations.  

There is a small representation of Coptic texts in 
the MAAT Corpus (around 1% of the total, mostly 
papyri). Latin editions outnumber Greek editions 
(54% and 45%, respectively). Papyrological texts 
tend to be longer than inscriptions; papyrological 
texts tend to be written in Greek and inscriptions in 
Latin, so the number of Greek blocks is greater than 

the number of Latin ones (53% and 46%, respec-
tively). The number of text restorations in Greek 
greatly outnumber Latin ones (83% and 16%, re-
spectively). 

The gap lengths of restored text created by pap-
yrologists and epigraphists found in the MAAT 
Corpus vary widely, and follow an unsurprising 
logarithmic or Zipfian distribution. Gaps of length 
1 (that is, one character) account for 30% of all 
gaps, and gaps of length 4 or less account for 67%. 
Gaps of length 10 or less account for 87% of all 
gaps. Figure 3 shows the distribution.  

6 Data availability and next steps 

We are now releasing the Machine-Actionable An-
cient Text Corpus in a beta state at https://ze-
nodo.org/records/12518435 (Fitzgerald & Barney, 
2024). The corpus is not meant to compete with 
current systems, such as Papyri.info and EDH, 
whose use cases are different. Instead, we hope that 
the MAAT Corpus will aid the creation of software 
systems that can help working papyrologists and 
epigraphists accurately and efficiently hypothesize 
text restorations in new editions of current and 
newly recovered texts and inscriptions. Code for 
creating the corpus can be found at 
https://github.com/WMU-Herculaneum-Pro-
ject/maat. 

We welcome the collaboration of other scholars 
and institutions in the service of adding additional 
data to the MAAT corpus, including data from 
other ancient languages. Our specific interest is in 
text restoration of Greek papyrological texts, but 
we would like to expand this to Arabic and other 
non-western texts as well. Given the similarities of 
the text restoration task and its evaluation method-
ology among texts of different language traditions, 
such expansions promise to be fruitful. 

In the future, we also intend to create a pathway 
by which any data made available in DSL-based 
formats (Del Grosso et al., 2023; Williams et al., 
2015) can be converted for inclusion in future ver-
sions of the corpus. 

7 Conclusion 

This paper introduces and announces the publica-
tion of the MAAT Corpus, which provides an easily 
accessible, versioned corpus of machine-actionable 
ancient texts that can be used in machine learning. 
It also makes available evaluation data, via its test 
cases, that closely track the task of text restoration 
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as done by working papyrologists and epigraphists. 
The MAAT Corpus currently includes approxi-
mately 60 Mb of ancient text, making it the largest 
corpus available for evaluating text restoration 
tasks. It is also the only dataset that uses actual la-
cunae and text restorations as test cases for evalua-
tion. 
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Abstract

Ancient manuscripts are frequently damaged,
containing gaps in the text known as lacunae.
In this paper, we present a bidirectional RNN
model for character prediction of Coptic char-
acters in manuscript lacunae. Our best model
performs with 72% accuracy on single charac-
ter reconstruction, but falls to 37% when recon-
structing lacunae of various lengths. While
not suitable for definitive manuscript recon-
struction, we argue that our RNN model can
help scholars rank the likelihood of textual re-
constructions. As evidence, we use our RNN
model to rank reconstructions in two early Cop-
tic manuscripts. Our investigation shows that
neural models can augment traditional methods
of textual restoration, providing scholars with
an additional tool to assess lacunae in Coptic
manuscripts.

1 Introduction

Ancient manuscripts are an invaluable resource for
linguists and historians, offering insights into the
cultures and languages of the ancient world. Un-
fortunately, these manuscripts are often damaged,
with sections of text missing, known as lacunae. In
recent years, neural models have made significant
advances in various areas of linguistic research.
Nevertheless, attempts to apply neural methods to
manuscript reconstruction have been limited, and
none have specifically targeted Coptic (see Section
2.2).

In this paper, we explore the potential for neural
language models to be utilized in the reconstruction
of Coptic manuscripts. Leveraging a bidirectional
RNN language model trained for Coptic character
prediction, we explore how the model can be in-
tegrated into the workflow of scholars attempting
textual reconstruction. We consider the ability of
the model to predict the missing characters of la-
cunae directly, as well as to provide rankings for
the likelihood of reconstruction candidates already

under consideration. We show that scholars can
use judgments from neural models as additional
quantitative evidence, in conjunction with more
traditional qualitative methods, to work towards
manuscript reconstruction.

2 Background and Related Work

2.1 Coptic

Coptic belongs to the Afro-Asiatic language family
and is the latest stage of the Egyptian language, the
longest continuously attested language on Earth.
Coptic utilizes the 24 glyphs of the Greek alpha-
bet and adds additional Demotic (Egyptian) glyphs
(a minimum of 6 depending on dialect) to repre-
sent sounds not found in Greek. In late antiquity,
more than a dozen regional dialects were spoken
and written (Layton, 2011). Owing to these di-
alect variations, the use of superlinear strokes and
other diacritical marks, and irregular orthography
of Greek loan words, Coptic provides a highly com-
plex dataset.

Coptic manuscripts preserve the diverse textual
tradition of late-antique and medieval Egypt. In-
scribed on papyrus and other perishable media,
many Coptic manuscripts contain small gaps or
holes (lacunae), which often cannot be restored
on the basis of other extant manuscripts. Scholars
use qualitative methods to restore lacunae, chiefly
through study of the manuscript’s context and
(con)textual parallels. Occasionally, appeal is made
to traditional canons of textual criticism, but here
too the scholar’s own judgment guides the restora-
tion (Wasserman, 2013). Initial testing has shown
that human methods of textual restoration have a
high error rate at both the word level and the char-
acter level (Sommerschield et al., 2023, 711–712).

2.2 Manuscript Reconstruction

Following early attempts using n-gram models to
approach the Indus Valley script (Rao et al., 2009),
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most previous work on reconstructing lacunae in
manuscripts, as well as in epigraphic data, has fo-
cused on Greek and Latin (Novokhatko and Maier,
2022; Matsumoto, 2022). Early projects included
eAQUA (Schubert, 2011), which pioneered propos-
ing automatic reconstructions of lacunae based on
statistical methods from larger datasets (in the con-
text of ancient languages). More recently, stud-
ies using neural methods for the reconstruction of
Greek (Assael et al., 2019) and Latin (Brunello
et al., 2023) have appeared, with papers in the last
three years specifically proposing to leverage trans-
former based language model architectures for both
born-digital and (OCRed) handwritten inputs in a
range of languages (Vogler et al., 2022).

We are not aware of previous papers applying
language models to the reconstruction of Coptic
texts, though a recent Web page prepared by the
CoptOT project1 provides a ‘Manuscript Specula-
tion Tool’ which helps in laying out missing letters
on predefined digitized manuscript spaces. How-
ever, in the tool’s operating scenario, a base text to
be laid out is known (e.g. a chapter of the Bible),
and the question is how many letters of each verse
might fit into each missing line or part of a line.
To our knowledge, this paper is the first attempt to
leverage language modeling for lacuna reconstruc-
tion in Coptic.

2.3 Masked Language Models
In 2019, Devlin et al. introduced BERT, a foun-
dational masked language model (MLM), where
random tokens in the input were masked, and the
model was trained to predict the masked token
based on the context. For 15% of the tokens in train-
ing, each one is replaced with either [MASK], a ran-
dom token, or the original token, without change.
Masking mimics gaps and teaches the model to
fill in missing segments of strings, which makes
the MLM approach highly applicable to our lacuna
reconstruction task.

In the same paper, Devlin et al. found that a
model with only left to right context performed
worse than a bidirectional masked language model,
which is able to use context from before and after
the masked token. They advocate for a bidirec-
tional model that can use left and right context at
every layer over concatenating a left to right model
and a right to left model, as proposed earlier in
ELMo (Peters et al., 2018). As we are framing

1https://coptot.manuscriptroom.com/
manuscript-speculation-tool

our lacuna reconstruction task as a prediction of
masked characters, parallel to the masked token
prediction done by models such as BERT, this find-
ing regarding bidirectionality leads us to adopt a
bidirectional strategy for our model as well.

As the masked language model strategy was pop-
ularized with transformer based models such as
BERT, there is not much existing work regarding
the implementation of masked language models
with an RNN-based architecture. However, in sce-
narios with relatively small quantities of data and
limited long distance dependencies, it can still be
preferable to use an RNN-based architecture over
a transformer-based architecture (Mishra, 2021).
Considering that we have almost 1.22 million to-
kens of Coptic data, and we are looking to fill in
character gaps at the sentence level, we consider
our Coptic lacuna prediction task to be one such
scenario, and we opt to use an RNN based architec-
ture in our model.

While we have done some preliminary prototyp-
ing with transformer based architectures, such as
ELECTRA (Clark et al., 2020), so far our exper-
iments with RNN-based architectures have made
the most progress. As such, we present those find-
ing here. However, we still believe it would be
worthwhile to return to the exploration of various
transformer architectures in future work.

3 Data

For training and testing the model, we leverage
the data from the Coptic SCRIPTORIUM Corpora
(Schroeder and Zeldes, 2016). This project com-
piles text from a variety of manuscript sources and
totals almost 1.22 million tokens of Sahidic Coptic.
The Coptic SCRIPTORIUM project is an ongoing
effort to create an open online database and tool set
for digital research in Coptic. This effort includes
creating normalized, machine readable versions
of Coptic manuscripts with a variety of linguistic
annotations created using the online, version con-
trolled GitDox annotation tools (Zhang and Zeldes,
2017). The full data set is publicly available on
GitHub2 in various machine readable formats, and
the corpora are searchable via an online query in-
terface.3

The digitized manuscripts have a normalized
version (with regard to spelling, etc.) of the text

2https://github.com/CopticScriptorium/corpora
3https://annis.copticscriptorium.org/annis/

scriptorium
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as well as a version representing the original text.
We leverage the original text version, annotated as
orig_group, as we are creating a system to aid
scholars who want a reconstruction of the origi-
nal text of the manuscripts. Within the digitized
original text, damaged and missing sections of the
manuscripts are represented with brackets and dots,
which can be used to convey different levels of dam-
age and manual reconstruction in the manuscript.
This information is represented in the Leiden+4

documentation format: missing sections are de-
noted with brackets with dots inside, where the
number of dots is equal to the estimated number of
characters missing in the line of text (so [...] would
indicate 3 missing characters); brackets with letters
inside indicate a damaged section which was re-
constructed by a scholar; and characters with some
damage that have been manually reconstructed by
a scholar can appear outside of brackets with a
dot beneath them. Immediately below are example
sentences from the data showing these formatting
styles:

Blank Lacunae:
afbeebe[...]af;ice[...]

Reconstructed Lacunae:
auwafylhl[af]tnnoouf

auwmnp.etc/ouortep.etconcmpnute

The completely blank sections are the target use
case for our system, and we use the manually recon-
structed lacunae as the gold standard test data for
our model. As this gold standard test data is a lim-
ited proportion of the corpora, we also mask char-
acters from the sentences of the corpora without
lacunae to create training data and additional test
data for our model. The Coptic SCRIPTORIUM
Corpora have a total of 36,252 complete sentences
(no lacunae) with over 2.8 million characters. The
lengths of these sentences range from 5 characters
to 1067 characters, with an average sentence length
of 80 characters. We created a train/dev/test data
partition from these complete sentences, with the
proportions 90:5:5, giving us a training data set of
32,676 sentences, a dev data set of 1,815 sentences,
and a test set of 1,816 sentences.

In addition to the complete sentences, there is a
portion of sentences in the Coptic SCRIPTORIUM
Corpora which contain lacunae. There are a total
of 792 sentences, with approximately 60,000 char-
acters, which contain only those lacunae that have

4https://papyri.info/docs/leiden_plus

Figure 1: Model architecture and preprocessing

been manually reconstructed by Coptic language
scholars. This set of sentences is our gold stan-
dard test data. The average sentence length in this
set is 75 characters. The total number of missing
characters in this test set is 3,594, with an average
gap length of ~2 characters. There are also 780
sentences, with approximately 52,000 characters,
that contain at least one empty lacuna which has
not been reconstructed by a scholar. This set of
sentences is the target data that we are building our
system to fill in, so there is no gold standard to eval-
uate against directly. The average sentence length
in this set is 68 characters, and the total number of
missing characters is 3,658, with an average gap
length of ~3 characters. The similarities in average
sentence length and average lacuna gap length be-
tween these two data sets suggest that the model
should be able to perform well on the target data
set if it performs well on the test data set.

4 Model Architecture

For our lacuna prediction model, we implement a
character based bidirectional RNN model, trained
with a character-level masked language modeling
task. We start with a character-level vocabulary and
embedding layer, generated with SentencePiece
(Kudo and Richardson, 2018). The vocabulary is
134 characters, including some control symbols,
the mask token, the lower-cased Coptic alphabet,
and some punctuation. Our final model has an
embedding size of 200, hidden size of 300, and
projection size of 150. For the body of the model,
we then create a four layer bidirectional LSTM, an
AdamW optimizer, and learning rate of 0.0003 (se-
lected as the optimal parameters after conducting
an extensive hyperparameter search). The LSTM

63

https://papyri.info/docs/leiden_plus


architecture was chosen over other architectures,
such as GRU, for its ability to capture long distance
dependencies, which provide relevant context for
lacuna reconstruction. We use categorical cross
entropy for our loss criterion, evaluating only on
predictions for masked characters. A diagram of
our model architecture and preprocessing is shown
in Figure 1.

The resulting model is fairly small model, and
training on the full training data set can be ac-
complished in a few hours, with or without GPU
hardware. As such, with our model code and the
publicly available data from the Coptic SCRIPTO-
RIUM project, models at the performance level
presented in this paper will be accessible to in-
terested parties. The code for our model is avail-
able on GitHub5, and instructions for recreating
the data partition, training the model, and run-
ning/interacting with the model are included in the
README.

We explore several different masking strategies
in the training of our model. For the first masking
strategy, which we refer to as "random masking",
we used the BERT masking strategy of randomly
masking 15% of the characters. When creating the
index vector for the sentence, each character has
a 15% chance of being masked. If the character is
masked, there are three possible masking options.
80% of the time, the character is replaced with a
special mask token, while 10% of the time it is
replaced with a random character, and finally, 10%
of the time, the character is not replaced.

We also implement a masking strategy called
"smart masking", which mimics the distribution of
lacunae in the gold standard test set (described in
Section 3). In the reconstructed lacuna test set, the
sentences range from having one gap to as many
as twenty. Over 60% of the sentences have just
one gap, 35% have two to nine gaps, and just 5%
have more than nine gaps. To mimic the variable
number of gaps, we randomly incorporate one to
five gaps per sentence. Of the 1,470 gaps in the
782 sentences, almost half of them are just one
character long. The length of each gap has 48%
of being just one character long, 22% chance of
being two characters long, 12% chance of being 3
characters long, and for the final 18% of the time,
the gap length is randomly generated to be between
four and thirty-four characters.

5https://github.com/lauren-lizzy-levine/
coptic_char_generator.git

In addition to the two different masking strate-
gies for distribution, we also had two strategies re-
lating to the re-masking frequency of the data. The
first strategy is to mask one time, when loading the
data initially, which we call "once masking". The
second option is to re-mask the training data at each
epoch, which we call "dynamic masking". Between
the two masking distribution strategies and these
two re-masking frequency strategies, we ended
up with four different model types: random-once,
random-dynamic, smart-once, and smart-dynamic.
For training, we auto-generated masked dev data
that matched the distribution masking strategy (ran-
dom or smart) of the model being trained.

5 Evaluation

For evaluation, we had three different test sets.
From the test partition made from the complete
sentences that had no lacunae, we created two test
sets: one with random masking and one with smart
masking. Our final test data set was the gold stan-
dard data of manually reconstructed lacunae de-
scribed in Section 3. We had our models predict
on the data in all three test sets and scored their
performance with a simple accuracy metric (num-
ber of masked characters correctly predicted / total
number of masked characters in data set).

5.1 Baselines
We applied three rudimentary heuristic baselines
to our three test data sets, the results of which are
shown in the bottom half of Table 1. The first
baseline selected a random character from the Sen-
tencePiece character model vocabulary for each
character prediction. The second baseline always
predicted the most common letter in the data set
(mode character), "e". The third baseline is a sim-
ple tri-gram language model. Results for "Test
Random" and "Test Smart" are the performance of
the baselines on the auto-generated random masked
test data and smart masked test data respectively,
while "Test Reconstructed Lacunae" is the perfor-
mance on the gold standard data of manually re-
constructed lacunae.

5.2 RNN Evaluation
We started our model training by doing hyper-
parameter searches on four different model con-
figurations, using combinations of the masking
strategies for masking distribution and re-masking
frequency (random-once model, random-dynamic
model, smart-once model, smart-dynamic model).
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Test Random Test Smart Test Reconstructed Lacunae
Models
Random-Once 0.703 0.323 0.336
Random-Dynamic 0.722 0.338 0.369
Smart-Once 0.610 0.366 0.334
Smart-Dynamic 0.603 0.359 0.319
Baselines
Tri-gram 0.259 0.134 0.155
Mode Character 0.126 0.124 0.121
Random 0.008 0.007 0.007

Table 1: Model and baseline accuracy results on the three test sets

After we selected the best performing hyperparam-
eters for each masking configuration with regard to
accuracy scoring on the correspondingly masked
dev data, we ran the four best performing models
(one for each masking configuration) on the three
test data sets outlined at the top of this section. The
results from these runs are shown in the top section
of Table 1.

The random test set has the highest scores on
average, while the reconstructed lacuna test set has
the lowest scores on average, indicating that the re-
constructed lacuna test set is the more difficult sce-
nario. However, it is also the most realistic scenario
out of all three test sets, so performance on this test
set should be considered the most significant. We
observe that all of the tested model configurations
outperform the baselines, showing a substantial in-
crease in performance on all test sets. Out of the
four different masking strategies we explored, we
found that the model utilizing the random-dynamic
masking strategy had the highest performance on
the random test set and the reconstructed lacuna
test set, while the smart-once masking strategy had
the highest performance on the smart test set.

It is somewhat surprising that the model utilizing
the random strategy outperforms the model using
the smart strategy on the reconstructed lacuna set,
considering that the smart masking strategy was
developed to better reflect the conditions in which
actual lacunae occur. This result is likely because
the reconstructed lacuna data set is composed of
only sentences with fully reconstructed lacunae,
and thus is biased towards containing shorter la-
cunae than we might otherwise expect. As such,
in Figure 2 we consider the accuracy of each of
our models with respect to the length (in charac-
ters) of the lacuna being reconstructed, and we
observe that overall performance decreases as la-

Figure 2: Accuracy of the various model configurations
and tri-gram baseline relative to lacuna length in charac-
ters

cuna length increases. We also see that while the
random-dynamic model has the best performance
for lacunae of length 1-2, the smart-once model ac-
tually has better performance for lacunae of length
6+. For this reason, we recommend the smart-once
model configuration for cases where the lacuna is
more than a few characters. For our use case stud-
ies in Section 6, we consider outputs from both the
random-dynamic model and the smart-once model.

5.3 Relative Ranking
As we saw in the previous section evaluating the
quality of our RNN model outputs, performance
on the more realistic reconstructed lacuna test set
was relatively low, peaking at 37% accuracy. As
such, we cannot consider the model by itself to be a
definitive means of manuscript reconstruction. The
model is better thought of as an additional tool in
the toolbox of scholars attempting to reconstruct
manuscript lacunae. To this end, we propose to
use the RNN model as a means of ranking the
likelihood of potential candidates for the lacuna
reconstruction.

If a scholar has several candidates for a lacuna

65



from various qualitative methods of reconstruction,
in addition to getting the model to predict what
it considers to be the most likely reconstruction,
we can also extract the probabilities associated
with each of the scholar’s potential reconstructions.
Once we have these probabilities, we can sort them
in descending order to get a ranking of which po-
tential reconstructions the model considers to be
more likely.6 This will give a sense of which op-
tion is statistically the most likely considering the
distribution of characters present in the training
data of the model. While still not definitive, this
ranking gives scholars another piece of evidence to
consider when putting forward an argument for a
particular reconstruction.

6 Case Studies

In this section, we demonstrate how our RNN
model may be integrated into the workflow of a
Coptic scholar working on manuscript reconstruc-
tion by looking at use cases in two early Coptic
manuscripts. We use the model to predict recon-
structions, or to produce relative rankings of po-
tential reconstructions under consideration. We
explore how this additional information may con-
tribute to a scholar’s considerations during the re-
construction process.

6.1 Isaiah 37:24
The manuscript P.Duk. inv. 282 comprises four
contiguous fragments from a parchment codex and
is currently held at Duke University, pictured in
Figure 3 (Wagner, 2022). The manuscript contains
portions of Isaiah chapters 36–38 in the Sahidic
dialect. The manuscript’s date is unknown. Some
lacunae in the manuscript can be restored on the ba-
sis of the only other Sahidic manuscript containing
these chapters, Morgan Library M 568. For exam-
ple, at Isaiah 36:16 there are two small lacunae in
the Duke manuscript: a[..]nt. e[.]

p p
ncemoou. We

can restore the original reading with confidence
from the Morgan manuscript: a[uw] nt. e[t]

p p
nce

moou (“and you will drink water”).
Other lacunae in the Duke manuscript can-

not be restored entirely on the basis of the
Morgan manuscript. For example, at Isaiah
37:24 there are four lacunae: akno[.......]eic:
a[.....];e/m

p p
p.[.......]ar.ma3[.......]ra9ep

6One limitation of this is that in order for the probabilities
to be compatible, the input context for the model must be the
same. This means that all candidates being compared must be
of the same character length.

Figure 3: P.Duk. inv. 282 fr. B verso

[....]. The Morgan manuscript helps restore
the passage excluding the penultimate lacuna:
akno[qneq p;o]eic a[k;ooc] ;e/m

p p
p.[aya9

nn/]ar.ma 3[..... e/]ra9 ep[;ice] (“You
have reproached the Lord. You said, ‘with the
multitude of my chariots [...] to the height.”).
Where the Duke manuscript has 3[, the Morgan
manuscript contains the past tense conjugation base
verb: a9ale e/ra9 ep;ice (“I have gone up to
the height.”). Still, as in the Morgan manuscript,
the Duke manuscript must contain a verb in the
lacuna followed by e/rai “up”. Thus the letter
before the lacuna can only be the personal sub-
ject prefix 3 - “I”, which must be followed by a
present or future tense verb. Restricting our search
to verbs that are both contextually appropriate and
appear in high frequency in the database of the
Coptic SCRIPTORIUM project, we propose three
reconstructions. The models rank each reconstruc-
tion as a sequence of consecutive characters, in-
cluding uninterrupted context following and espe-
cially before the gap: aknoqneqp;oeicak;oo-
c;e/mpayainn/arma3[.....]e/rai. The
three reconstructions from the random-dynamic
model are as follows, in order of probability (the
log probability7 of each sequence is included in
parenthesis):

7Log probabilities are used to avoid potential numerical
underflow that can result from the multiplication of standard
probabilities when calculating the likelihood of a sequence.
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1. mooye (-11.16) → 3[mooye] e/rai
“I am walking up”

2. nabwk (-12.27) → 3[nabwk] e/rai
“I will go up”

3. naale (-12.60) → 3[naale] e/rai
“I will rise up”

The first result, which is in the durative present
tense, is less appealing than the other results when
considering the other ancient language witnesses to
this passage in Isaiah. To the best of our knowledge,
all witnesses approximate the Morgan manuscript’s
past tense, except for two witnesses that give the
future: the Syriac Peshitta (’n’ ’sq, ‘I will go up”)
and some manuscripts of Jerome’s Commentary
on Isaiah (11.7: ego ascendam, “I will go up”).
These two witnesses increase the probability of the
second and third result, both of which are in the fu-
ture tense (signaled by the auxiliary na). Although
ranked lower by the model, some scholars would
surely prefer the third result over the second, since,
as we saw above, the same verb (ale) appears
in this passage in the Morgan manuscript. On the
other hand, beyond its higher ranking, bwk appears
far more often in Old Testament books and espe-
cially in Isaiah: in the Morgan manuscript bwk is
used five times in ch. 37 alone, while ale appears
only here at the point of disagreement with the
Duke manuscript. Thus the most plausible restora-
tion of the passage: a[k;ooc] ;e/m

p p
p.[aya9

nn/]arma 3[nabwk e/]ra9 ep;ice “You have
reproached the Lord. You said, ‘with the multitude
of my chariots I will go up to the height.”

6.2 The Nag Hammadi Library – Gospel of
Philip

The Gospel of Philip (GPhilip) is the third composi-
tion included in codex II of the Nag Hammadi (NH)
library, a collection of thirteen papyrus codices
containing a diverse range of ancient Christian
texts. Unlike the example discussed in Section
6.1, there are no other surviving manuscript ver-
sions of (GPhilip). The codex sustained moderate
damage to the top and bottom margins and most of
its leaves contain peninsula-shaped lacunae8.

The restoration of Saying 55 (63.30-64.5) has
been a particular point of scholarly intrigue.
While smaller gaps in the Saying can be restored

8Archival photo of the manuscript: https:
//ccdl.claremont.edu/digital/collection/nha/
id/2962/rec/182

with some confidence, scholars have proposed
various readings for one lacuna of 5-6 letters,
which contains the object of the verb acpaze or
“kiss.” The passage, which describes Jesus kissing
Mary Magdalene, reads: nef1acpaze mmoc a-
tec...n/a/ ncop, "He used to kiss her on the
..... many times" (63.35-36).

This case presents an especially challenging re-
construction due to the size of the lacuna. As dis-
cussed above (Section 5.2), the accuracy of the
model degrades as the size of the lacuna increases.
We consider outputs from both the smart-once
model, which provides the highest accuracy rates
for longer lacunae, and the random-dynamic model,
which provides the highest accuracy rates for short
lacunae.

Since the model is trained on Sahidic texts, the
Saying needs to follow the orthographic conven-
tions of the Sahidic dialect. Thus we changed the
prenominal preposition a- ‘towards, on’ to e- (in
the Sahidic dialect a is the past tense marker),
resulting in the input text: acpaze �mmoc e-
tec[.....] �n/a/ �ncop “kissed her on her ... on
many occasions”.

The four letters before the lacuna includes an in-
direct object construction headed with preposition
a followed by a feminine possessive article tec-
“hers.” Due to this syntactic environment, recon-
structions are limited to feminine nouns, likely a
body part in this case. To fill the lacuna, we have
the models produce their predictions for either a 5
character gap or a 6 character gap:

Smart-Once:

5 spaces: /huen
6 spaces: /hueee

Random-Dynamic:

5 spaces: /ooee
6 spaces: /ooeee

Unfortunately, none of the reconstructions produce
an attested Coptic lemma.

However, the models can still be leveraged to
compare editorial suggestions and assign greater
or lesser probability of editorial reconstructions. In
this case, editors Bentley Layton and Hans-Martin
Schenke propose several options for a 5 letter femi-
nine body part: Schenke proposes “mouth” (ta-
pro). Layton offers multiple readings: “mouth”
(paiqe or tapro), “cheek” (ouoqe), “foot” (qa-
lo;), and "forehead"(te/ne) as possible candi-
dates (Schenke, 1997; Layton and Isenberg, 1989).
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The editors present these candidates in an un-
ordered manner, not singling out any one as being
particularly more likely than the others.

Table 2 compares the output of smart-once
model and the random-dynamic model, and con-
trasts the confidence of each model’s top two pre-
dictions (again, not attested Coptic lemmas) with
the list of attested feminine nouns supplied by the
editors. As the table details, the lemma (ouoqe),
“cheek” is favored by the smart-once model and
the lemma (te/ne), “forehead” is preferred by
the random-dynamic model. Both of these results
differ from Schenke’s reconstruction of tapro,
“mouth” (Schenke, 1997).

Table 2 also compares the effect of normalization
on the model reconstructions. As discussed above
in Section 3, the Coptic SCRIPTORIUM data uti-
lized to train the model includes both normalized
and original (un-normalized) data. We hypothe-
sized that the normalization of dialect differences
to conform to Sahidic orthography would greatly
impact the results. However, in the end, the normal-
ization had little impact and only slightly modified
the ranking orders and confidence as Table 2 docu-
ments. Note the slightly different ranking of paiqe
and tapro, two different words meaning "mouth,"
by the smart-once model.

These models provide quantitative data about
reconstructions and offers a relative ranking of the
alternatives proposed by text editors. In cases like
the one discussed above in GPhilip where editors
have provided multiple possible reconstructions to
fill the lacuna and comparison to other manuscripts
is not possible, this is an especially valuable tool
in assisting readers in deciding which reading best
fits within their comprehension of the passage.

7 Conclusion

In this paper, we presented a bidirectional RNN
architecture to reconstruct lacunae in Coptic
manuscripts. When training our masked language
model for character prediction, we explored dif-
ferent masking strategies for masking distribution
(random and smart) and re-masking frequency.
We evaluated our models against both artificially
masked data and scholar-reconstructed lacunae.
We found that the performance of our models de-
clined as the length of the lacunae being recon-
structed increased, peaking at above 70% for sin-
gle character reconstruction and below 40% for
lacunae of length 6+ characters. And while the

model trained with random masking performed
with higher accuracy for single character recon-
struction, the model trained with smart masking
performed with higher accuracy on the reconstruc-
tion of longer lacunae, which is more similar to
the real world use case, as it is more difficult for
scholars to qualitatively reconstruct longer lacunae.

Using the judgments from these models, we ex-
plored two use cases of lacuna reconstruction from
ancient Coptic manuscripts. We considered not
only the direct predictions from the models, but
also the likelihood ranking of reconstruction can-
didates already under consideration from the past
proposals of various scholars of Coptic. Despite
the low accuracy of the models on reconstructing
lacunae of more than a few characters, we see that
the rankings can still be leveraged to provide ad-
ditional quantitative evidence alongside traditional
qualitative methods. This initial application of neu-
ral methods to Coptic manuscript reconstruction
shows the potential for integrating the judgments of
models with the existing qualitative methods used
by scholars working on manuscript reconstruction.

Limitations

As previously discussed in Section 5, the quality
of our RNN models is relatively low, limiting the
utility of its judgments. As we primarily consider
a single model architecture in this investigation, in
future work it would be beneficial to explore archi-
tectures beyond RNNs and training tasks beyond
masked language modeling. In addition to differ-
ent architectures, we believe there is much room
for exploring different inputs for model training,
including lexicographic information (what possible
words might be, for example using a digital Coptic
dictionary such as Feder et al. 2018), or linguistic
annotations, such as morphosyntactic information
provided by Coptic treebank data and correspond-
ing parsers (Zeldes and Abrams, 2018; Zeldes and
Schroeder, 2016).

Additionally, our current model does not account
for the diacritics used in Coptic writing, and it is
trained on a sentence-wise basis without incorpo-
rating document-level information, such as the sur-
rounding sentences, or details about the page lay-
out. Future work may benefit from incorporating
diacritics and additional context into the training
paradigm for the model. Future work should also
include the ability to give a ranking of lacuna can-
didates of different lengths, which is not currently
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Smart-Once Norm Smart-Once Orig Random-Dynamic Norm Random-Dynamic Orig
/huen NA

(-6.89)
/huen NA

(-7.69)
/ooee NA

(-7.88)
/ooee NA

(-8.05)
/ooee NA

(-8.08)
/ooee NA

(-7.99)
/huen NA

(-11.51)
/huen NA

(-11.90)
ouoqe cheek

(-16.11)
ouoqe cheek

(-15.64)
te/ne forehead

(-12.95)
te/ne forehead

(-13.08)
te/ne forehead

(-16.53)
te/ne forehead

(-16.42)
ouoqe cheek

(-13.16)
ouoqe cheek

(-14.39)
qalo; foot

(-17.35)
qalo; foot

(-17.42)
tapro mouth

(-14.66)
tapro mouth

(-14.79)
paiqe mouth

(-18.74)
tapro mouth

(-18.64)
paiqe mouth

(-16.12)
paiqe mouth

(-15.36)
tapro mouth

(-19.02)
paiqe mouth

(-18.71)
qalo; foot

(-16.94)
qalo; foot

(-16.48)

Table 2: Rankings of lacuna candidates for the GPhilip use case (English translation in italics and log probabilities
in parenthesis)

possible because model inputs must be of the same
sequence length for their probabilities to be com-
parable.
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Abstract

This work explores the potential of Trans-

former models focusing on the translation of

ancient Egyptian hieroglyphs. We present a

novel Hieroglyphic Transformer model, built

upon the powerful M2M-100 multilingual

translation framework and trained on a dataset

we customised from the Thesaurus Linguae

Aegyptiae database. Our experiments demon-

strate promising results, with the model achiev-

ing significant accuracy in translating hiero-

glyphic into both German and English. This

work holds significant implications for Egyp-

tology, potentially accelerating the transla-

tion process and unlocking new research ap-

proaches. Source code at https://github.
com/mattia-decao/hiero-transformer.

1 Introduction

Egyptology, with its rich trove of texts and inscrip-

tions, has recently begun to embrace the poten-

tial of computational linguistics. However, a no-

table scarcity of publications on the topic is evident,

with existing efforts primarily focused on optical

recognition of hieroglyphs rather than their trans-

lation (Sommerschield et al., 2023). Notably, the

development of these resources primarily originates

from computer science disciplines and highlights

the need for deeper integration with Egyptology

field.

We bridge this gap by proposing an Egyptology-

driven automatic translation approach, merging

*Mattia De Cao made the most significant contributions
to this study, including developing the study conception and
its elaboration, designing the experiments, mining/analyzing
the data and writing the manuscript. Nicola De Cao supported
the implementation of computational models, created the pa-
per layout, and revised the manuscript. Angelo Colonna re-
viewed the human evaluation process and ancient Egyptian
background material. Alessandro Lenci contributed to widen-
ing the automatic evaluation phase and provided technical
review.

Egyptology with Natural Language Processing

(NLP) tools. Our Hieroglyphic Transformer trans-

lates ancient Egyptian using an adaptation of M2M-

100 multilingual model (Fan et al., 2021) to address

hieroglyphic writing’s challenges. We construct

a meticulously curated dataset derived from the

renowned database project Thesaurus Linguae Ae-

gyptiae (TLA; Richter and Werning, 2023),1 ensur-

ing its compatibility with the model through rigor-

ous data filtering, cleaning and structuring.

Experiments yield promising results, with the

Hieroglyphic Transformer achieving reasonable ac-

curacy in translating hieroglyphs into both German

and English. Furthermore, we evaluate the model’s

performance on texts of varying grammatical com-

plexity and literary styles, highlighting its capacity

to handle diverse linguistic structures.

This work holds significant implications for

Egyptology. NLP-powered approaches like ours

can potentially accelerate and improve translation

accuracy and depth. Furthermore, it paves the way

for applying Deep Learning models to decipher and

translate other ancient languages.

The main contributions of our work can be sum-

marised as follows:

1. presenting a new dataset extracted from the

TLA database;

2. adapting a pretrained model to translate Hiero-

glyphic;

3. showing an automatic and a human evaluation

of the model’s performance.

2 Background

2.1 Machine Translation for Ancient

Languages

The linguistic diversity of the world encompasses

over 7,000 distinct languages. Of these, En-

glish, Chinese, Spanish, Japanese, and other Eu-

1https://thesaurus-linguae-aegyptiae.de
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ropean languages represent the most extensive cor-

pora (Summer Institute of Linguistics, 2024; UN-

ESCO, 2024), while languages spoken primarily

in Asia and Africa often lack comparable data re-

sources (even thousands of times less). These “low-

resource” languages attract research from both hu-

manistic and engineering perspectives, with studies

offering novel ideas (Aharoni et al., 2019) or explor-

ing understudied niches (Ahia and Ogueji, 2020).

Ancient languages are also part of this wave, but

most of their data remains non-machine-readable

(i.e., images of objects with text on them or scans

of parchment or papyri). Thus most of the re-

cent attention from the machine learning commu-

nity was directed to Optical Character Recognition

(OCR). Major case of these studies include: (i)

Kuzushiji, a Japanese cursive script of 8th-18th

centuries (Lamb et al., 2020); (ii) Mayan hiero-

glyphs (Roman-Rangel et al., 2009); (iii) ancient

Chinese character manuscripts (Sun et al., 2022);

(iv) Sumerian cuneiform (Ahmed H. et al., 2020);

and (v) Akkadian cuneiform (Gutherz et al., 2023).

While ancient Egyptian has a decent amount of

data available, a substantial portion remains non-

machine-readable, primarily in physical books and

articles. Even though these sources are accessi-

ble online, they necessitate significant digitization

efforts for effective utilization in language process-

ing.2

Fortunately, the Egyptian language benefits from

the numerous publications digitized and translated

into German and English collected in the monu-

mental project Thesaurus Linguae Aegyptiae (TLA;

Richter and Werning, 2023) which we use as the

source of data in this work.

2.2 Related Work

Themajority of recent research in Egyptology using

AI focuses primarily on OCR. Examples of such

studies include those conducted by Franken and

Van Gemert (2013); Hossam et al. (2018); Barucci

et al. (2021); Moustafa et al. (2022); Barucci et al.

(2023).

Apart from OCR, to the best of our knowledge,

only a single publication addresses the task of trans-

lation. This work was undertaken by Wiesenbach

and Riezler (2019), who sought to address the

2A significant portion of Egyptological articles and books
available online have been digitized as images or in a format
that hinders machine data extraction. Thus, the first step in
making these data usable would be transcribing them into a
machine-readable format.

scarcity of resources by incorporating transliter-

ation and POS tags into the training process. This

scarcity of publications highlights the need for fur-

ther research in the application of AI to Egyptology.

2.3 Ancient Egyptian Language

The ancient Egyptian language is a member of the

so-called Afro-Asiatic language family and one of

the longest continuously attested, having been used

from approximately 3200 BCE to 1100 CE (Allen,

2014). Its historical development is usually artic-

ulated in six phases: Archaic Egyptian, Old Egyp-

tian, Middle Egyptian, Late Egyptian, Demotic, and

Coptic.

Notably, Middle Egyptian (2100-1600 BC) re-

tained its status as a “classical” language for the

production of historical and religious texts even

after its decline as a spoken language, persisting

until the end of ancient Egyptian history. For this

reason, we opted for Middle Egyptian as the refer-

ence language to train the models in our study (to

which we added Old Egyptian as later explained in

Section 3.2).

Throughout its existence, ancient Egyptian em-

ployed four primary writing systems: hieroglyphic,

hieratic, demotic, and coptic. Hieroglyphic con-

sists of pictorial signs mostly carved in stone and

used in monumental contexts. Hieratic, was a sim-

plified and cursive form of hieroglyphic, used for

writing on ostraca and papyri. Demotic, a late cur-

sive script developed from hieratic, was exclusively

employed during the language phase of the same

name. Coptic writing was derived from the Greek

alphabet, with seven additional letters from De-

motic to express sounds absent in Greek , and was

solely used to write Coptic.

In this work, we used hieroglyphic (or hieratic

transcribed to hieroglyphic) because demotic and

coptic scripts were used to write language phases

other than the ones we chose to employ, i.e., Old

andMiddle Egyptian. Therefore wewill not expand

on the other writing systems. For more information

about the ancient Egyptian language system, we

redirect the reader to Loprieno (1995).

2.4 Hieroglyphs

Ahieroglyph can be classified into three distinct cat-

egories: ideogram, phonogram, and determinative

(Allen, 2014).

Ideograms indicate the word that they depict. In

this way, for example, the hieroglyphr repre-
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Sign Gardiner code Transliteration Description

a G1 Ꜣ Egyptian vulture

f I9 f Horned viper

U V24 wd� Cord wound on stick

v S12 nbw Bead collar

Table 1: Example of hieroglyphs and their Gardiner code, Transliteration and Description.

senting a mouth writes the word “mouth”, while

the hieroglyphj representing a house’s top view

is actually the word “house”.

Phonograms represent the phonetic structure

(sounds) of the individual word depicted according

to the rebus principle. For example the signr is

used to express the phoneme r.

Determinatives are used to indicate the semantic

sphere of the preceding words, and so these signs

are not meant to be pronounced. For example, the

hieroglyphj , used as determinative, refers to

words belonging in the semantic sphere of enclosed

spaces and is not read.

2.5 Gardiner Code

The Gardiner code, also called Gardiner’s Sign

List, represents the standard system used to iden-

tify hieroglyphic signs through alphanumeric codes.

It was compiled by the English egyptologist and

pholologist Alan H. Gardiner as an integral part of

his Egyptian grammar (Gardiner, 1957), which re-

mains a standard reference in the Egyptian language

study.

The Gardiner code consists of main categories

identified by a capital letter of the English alphabet

and a descriptive label (e.g., “A. Human beings,

male”). Within these sections, each hieroglyph is

assigned a progressive number (e.g.,𓀀 = A1,𓀁
= A2). For subsequent additions of sign variants,

later than the original Gardiner’s list itself, a lower-

case letter was added after the number (e.g., in the

section “N. Sky, earth, water”, we find𓈖 = N35,

𓈗 = N35a).

2.6 Transliteration

In Egyptology, transliteration is the process of con-

verting hieroglyphs into alphabetical symbols to

represent the consonants of ancient Egyptian. It

is a convention that makes it possible to organize

hieroglyphic signs into dictionaries. The transliter-

ation can also be pronounced, but it should always

be remembered that only consonants were written

(not vowels), and in many cases, the phonetic value

of the signs is unknown. We can only infer the pro-

nunciation based on the Coptic forms as well as on

the spelling of Egyptian words in other ancient lan-

guages, and vice versa (Allen, 2014). Phonograms

and most ideograms can be transliterated into one,

two, or three consonants, depending on the number

of sounds they represent. For instance, the sign𓅓
represents one consonant m, the sign𓄟 represents

ms, and the sign𓋞 represents nbw. See Table 1

for examples of hieroglyphs with their Gardiner

code, transliteration, and description.

3 Dataset Construction

This work is based on a snapshot collected from

the database that also feeds the Thesaurus Linguae

Aegyptiae (TLA; Richter and Werning, 2023)3 and

last updated in 2018.

3.1 Thesaurus Linguae Aegyptiae

The TLA project aims “to document and annotate

the Ancient Egyptian language through its entire

lifespan” (Richter and Werning, 2023). This ob-

jective manifests in two primary digital outcomes:

the text corpus (corpus dataset) and the lemma list

(vocabulary dataset).

The corpus encompasses a vast collection of

hieroglyphic texts, transliterations, and transla-

tions. All entries come enriched with metadata

such as production dates, script types and connec-

tions among data points. Notably, each corpusword

is “lemmatized”, i.e. linked to a specific entry in

the lemma list. This allows researchers to access

broader information spectrum per data point, includ-

ing part-of-speech (POS) tags, for each element.

Whilemost texts haveGerman translations, some

include English or both, promoting cross-language

accessibility and the project’s global reach.

3Project Strukturen und Transformationen des
Wortschatzes der ägyptischen Sprache: Text- und Wis-
senskultur im Alten Ägypten (Structure and Transformation
in the Vocabulary of the Egyptian Language: Texts and
Knowledge in the Culture of Ancient Egypt).
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3.2 Data Extraction

One of the major contributions of this study consists

in the construction of a new dataset from the data

collected by the TLA project. We chose Middle

Egyptian as the reference language, as explained in

section 2.3. However, limited data availability led

us to include Old Egyptian (2700-2100 BC) due to

its close linguistic relationship with Middle Egyp-

tian, enriching the language representation. Our

dataset includes specific elements for each data

point. Unfortunately, not all elements were consis-

tently present, preventing a complete construction.

In Figure 1 we outline the structure of a data point

in our dataset. Taking into account all the diverse

elements, these include:

• Gardiner code: A unique identifier for each

hieroglyph.

• Transliteration: The alphabetical represen-

tation of hieroglyphs.

• Translation: Either German or English.

• Lemma IDs: Numerical identifiers for lem-

mas (basic forms of words).

• Token inflection codes: Information about

the inflectional forms of the lemmas morpho-

logically marked in the script, such as gender

and number of nouns.

• Datapoint ID: A unique identifier for the dat-

apoint (each one is a text4 containing several

sentences).

• Sentence ID: A unique identifier for a single

sentence in a text.

• Part-of-speech tags: Labels used to classify

the lexical category of lemmas (e.g., noun,

verb, adjective).

• Metadata: Unique IDs for data such as lan-

guage phase, and historical period.

During the mining process, preliminary cleans-

ing was performed to eliminate inconsistencies

and irregularities, including: (i) tabs, (ii) carriage

returns, (iii) line separators, (iv) excessive white

space, and (v) multiple hyphens within hieroglyphs.

The total number of data points extracted was

103,906. We then focused on selecting Old and

Middle Egyptian data points delving into language

phase metadata. In cases where this information

was absent but reliably inferable, we examined his-

4From Richter and Werning (2023): “A ‘text’ [...] in the
TLA is an entity marked as an independent textual unit by
clearly marked text delimiters (beginning and end). An indi-
vidual text may either consist of writing only, or it may be a
multimodal composition of writing and illustrations.”

{
"source": <Source as Gardiner code>,
"transliteration": <Transliteration >,
"target": <Translation >,
"lKey": <Lemma IDs>,
"wordClass": <Part-of-speech tags>,
"flexCode": <Inflection codes >,
"metadata": {

"target_lang": <Target language >,
"id_datapoint": <Datapoint ID>,
"id_sentence": <Sentence ID>,
"language": <Language phase >,
"date": <Historical period >,
"script": <Script type>,
"id_tree": <Assigned ID"

}
}

Figure 1: Structure of a datapoint.

torical metadata to reconstruct it.5 The total number

of datapoints after filtering was 61,605.

3.3 Data Cleaning

A crucial aspect of our work was the development

of comprehensive cleansing operations. Initially,

we meticulously hand-cleaned several texts, en-

abling the identification of recurring patterns and

the formulation of generalizable cleansing proce-

dures. This iterative process resulted in the cre-

ation of over 280 distinct cleaning operations (e.g.,

elimination of brackets ‘(’, ‘)’ and their contents

in German translation, elimination of brackets ‘[’

and ‘]’ while maintaining the content in the translit-

eration, elimination of ‘!’ from the hieroglyphs).

In particular, lacunae were treated differently if

they were reconstructed or not. If reconstruction

was present, we used it; if not, we discarded the

datapoint element (e.g. transliteration) as the train-

ing process could be altered. Reconstructions were

always used.

An example of a datapoint cleansing process

is presented in Table 2. A comprehensive com-

pendium of the cleansing operations, including de-

tailed descriptions, treatment methods, and under-

lying motivations, is provided in the GitHub repos-

itory for our project. 6

3.4 Validation and Test sets

We randomly selected a validation and a test

set comprising 100 distinct sources each. Some

5In Appendix A we reported datapoint counts relating to
both language and historical phases.

6https://github.com/mattia-decao/
hiero-transformer
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Gardiner code Translation Transliteration

Raw

Aa1-:D21 M17-S29 [?-*”�”-

*I10-*”?”-*?]-:[?-*”�”-*D46-

*”?”-*?] N25-:X1-*Z1 V30

and then every foreign land [says]: ḫr js ⸮⸢d�d⸣? ḫꜢs,t nb(.t)

Cleaned

Aa1 D21 M17 S29 I10 D46 N25

X1 Z1 V30

and then every foreign land says: ḫr js d�d ḫꜢs,t nb.t

Table 2: Example of raw and cleaned datapoint (ID Sentence: IBUBd91QAVzxpUWnqYiwnwLVrbI. ID tree:

aaew_corpus_sawlit_687_107).

sources had multiple translations (i.e., both in En-

glish and German) thus we included both versions

in the set to (i) increase its size, and (ii) avoid con-

tamination in the training set. Eventually, the vali-

dation set had 125 parallel data points, 25 of which

possessed English translation, 75 German trans-

lation, and 25 containing only transliteration and

hieroglyphic. Similarly, the test set had 150 data

points, comprising 50 that possessed English trans-

lation, 50 German translation, and 50 containing

only transliteration and hieroglyphic.

4 Experimental Design

4.1 Data Pairing

Prior to feeding the data into the model, it was

essential to organize the data points into source-

target pairs. These represent the input-output pair-

ings employed during training (e.g. Hieroglyphs to

German). We used two sources as inputs: egy, i.e.

Gardiner code of ancient Egyptian hieroglyphs; and

τ , i.e., transliteration. Both of them were paired

with five targets as outputs: (i) de, i.e. German; (ii)

en, i.e. English; (iii) τ ; (iv) lKey, i.e. lemma IDs;
and (v) wordClass, i.e. part-of-speech tags. We

reported in Table 3 the list of all different data pairs

employed, together with the count of data points in

which each pair is present.

4.2 Training

We did not aim to develop novel machine learn-

ing techniques or models but rather to harness the

capabilities of an existing one and apply it to the

Ancient Egyptian language. We then chose to use

the finetune M2M-100 model (Fan et al., 2021) for

its versatility and effectiveness in multilingual ma-

chine translation. M2M-100, originally designed

for translating between 100 modern languages, in-

cluding English and German, was a compelling

choice due to its open-source availability and rela-

Source Target Datapoints

egy de 16,075

egy en 2,105

egy τ 20,155

egy lKey 21,036

egy wordClass 20,045

τ de 45,760

τ en 2,174

τ lKey 56,240

τ wordClass 54,039

Table 3: Data pairs and their distribution among the dat-

apoints.

tive novelty. By utilizing this pre-trainedmodel, we

effectively employed transfer learning, a powerful

technique that leverages knowledge acquired from

a related task to improve performance on a new

task. For each experiment, we trained for between

6 and 20 epochs.7

We checked validation loss for model selection

every 10% per epoch and employed early stopping

if no improvement happened for the past 15-20 eval-

uations.8 We used the Adam optimizer (Kingma

and Ba, 2015) with batch size 16 and a fixed learn-

ing rate 3e-5.

We experimented with different mixtures of

source and target (e.g., some included/ excluded

the use of transliteration or POS tags). Overall, 11

models were trained,9 and we reported a selection

7Initial experiments used 20 epochs, subsequently reduced
due to: (i) no improvements after the third epoch, (ii) in-
creased data pairs significantly extended execution time, and
(iii) the 12-hour execution limit of the experimentation plat-
form (Google Colab) rendered maintaining the same epochs
impractical.

8This value was dynamically adjusted for each experiment
due to variations in the amount of data-pairs.

9Due to cost constraints, we conducted most of our ex-
periments with one NVIDIA T4 Tensor Core (16 GB), and
the last model (ALL) that mixes all the data available, with
one NVIDIA A100-SXM4 Tensor Core (40 GB). For ALL we
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SacreBLEU RougeL

Source egy τ egy τ

Target de en τ de en de en τ de en

DE (raw) 4.0 - - - - 18.4 - - - -

DE 54.4 - - - - 62.8 - - - -

DE+EN 52.6 28.4 - - - 63.1 33.5 - - -

DE+ENB 61.5 36.4 - - - 67.7 38.1 - - -

DE+τ 43.2 - 57.7 54.0 - 55.4 - 78.9 61.8 -

DE+τ+ENB 47.6 20.1 58.4 47.1 30.3 58.8 27.9 80.2 63.1 37.5

ALL 54.4 31.6 59.9 56.2 35.3 64.5 35.5 82.1 62.7 38.1

Table 4: Results of automatic evaluation (SacreBLEU, RougeL). Bold results are best and underlined are second

best.

in Table 4. The comprehensive table of all experi-

ment metrics results can be found in Tables 8 and 9

in Appendix E.

In the training phase, we gave single data (e.g.,

transliteration or German translation) to the model

by assigning them a special language id token (used

as prefix in both the source and target text) already

present within the model itself. These were en for

English, de for German, ar (Arab) for ancient Egyp-

tian, th (Thai) for POS tags, lo (Lao) for translitera-

tion and my (Burmese) for lemma IDs. Except for

German, English, and ancient Egyptian10, the codes

were arbitrarily selected from Fan et al. (2021) in

order to avoid their duplication in the list where

data quantities derived from other languages and

language groups are presented (Figure 3 of the same

article).

Backtranslation Due to the scarcity of data

points containing English translations, we em-

ployed the M2M-100 model to translate our entire

dataset from German to English and incorporated

these translations into training.

4.3 Metrics

To assess the performance of the conducted ex-

periments, we employed two automated evaluation

metrics: SacreBLEU (Post, 2018) and RougeL (Lin,

2004).

Automatic metrics do not always correlate with

human judgment, so we also employed a human

evaluation. For that, we applied the model to a se-

ries of examples, 16 in total,11 exhibiting a variety

increased the batch size to 180.
10We hypothesized that using Arab for ancient Egyptian

could potentially enhancemodel performance due to its similar-
ities in sentence construction, i.e. verb-subject-object. Further
research is required to corroborate this hypothesis.

11Of these, 15 were composed of one to three sentences, 1

of grammatical constructions (listed in Appendix

B), subsequently comparing the model’s output

against our own translations or those derived from

established publications (Bresciani, 1969; Allen,

2015; Grapow, 1952; Gardiner, 1969; Vogelsang,

1913). During the comparison, we rigorously ex-

amined all the distinct data pairs generated by the

model, evaluating both the quantity and quality of

its correct and erroneous outputs.

5 Results

5.1 Data Cleaning

To assess the effectiveness of our cleaning oper-

ations, we conducted and compared two experi-

ments: (i) DE (raw), with raw data; (ii) DE, after the

cleaning. Cleaning the data increased the resulting

SacreBLEU from 4.0 to 54.4 and RougeL from 18.4

to 62.8. As evident, results have demonstrated that

our cleaning procedure significantly improves the

model’s training performance.

5.2 Main Results

As evident in Table 4, for translation and translit-

eration the ALL model (i.e., trained with all data)

exhibits the best or second-best performance. This

suggests that the model successfully incorporates

signals from different forms (e.g., POS tags and

transliteration).

Unsurprisingly, mixing back-translation data

(DE+EN v.s. DE+ENB) significantly increases per-

formance in English (SacreBLEU 52 → 61 and

RougeL 33 → 38). However, it surprisingly in-

creases performance in German as well.

Notably, the DE+ENB model shows the highest

accuracy from hieroglyphic to German and English

translation. Moreover, both DE+τ and DE+τ+ENB

of eleven.
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do not perform better than DE and DE+ENB in Ger-

man and English. These results suggest that adding

transliteration during training may have some detri-

mental effects on accuracy. We reported a compre-

hensive list of results in Tables 8 and 9 in Appendix

E.

5.3 N-fold cross validation analysis

We did a 10-fold cross-validation to DE and ALL ex-

periments.12 The M2M-100 model was subjected

to the same conditions as the previous DE and ALL

experiments, allowing for a direct comparison of

their performance under different evaluation meth-

ods.

The results for the DE experiment exhibited a sig-

nificant discrepancy, while the performance met-

rics for ALL were more consistent with the previous

findings. This suggests that the validation and test

datasets employed previously may have introduced

a selection bias, which was mitigated by the larger

and more diverse data submitted to training ALL.

We reported the full results of n-fold cross valida-

tion analysis in Table 10 of Appendix E.

This finding highlights the importance of em-

ploying rigorous evaluation strategies to ensure

reliable machine learning models, particularly in

the context of low-resource languages like ancient

Egyptian.

5.4 Human Evaluation

Following the training phase, the model ALL was

identified as the most promising candidate due to

its superior performance across all data pairs. In

this phase, its effectiveness was assessed through a

comprehensive trial procedure.

We divided the evaluation process into three dis-

tinct steps: (i) Grammatical Complexity, (ii) Liter-

ary Passages, and (iii) Stress Test. For every step

our evaluation proceeded to analyze all the data

pairs (detailed in Section 4.1).

For each Human Evaluation step, the model was

submitted to two separate testing waves. In the

first wave, the input was presented to the model as

Gardiner code, while in the second wave, it was

presented as transliteration.

We assessed the sentences based on specific cri-

teria, including: (i) Morphological accuracy; (ii)

Grammatical correctness; (iii) Verb-subject agree-

ment in number and gender; (iv) Adequacy of ter-

minology; (v) Semantic coherence.

12This technique was not applied to every experiments due
to resource limitations.

This two-pronged approach aimed to assess the

model’s performance under both input representa-

tions, i.e. hieroglyphic and transliteration. Through

this trial procedure, the effectiveness of the ALL

model was thoroughly evaluated, demonstrating

its potential for a quite accurate and versatile writ-

ing of hieroglyphic into transliteration, and both

inputs into German, English, Lemma IDs and POS

tags. We reported the list of grammatical forms

submitted as input in Appendix B.

5.4.1 Grammatical Complexity

We presented exercises of increasing grammatical

complexity to the model to assess its ability to han-

dle diverse grammatical structures. All the exer-

cises were extracted fromGardiner’s grammar (Gar-

diner, 1957). An excerpt is reported in Table 5. The

model exhibits no significant difficulties, but rather,

it is more sensitive to variations in sentence con-

struction due to low-resource training.

5.4.2 Literary Passages

Passages taken from literary works, encompassing

a wide range of grammatical elements and one to

three clauses in length, were fed into the model to

examine its performance in natural language con-

texts. The works selected were the “Story of Sin-

uhe”, the “Tale of the Shipwrecked Sailor”, the

“Admonitions of Ipuwer”, and ”The Eloquent Peas-

ant”. We observed that the model performs slightly

better than the previous phase. Additionally, we

noticed higher translation accuracy with translitera-

tion input compared to the Gardiner code.

5.4.3 Stress Test

We submitted a lengthy passage extracted from

the “Story of Sinuhe” to thoroughly evaluate the

model’s robustness, testing its ability to handle ex-

tended and complex linguistic structures. After that,

we submitted the same passage divided into single

units. Due to the length of the passage, it has been

reported in the GitHub repository for our project. 13

We observed that the model fails with lengthy sen-

tences that exceed three clauses but, when provided

with a sentence of one or two clauses, it produces

quite accurate results.

5.4.4 Human Evaluation Conclusion

The ALL model performed better with short and

medium-length input texts comprising one to two

sentences. The generated outputs were effective,

13https://github.com/mattia-decao/
hiero-transformer
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Source

𓂋𓐍𓏛𓎡𓅱𓀀𓍿𓅱𓂋𓐍𓏛𓎡𓅱𓀀𓂋𓈖𓎡
D21 Aa1 Y1 V31 G43 A1 V13 G43 D21 Aa1 Y1 V31 G43 A1 D21 N35 V31

Target Prediction

(from hieroglyphic)

Prediction

(from transliteration)

Reference

DE Ich kenne dich, ich kenne

deinen Namen

Ich kenne dich und ich kenne

deinen Namen

Ich kenne dich, ich kenne

deinen Namen

EN You know me, I know your

name

I know you, I know your

name

I know you, I know your

name

τ r.kwj ṯw r.kwj rn =k – rḫ.kw ṯw rḫ.kw rn =k

lkey 95620 44000 174900 95620

44000 94700 10110

95620 174900 95620 94700

10110

95620 174900 95620 94700

10110

pos verb_2-lit personal_pro-

noun personal_pronoun

verb_2-lit personal_pronoun

personal_pronoun substanti

verb_2-lit personal_pronoun

verb_2-lit substantive_masc

personal_pronoun

verb_2-lit personal_pronoun

verb_2-lit substantive_masc

personal_pronoun

Table 5: Example of a grammar complexity exercise manually evaluated.

but there are occasional inconsistencies in com-

pleting the fields of transliteration, POS tags and

occasionally lemma IDs. For input texts exceeding

three sentences, the model struggles to produce ex-

act predictions, particularly in terms of precision

and completeness of writing.

Regarding the choice of input, despite transliter-

ation is more accurate than Gardiner code, we rec-

ommend comparing both results to obtain a more

comprehensive understanding.

We observed great accuracy in generating lemma

IDs, indicating that they could be actively used

to extract additional information from the TLA

database.

Finally, the model exhibits no significant difficul-

ties when submitted to an increasing grammatical

complexity. Conversely, it struggles as the input

length grows and the rare terms increase.

6 Conclusions

We publicly released our dataset and source code

and designed them for easy utilization and assess-

ment. The AI model produces suitable results for

research applications and is user-friendly.

This work opens up avenues for future research,

including expanding the dataset by incorporating

other language phases (Late Egyptian, Demotic and

Coptic), integrating additional modern languages ,

and conducting more comprehensive and diversi-

fied experiments.

These efforts could pave the way for enhanced

model precision and contribute significantly to the

advancement of research in Egyptology and the

application of NLP to the translation and study of

ancient languages.
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A Taxonomy Analysis of Data Mining

Language Datapoints

Absent 70,559

Egyptian 28

Middle Egyptian 23,997

Late Egyptian 8,615

Demotic 707

Table 6: Amount of datapoints for each language phase.

Counts done on the datapoints mined from TLA (before

filtering) and corresponding to 103.906.

Date Datapoints

Absent 1,165

Old Kingdom 35,849

First Intermediate Period 571

XI Dynasty 466

Middle Kingdom 7,633

Second Intermediate Period 3,634

New Kingdom 38,078

Third Intermediate Period 3,590

Late Period 2,191

600 to 200 BC 2,977

Hellenistic Period 7,133

Roman Period 619

Table 7: Amount of datapoints for each historical pe-

riod. Counts done on the datapoints mined from TLA

(before filtering) and corresponding to 103.906.

B Grammatical Inputs of Human

Evaluation

The examples submitted to the model during the

human Evaluation comprised various type of sen-

tences. The Grammatical Complexity included: ad-

verbial, nominal (A B), verbal (sḏm =f), negative

verbal (sḏm =f), pseudo-verbal and stative. The Lit-

erary passage included: verbal (sḏm =f and sḏm.n

=f), verbal negative (sḏm.n =f), adverbial, nominal

(A + pw), infinitive, participle, and two longer sen-

tences. The Stress Test included: infinitive, verbal

(causative (sḏm =f), stative, subject-stative, adver-

bial and containing dates or epithets.

C Data Entry Methods

The approach described below ensures that the

model receives a clean and standardized representa-

tion of hieroglyphic and transliteration, minimizing

potential misinterpretations that could arise from

extraneous elements and enhancing its ability to

produce accurate translations.

C.1 Hieroglyphic Input

To input hieroglyphs, it is essential to employ Gar-

diner code. Each hieroglyph must be meticulously

cleansed of any brackets, letters, or graphic sym-

bols that extraneously adhere to it, altering its visual

representation (it can be checked using Jsesh14).

To divide hieroglyphs, a single space should be in-

serted between them, while any other extraneous

character should be eliminated.

The model has been trained on Ancient and Mid-

dle Egyptian hieroglyphs and may encounter chal-

lenges with inputs from later linguistic phases and

grammatical structures postdating the Second In-

termediate Period.

We recommend utilizing signs list of Gardiner’s

grammar (Gardiner, 1957), or preferably Allen’s

(Allen, 2014), for a more accurate use of Gardiner

code.

C.2 Transliteration Input

For transliteration input, it is necessary to adhere

to conventions similar to the one employed by the

TLA.

• Proper nouns should have the first letter capi-

talized.

• It may be beneficial, but not compulsory, to in-

corporate hyphens between individual lemmas

of proper nouns or concepts (e.g., sḥtp-jb-rꜥ or

wꜢḏ-wr)

• The equal sign (=) to indicate a suffixed pro-

noun must always be preceded by a space and

followed directly by the pronoun, without any

additional characters (e.g., zꜢ =f m pr)

• The j is utilized for the strong yod while i̯ for

the weak yod.

• A dot should be employed to distinguish the

root of verbs from a suffix other than a pro-

noun (e.g., n in sḏm.n =f form) and occasion-

ally for the plural/dual.

• A comma should be employed for the feminine

ending and occasionally also for the plural/d-

ual.

14https://jsesh.qenherkhopeshef.org
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Transliterated characters can be submitted to the

model both as a proper character (e.g., Ꜣ) or accord-

ing to the computer-encoding system of Manuel

de Codage (e.g., A for the Ꜣ; Buurman et al., 1988;

Van den Berg, 1997).

To enable the insertion of both upper and lower-

case letters, while preserving the encoding of MdC,

we have implemented a simple mechanism that al-

lows you to capitalize a letter by preceding it with

an asterisk. In practice, a straightforward substitu-

tion operation has been created in the section where

inputs are entered. For instance, since to obtain ḏ

you must insert D, then to get Ḏ you have to type

*D; similarly, to attain D, you must enter *d. To

input the weak radical i̯ simply enter an i.
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D Experiments Graphs
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(a) Model DE (raw). Best loss: step 1,800.
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(b) Model DE. Best loss: step 4,500.
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(c) Model EN. Best loss: step 700.
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(d) Model DE (lem). Best loss: step 3,600.
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(e) Model DE+EN. Best loss: step 4,000.
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(f) Model DE+ENB. Best loss: step 8,500.
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(g) Model DE+τ . Best loss: step 12,000.
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(h) Model DE+τ+ENB. Best loss: step 7,200.
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(i) Model DE+τ+POS. Best loss: step 39,600.
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(j) Model DE+τ+LKEY. Best loss: step 29,600.
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(k) Model ALL. Best loss: step 10,000.

Figure 2: Validation losses of different models and at which step the loss is at its minimum.
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E Taxonomy Analysis of Generated Models: SacreBLEU, RougeL and 10-fold Cross

Validation

SacreBLEU

Source egy τ

Target de en τ lkey POS de en lkey POS

DE (raw) 4.0 - - - - - - - -

DE 54.4 - - - - - - - -

EN - 22.6 - - - - - - -

DE (lem) 25.9 - - - - - - - -

DE+EN 52.6 28.4 - - - - - - -

DE+ENB 61.5 36.4 - - - - - - -

DE+τ 43.2 - 57.7 - - 54.0 - - -

DE+τ+ENB 47.6 20.1 58.4 - - 47.1 30.3 - -

DE+τ+POS 53.2 - 60.0 - 82.1 49.6 - - 87.1

DE+τ+LKEY 55.1 - 59.4 64.4 - 58.9 - 70.9 -

ALL 54.4 31.6 59.9 63.9 79.0 56.2 35.3 74.0 86.4

Table 8: Results of automatic evaluation, in particular SacreBLEU, of all models along with POS tags and lKey.

Bold results are best and underlined are second best.

RougeL

Source egy τ

Target de en τ lkey POS de en lkey POS

DE (raw) 18.4 - - - - - - - -

DE 62.8 - - - - - - - -

EN - 25.1 - - - - - - -

DE (lem) 42.0 - - - - - - - -

DE+EN 63.1 33.5 - - - - - - -

DE+ENB 67.7 38.1 - - - - - - -

DE+τ 55.4 - 78.9 - - 61.8 - - -

DE+τ+ENB 58.8 27.9 80.2 - - 63.1 37.5 - -

DE+τ+POS 62.9 - 83.1 - 83.8 67.3 - - 87.6

DE+τ+LKEY 59.6 - 82.6 71.5 - 63.8 - 75.4 -

ALL 64.5 35.5 82.1 71.7 82.6 62.7 38.1 77.7 88.4

Table 9: Results of automatic evaluation, in particular RougeL, of all models along with POS tags and lKey. Bold

results are best and underlined are second best.
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SacreBLEU

Source egy τ

Target de en τ lkey POS de en lkey POS

DE 32.0±2.0 10.2±1.2 - - - 5.4±2.0 0.2±0.3 - -

ALL 45.5±1.4 35.9±3.7 52.7±1.3 57.9±5.1 71.9±1.3 59.6±1.4 42.6±2.9 74.3±2.4 79.2±0.7

RougeL

Source egy τ

Target de en τ lkey POS de en lkey POS

DE 41.1±0.9 14.7±1.1 - - - 3.9±1.3 0.3±0.4 - -

ALL 53.4±1.1 40.9±2.4 78.9±0.6 65.2±4.3 81.6±0.6 68.0±1.0 47.9±1.5 79.1±2.1 88.0±0.8

Table 10: Results of 10-fold cross validation.
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Abstract

We present BabyLemmatizer models for lem-

matizing and POS-tagging Earlier Egyptian,

Coptic and Demotic to test the performance

of our pipeline for the ancient languages of

Egypt.1 Of these languages, Demotic and Ear-

lier Egyptian are known to be difficult to anno-

tate due to their high extent of ambiguity. We

report lemmatization accuracy of 86%, 91%

and 99%, and XPOS-tagging accuracy of 89%,

95% and 98% for Earlier Egyptian, Demotic

and Coptic, respectively.

1 Introduction

Lemmatization is an annotation task that aims to la-

bel word forms with their dictionary forms, known

as lemmata. This is necessary for languages with

complex writing systems or morphology that would

otherwise preclude effective word searches using

simple keywords. By enabling the location of all in-

flected forms and spelling variants of any searched

word, lemmatization opens several interesting av-

enues for quantitatively studying historical texts

and their language.

POS tagging is another annotation task that aims

to label word forms with their part-of-speech tags.

This can be useful for simple named entity recog-

nition, syntactic parsing, and disambiguation of

lemmatization results. The more fine-grained the

POS tagging is, the more information it can provide

about the words in the corpus.

In this paper, we present lemmatizer and POS-

tagger models for Earlier Egyptian, Coptic, and

Demotic. Earlier Egyptian and Demotic pose par-

ticular challenges for lemmatization due to their

ambiguous word forms, which are often only one

or two characters long. To our knowledge, neural

lemmatization of these languages has not been at-

tempted before. Ourmodels are based onBabyLem-

matizer, an OpenNMT-based neural lemmatizing

1The models are available at https://huggingface.co/
asahala

and POS-tagging pipeline designed primarily for

historical languages. Previously, BabyLemmatizer

has been evaluated on Sumerian, Babylonian, Neo-

Assyrian, Urartian, Latin, and Ancient Greek with

promising results (Sahala and Lindén, 2023).

2 Languages and Datasets

Egyptian-Coptic existed as a spoken language long

before its first written records (Pre-Old Egyptian,

(Kammerzell, 2005)). It is attested in writing from

approximately 3000 BCE until around 1400 CE.

For several millennia, it was the majority language

of the lower Nile valley until it was gradually dis-

placed by Arabic, leading to its eventual extinction.

Today, only the Bohairic dialect of Coptic remains,

serving as the liturgical language of the Coptic Or-

thodox Church. Egyptian-Coptic is classified as the

only member of a now extinct branch of Afroasi-

atic, with its closest relatives being the Semitic and

Berber languages (Schenkel, 1990; Grossman and

Richter, 2015). Its placement within the Afroasiatic

language family has recently become a topic of re-

newed debate (Almansa-Villatoro and Štubňová

Nigrelli, 2023). The language history is gener-

ally divided into two major phases: Earlier Egyp-

tian, which includes Old Egyptian (2700–2000

BCE) and Middle Egyptian (2000–1400 BCE), and

Later Egyptian, which encompasses Late Egyp-

tian (1350–600 BCE), Demotic (800 BCE-450 CE),

and Coptic (300–1400 CE). Numerous comprehen-

sive linguistic overviews discuss the phonology,

morphology, and syntax of the language and its

long-term developments (Allen, 2013; Haspelmath,

2015; Loprieno, 1995, 2004; Loprieno and Müller,

2012; McLaughlin, 2022; Müller, 2020; Schenkel,

1990; Stauder, 2020).

According to Egyptological conventions, Egyp-

tian texts (including Demotic) are presented in sev-

eral layers: (1) in the original script (e.g., as a fac-

simile, as a handcopy, or printed in a hieroglyphic
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font) or, in the case of hieratic, transliterated into hi-

eroglyphs, (2) in Egyptological transcription (com-

monly referred to as transliteration in English), and

(3) in translation. In linguistic studies, morpho-

logical analyses are often presented as interlinear

glosses following the Leipzig Glossing Rules (Di

Biase-Dyson et al., 2009). Coptic, using a Greek-

based alphabetic script, is usually not transliterated

unless it is presented to an audience not familiar

with ancient languages (Grossman and Haspelmath,

2015).

Like the native writing systems that do not repre-

sent vowels—except for the Coptic script—Egyp-

tological transcription focuses exclusively on con-

sonants. It does not attempt to encode the spellings

on a character level, but rather aims to represent the

consonantal skeleton (roots). Consequently, dis-

tinctions made in the indigenous Egyptian scripts

are not captured, leading to a high number of homo-

graphs in the scholarly representation of Egyptian,

including Demotic (see Figure 1). In response to

this, lexicographical projects have adopted lemma

IDs in addition to lemma forms, and have estab-

lished chronolect-specific lemma lists (Egyptian

and Demotic: TLA = Thesaurus Linguae Aegyp-

tiae, (Grallert et al., 2024); Coptic: CCL = Compre-

hensive Coptic Lexicon, (Burns et al., 2020)). As

a result, a lemmatizer designed for scholarly pur-

poses must be trained to map tokens to lemma IDs,

not just to lemma forms, to effectively integrate

with existing digital corpora.

For Coptic, which is typically not transliterated,

the issue of homonymy is less pronounced but

nonetheless present, often resulting from phonetic

changes or only obvious when considering material

from several different dialects (see Figure 2).

2.1 Earlier Egyptian

Earlier Egyptian encompasses the chronolects

Old Egyptian (Allen, 2015) and Middle Egyptian

(Schenkel, 2001). It is classified as a fusional lan-

guage, characterized by root-and-pattern morphol-

ogy (roots inflection). The word order is relatively

fixed; in sentences with a verbal predicate, the struc-

ture follows a V-S-O schema (Loprieno, 1988). Ad-

ditionally, there are three other sentence types with

non-verbal predicates: nominal, adjectival, and ad-

verbial (Loprieno et al., 2017).

Texts from these periods are written either in

monumental hieroglyphic or in hieratic, a cursive

script. Both scripts are mixed systems that uti-

lize various sign function classes (Polis and Ros-

morduc, 2015; Polis, 2023): logograms, mono- or

multiconsonantal phonograms, classifiers (tradi-

tionally termed determinatives), and interpretants

(also known as phonetic complements). Some re-

searchers propose more nuanced categorizations of

these sign functions, e.g. by including radicograms

(Schenkel, 2003; Polis and Rosmorduc, 2015: pp.

166-167).

Although the Thesaurus Linguae Aegyptiae cur-

rently includes almost 1.16 million tokens, a signif-

icant number of corpora and texts, while published

in print, remain unavailable in digital format. This

includes important works such as the Coffin Texts,

the Netherworld Books, and the Heqanakhte pa-

pyri (letters). Other materials still not digitized

include most temple inscriptions or recently dis-

covered texts like the letters from Balat and the

Wadi al-Jarf papyri. Additionally, many inscrip-

tions on objects located on-site, in collections and

storerooms have yet to be cataloged and are neither

available in print nor electronically.

The Earlier Egyptian dataset (TLA-Egy 2024)

is derived from the Thesaurus Linguae Aegyptiae,

corpus v18, 2023 (Richter et al., 2023). The TLA

is the largest digital corpus of Egyptian texts, cur-

rently comprising approximately 1.16 million to-

kens (Grallert et al., 2023). This dataset includes

texts from the 3rd to the early 2nd millennium BCE

(Old Kingdom to the so-called Second Intermediate

Period) across various genres: archival, historical-

biographical (royal and non-royal), tomb inscrip-

tions (non-royal), Letters to the Dead, religious

texts (Pyramid Texts), literary works (narratives,

dialogues, wisdom literature, hymns), magical and

medical texts, votive labels and inscriptions, rock

inscriptions, and stelae inscriptions (offering formu-

las). From this corpus, only sentences from the pre-

New Kingdom era without emendations, lacunae,

questionable readings or questionable translations

were selected, ensuring the dataset consists solely

of complete sentences from Old and Middle Egyp-

tian. Sentences were further filtered to include only

those with fully encoded hieroglyphic spellings and

lemmatization. The final dataset comprises 12,773

sentences, totaling 70,267 tokens.

The data is organized in a spreadsheet for-

mat, with each sentence displayed on a separate

row (tokens are separated by spaces) and vari-

ous columns providing detailed annotations: hi-

eroglyphic spelling (hieratic script is transliterated
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Figure 1: Homonymy (homography) in Egyptological transcription illustrated by the lemma ’mn’. (Lemma forms and

IDs from the Thesaurus Linguae Aegyptiae (TLA) for Earlier Egyptian and Demotic, and from the Comprehensive

Coptic Lexicon (CCL) for Coptic. Demotic spellings—written right-to-left— are sourced from the variant list of the

Demotic Palaeographical Database Project (Quack et al., 2024).

into hieroglyphs) presented in Unicode2, Egypto-

logical transcription (following the Leiden Uni-

fied Transliteration),3 lemmatization (including

both lemma-ID numbers from the TLA and lemma

forms), Part-of-speech tags (UPOS),4 morpholog-

ical glossing of the word form (in the following

treated as XPOS), and contextual translation into

German (translating the entire sentence rather than

word-by-word). The dataset also includes the dates

(post quem and ante quem) of the manuscripts and

credits to the editors/translators. All annotations

have been made by trained Egyptologists. This

dataset is published under the CC-BY-SA 4.0 In-

ternational license.

2Currently, not all hieroglyphs are available as Unicode
code points. Those not included in the Unicode standard are
represented by alphanumeric codes (e.g., Gardiner numbers,
JSesh numbers) and enclosed within a tag, e.g., <g>M134</g>.

3https://www.iae-egyptology.org/
the-leiden-unified-transliteration/

4https://universaldependencies.org/u/pos/

2.2 Demotic

The term ‘Demotic’ refers to the chronolect pre-

dominantly used in the second half of the 1st mil-

lennium BCE and the early part of the current era,

as well as to the cursive script used to write it. Fol-

lowing Alexander the Great’s conquest (332 BCE),

Greek emerged as the prestige and administrative

language, significantly influencing the linguistic en-

vironment. Demotic, however, remained dominant

in the literary and religious genres as well as for

personal communication and in documentary texts.

Demotic represents the stage of the language where

the evolutionary trends initiated in (late) Middle

Egyptian or Late Egyptian fully manifest, such as

the shift from a V-S-O to an (AUX-)S-V-O word

order (McLaughlin, 2022, pp. 274-275), the analyt-

icization of constructions that were still synthetic

in Middle and Late Egyptian, and the (re-)syntheti-

cization of Late Egyptian analytic constructions

(McLaughlin, 2022). Thus, Demotic exhibits par-
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Figure 2: Homonymy in the Coptic dialects Sahidic, Fayyumic and Mesokemic illustrated by a selection of lemmata

with the form ⲙⲉ. (Lemma forms and IDs for Earlier Egyptian from the Thesaurus Linguae Aegyptiae (TLA);

lemma IDs for Coptic from the Comprehensive Coptic Lexicon (CCL); lemma forms for Sahidic also from the

Comprehensive Coptic Lexicon, for Fayyumic and Mesokemic from (Westendorf, 1977)).

tial alignment with both Late Egyptian and Cop-

tic. This dual alignment is reflected in linguistic

overviews, where Demotic is often characterized

by its similarities to or contrasts with Late Egyptian

(Quack, 2006; Winand, 2018) and Coptic (Richter,

2023), respectively.

Despite its significance for understanding the

Egyptian Late and Greco-Roman periods, and the

substantial amount of material preserved, Demotic

remains largely underrepresented in digital corpora.

This underrepresentation is attributed to the chal-

lenging nature of the material—marked by frag-

mentation and extremely cursive script—and the

limited number of experts capable of editing it. In

1998, Kim Ryholt estimated that since the 1930s,

’less than one per cent of the known material’ in the

literary corpus had been published (Ryholt, 1998,

p. 151). Although many texts have been edited and

are available in print since that time, the number of

texts available in electronic form remains limited,

both for literary and documentary texts.

The Demotic dataset (tla-demotic-v18-premium,

TLA-Dem 2024) represents a well-balanced selec-

tion of genres, encompassing literary works (nar-

ratives, mythological texts, wisdom texts, etc.), re-

ligious texts, documentary/administrative records

(priestly decrees, temple inventories, letters, re-

ceipts, ration lists, among others), legal documents

(codes, marriage and divorce settlements, sales

deeds, wills, guarantees), graffiti/dipinti, oracular,

omen, dream, medical and magical texts, as well

as school exercises. Similar to the Earlier Egyp-

tian dataset, this dataset is derived from corpus

v18 of the TLA from 2023. It comprises 13,383

sentences totaling 117,314 tokens. The selection,

presentation, and licensing criteria mirror those of

the Earlier Egyptian dataset, with the exceptions

that (1) the tokens are represented exclusively in

scholarly transcription (‘transliteration’), not in any

indigenous script, and (2) XPOS pertains to the

lemma, not to the word form. The corpus has been

annotated by trained Demotists.

2.3 Coptic

Coptic was the vernacular language during the

Christian period in Egypt, while Greek continued

to serve as the prestige and administrative language.

Following the Arab conquest of Egypt, Arabic be-

gan to spread. By the 8th century CE, Greek had

been replaced by Coptic in all domains, only to be

gradually overtaken by Arabic. During the emer-

gence of Coptic, indigenous writing systems were

abandoned in favor of an alphabetic script that in-

cluded vowels, primarily based on Greek with an

addition of 6 or 7 characters borrowed from De-

motic, varying by dialect. Coptic does not exhibit

root inflection and displays polysynthetic features,

including noun incorporation (Grossman, 2019;

Miyagawa, 2023). Grammatical morphemes are

typically affixed, which categorizes Coptic as an ag-

glutinative language. Particularly in the early cen-

turies CE, the linguistic landscape was marked by

significant dialectal variation (Funk, 1988; Richter,
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2023). The commonly preferred Coptic word or-

der is (AUX-)S-V-O, and the adjectival sentence

pattern has disappeared.

The Coptic data utilized in this study is sourced

from the Coptic Scriptorium project (Schroeder and

Zeldes, 2016). The corpus, spanning versions 4.2.0

to 4.5.0, primarily comprises Christian literary and

biblical texts, along with some letters from amonas-

tic setting in the Sahidic dialect. Available for

download in various formats, including CoNLL-U,

from the Coptic Scriptorium’s GitHub repository,

the CoNLL-U formatted data includes 515,142 to-

kens. The annotation layers in the CoNLL-U files,

used for this paper, adhere to the standard CoNLL-

U format specifications: ID, form, lemma, Uni-

versal POS (UPOS), project-specific POS (XPOS),

morphological features, and, to some extent, syntac-

tic head, Universal Dependencies Relation, along

with other annotations not pertinent to our study.

Unlike the Earlier Egyptian and Demotic corpora,

the lemmatization in this corpus maps tokens to

surface forms (strings) rather than to IDs, and does

not disambiguate homonyms. The numerous Greek

loanwords in Coptic are annotated in the same man-

ner like the Egyptian-based vocabulary. The anno-

tation quality varies across three levels: automatic

(machine-only annotations), checked (verified for

accuracy by a Coptic expert), and gold (extensively

reviewed for accuracy). The data is licensed under

CC-BY-SA 3.0 and 4.0, except for the ‘Sahidica’

New Testament sub-corpus, which is copyrighted

(c) 2000-2006 by J Warren Wells.

3 Previous Work

Schroeder and Zeldes trained the TreeTagger for

POS-tagging and lemmatization, achieving an av-

erage accuracy of 95.12% for POS-Tagging and of

96.78% for lemmatization (Zeldes and Schroeder,

2016, 2015), both in ten-fold cross-validation. The

same authors implemented a look-up based lemma-

tizer for the Coptic Scriptorium in Python, which

first POS tags the word forms and then assigns the

wordform + POS combination to its most common

lemma (Schroeder and Zeldes, 2016). As of now,

this system does not do disambiguation in case mul-

tiple lemmatization options are possible. Smith

and Hulden built the first finite-state grammar for

Sahidic Coptic (Smith and Hulden, 2016). The lex-

icon of this implementation comprised 95 verbs,

50 nouns, 65 productive prefixes, 36 closed-class

words such as demonstratives and conjuctions, and

numerous proper names, all represented in Latin

transliteration. The authors reported their system

to achieve a recall of 94.6% (precision is not re-

ported), every input word form having 2.9 analyses

on average. This implementation does not feature

lemma disambiguation either.

SIGTYP 2024 Shared Task onWord Embedding

Evaluation for Ancient and Historical Languages

had Coptic as one of its languages. The tasks in-

cluded POS-tagging, lemmatization, prediction of

morphological labels and gap filling. In the con-

strained track that disallowed the use of additional

data the best POS-tagger model was reported to

have an accuracy of 96.92% (predicting top-1 label)

and the lemmatizer an weighted average accuracy

of 95.07% over predicting top-1 and top-3 labels

(Dereza et al., 2024, Table 5).

4 Preprocessing

For Earlier Egyptian and Demotic we converted

the JSON into CoNLL�U. For Coptic, the data

was already in the CoNLL�U format, and could

be used for BabyLemmatizer as it was.

The Demotic and Earlier Egyptian lemmatiza-

tion use identifiers to disambiguate between homo-

phonic lemmata. This is necessary, because De-

motic and Earlier Egyptian word forms are often

ambiguous and short, as already demonstrated ear-

lier in this paper. The identifiers are encoded as

integer sequences up to six digits in length, sepa-

rated from the lemmawith a pipe, as in 550034|nfr.
In our initial tests, these sequences seemed to cause

slight performance issues for the lemmatizer in

terms of accuracy, as accidental incorrect predic-

tion of a single identifier digit resulted into a wrong

lemma even if the phonetic part of the lemma

was predicted correctly. In addition, it turned out

that prediction of long arbitrary integer sequences

with no relation to the phonetic form for out-of-

vocabulary (OOV) lemmata was very unreliable,

rendering predictions for word forms with OOV

forms nearly impossible.

To overcome this issue, we compressed the iden-

tifiers by replacing them with shorter number se-

quences tied to the phonological representations of

the lemmata. For instance, in the case of a lemma

wr having four different senses, we enumerated

them as 0|wr, 1|wr, 2|wr and 3|wr instead of using

arbitrarily long integer sequences. We based the

compressed identifiers on the lemma frequency, 0

having the highest frequency. We hoped that this
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decision would make leading zero the most likely

prediction for OOV word forms, and therefore, the

model would suggest the statistically most probable

lemmata for word forms the model has not seen in

the training data.5

Based on our experiments, identifier compres-

sion effectively doubles the accuracy of OOV

lemmatization and increases the overall accuracy

on average by 3%. After the lemmatization, the

original identifiers can be restored by a simple dic-

tionary mapping for all in-vocabulary words with

known lemmata. For OOV word forms with pre-

viously unseen lemmata, the identifiers have to be

defined manually. As Babylemmatizer marks the

predictions for OOV word forms automatically in

the output CoNLL-U, finding these instances is

relatively easy.

Due to character encoding issues with the Egyp-

tian hieroglyphs, we represented them as their Uni-

code code points in 8-character long sequences sep-

arated from each other with a dash symbol.6 The

input encoding will be discussed in a closer detail

in the following section.

5 BabyLemmatizer

BabyLemmatizer is a lemmatization and POS-

tagging pipeline designed especially for historical

languages.7 It has been optimized for the cuneiform

writing system used in Mesopotamia from 3200

BCE to 100 CE, but its tokenizer has been recently

extended to also support alphabetic scripts (Sahala

and Lindén, 2023).

BabyLemmatizer uses a deep attentional encoder-

decoder network, with a two layer BiLSTMencoder

that reads the input as a character sequence. The

output sequence is generated by a two layer unidi-

rectional LSTM decoder with input feeding atten-

tion. In our models we use the default batch size of

64 and start the learning rate decay halfway through

the training process.

The system is based on the Open Neural Ma-

chine Translation Toolkit (Klein et al., 2017) and

it handles POS-tagging and lemmatization as ma-

chine translation tasks by mapping two sequences

of symbols with each other and trying to learn their

5Alternative option would have been to handle the ID se-
quences as monolithic tokens, but this would have required
modifications to the BabyLemmatizer source code.

6We had issues reading UTF-16 characters when convert-
ing the JSON data into ConLL-U on Windows and had to read
them in binary to get the code points.

7The tool is available at https://github.com/asahala/
BabyLemmatizer

relation to each other. Examples are given in the

following section.

BabyLemmatizer combines the strengths of neu-

ral and look-up based lemmatizers by first lemma-

tizing the input text using the neural network and

then using a look-up to verify the labels predicted

for all in-vocabulary words. The system also scores

the lemmatizations by their confidence, which al-

lows human annotators to first focus on the most

likely incorrect lemmata instead of going through

the whole dataset. This scoring system is designed

for cuneiform languages and has a slightly less rele-

vance for non-logosyllabic scripts, but it still labels

the words with scores as shown in Table 1. These

scores are included in the output CoNLL-U file.

5.1 Input Encoding

For all models except the Egyptian Hieroglyphic

model, we use BabyLemmatizer’s alphabetic tok-

enization, which splits the inputs into character se-

quences. We use the default context window sizes

for POS and lemma prediction: two preceding and

two following word forms for POS tagging, and the

preceding and following POS tags for lemmatiza-

tion. Examples of the source and target sequences

are shown for the POS tagger in Table 2 and for the

lemmatizer in Table 3, using Demotic translitera-

tion.

We use transliteration as input for Demotic be-

cause the Demotic script is not supported by Uni-

code. For Coptic, we use the Unicode represen-

tation of the Coptic script. For Earlier Egyptian,

which appeared to be the most difficult dataset

to annotate, we use two different input formats:

transliteration and a concatenation of hieroglyphs

and transliteration. In our initial tests, using the

hieroglyphic script alone yielded poor results, so

we have not reported these results.

We represent hieroglyphs as their Unicode

code points in hexadecimal format merged in

pairs, the pairs separated from each other with

dashes, as in D80CDEA2-D80CDC9D from

\ud80c\udea2\ud80c\udc9d. We concatenated

these representations in the beginning of the translit-

erations and used BabyLemmatizer’s cuneiform

tokenizer to treat the hieroglyphs as monolithic in-

divisible tokens, but preserving the transliterations

as divisible character sequences to retain substring

information.

Our motivation for concatenating hieroglyphs

and transliteration came from the transliteration of

the cuneiform script, where homophonic transliter-
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Score Description of the word form

0 & 1 Reserved for cuneiform languages only (out-of-vocabulary logograms)

2 Out-of-vocabulary (does not occur in training data)

3 Ambiguous (distribution of lemmata assigned for this word form in training

data is close to uniform)

4 Slightly ambiguous (of all lemmata given to this word form in training data

one occurs 70% of the time.)

5 Likely unambiguous (as in score 4, and occurs in a known XPOS context)

Table 1: Confidence scoring.

Source = y | ( r ) | « d y . t » | w y | = f

Target V

Table 2: POS-tagger input and output label. The center

word is enclosed in double angle brackets and the words

are separated from each other with pipes.

Source d y . t P0=PTCL P1=V P2=V

Target 0 | d y

Table 3: Lemmatizer input and output label. The input

word form is given first, followed by its POS tag and

the POS tags immediately before and after it.

ations are distinguished from each other by adding

an index number to indicate which sign was used in

the original text (for example, u2 and u3 are written

using different cuneiform signs despite having the

same phonetic value in Akkadian). Since Egyp-

tological transliteration does not use indexing, we

hypothesized that adding information about the hi-

eroglyphs would alleviate some of the ambiguity in

the transliterations. As reported in the evaluation

section, this did not significantly impact the results,

but it did improve the out-of-vocabulary (OOV)

lemmatization accuracy.

We made various unsuccessful attempts to deal

with the ambiguity, especially in the Earlier Egyp-

tian texts, by altering the input and output strings.

First, we attempted to use the UPOS tags instead

of XPOS tags as context information for the lem-

matizer, due to UPOS tags being easier to predict

correctly and being simpler. Second, we predicted

lemmata without the numeric identifiers alongside

theXPOS tags and used these simplified lemmata as

context information for predicting the final lemma.

Third, we attempted to produce the lemmata with

identifiers by using a concatenation of word forms

as the input format, taking one or more preceding

and following word forms into account.

Finally, we also modified the BabyLemmatizer

source code to use a larger context window when

predicting POS tags and lemmata for Earlier Egyp-

tian, but this did not improve the results either. In

fact, increasing the context window for lemmatiza-

tion was generally detrimental to accuracy, possibly

due to the small dataset, which rendered the model

unable to make generalizations based on very long

input sequences.

As none of these experiments consistently im-

proved accuracy, we will report only the results for

the default BabyLemmatizer settings in the evalua-

tion section.

6 Evaluation

We make a 80/10/10 train/dev/test split of our

datasets and evaluate our models using 10-fold

cross-validation. We use accuracy as our evalu-

ation metric, that is, the percentage word forms that

were assigned the correct label (LEMMA, XPOS,

UPOS) by the system. As out baseline, we use

a dictionary-based lookup that assigns the word

forms with their most common UPOS, XPOS and

LEMMA labels (see Table 5). Our final results are

summarized in Table 6, confidence intervals of the

cross-validation shown in parentheses.

Category Coptic Demotic E. Egy.

XPOS 61 46 234

UPOS 15 11 10

LEMMA 8 557 5 683 6 270

FORM 8 977 7 807 8 109

Tokens 515,142 117,314 70,267

Table 4: Number of unique labels and word forms in

our datasets. Earlier Egyptian word form count is based

on the number of unique Latin transliterations.

The performance for Coptic is high, but this is

partly explainable due to the low number of out-of-

vocabulary words, and as for lemmatization, due to

the lack of lemma identifiers. Yet, even when the
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Coptic Demotic E. Egyptian T E. Egyptian H+T

XPOS 83.74 87.06 71.52 68.09

UPOS 87.41 88.22 84.99 78.54

LEMMA 90.20 81.19 75.73 71.21

Table 5: Baseline results. Average labeling accuracy (%) over the test sets.

Whole dataset

Coptic Demotic E. Egyptian T E. Egyptian H+T

XPOS 97.98 (±0.05) 95.14 (±0.13) 88.43 (±0.18) 88.65 (±0.10)

UPOS 97.96 (±0.07) 96.83 (±0.31) 94.32 (±0.22) 94.70 (±0.21)

LEMMA 98.60 (±0.03) 91.40 (±0.20) 85.52 (±0.33) 85.42 (±0.33)

OOV-rate 0.91 3.90 5.90 14.59

OOV word forms only

Coptic Demotic E. Egyptian T E. Egyptian H+T

XPOS 77.60 (±1.15) 71.11 (±1.53) 59.14 (±1.99) 66.70 (±0.89)

UPOS 75.33 (±2.13) 82.51 (±2.05) 76.88 (±2.15) 82.92 (±1.11)

LEMMA 87.44 (±0.76) 48.16 (±1.57) 50.47 (±1.36) 61.38 (±2.16)

Table 6: Results of the 10-fold cross-validation. OOV-rate shows the average percentage of OOV word forms in the

test set in respect to training corpus. E. Egyptian T stands for transliteration and H+T for concatenated hieroglyphs

and transliteration. The upper table shows overall results and the lower table the results for OOV word forms only.

number of OOVs are taken into account, the labels

seem to be easy to predict compared to our other

two datasets. Coptic dataset is also likely easier

due to it being almost five times larger than that of

Demotic, for instance. The word form to corpus

size ratio is thus significantly lower, allowing the

system to better learn their relations to the labels in

context (cf. Table 4). For bench marking purposes,

we also evaluated our system on the SIGTYP 2024

Shared Task dataset for Coptic. Our POS-tagger

achieved an accuracy of 94.76% and our lemmatizer

an accuracy of 96.20%. Although our POS-tagger

underperformed the winner by 2.16%, the perfor-

mance of our lemmatizer was at least on par with

the best implementation, taking into account our

system predicted only one label, whereas the best

SIGTYP 2024 model’s accuracy of 95.07% was

based on the average two scores: predicting the

correct lemma among the top-3 predictions and pre-

dicting only the top-1 lemma (Dereza et al., 2024).

The results for Demotic are on par with those

earlier reported for Akkadian, Greek and Latin (Sa-

hala and Lindén, 2023), except for lemmatization

that performs slightly worse than expected due to

high degree of ambiguity.

Low performance on Earlier Egyptian XPOS tag-

ging is partly explainable by the size of its XPOS

label set that also encodes the morphological analy-

sis of the word. This makes the set four times larger

than that of Coptic and five times the size of that of

Demotic (Table 4). Another factor is the ambiguity

of Egyptian word forms, which makes predicting

the morphological labels difficult. The ambiguity

also affects lemmatization performance, which is

untypically low compared to other languages lem-

matized with BabyLemmatizer. For UPOS tagging

the results are better, but still slightly lower than

for our other two datasets.

It seems that using the concatenation of hiero-

glyphs and transliteration yields slightly better re-

sults, but as it increases the portion of OOV word

forms, the overall accuracy remains same. Notice-

able improvement takes place in OOV lemmatiza-

tion and POS-tagging, where including information

about the hieroglyphs increases the accuracy up to

ca. 10% (compare the E. Egyptian T and E. Egyp-

tian H+T results in the lower section of Table 6).

7 Conclusions

We presented models for predicting lemma, UPOS

and XPOS labels for Earlier Egyptian, Demotic

and Coptic. Our models achieved an accuracy of

88% to 98% for XPOS tagging and 85% to 99%

for lemmatization, depending on the input format
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and the language in question. We attempted vari-

ous techniques to improve the accuracy of Earlier

Egyptian lemmatization and POS tagging but were

unable to achieve significantly better results. We

hypothesized that the poor results are likely due to

the small corpus size and the proportionally higher

number of word form types compared to our other

datasets.

Acknowledgments

We wish to thank the Academy of Finland for

funding the project Origins of Emesal (PI Krister

Lindén) and the Centre of Excellence in Ancient

Near Eastern Empires (PI Saana Svärd). We are

grateful to Daniel A. Werning (Berlin-Brandenburg

Academy of Sciences and Humanities) for extract-

ing the training data from the TLA corpus, dis-

cussing it with us, and providing comments on

the manuscript of this paper. We also value the

feedback from our reviewers which added valuable

insights to the paper.

Sources

Coptic Scriptorium 2024: Coptic Scripto-

rium Corpora v4.2.0–v4.5.0 (downloaded

2023-11-20). Caroline T. Schroeder, Amir

Zeldes, et al., Coptic SCRIPTORIUM, 2013-

2024, urlhttp://copticscriptorium.org, https:
//github.com/CopticScriptorium/corpora

TLA-Dem 2024: Thesaurus Linguae

Aegyptiae, Demotic sentences, corpus

v18, premium, https://huggingface.co/
datasets/thesaurus-linguae-aegyptiae/
tla-demotic-v18-premium, v1.1, 2/16/2024

ed. by Tonio Sebastian Richter & Daniel A.

Werning on behalf of the Berlin-Brandenburgische

Akademie der Wissenschaften and Hans-Werner

Fischer-Elfert & Peter Dils on behalf of the

Sächsische Akademie der Wissenschaften zu

Leipzig.

TLA-Egy 2024: Thesaurus Linguae Ae-

gyptiae, Original Earlier Egyptian sentences,

corpus v18, premium, https://huggingface.
co/datasets/thesaurus-linguae-aegyptiae/
tla-Earlier_Egyptian_original-v18-premium,

v1.1, 2/16/2024 ed. by Tonio Sebastian Richter

& Daniel A. Werning on behalf of the Berlin-

Brandenburgische Akademie der Wissenschaften

and Hans-Werner Fischer-Elfert & Peter Dils

on behalf of the Sächsische Akademie der

Wissenschaften zu Leipzig.

References

James P. Allen. 2013. The Ancient Egyptian Language:
An Historical Study. Cambridge University Press,
Cambridge.

James P. Allen. 2015. Old Egyptian. In Julie Stauder-
Porchet, Andréas Stauder, and Willeke Wendrich,
editors, UCLA Encyclopedia of Egyptology. Los An-
geles.

María Victoria Almansa-Villatoro and Silvia Štubňová
Nigrelli, editors. 2023. Ancient Egyptian and Afroasi-
atic: Rethinking the Origins, volume 11 of Lan-
guages of the Ancient Near East. Eisenbrauns, Uni-
versity Park, PA.

Dylan Michael Burns, Frank Feder, Katrin John, and
Maxim Kupreyev. 2020. Comprehensive Coptic Lex-
icon: Including loanwords from Ancient greek v 1.2.

Oksana Dereza, Adrian Doyle, Priya Rani, Atul Kr.
Ojha, Pádraic Moran, and John McCrae. 2024. Find-
ings of the SIGTYP 2024 shared task on word embed-
ding evaluation for ancient and historical languages.
In Proceedings of the 6th Workshop on Research in
Computational Linguistic Typology and Multilingual
NLP, pages 160–172, St. Julian’s, Malta. Association
for Computational Linguistics.

Camilla Di Biase-Dyson, Frank Kammerzell, and
Daniel A. Werning. 2009. Glossing Ancient Egyp-
tian: Suggestions for adapting the Leipzig Glossing
Rules. Lingua Aegyptia, 17:343–366.

Wolf-Peter Funk. 1988. Dialects wanting homes: A
numerical approach to the early varieties of Coptic.
In Jacek Fisiak, editor, Historical Dialectology, Part
1: Regional and Social, volume 37 of Trends in Lin-
guistics. Studies and Monographs, pages 149–192.
Mouton de Gruyter, Berlin/New York/Amsterdam.

Silke Grallert, Tonio Sebastian Richter, Simon D.
Schweitzer, and Daniel A. Werning. 2023. TLA
Text Corpus, corpus issue 18. In Tonio Sebastian
Richter, Daniel A. Werning, Hans-Werner Fischer-
Elfert, and Peter Dils, editors, Thesaurus Linguae
Aegyptiae. Berlin-Brandenburgische Akademie der
Wissenschaften and Sächsische Akademie der Wis-
senschaften zu Leipzig. Web-App-Version 2.1.3, Ac-
cessed: 5/15/2024.

Silke Grallert, Tonio Sebastian Richter, and Daniel A.
Werning. 2024. TLA-Lemmalisten, corpus is-
sue 18. In Tonio Sebastian Richter, Daniel A.
Werning, Hans-Werner Fischer-Elfert, and Peter
Dils, editors, Thesaurus Linguae Aegyptiae. Berlin-
Brandenburgische Akademie der Wissenschaften and
Sächsische Akademie der Wissenschaften zu Leipzig.
Web-App-Version 2.1.3, Accessed: 5/16/2024.

95

https://github.com/CopticScriptorium/corpora
https://github.com/CopticScriptorium/corpora
https://huggingface.co/datasets/thesaurus-linguae-aegyptiae/tla-demotic-v18-premium
https://huggingface.co/datasets/thesaurus-linguae-aegyptiae/tla-demotic-v18-premium
https://huggingface.co/datasets/thesaurus-linguae-aegyptiae/tla-demotic-v18-premium
https://huggingface.co/datasets/thesaurus-linguae-aegyptiae/tla-Earlier_Egyptian_original-v18-premium
https://huggingface.co/datasets/thesaurus-linguae-aegyptiae/tla-Earlier_Egyptian_original-v18-premium
https://huggingface.co/datasets/thesaurus-linguae-aegyptiae/tla-Earlier_Egyptian_original-v18-premium
http://digital2.library.ucla.edu/viewItem.do?ark=21198/zz002jj949
https://doi.org/10.17169/refubium-27566
https://doi.org/10.17169/refubium-27566
https://aclanthology.org/2024.sigtyp-1.19
https://aclanthology.org/2024.sigtyp-1.19
https://aclanthology.org/2024.sigtyp-1.19
https://doi.org/10.1515/9783110848137.149
https://doi.org/10.1515/9783110848137.149
https://thesaurus-linguae-aegyptiae.de/info/text-corpus
https://thesaurus-linguae-aegyptiae.de/info/text-corpus
https://thesaurus-linguae-aegyptiae.de/info/lemma-lists
https://thesaurus-linguae-aegyptiae.de/info/lemma-lists


Eitan Grossman. 2019. Language-specific transitivities
in contact: The case of Coptic. Journal of Language
Contact, 12(1):89–115.

Eitan Grossman and Martin Haspelmath. 2015. The
Leipzig-Jerusalem transliteration of Coptic. In
(Grossman et al., 2015), pages 145–153.

Eitan Grossman, Martin Haspelmath, and Tonio Sebas-
tian Richter, editors. 2015. Egyptian-Coptic Linguis-
tics in Typological Perspective, volume 55 of Empir-
ical Approaches to Language Typology. De Gruyter
Mouton, Berlin/Munich/Boston.

Eitan Grossman and Tonio Sebastian Richter. 2015.
The Egyptian-Coptic language: its setting in space,
time and culture. In (Grossman et al., 2015), pages
69–101.

Martin Haspelmath. 2015. A grammatical overview
of Egyptian and Coptic. In (Grossman et al., 2015),
pages 104–143.

Frank Kammerzell. 2005. Old Egyptian and Pre-Old
Egyptian: Tracing linguistic diversity in archaic
Egypt and the creation of the Egyptian language. In
Stephan J. Seidlmayer, editor, Texte und Denkmäler
des ägyptischen Alten Reiches, number 3 in Thesaurus
Linguae Aegyptiae, pages 165–246. Achet, Berlin.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. arXiv
preprint arXiv:1701.02810.

Antonio Loprieno. 1988. On the typological order of
constituents in Egyptian. Journal of Afroasiatic Lan-
guages, 1:26–57.

Antonio Loprieno. 1995. Ancient Egyptian: A Linguis-
tic Introduction. Cambridge University Press, Cam-
bridge.

Antonio Loprieno. 2004. Ancient Egyptian and Coptic.
In Roger D. Woodard, editor, The Cambridge Ency-
clopedia of the World’s Ancient Languages, pages
160–217. Cambridge University Press, Cambridge.

Antonio Loprieno and Matthias Müller. 2012. Ancient
Egyptian and Coptic. In Zygmunt Frajzyngier and
Erin Shai, editors, The Afroasiatic Languages, pages
102–144. Cambridge University Press, Cambridge.

Antonio Loprieno, Matthias Müller, and Sami Uljas.
2017. Non-Verbal Predication in Ancient Egyptian,
volume 2 of The Mouton Companions to Ancient
Egyptian. De Gruyter Mouton, Berlin/Boston.

Rachael Hannah McLaughlin. 2022. The Linguistic
Cycle in Ancient Egyptian Verbal Constructions. Phd
thesis, University of Liverpool.

So Miyagawa. 2023. Noun incorporation in Coptic. In
Diliana Atanassova, Frank Feder, and Heike Stern-
berg el Hotabi, editors, Pharaonen, Mönche und
Gelehrte: Auf dem Pilgerweg durch 5000 Jahre

ägyptische Geschichte über drei Kontinente: Heike
Behlmer zum 65. Geburtstag, volume 4 of Texte und
Studien zur Koptischen Bibel, pages 565–574. Harras-
sowitz, Wiesbaden. Festschrift for Heike Behlmer’s
65th Birthday.

Matthias Müller. 2020. Egyptian. In Rebecca
Hasselbach-Andee, editor, A Companion to Ancient
Near Eastern Languages, pages 107–128. Wiley
Blackwell, Hoboken, NJ.

Stéphane Polis, editor. 2023. Guide to the Writing Sys-
tems of Ancient Egypt, volume 4 of Guides de l’Insti-
tut Français d’Archéologie Orientale. IFAO, Cairo.

Stéphane Polis and Serge Rosmorduc. 2015. The hi-
eroglyphic sign functions: Suggestions for a revised
taxonomy. In Hans Amstutz, Andreas Dorn, Matthias
Müller, et al., editors, Fuzzy Boundaries: Festschrift
Antonio Loprieno I, pages 149–174. Kai Widmaier,
Hamburg.

Joachim F. Quack, Claudia Maderna-Sieben, Jannik Ko-
rte, and Fabian Wespi. 2024. The Demotic Palaeo-
graphical Database Project. Accessed: 15 May 2024.

Joachim Friedrich Quack. 2006. En route vers le copte.
notes sur l’évolution du démotique tardif. Faits
de langues, Les langues chamito-sémitiques (afro-
asiatiques), Vol. 2, 27:191–216.

Tonio Sebastian Richter. 2023. Coptic. In Andréas
Stauder and Willeke Wendrich, editors, UCLA Ency-
clopedia of Egyptology. Los Angeles.

Tonio Sebastian Richter, Daniel A. Werning, Hans-
Werner Fischer-Elfert, and Peter Dils, editors.
2023. Thesaurus Linguae Aegyptiae, Corpus is-
sue 18. Berlin-Brandenburgische Akademie der
Wissenschaften and Sächsische Akademie der Wis-
senschaften zu Leipzig. Web-App-Version 2.1.3, Ac-
cessed: 5/13/2024.

Kim Ryholt. 1998. A parallel to the Inaros Story of P.
Krall (P. Carlsberg 456+P CtYBR 4513): Demotic
narratives from the Tebtunis temple library (I). Jour-
nal of Egyptian Archaeology, 84:151–169.

A. J. Aleksi Sahala and Krister Lindén. 2023. A neural
pipeline for lemmatizing and POS-tagging cuneiform
languages. In Proceedings of the Ancient Language
Processing Workshop at the 14th International Con-
ference on Recent Advances in Natural Language
Processing RANLP 2023, pages 203–212.

Wolfgang Schenkel. 1990. Einführung in die altägyptis-
che Sprachwissenschaft. Wissenschaftliche Buchge-
sellschaft, Darmstadt.

Wolfgang Schenkel. 2001. Middle Egyptian. In Don-
ald B. Redford, editor, The Oxford Encyclopedia of
Ancient Egypt, volume 2, pages 52–56. Oxford Uni-
versity Press, Oxford.

96

https://doi.org/10.1163/19552629-20180001
https://doi.org/10.1163/19552629-20180001
https://doi.org/10.1515/9783110409895
https://livrepository.liverpool.ac.uk/id/eprint/3166207
https://livrepository.liverpool.ac.uk/id/eprint/3166207
https://doi.org/10.1002/9781119193814.ch6
http://demotischdemotisch.de
http://demotischdemotisch.de
http://digital2.library.ucla.edu/viewItem.do?ark=21198/zz002kps48
https://thesaurus-linguae-aegyptiae.de
https://thesaurus-linguae-aegyptiae.de


Wolfgang Schenkel. 2003. Die hieroglyphische
Schriftlehre und die Realität der hieroglyphischen
Graphien, volume 138 of Sitzungsberichte der Säch-
sischen Akademie der Wissenschaften zu Leipzig.
Philologisch-historische Klasse. Hirzel, Stuttgart.

Caroline T. Schroeder and Amir Zeldes. 2016. Raiders
of the lost corpus. Digital Humanities Quarterly,
10(2).

Daniel Smith and Mans Hulden. 2016. Morphological
analysis of Sahidic Coptic for automatic glossing. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 2584–2588.

Andréas Stauder. 2020. History of the Egyptian Lan-
guage. In Ian Shaw and Elizabeth Bloxam, editors,
Oxford Handbook of Egyptology, pages 930–956. Ox-
ford University Press, Oxford.

Wolfhart Westendorf. 1977. Koptisches Handwörter-
buch, 2nd edition. Universitätsverlag Winter, Heidel-
berg.

Jean Winand. 2018. Late Egyptian. In Julie Stauder-
Porchet, Andréas Stauder, and Willeke Wendrich,
editors, UCLA Encyclopedia of Egyptology. Los An-
geles.

Amir Zeldes and Caroline T. Schroeder. 2015. Compu-
tational Methods for Coptic: Developing and Using
Part-of-Speech Tagging for Digital Scholarship in the
Humanities. Digital Scholarship in the Humanities,
30(suppl1):i164–i176.

Amir Zeldes and Caroline T. Schroeder. 2016. An
NLP pipeline for Coptic. In Proceedings of the 10th
SIGHUM Workshop on Language Technology for
Cultural Heritage, Social Sciences, and Humanities,
pages 146–155, Berlin, Germany. Association for
Computational Linguistics.

97

http://www.digitalhumanities.org/dhq/vol/10/2/000247/000247.html
http://www.digitalhumanities.org/dhq/vol/10/2/000247/000247.html
https://doi.org/10.1093/oxfordhb/9780199271870.013.54
https://doi.org/10.1093/oxfordhb/9780199271870.013.54
http://digital2.library.ucla.edu/viewItem.do?ark=21198/zz002kdgjj
https://doi.org/10.1093/llc/fqv043
https://doi.org/10.1093/llc/fqv043
https://doi.org/10.1093/llc/fqv043
https://doi.org/10.1093/llc/fqv043
https://doi.org/10.18653/v1/W16-2119
https://doi.org/10.18653/v1/W16-2119


Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024), pages 98–106
August 15, 2024 ©2024 Association for Computational Linguistics

UFCNet: Unsupervised Network based on Fourier transform and
Convolutional attention for Oracle Character Recognition

Guoqi Liu1,2,3, Yanan Zhou *1,3, Yiping Yang1,3, Linyuan Ru1,2, Dong Liu1,2,3, and Xueshan Li2

1College of Computer and Information Engineering, Henan Normal University, Henan, China
2Oracle Bone Intelligent Computing Laboratory, Henan Normal University, Henan, China

3Big Data Engineering Laboratory for Teaching Resource & Assessment of Education Quality,
Henan, China

Abstract
Oracle bone script (OBS) is the earliest writ-
ing system in China, which is of great value in
the improvement of archaeology and Chinese
cultural history. However, there are some prob-
lems such as the lack of labels and the difficulty
to distinguish the glyphs from the background
of OBS, which makes the automatic recogni-
tion of OBS in the real world not achieve the
satisfactory effect. In this paper, we propose a
character recognition method based on an unsu-
pervised domain adaptive network (UFCNet).
Firstly, a convolutional attention fusion module
(CAFM) is designed in the encoder to obtain
more global features through multi-layer fea-
ture fusion. Second, we construct a Fourier
transform (FT) module that focuses on the dif-
ferences between glyphs and backgrounds. Fi-
nally, to further improve the network’s ability to
recognize character edges, we introduce a ker-
nel norm-constrained loss function. Extensive
experiments perform on the Oracle-241 dataset
show that the proposed method is superior to
other adaptive methods. The code will be avail-
able at https://github.com/zhouynan/UFCNet.

1 Introduction

The oracle bone inscriptions (OBIs) mainly refer to
the OBIs of Yinxu, which are carved on tortoises in
the Shang Dynasty. It is the earliest self-contained
writing system in China,which is of great signifi-
cance to the improvement of Chinese cultural his-
tory and the study of the formation and evolution
of Chinese characters (Xie et al., 2020). The oracle
bone character (OBC) image of rubbings is mainly
the original image obtained by experts on the un-
earthed tortoise shell, animal bone, and other text
carriers. As the oracle bones have been buried un-
derground for a long time, they are badly damaged
or contaminated, and there is serious noise (Huang
et al., 2019), which makes it very challenging to
recognize OBCs.

*Corresponding author: 2208283102@stu.htu.edu.cn

Early research methods mainly combine graph
theory and topological properties. (Li and Zhou,
1996) proposed an OBIs recognition method based
on graph theory. They abstracted oracle into an
undirected graph composed of only points and
lines, and extracted its topological features. (Li
and Zhou, 1996) introduced the information of the
adjacent points of the endpoint, and improved the
recognition accuracy through the continuous recog-
nition of multi-level feature coding. However, these
methods cannot meet the real-world oracle recog-
nition, which requires a lot of manpower and time.

To help with the excavation of new oracle bones
and the identification of unseen characters, the ad-
vent of deep neural networks has a great impact
on the recognition of oracle bone character (OBC)
images. (Zhang et al., 2019) used CNNs to map
character images into Euclidean space for classifi-
cation by nearest neighbor rules. (Guo et al., 2015)
utilized a low-level representation associated with
Gabor and an intermediate representation associ-
ated with a sparse encoder and combines it with
a CNN-based model. However, training a depth
model requires a large number of labeled samples.
(Wang et al., 2022) proposed an unsupervised struc-
tured Texture separation network (STSN) for Or-
acle identification and a dataset of 241 classes of
Oracle-241 (Wang et al., 2022) for unsupervised
identification. They took handprint characters tran-
scribed by experts with high resolution and clean
backgrounds as source domains. Accordingly, the
original oracle character (scanned image) is taken
as the target domains. They have achieved good
results by finding a domain invariant feature space
to align the distribution between two domains.

In this paper, we propose a network (UFCNet)
combining Fourier transform and convolutional at-
tention for oracle character recognition. The convo-
lution attention fusion module (CAFM) combines
deep and shallow features to obtain more global
information and a better position location of char-
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acters. Additionally, we further design the Fourier
transform (FT) module that converts the image
from the spatial domain to the frequency domain,
aiming to capture the edge details of the glyphs
more efficiently and provide rich functionality for
the CAFM. We utilize the FT module to capture
the high-frequency information of character images
and extract rich edge information. We also intro-
duce a kernel norm-constrained loss function to
improve the network’s discriminative performance
on edges. We conduct extensive experiments on
the Oracle-241 dataset, and the results demonstrate
that our network exhibits better recognition perfor-
mance in the realm of unsupervised adaptation.

Our main contributions are summarized as fol-
lows:

• We deploy CAFM can better extract and fuse
features at different levels, and establish a
global relationship between multi-layer fea-
tures.

• We design the FT module, the OBIs are con-
verted to the frequency domain, which can
extract the edge features, and provide more
effective detail features for the CAFM.

• To validate the effectiveness of our method,
we conduct extensive experiments on the
Oracle-241 dataset and results demonstrate
that UFCNet has better classification accuracy
than the existing state-of-the-art (SOTA) un-
supervised OBIs recognition method STSN.

2 Related work

2.1 Oracle character recognition
The recognition and deciphering of oracle char-
acters is one of the major topics in the study of
oracle bones. With the development of technol-
ogy, many researchers have tried to recognize ora-
cle characters by image processing. For example,
by using non-directed graphs, DNA methods, and
template matching (Lin et al., 2016). The earli-
est studies were (Zhou et al., 1995), (Li and Woo,
2000), (Gu, 2016) which considered oracle fea-
tures as an undirected graph and used its topologi-
cal properties as features for classification. (Li et
al., 2011) proposed an algorithm based on graph
isomorphism. They transformed inscriptions into
labeled graphs and used an adjacency matrix of the
labeled graphs to encode the inscriptions. (Lv et
al., 2010) proposed a Fourier descriptor based on

curvature histogram to identify OBIs. (Guo et al.,
2015) regarded the oracle bone recognition prob-
lem as a sketch recognition task and constructed a
hierarchical representation for it.

In addition, (Liu and Liu, 2017) extracted block
histogram-based features and applied support vec-
tor machines (SVM) to recognize characters. (Gu
et al., 2008) believed that the topological structure
of OBIs was relatively stable, and calculated the
fractal dimension of OBIs according to their frac-
tal characteristics. However, most of these meth-
ods are complex large-scale systems composed of
multi-layer features, so these methods mainly rely
on artificial feature design, which is highly sub-
jective. In particular, they are mostly suitable for
small-scale datasets, not for large-scale dataset de-
sign and evaluation.

In recent years, convolutional neural networks
(CNNs) have made great progress in some com-
puter vision tasks and have been introduced into
the recognition of oracle characters. (Huang et al.,
2019) published a dataset of scanned oracle char-
acters called OBC306 and proposed a CNN-based
evaluation of this dataset as a benchmark, (Guo
et al., 2015) aimed to use a CNN-based learning
(Wang and Deng, 2018) model to represent ora-
cle characters. They generated a dataset named
Oracle-20K and trained and tested it with the pro-
posed CNN. However, they did not discuss the
real images of the OBIs and their features such as
noise, fracture, and non-uniformity. (Zhang et al.,
2019) proposed a deep metric learning-based near-
est neighbor classification for oracle recognition
and trained a DenseNet (Huang et al., 2017) with
triplet state loss to classify manually printed and
scanned dataset in a supervised manner. However,
the difference in distribution between handprint
and scanned characters is not taken into account.

2.2 Unsupervised domain adaptation
Cross-domain tasks are often encountered in com-
puter vision and pattern recognition, there are two
types of data, one with labeled information and the
other without or little labeled information. To dis-
card the target labeled data, unsupervised domain
adaptation (UDA) was proposed in the literature
(Wang and Deng, 2018) to solve the problem of
domain drift between the labeled source domain
and unlabeled target domain.

Popular UDA methods (Long et al., 2015), (Peng
et al., 2019) align distributions by moment match-
ing. For example, maximum mean difference
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Figure 1: The overall structure of the proposed UFCNet includes a shared encoder En for extracting font, which uses
RseNet-18 as the backbone network, and an independent encoder Ep. A generator G, a classifier and discriminators
DF and DI for distinguishing features.

(MMD) (Long et al., 2015), (Chen et al., 2019)
were used to reduce distribution mismatch. With
a labeled source dataset and an unlabeled target
dataset, their main goal is to train the recognition
model on the source domain dataset so that it can
be generalized to the target domain.

Another common approach to address unsu-
pervised domain adaptation is through adver-
sarial learning strategies (Yaroslav and Victor,
2015),(Eric et al., 2017) where the differences
between domains are minimized by jointly train-
ing a network of recognizers and a network
of domain discriminators. Adversarial learning
(Yaroslav and Victor, 2015), (Long et al., 2018)
were widely used for alignment of source and tar-
get domains. Domain adversarial neural networks
(DANN)(Yaroslav et al., 2016) made it impossible
for domain classifiers to predict the domain labels
of features by the gradient inversion layer (GRL),
making the distribution of features on two domains
similar. Conditional adversarial domain adaptation
(CDAN)(Long et al., 2018) built an adversarial
adaptation model based on the discriminative in-
formation passed in the classifier prediction. In
both methods, a subnetwork called a domain dis-
criminator is used, trained to distinguish between
source and target dataset and to learn depth features
to confuse the discriminator in domain adversarial
training.

If a model is trained directly in the source do-
main and applied to the target domain, the results
are often poor because the feature distributions of
the two may be somewhat different. (Wang et al.,
2022) proposed the use of UDA to transfer knowl-
edge from easily accessible handprint dataset to the

scanned domain. They used a secure distributed
alignment in the feature space associated with the
structure (glyphs), which can mitigate the negative
effects of severe noise and wear and tear. Second,
with the idea of Generative Adversarial Networks
(GANs), they designed a generator and duplex dis-
criminator to realize the exchange of learned tex-
ture (background) information between any pair
of images to transform the image. This approach
successfully transfers the knowledge of handprint
oracle character recognition to the scanned dataset
and improves the recognition performance.

3 Methods

The UFCNet network proposed in this paper is
shown in Figure 1. It adopts the unsupervised idea
of STSN to transfer the knowledge of handprint
oracle character recognition to scanned dataset.
It consists of three encoders, one of which is a
glyph-sharing encoder En for extracting both hand-
print and scanned characters. It is a ResNet-18
pre-trained on the ImageNet dataset as a structural
encoder. The other two are independent encoders
Ep used to extract the background features of hand-
print and scanned characters. Specifically, Ep con-
sists of one convolution unit with a kernel size of
7x7 (convolution, BatchNormalization, and ReLU)
and four convolution units with a kernel size of
3, CAFM and FT. The CAFM can cascade the
high-level and low-level features of handprint and
scanned images to obtain rich global features. The
FT module can capture more edge features of char-
acters by using the advantage of converting the
image to the frequency domain. Alternatively, it in-
cludes a generator G, a feature-level discriminator
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Generator(G)

Input:fn, fp

Deconv(k4n256s2), IN, Relu, ConvBlock(k3n128s1)
Deconv(k4n128s2), IN, Relu, ConvBlock(k3n64s1)
Deconv(k4n64s2), IN, Relu, ConvBlock(k3n32s1)
Deconv(k4n32s2), IN, Relu, ConvBlock(k3n32s1)1x2

Conv(k3n3s1)Tanh
Output: yss/yst/yts/ytt

Table 1: Network architecture of the generator is used
for oracle characters recognition.

DF , two image-level discriminators {DIs, DIt}
and a classifier that is finally used to classify the
recognized scanned characters. For the discrimi-
nators of images and features, the discriminative
network structure uses in this paper is detailed in
Table 1 and Table 2.

3.1 Convolutional attention fusion module

To get rich features, we try to fully mine the global
and local information of the glyph to improve the
dependency extraction of the glyph in the image.
We pass the starting image � 2 RH⇥W⇥3 through
three multi-scale feature maps (i.e., S0

1, S0
2 and S0

3)
generated by serialized convolution blocks at differ-
ent stages. Among these feature maps, S0

1 and S0
2

provide detailed information about the appearance
of oracle characters, while S0

3 provides high-level
features. Specifically, we consider F as a convo-
lutional unit containing 3 ⇥ 3 convolution, batch
normalization (Sergey and Christian, 2015), and
ReLU (Xavier et al., 2015). As shown in Figure 2.
CAFM is divided into three parts.

Firstly, for the high-level feature S0
3, we use an

upsampling operation to make the highest-level fea-
ture maps S0

3 and S0
2 have the same size. In this

paper, we use the convolutional operation units F1
and F2 with kernel size 3 ⇥ 3 to provide the re-
quired information for the network and filter out
the unnecessary background texture noise, get the
results S31 and S32, multiply S31 with S0

2, this can
establish a global relationship between multi-layer
features. And input the results obtained from the
multiplication into the channel and spatial attention
model (CSAM) to get C1. CSAM utilizes chan-
nel and spatial weighting on these basic features
to better focus on interdependence between some
features on channels and space to improve the sen-
sitivity of the model to channels as well as spatial
features. Denote the current process as Eq.1.

Discriminator(DI ) Discriminator(DF )

Conv(k6n64s2), IN, Relu(0.2) Linear(1024), Relu
Conv(k6n128s2), IN, Relu(0.2) Dropout(0.5)
Conv(k6n256s2), IN, Relu(0.2) Linear(1024), Relu
Conv(k6n256s2), IN, Relu(0.2) Dropout(0.5)

Linear(1) Linear(1), Sigmoid
Output: Real/Fake Output: Source/Target

Table 2: The discriminator is used for the network ar-
chitecture Identify.

8
>>><
>>>:

S31 = F1 [U (S0
3)]

S32 = F2 [U (S0
3)]

S22 = F4 [U (S0
2)]

C1 = CSM (S31 ⇥ S0
2)

(1)

Secondly, for the features S0
2 and S0

1 in the lower
two layers, we also use the same way of processing
the higher-level features by performing convolu-
tional upsampling operations on S0

2 and S0
3 respec-

tively to reach the same size as S0
1. By multiplying

the three features, we can build global features be-
tween multiple layers of features. The details of the
low-level features are added to the high level after
using convolutional attention to CSM to obtain C2.
This process is denoted as Eq.2.

C2 = CSM
�
F3

⇥
U
�
S0

3

�⇤
⇥ S0

1

 
(2)

Finally, we pass the feature through CSM and
smoothly concatenate the resulting C1 with S32,
and the feature is mapped to two convolutional
units (F5 and F6). Due to the potential loss of
crucial detail information during the convolution
process, and considering that C2 has already ac-
quired rich local features following the CSM, we
opt to integrate the output of the convolution unit
with C2. This fusion strategy effectively harnesses
some of the original structural information, enhanc-
ing the overall feature representation. Finally, we
input the connected feature maps into F for dimen-
sionality reduction to get the result T1, which is
also the output of CAFM.

3.2 Fourier transform module
The discrete Fourier transform plays an important
role in image processing and pattern recognition
as an effective computational tool. Several studies
(Justin et al., 2016) , (Leon A et al., 2015) have
shown that higher feature layers are beneficial in
maintaining structural information, while lower fea-
ture layers help to maintain what is associated with
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Figure 2: An architecture that passes shallow features
into deep features and merges them.

texture. However, in the scanned dataset, it is dif-
ficult to distinguish the edge outline of the font
because of the similarity between the characters
and the background, which makes it difficult to
identify the oracle characters accurately. Studies
have shown that Fourier transform method can ob-
tain high-frequency information of the object (the
edge of the object). At the same time, compared
with the spatial domain filtering with large number
of cores, frequency domain filtering has obvious
advantages. Therefore, we further consider to trans-
fer the image recognition of text to the frequency
domain for more detailed feature extraction.

In particular, high-pass filtering can make high-
frequency components unimpeded, allowing only
high-frequency features to be transmitted, and sup-
pressing low frequencies. The high frequencies in
the frequency domain correspond to the Outlines
(edges) of the objects in the image. Therefore, FT
combines with Gaussian filter is used to extract
rich edge information of the oracle bone text image
in the frequency domain, so that background pix-
els and text pixels can be effectively distinguished.
The FT module is structured as shown in Figure 3.

It is worth noting that the global feature is ob-
tained by aggregation at the bottom of the encoder.
We transform global feature to a single-line grey-
scale image, performed a two-dimensional discrete
FT, and obtained a frequency domain map.

After the discrete FT, it is transmitted to the
center of the spectrum graph to obtain the low-
frequency information. The number of frequencies
of an image in the frequency domain corresponds
to the number of pixels of that image in the time
domain, indicating that the image has the same
number of dimensions in the time and frequency
domains. For an input grey-scale image of size

Figure 3: The structure of fourier transform module.

H1 ⇥ W1, the two-dimensional DFT is expressed
as Eq.3.

F (k, l) =
1

H1W1

H1�1X

c=0

W1�1X

d=0

f (c, d) e
�j 2⇡

H1
kc

e
�j 2⇡

W1
ld

(3)

The discrete function is for the spatial domain
image. We use a combination of Gaussian filter
and Fourier transform to extract rich edge infor-
mation in the frequency domain. Notably, we set
the radius of the circular filter to 0.5, which can
prevent the loss of details after image reconstruc-
tion. Where F (0, 0) shows the lowest frequency
and F (H1 � 1, W1 � 1) is the highest frequency.
Then, the high-frequency portion is processed us-
ing the Fourier inverse transform to obtain high-
frequency images to explicitly model the depen-
dencies between channels. It can be written as
Eq.4.

f (c, d) =
1

H1W1

H1�1X

k=0

W1�1X

l=0

F (k, l) e
j 2⇡

H1
kc

e
j 2⇡

W1
ld (4)

3.3 Loss function

To generate more realistic OBCs, the following
perceptual loss (lpre) (Wang et al., 2022) and re-
construction loss (lrec) (Wang et al., 2022) are in-
troduced in this paper to impose constraints on the
structural similarity and texture similarity during
image reconstruction. The first part, perceptual
loss, constraints yst to be similar to yt in texture;
it also requires yst to be similar to ys in structure.
A similar constraint is imposed on the transformed
image yts. The second part of the reconstruction
loss ensures that the reconstructed images yss and
ytt should be the same as the original input images
ys and yt. In addition, we apply the mean square
loss (MSE) and the cross entropy loss function
CrossEntorpyLoss.

In particular, we also propose a key loss function
lbcem, which is a loss function based on BCELoss.
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Specifically, we introduce the nuclear norm con-
straint BNM (Leon A et al., 2015) to improve the
edge discrimination ability of the network. In the
case of insufficient labels, the performance of the
network on the decision boundary will be degraded.
To improve discriminability, we introduce nuclear
norm maximization to improve target prediction
ability. Experiments show that when the weighting
factor is 0.5, BNM enables the network to obtain
the optimal result for the discrimination of the tar-
get domain edge that lacks labels. So the total loss
of our lbcem is Eq.5.

lbcem = lbce � lBNM (5)

Thus, the overall loss in this paper is Eq.6.

lloss = lmse + lce + lpre + lrec + lbcem (6)

4 Experiment

4.1 Datasets
In this section, we use the Oracle dataset of Oracle-
241 for character recognition, using our network to
transfer knowledge from the handprint data to the
scanned data. Oracle-241 contains 78,565 hand-
print and scanned characters in 241 categories. The
handprint samples used for training and the unla-
beled scan samples are 10861 and 50168, respec-
tively. The dataset use for testing contains 3730
handprint data and 13806 scan data. As shown in
Table 3.

4.2 Implementation details
The proposed method uses Pytorch as a frame-
work and runs on a single NVIDIA GeForce GTX
3090Ti 24G GPU. We perform 150,000 iterations
on data with a batch size of 16. For preprocessing,
we randomly crop and flip the training samples,
setting the weight decay and initial learning rate
to 5e-4 and 2.5e-4, respectively. This paper fol-
lows standard protocols for unsupervised domain
adaptation, e.g. (Yaroslav et al., 2016), (Long et al.,
2018). Train with all marked source characters and
all unmarked target characters. To quantitatively
evaluate the recognition performance of UFCNet
on handprint and scan datasets, classification accu-
racy is used as the evaluation metric in this paper,
and the calculation method is as follows Eq.7.

ACC =
TP + FN

TP + TN + FP + FN
(7)

Where TP and TN represent the number of pixels
and background texture pixels of correctly identi-
fied oracle font structure, respectively. Similarly,

Figure 4: Eight images are misclassified with the
"single-source" model, but our model classified them
correctly.

Train Test

handprint 10861 3730
Scan 50168 13806

Table 3: Statistics from the ORACLE-241 dataset.

FP represents a background pixel incorrectly iden-
tified as an oracle glyph structure, while FN rep-
resents an oracle glyph structure pixel incorrectly
predicted as a background pixel.

4.3 Comparative experiment

To demonstrate the effectiveness of our network,
we compare the UFCNet with some of the meth-
ods used to identify (Huang et al., 2019). Since
they only use handprint samples to train the net-
work model, the model trained on the source do-
main has no adaptation, they are referred to as "
single-source " models in this paper. In addition,
we compare with other SOTA adaptive methods for
image classification, such as CDAN, DANN, BSP
(Chen et al., 2019), and GVB (Cui et al., 2020). All
of these data are used with ResNet-18 as the back-
bone and experimented in the same environment to
make a fair comparison.

Method Accuracy (%)

Handprint Scan

ResNet 94.9 2.9

CDAN 86.5 37.8
DANN 88.7 31.4

BSP 91.7 33.7
GVB 87.8 36.8
STSN 92.2 44.9
Ours 94.7 56.5

Table 4: Source and target Accuracy (MEAN %) on
ORACLE-241 dataset is statistically compared with var-
ious state-of-the-art (SOTA) methods. The best numbers
are represented in bold.
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Figure 5: The example samples which are misclassified by UFCNet. For each set of characters, the left, middle,
and right images represent the scan sample, model prediction, and ground-truth (GT), respectively. (a) represents
characters that look similar, (b) denotes characters that contain heavy noise, and (c) is heavily polluted or occlusion
characters.

We can see from the results in Table 4. Firstly,
training on handprint dataset and testing on the
same domain, the model trained and tested only on
the source domain model can obtain higher accu-
racy. When directly apply to scanned dataset, the
model’s performance undergoes a marked degrada-
tion. Figure 4 shows some example images that are
misclassified by the "single-source" model but cor-
rectly classified by our model. From these results,
we can find that the "single-source" model has dif-
ficulty in identifying scanned images with severe
noise and contaminated wear, while our model can
successfully identify them. Our method in this pa-
per transfers the knowledge from handprint dataset
to scanned dataset by unsupervised domain trans-
fer, and better results can be obtained on scanned
dataset.

Secondly, we note that although the existing un-
supervised domain adaptation methods can use do-
main invariant features to improve the performance
of the target domain, this phenomenon illustrates
the importance of mitigating domain transfer. How-
ever, if this method does not consider the texture
feature information contained in the source domain
and the target domain, it is still difficult to align
the entire source domain and the target domain.
In addition, the characteristics of having two do-
mains meanwhile will also have a certain degree
of negative impact on alignment, thus affecting the
performance of the two domains. GVB uses a fully
connected bridge to model domain-specific parts.
Compared with the single domain method, the suc-
cess rate of GVB for scanning sample recognition
is 36.8%. However, the simple structure of the
bridge makes it difficult to capture the characteris-
tics of different fields very well.

Finally, DANN does not consider the relation-
ship between samples and labels, but only directly
connects samples and labels to form a higher-
dimensional vector. This approach will hurt distin-
guishing the source domain and the target domain.
Compared with DANN, CDAN has improved the
scanned dataset by 6.4%. CDAN introduces sample
weighting in the discriminator for both the source
and target domains. As the classifier converges,
the weight assigned to source domain samples will
gradually approach unity, leading to equal weight-
ing for source samples. Although BSP applies the
singular value decomposition method to obtain the
maximum k singular values of the source and target
eigenmatrices, respectively. The BSP is utilized as
the regularization term in these maximum k singu-
lar values. Nevertheless, due to the discrepancies
between domains, the eigenvectors might not re-
ceive equal contributions from the source and target
domains, potentially leading to distortions.

In particular, for the classical adaptive models
CDAN and DANN, benefiting from the joint adap-
tation of STSN, pick-up entanglement and transfor-
mation and freedom from contamination by back-
ground textures during the adaptive process, our
network model’s improvements on top of them are
more advantageous for the recognition and classifi-
cation of scanned dataset. Inspired by the Fourier
transform, detailed features of the character struc-
ture are extracted from a frequency domain per-
spective, especially the edge part of high frequency.
In addition, a convolutional attention module is in-
troduced to extract more comprehensive features at
the encoder

However, due to the existence of some similar
characters, the model classification fails. For ex-
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Method Accuracy (%)

Handprint Scan

Baseline 92.2 44.9

Baseline+CAFM 93.2 50.7
Baseline+CAFM+FT 94.6 54.6
Baseline+CAFM+FT+bcem 94.7 56.5

Table 5: Statistical comparison of ablation experiments
of two key components in UFCNet. CAFM stands for
convolution attention fusion module. FT stands for
Fourier transform module.

ample, the characteristics of prediction and ground-
truth (GT) categories differ only in a few details.
Secondly, as shown in Figure 5, severe noise, se-
vere image degradation, even for humans, there are
certain challenges.

4.4 Ablation experiments

To verify the experimental effectiveness of each
block in our network, we conduct ablation exper-
iments on UFCNet. The baseline network is a
U-shaped codec structure where the private en-
coder consists of one convolution unit with a kernel
size of 7x7 (convolution, BatchNormalization, and
ReLU) and four convolution units with a kernel
size of 3. After each convolution, the input feature
is downsampled twice, the size of the feature map
is reduced, and then it is re-amplified through the
upsampling operation, which is used to transfer in-
formation between the encoder and the decoder, so
as to retain more detailed information. Then the av-
erage pooling operation is performed to reduce the
noise effect of irrelevant features. We add a convo-
lutional attention module and a Fourier transform
module to this and tested the baseline+CAFM and
baseline+FT and loss function on dataset Oracle-
241, respectively. All the ablation experiments are
performed in the same computational environment.
The test results are shown in Table 5.

Effectiveness of CAFM: Compared to the base
network, the performance optimization of adding
CAFM, especially in the classification accuracy
of the scanned dataset, increased by 5.8%. This
further indicates that adding the CAFM module to
the base network can capture more global feature
information, helping to locate the location of the
object.

Effectiveness of FT: The addition of the FT mod-
ule to the base network shows the superiority of our
FT module by Table 5, especially the recognition

accuracy for scanned dataset increases by 6.8%. In
particular, the FT module can obtain more edge
information when extracting high frequencies from
images

Effectiveness of the loss function: We use the
improved lbcem function, and the results in Table
5 shows that our loss function can improve the
discriminative property of the network for edges
and can better extract the detailed features of oracle
characters.

5 Conclusion

In this paper, we propose a new network UFCNet
for the recognition of oracle character images. Dif-
ferent from the recognition method of OBCs based
on CNNs, we use the Fourier transform to transfer
the recognition of oracle character images from the
image domain to the frequency domain and extract
rich edge information. At the same time, we use the
convolutional attention fusion module to fuse shal-
low features with deep features in multiple layers,
which makes up for the important detailed features
lost in the sampling process of the CNN. A large
number of experiments show that our UFCNet has
better recognition accuracy compared with SOTA
methods. However, due to the serious incomplete-
ness and blurring of OBCs, our network still needs
to be further improved in recognition.
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Abstract

Due to ancient origin, there are many incom-
plete characters in the unearthed Oracle Bone
Inscriptions(OBI), which brings the great chal-
lenges to recognition and research. In recent
years, image inpainting techniques have made
remarkable progress. However, these models
are unable to adapt to the unique font shape
and complex text background of OBI. To meet
these aforementioned challenges, we propose a
two-stage method for restoring damaged OBI
using Generative Adversarial Networks (GAN),
which incorporates a dual discriminator struc-
ture to capture both global and local image in-
formation. In order to accurately restore the
image structure and details, the spatial atten-
tion mechanism and a novel loss function are
proposed. By feeding clear copies of exist-
ing OBI and various types of masks into the
network, it learns to generate content for the
missing regions. Experimental results demon-
strate the effectiveness of our proposed method
in completing OBI compared to several state-
of-the-art techniques.

1 Introduction

Since the earliest discovery of Oracle Bone Inscrip-
tions(OBI), over 5,000 distinct character forms
have been identified, which have significantly ad-
vanced our comprehension of many characters’
meanings. These deciphered OBIs provide invalu-
able historical information crucial for understand-
ing various aspects of ancient Chinese politics, so-
ciety, religion, and more.

Recognizing and interpreting are important top-
ics in the field of OBI research. Due to the lack
of physical objects, the images of rubbings in the
recorded books are the main carriers of research.
However, some OBIs have suffered varying degrees
of residual erosion and damage on their surface, re-
sulting in a large number of incomplete fonts in

*Corresponding author: wangshibin@htu.edu.cn

the inscriptions and rubbings seen today. With the
rapid development of image generation technology,
many image restoration problems difficult to solve
in traditional methods have found new research av-
enues. The comprehensive application of artificial
intelligence and other technologies has become a
new research direction in the restoration of OBIs.

Zeng et al. (2019) proposed the Pyramid Context
Encoder Network (PEN). It is based on the U-Net
structure and encodes and decodes contextual se-
mantics to ensure visual and semantic consistency.
Li et al. (2020) developed the Recurrent Feature
Reasoning (RFR) network, featuring a plug-and-
play RFR module and a Knowledge Consistent At-
tention (KCA) module. They infer the hole bound-
aries and capture the distant feature information.
Wu et al. (2021) introduced a two-stage (coarse-to-
fine) model. It combines a Local Binary Pattern
(LBP) Waller et al. (2013) network and incorpo-
rates a new spatial attention mechanism. These
methods have enhanced image processing. How-
ever, they only grasp limited connections between
textures and edges. They fail to fully comprehend
image semantics and complex structures. Addition-
ally, they overlook the interplay between global
and local features. Given the complexities behind
incomplete fonts and unique font features, exist-
ing image restoration models struggle to effectively
complete OBI image inpainting tasks.

To meet these challenges, we propose a two-
stage (coarse-to-fine) font inpainting network. Our
network incorporates a dual discriminator structure
to capture both global and local image information.
Specifically, we employ a global discriminator to
focus on the spatial correlation between damaged
and undamaged regions. The local discriminator
concentrates on the local patch information. To
effectively understand the intrinsic features of the
image, we introduce a novel loss function to accu-
rately restore the structure and details. Through ex-
tensive comparisons, our framework demonstrates
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state-of-the-art performance in OBI image inpaint-
ing tasks.

2 Method

2.1 Network Architecture

The network is a two-stage deep generative model.
Both stages consist of encoder-decoder pipeline
and follow an adversarial model Goodfellow et al.
(2014). The network architecture is shown as Fig-
ure. 1. The damaged image consists of the missing
regions filled with white pixels, represented as Iin.
Lin denotes the LBP Waller et al. (2013) structural
information extracted from the damaged oracle Iin

in the grayscale channel. M represents a binary
mask, where 1 indicates the missing regions and 0
indicates the known regions.

In the first stage, the generator G1 includes seven
feature extraction blocks and feature restoration
modules. Each feature extraction block consists of
LeakyReLU Xu et al. (2015), a convolutional layer,
and InstanceNorm2d Ulyanov et al. (2016). The
decoder generates the content of the missing region
through seven feature restoration modules, which
consist of ReLU Nair and Hinton (2010), trans-
posed convolution, and InstanceNorm2d Ulyanov
et al. (2016). Finally, G1 and D1 generate the com-
pleted LBP structural information Lout and Lo.

In the second stage, an additional spatial atten-
tion layer is added to the fifth layer of the encoder.
This layer builds the correlations not only within
the known region but also among the missing re-
gions.

Due to a single discriminator judging the image
authenticity solely from a global perspective and
being unable to handle the details, artifacts and
structural inconsistencies may arise in the restora-
tion results. The dual discriminator, on the other
hand, judges the image from both global and lo-
cal perspectives. They compete with each other to
learn more effective weights.

2.2 Dual Discriminator

The structure of Dual PatchGAN Isola et al. (2017)
Discriminator (DP) is as shown in Figure. 2. The
left branch is a global discriminator that focuses
on the spatial correlation between damaged and
undamaged regions. Its input consists of an image
and a mask, and output is a 3D feature. Each CSL
block consists of a 5⇥5 convolution, SpectralNorm
Miyato et al. (2018) and LeakyReLU with ↵= 0.2.
In the first two CSL blocks, the number of convo-

lutional output channels is 64 and 128, while in
the others it is 256. The right branch is a local
discriminator with five 4⇥4 convolutions, which
focuses on the local patch. The first four layers use
the LeakyReLU with ↵= 0.2, the Sigmoid for the
last layer and the BatchNorm2d for normalization
in the middle three layers. The local discriminator
can be formulated as:

⌧adv2 = min
G2

max
D2

EIg

⇥
log D2(Ig)

⇤

+EIin [log (1 � D2 (G2 (Iin , M)))]
(1)

Our objective function for the global discrimina-
tor can be formulated as:

⌧adv3 = �EIin⇠PIin
(Iin) [D3 (G2 (Iin ))] (2)

⌧D3 = EIg⇠Pdata(Ig) [ReLU (1 � D3 (Ig))]

+EIin⇠PIin
(Iin) [ReLU (1 + D3 (G2 (Iin )))]

(3)
where G2 represents the second stage generator,
D2 and D3 represent the right and left branches of
the dual discriminator, respectively.

2.3 Multi-level Fusion Loss Function
We reduce the difference between the original im-
age and the inpainting image by using a multi-level
fusion loss function(MLFLF) to enhance the stabil-
ity of training.

The reconstruction loss is defined as:

Lr = kLo � Lgk2 (4)

Lo = Lin � (1 � M) + Lout � M (5)

The adversarial loss Yan et al. (2018) is defined
as:

⌧adv1 = min
G1

max
D1

ELg

⇥
log D1(Lg)

⇤

+ELin [log (1 � D1 (G1 (Lin , M)))]
(6)

The pixel-level reconstruction loss is responsible
for directly comparing each pixel of the generated
image with the target image:

Lvalid

=
1

Sum(1 � M)
k(Lout � Lg) � (1 � M)k1

(7)

Lhole =
1

Sum(M)
k(Lout � Lg) � Mk1 (8)
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Figure 1: The network architecture of our proposed method.

Figure 2: Proposed DP to introduce efficient local and
global consistencies.

The Total Variation (TV) Liu et al. (2018) loss
reduces noise and discontinuities, resulting in a
smoother and more continuous appearance:

Ltv = kLo(i, j + 1) � Lo(i, j)k1 +

kLo(i + 1, j) � Lo(i, j)k1

(9)

The multi-scale loss compares the differences
between ground truth images and mapping results

of different scales:

⌧m =
X

h2d

k�h (Io) � �h (Ig)k2 (10)

Io = Iin � (1 � M) + Iout � M (11)

We apply the perceptual loss Johnson et al.
(2016) and style loss Gatys et al. (2016) defined on
the VGG-16 Simonyan and Zisserman (2014) (pre-
trained on ImageNet Deng et al. (2009)) to enhance
the recovery of structural and textual information.

Iper =
X

i

k i (Io) � i (Ig)k1 (12)

Istyle =
X

i

k�i (Io) � �i (Ig)k1 (13)

where  i is the feature map of i � th layer in
ImageNet-pretrained VGG-16 network, �i(·) =
 i(·) i(·)T is from (Buades et al., 2005).

3 Experiments

3.1 Dateset
We select 2000 OBI images for training and 100 for
testing from the oracle bone images produced by
the Key Laboratory of Oracle Information Process-
ing of the Ministry of Education in Henan Province.
To better validate the results of the experiment, we
use the masks to simulate the broken regions of
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(b) Input(a) GT (f) Ours(e) LBPLSA(d) RFR(c) PEN

Figure 3: Comparison of qualitative results between the proposed method and other approaches on the irregular
mask. Our proposed method generates more effective structural and texture information.

OBIs. These masks are divided into irregular and
regular types. The irregular masks are obtained
from the NVIDIA dataset Liu et al. (2018), while
the regular masks are square masks of fixed size
(25% of the total image pixels) placed in the center
of the image.

3.2 Qualitative Comparisons

In this section, we conduct the experimental com-
parisons with other image restoration models.

For the restoration of OBI with irregular masks,
the visualization results are shown in Figure. 3.
The input image (b) shows the damaged OBI im-
ages. (c) demonstrates the results of using the PEN
network Zeng et al. (2019) with a mode collapse.
(d) using the RFR network Li et al. (2020) fails to
accomplish the complementation task effectively.
Note in particular the comparison between (e) the
LBPLSA network Quan et al. (2022) and (f) our
network. Our network evidently produces more re-
alistic completion results from the smoother strokes
in the first row of Figure. 3. And fewer or no ar-
tifacts appear at the end of the strokes in the rest
of the lines. In contrast, the LBPLSA network
exhibits severe artifacting and discontinuities in

strokes. It fails to adequately complete the objec-
tives. The presence of artifacts indicates that the
network did not accurately understand the miss-
ing content in the image. As a result, it fills in
unrealistic textures and structures.

We also explore the classic center mask comple-
tion scenario in image inpainting. Given that most
of the OBI content lies in the center, it is challeng-
ing for the network to infer the main content of
the characters from just one stroke at the boundary.
The generated results are depicted in Figure. 4. We
can see that the generated results of the PEN net-
work (c) collapse again and the RFR network (d)
fails to meet the target requirement. Focus on the
comparison between LBPLSA (e) and our method
(f) again, LBPLSA generates the images with more
artifacts and doesn’t effectively learn the semantic
information of the OBIs. For instance, in the sec-
ond row of Figure. 4, the strokes generated by the
LBPLSA are opposite to the ground truth. More ar-
tifacts are present in rows 5 and 6. Under the same
experimental configuration, our network achieves
results that are closer to the ground truth.
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(b) Input (c) PEN (e) LBPLSA (f) Ours(d) RFR(a) GT

Figure 4: Comparison of qualitative results between the proposed method and other approaches on the rectangle
mask. Our proposed method generates more effective structural and texture information.

method PEN RFR LBPLSA LG Ours
PSNR+ Irregular 8.67 14.67 25.67 27.01 29.61

rectangle 9.08 14.30 26.73 22.46 33.27
SSIM+ Irregular 0.6337 0.8507 0.9719 0.9781 0.9826

rectangle 0.7800 0.8397 0.9497 0.9449 0.9623
L1- Irregular 0.1628 0.0567 0.0091 0.0066 0.0058

rectangle 0.1425 0.0598 0.0162 0.0197 0.0143

Table 1: Comparison between the proposed method and state-of-the-art methods on the oracle dataset (+ indicates
higher is better, - indicates lower is better).

3.3 Quantitative Comparisons

In terms of evaluation metrics, we follow the struc-
tural similarity index (SSIM) Wang et al. (2004)
and peak signal-to-noise ratio (PSNR) as outlined
in references Ren et al. (2019). The evaluation
results are presented in Table 1.

Compared with other methods, the scores of each
indicator in our model have been improved. The
DP structure can effectively capture both the global
and local image information. Additionally, the
loss function component introduced MLFLF opti-
mizes semantic plausibility and structural consis-
tency. The integration of DP structure and MLFLF
component produces the images with reduced pixel-
level differences and leads to significant improve-
ments across SSIM, PSNR, and L1 distance met-
rics, which indicates the high accuracy and effec-

tiveness in image inpainting tasks.

3.4 Ablation Studies

The ablation studies are conducted under mask
rates ranging from 20% to 30%. We evaluate the
effectiveness of our proposed method by contrast-
ing three different experimental settings, including
the LBPLSA method, the SN method only with
DP component and the complete method. The gen-
erated results are depicted in Figure. 5. Part (a)
represents the ground truth OBIs. The input im-
ages with various degrees of damage are generated
by masks, shown in (b). The completion results of
LBPLSA (c), SN (d), and ours (e) are sequentially
displayed.

Compared with the LBPLSA method, the SN
method shows some improvement with the intro-
duction of the DP structure. The incorporation
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(b) Input (c) LBPLSA (d) SN (e) DP+MLFLF(a) GT

Figure 5: Qualitative results comparison of ablation study.

method NO DP DP+MLFLF
PSNR+ Irregular 25.67 28.66 29.61

rectangle 26.73 26.88 33.27
SSIM+ Irregular 0.9719 0.9798 0.9826

rectangle 0.9497 0.9566 0.9623
L1- Irregular 0.0091 0.0068 0.0058

rectangle 0.0162 0.0159 0.0143

Table 2: Quantitative results of ablation study on oracle dataset. (+ indicates higher is better, - indicates lower is
better).

of the DP structure enables the model to better
capture both global and local image information,
which improves the restoration results to a certain
extent. However, the SN method lacks the further
optimization from the MLFLF component. It still
has certain limitations and fails to fully exploit the
intrinsic features of the images.

Furthermore, our complete method achieves fur-
ther improvements across all metrics within the
experimental scope. By leveraging the dual advan-
tages of DP and MLFLF, our method can more
accurately restore the structure and details of the
images. This makes the restoration results closer
to the original images. Compared to the methods
only with DP, the addition of the MLFLF compo-

nent further enhances the clarity and quality of the
restored images. This leads to better performance
across metrics, such as SSIM, PSNR, and L1 dis-
tance, as demonstrated in the ablation study metrics
presented in Table 2.

Through the ablation studies, we validate the
crucial roles of DP and MLFLF in image restora-
tion tasks. The DP structure enhances the model’s
understanding of images, while the MLFLF mod-
ule further optimizes detail and texture restoration.
This showcases significant advantages across all
metrics. These experimental results validate our
method’s effectiveness. They emphasize the impor-
tance of leveraging the dual advantages of DP and
MLFLF in image inpainting tasks.
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4 Conclusion

We propose the two-stage (coarse-to-fine) network
for efficient OBI image inpainting. This new frame-
work consists of an enhanced LBP network and in-
tegrated DP and MLFLF components. Specifically,
we design a novel dual discriminator network. The
first stage LBP learning network adopts a U-Net ar-
chitecture, aimed at accurately predicting structural
information in missing regions. This guides the
second image inpainting network in better filling
missing pixels. In the second stage image gener-
ation network, we employ dual discriminators to
complete the masked regions. Compared to sev-
eral state-of-the-art methods, experimental results
demonstrate the effectiveness of DP and MLFLF
components in the proposed method in completing
OBI image inpainting tasks.

In the future, we plan to further develop our net-
work to achieve more powerful functions, such as
increasing the speed, realizing editing functions,
and improving the efficiency of paleographers. Our
goal is to solve the problem of more complex noise
or higher mask coverage. We believe that our
two-stage (coarse-to-fine) generation model can
be extended to very high-resolution coloring ap-
plications by improving the first-stage generation
results.
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Abstract

We investigate the problem of restoring Myce-
naean linear B clay tablets, dating from about
1400 B.C. to roughly 1200 B.C., by using text
infilling methods based on machine learning
models. Our goals here are: first to try to im-
prove the results of the methods used in the
related literature by focusing on the characteris-
tics of the Mycenaean Linear B writing system
(series D), second to examine the same prob-
lem for the first time on series A&B and finally
to investigate transfer learning using series D
as source and the smaller series A&B as target.
Our results show promising results in the super-
vised learning tasks, while further investigation
is needed to better exploit the merits of transfer
learning.

1 Introduction

For many years the language attributed by the Lin-
ear B script (c. 1400-1200 B.C.) was a point of
contention among scientists, who argued over the
origin of the Mycenaean syllabary. The answer was
given in 1952 by Michael Ventris (Chadwick, 1990;
Fox, 2013) who, together with the philologist John
Chadwick, proved that the syllables of the Linear
B script form words of the Greek language and that
the Mycenaean world was both linguistically and
culturally linked to ancient Greece.

Mycenaean Linear B is a syllabic script. It in-
cludes syllables as well as logograms or ideograms.
In summary, Linear B is structured by groups
of phonetic symbols, which are accompanied by
ideograms. The surviving tablets typically refer
to human names, place names, agricultural pro-
duction, land ownership, religious offerings, or
military equipment. The Mycenaean inscriptions
have been classified based on their place of ori-
gin, but also based on the category to which they
belong. The place of origin is indicated by the
following abbreviations: KN (Knossos), PY (Py-
los), MY (Mycenae), TH (Thebes), TI (Tiryns),

KH (Khania), MI (Midea), etc. The classification
into categories was based on the ideograms of the
tablets: Series A&B, (lists of personnel), series
C (animal records), series D (sheep records), se-
ries E (grain records), series F&G (records of oil,
agricultural products and their offerings), series L
(textile records), etc. (Kober, 1945), (Kober, 1946),
(Kober, 1948), (Ruijgh, 1977).

The main challenge faced by those dealing with
the study and restoration of the Mycenaean Linear
B texts, either manually (Ventris and Chadwick,
1953, 1956; Killen, 1964; Doria, 1965; Ventris
et al., 1988; Meissner, 2001; Robinson and Eisen-
man, 2002; Pope, 2008; Duhoux and Davies, 2008;
Fox, 2013; Ventris and Chadwick, 2015; Freo and
Perna, 2019; Bernabé and Luján, 2020) or computa-
tionally (Papavassiliou et al., 2020; Papavassileiou
et al., 2023), is the scarcity of data. Furthermore,
we have to take into account the particularities pre-
sented by the Mycenaean inscriptions: a) Their
eminently administrative content, b) their subject
as they deal extensively with people and places and
c) their state of preservation since most of them are
broken, worn out or burnt. These make the infilling
task very challenging.

This article contributes by investigating Transfer
Learning (TL) techniques to alleviate the above
mentioned data scarcity. TL is the process of tak-
ing a model that has been trained to do one task
(pre-trained model) and fine-tuning it to work on a
related (different or similar) task. In Natural Lan-
guage Processing (NLP), pre-trained models are
often used as the starting point for a wide range of
NLP tasks, such as language translation, sentiment
analysis, and text summarization. By using a pre-
trained model, we can save time and resources, as
they don’t have to train a model from scratch on
a large dataset (Devlin et al., 2019; Radford et al.,
2019; Peters et al., 2018; Liu et al., 2019).

In this work we deal with series A&B and se-
ries D to find out the effect of TL from a series to
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another one. To this end we have chosen to investi-
gate the effect of TL from the series D, since it is
the largest with the most tablets and resulting se-
quences, to the series A&B, as opposed to training
the series as a whole.

We also contribute by investigating whether
there is an improvement in the predictions of mod-
els learned from series D (Papavassileiou et al.,
2023; Papavassiliou et al., 2020) if we remove
the ideograms from the sequences. This choice
is based on the observation that in Linear B, typi-
cally there is consistent separation of phonographic
(syllabograms) and non-phonographic (ideograms
as well as signs for measurement units and num-
bers) graphemes (Petrakis, 2017).

Finally we apply generative methods for the
infilling problem of series A&B. Following the
same tactic with series D, we create a dataset of
sequences derived from the Mycenaean tablets of
series A&B, excluding ideograms, and use it to
learn a generative model in order to predict dam-
aged parts of this series’ tablets.

The rest of the paper is organized as follows:
In Section 2 we provide an overview of previ-
ous research and studies on various methods of
restoring ancient inscriptions. In Section 3 we
present the dataset for our experiments. Section
4 demonstrates supervised learning for language
modelling and for missing symbol recovery. Sec-
tion 5 presents transfer learning techniques for in-
filling series A&B. Finally, in Section 6 we present
our conclusions and the future work.

2 Related work

The problem of text restoration through infilling
is attracting more and more attention from re-
searchers community; however most recent results
from the Natural Language Processing (NLP) com-
munity have been only partially applied, obviously
due to the lack of sufficient data.

Some of the simplest models are the n-grams.
These are probabilistic models for predicting the
next item in a sequence of n elements and can be
used to model almost any type of sequential data.
They have been used for machine translation (Wolk
and Marasek, 2014), but also for textual restora-
tion. (Rao et al., 2009) and (Yadav et al., 2010)
use n-gram Markov chains for texts in the Indus
script. The benefits of n-gram models are their sim-
plicity and scalability. With larger n, a model can
store more context, enabling small experiments to

scale up. However, when n increases, the number
of possible n-grams increases exponentially and
therefore the out-of-vocabulary n-grams increase
as well and actually undermine the performance of
the model. Obviously, the n-grams are not appro-
priate for long sequences.

(Roued-Cunliffe, 2010) uses a decision support
system called DUGA for reading ancient docu-
ments in the Latin language found in Vindolanda
(Britain). She uses the so-called cruciverbalistic
approach: it begins by establishing the letters that
are legible and uses them as a foundation for a sub-
sequent hypotheses. A knowledge-base of previ-
ously interpreted documents from the same period
is used to extract word lists and frequencies. These
are then used to suggest different interpretations of
words and letters, as well as missing parts, using a
hierarchical approach from individual symbols to
whole sentences. The system is therefore largely
based on the experts’ decisions. (Kang et al., 2021)
present a multi-task learning approach based on
the Transformer networks to effectively restore and
translate ancient historical documents based on a
self-attention mechanism, specifically utilizing two
Korean historical records, one of the most volu-
minous historical records in the world. This work
combines 3 different studies: the restoration of
damaged documents (recovering), neural machine
translation (translating), and the analysis of histori-
cal records (mining). The proposed model consists
of embedding and output layers for Hanja and Ko-
rean, and three Transformer modules: the shared
encoder (for both the restoration and translation
tasks), the restoration encoder (for the restoration
task), and the translation decoder (for translating
Hanja sentences into modern Korean sentences).
However, a large-scale training corpus is required.

Similar to our work is the PYTHIA system (As-
sael et al., 2019) and its follow-up system Ithaca
(Assael et al., 2022). It aims to fill the missing
symbols (characters) in ancient Greek inscriptions.
The authors use a sequence-to-sequence frame-
work (Sutskever et al., 2014) with Long Short-Term
Memory (LSTM) networks in the encoder and the
decoder. The encoder involves the input charac-
ter embeddings sequence with missing characters,
and a separate stream is also modelled using the
word sequence as embeddings as well; an attention
layer is also used. The decoder is trained to output
the missing characters. They use a dataset that re-
sults from processing the epigraphical corpora of
the Packard Humanities Institute (Packard Human-
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ities Institute, 2005), the PHI-ML. As (Shen et al.,
2020) argue in their ancient text restoration experi-
ment, (Assael et al., 2019) perform restoration at
the character-level where the number of characters
to recover is assumed to be known and indicated
by a corresponding number of ‘?’ symbols. In re-
ality, when epigraphists restore a deteriorated doc-
ument, the length of the lost fragment is unknown
and needs to be guessed as a first step. BLM, in
essence a variant of BLM, the L-BLM, can bypass
this limitation and flexibly generate completions
without this additional knowledge. A single token,
sized equal to the number of ’?’ symbols, is defined
and the L-BLM is trained to predict a character to
fill in and the length of the new blank to its left.
Compared to our work, the problem presented by
the authors of these articles (Assael et al., 2019;
Shen et al., 2020) is similar in the sense that it
concerns a known script and known language and
uses a machine learning architecture. However, our
task is more challenging, due to the fact that the
corpus is of much smaller size (over 40000 inscrip-
tions available in the aforementioned articles versus
1100 inscriptions in ours); that impedes training.

(Fetaya et al., 2020) use recurrent neural net-
works (LSTM) to restore fragmentary Babylonian
texts. These involve ancient texts in the Akkadian
language, which belong to the Semitic language
family. Comparisons to simple 2-gram baseline
approach (considering the previous and the next
word) are made, resulting in better performance.
The experiments use a dataset of 3000 transliter-
ated archival documents belonging to economic,
juridical and administrative genres. Similarly to
this work, (Lazar et al., 2021) also introduce BERT-
based models aiming to solve the task of predicting
missing signs in Akkadian texts. The difference
with the previous article (Fetaya et al., 2020) is that
the completion of missing signs is done by combin-
ing large-scale multilingual pretraining with Akka-
dian language finetuning. Although (Fetaya et al.,
2020) have small-scale data at their disposal to
train the learning algorithm (c. 3000 Babylonian
transliterated texts, 539-331 B.C.E.), what is em-
phasized by the authors is that the late Babylonian
texts are structured official bureaucratic documents,
e.g., legal proceedings, receipts, promissory notes,
contracts and so on. This is in stark contrast to
Linear B tablets, which are significantly impeded
by syntactic inconsistencies. This is proved by the
fact that the pre-processing of each Mycenaean
tablet requires special handling, so as to extract

valid sequences of Mycenaean words in accordance
with the principles of Mycenaean language. An-
other BERT-based model, Latin BERT, is proposed
by (Bamman and Burns, 2020). They pre-trained
BERT model on Latin texts from Perseus, PROIEL
and Index Thomisticus Treebank, targeting restora-
tion and several other downstream tasks. (Som-
merschield et al., 2023) offer a review on published
research using machine learning for the study of an-
cient texts. They also classify the studies of ancient
texts into tasks: digitisation, restoration, attribution,
linguistic analysis, textual criticism, translation and
decipherment. Finally, a similar review task takes
place in the article (Braović et al., 2024), but focus-
ing on the computational techniques related to the
Bronze Age Aegean and Cypriot scripts, namely
the Archanes script and the Archanes formula, Cre-
tan hieroglyphic (including the Malia Altar Stone
and Arkalochori Axe), Phaistos Disk, Linear A,
Linear B, Cypro-Minoan and Cypriot scripts.

The work in (Papavassileiou et al., 2023) is simi-
lar to ours and is the only one that we are aware of
that does infilling for the Linear B tablets. However,
that work is limited to series D tablets and considers
both phonogrpahic and non-phonographic symbols.
Furthermore, like all aforementioned methods, it
does not investigate transfer learning.

3 The Mycenaean dataset

Here we present the modifications we made to the
Mycenaean dataset of series D, that was initially
created as described in (Papavassiliou et al., 2020)
and (Papavassileiou et al., 2023). We also present
the way to create the new dataset of series A&B.

The Linear B script uses two basic symbol sys-
tems, one phonetic (phonographic component) and
one logographic (non-phonographic component).
The symbols of the phonetic system are called
syllabograms-syllables. The phonetic system is
usually represented transcribed, i.e., the syllable
is rendered in letters, and in most cases by a com-
bination of consonant and vowel. The system of
the phonetic symbols, includes at least 87 different
syllables. For the symbols of the logographic sys-
tem, the term ‘ideograms’ or ‘logograms’ is used,
sometimes modified by ligatured signs or ‘adjuncts’
(mostly acrophonic abbreviations) (Petrakis, 2017).
The ideograms are 143. For their representation a
transcription is used, based on the abbreviation of
the Latin name of the represented object or being,
e.g., VIR ‘man’, MUL(ier) ‘woman’. Additionally
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Figure 1: The image of the Mycenaean Linear B tablet
KN Dd 1155 + 5378 + 5688 (the copyright of the im-
ages belongs to the Hellenic Ministry of Culture and
Sports - “Hellenic Organization of Cultural Resources
Development”). Translation of the Mycenaean tablet
"Wiokados (shepherd’s name): at Dawos (place name)
belonging to Werwesios (collector’s name), rams 86,
ewes 14"

there are numbers that follow the decimal system
and measurements units of weight and capacity
(Ruiperez and Melena, 1996; Duhoux, 2014).

The assumption for the creation of both datasets
was based on the clear separation of the signs of the
Linear B writing system into phonograms and non-
phonograms. The phonographic part is made up of
the syllables, while the non-phonographic compo-
nent includes the ideograms sometimes modified
by ligatured signs or ‘adjuncts’ (mostly acrophonic
abbreviations), as well as signs for measurement
units, numbers, and other marks, such as signgroup
dividers or ‘check-marks’ (Petrakis, 2017). There-
fore, we decided to exclude the ideograms.

3.1 The dataset of series D

The series D of Knossos, which is the largest clas-
sification, comprises the accounts of sheep herds in
around 1100 tablets. Most of them were probably
written by the same scribe and have a similar struc-
ture. From those tablets 513 complete sequences
were extracted, without missing syllables. From
the augmentation rules (similar to (Papavassileiou
et al., 2023)) were obtained 2052 sequences (725
augmented samples and 1327 duplicated samples).
So, 2565 constitute the training set of the model.
The remaining sequences were more or less dam-
aged, making about 145 sentences. The new Vo-
cabulary was defined by [77 syllables, space].

In essence, the modification we made in the
dataset of series D, (Papavassileiou et al., 2023),
concerns the removal of ideograms from the se-
quences, along with the numeric signs and the mea-
surement units of weight and capacity. Thus, only
the signs which occur in groups, i.e., the words,
make up the new corpus. An example of such a
sequence is shown in Table 1 derived from Figure
1.

Mycenaean sequence with ideograms
wi-jo-ka-de da-wo we-we-si-jo OV ISm OV ISf

Mycenaean sequence without ideograms
wi-jo-ka-de da-wo we-we-si-jo

Table 1: Mycenaean sequence extracted from the Myce-
naean Linear B tablet KN Db 1155 + 5378 + 5688
(Fig. 1) including ideograms (up), excluding ideograms
(down).

3.2 The dataset of series A&B

We chose to include in the dataset the documents
of series A&B found in Knossos (site of origin),
to facilitate transfer learning from series D tablets,
which originate from Knossos.

The tablets of series A&B write on staff lists/
staff statuses/ personnel situations; more specifi-
cally they include work groups. The introductory
words, describing these groups, can be either a
Cretan place-name, or a man’s name (sometimes
in genitive), or a feminine ethnic adjective from
a place-name (ethnic-name), or an occupational
name (trade-name) or some combination of these.

Some specific rules applied in this series are:

1. The tablets that contain complex (compound)
sentences, are converted into simple ones.
E.g., tablet KN Ai 63, Figure 2, writes “pe-se-
re-jo e-e-si MUL 1 ko-wo 1 ko-wa 1” trans-
lated as “To Psellos belong one woman, one
girl and one boy” (family or chattel slavery
record). This tablet provides 3 sequences for
our dataset: “pe-se-ro e-e-si”, “pe-se-ro e-e-si
ko-wa” and “pe-se-ro e-e-si ko-wo”.

2. The second rule has to do with abbreviations.
Most of the time the syllables are placed one
after the other to form recognizable words.
But, there are also cases where the syllables
are used individually. When this happens, the
syllable functions either as a ligature with an
ideogram, or as an ideogram adjunct, or as an
abbreviation of a word. There are numerous
such annotations in series A&B that refer to
the third case, abbreviations. In cases where
we know the full form of abbreviated words,
then the abbreviations are replaced by the full
words. E.g., the tablet KN Ak 627, Figure 3,
writes “da-*22-to a-no-zo-jo TA 1 DA 1 MUL
9 pe di 2 ko-wa me-zo-e 7 ko-wa me-wi-jo-e
10 ko-wo me-zo-e 2 ko-wo me-wi-jo-e 10”.
Here, the abbreviations ‘pe’ and ‘di’ appear.
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Figure 2: The image of the Mycenaean Linear B tablet
KN Ai 63(image copyright belongs to the Hellenic Min-
istry of Culture and Sports - “Hellenic Organization of
Cultural Resources Development”). Translation of the
Mycenaean tablet To Psellos (name of a person) belong
one woman, one girl and one boy.

Figure 3: The image of the Mycenaean Linear B tablet
KN Ak 627 + 7025 + fr (image copyright belongs to the
Hellenic Ministry of Culture and Sports - “Hellenic Or-
ganization of Cultural Resources Development”). Trans-
lation of the Mycenaean tablet In area da-*22-to the
work group belonging to a-no-zo consists of one leader,
one damar, nine women, of which two come from the
censuses of the previous year in a period of apprentice-
ship, 7 older girls, 10 younger girls, 2 older boys and
10 younger boys.

These are the shortened forms of the words
‘pe-ru-si-nu-wo’ (last year’s) and ‘di-da-ka-
re’ (during apprenticeship/under instruction)
(Ventris and Chadwick, 2015), which will ap-
pear in their full form in the dataset.

We gathered all the sequences that emerged from
the tablets of series A&B, without missing symbols,
426 in number. The sequences resulting from the
damaged tablets of this category were around 159.
We defined a Vocabulary of [75 syllables, space].

The augmentation used in series D cannot be
applied to series A&B tablets due to the fact that in
A&B we mostly encounter lists of human names.

4 Supervised learning for infilling
Mycenaean tablets

In the first place, we employ a symbol-level Bidi-
rectional Recurrent Neural Network (BRNN), (as

has been employed in (Papavassileiou et al., 2023))
to fill in the gaps in the Mycenaean tablets of series
D and A&B. The goal in this case is to check if the
predictions of the model improve by removing the
ideograms from the Mycenaean sequences.

4.1 Modeling series D
A variation of Leave One Out Cross Validation
(LOOCV) procedure was followed, the Leave-"one
and its derivatives"-Out Cross Validation, in or-
der to evaluate the BRNN model on unseen data,
considering the scarcity of data. The derivatives
are the samples/sequences resulting from applying
an augmentation step to the real sample/sequence
that is currently left out for testing. So, the sam-
ples resulting from augmentation of the current test
sample sequences were excluded from the respec-
tive training set to avoid contamination of the test
set by including sample sequences of the same ori-
gin (through augmentation). Furthermore, only the
original sequences were used for testing (not the
augmented or the duplicated ones), to make results
comparable to those where no augmented data were
used. Thus, the model is trained 513 times and the
final performance is based on all these runs.

We implemented a function that performs one
step of stochastic gradient descent with gradient
clipping, ClippingV alue = 0.5. We applied the
greedy heuristic approach to search for the best
hyperparameters, ending up with: 110.000 itera-
tions (epochs = 43), number of neurons in hidden
layer Nhl = 57, and learning rate lr = 0.01. As an
output activation function was set the softmax func-
tion and for the hidden layer the hyperbolic tangent
(Tanh) function was chosen. For the initialization
of weight matrices and bias vectors, we ended up
in “Glorot/Xavier” as the most suitable for use.
Given those choices we came to the results for the
BRNN shown in Table 2, which demonstrate an
improvement when compared to the baseline.

We used the trained model to infill gaps for
which experts made educated guesses on the miss-
ing parts (Chadwick et al., 1987), mainly based
on the visual cues, since some small parts of the
syllables remain visible. The experts didn’t use the
sequences’ structure unlike our method. Eight (8)
of our TOP-5 predictions agree with the literature
recommendations. This number shows an improve-
ment of 2 units compared to the corresponding
training of the BRNN model on the dataset includ-
ing ideograms (Papavassileiou et al., 2023). See
the Appendix A for more details.
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SERIES D - with ideograms
TOP-1 TOP-5 TOP-10 TOP-15 TOP-20
48.34 65.30 71.93 74.85 78.17

SERIES D - without ideograms
TOP-1 TOP-5 TOP-10 TOP-15 TOP-20
48.56 65.50 72.12 76.02 80.12

Table 2: Estimated scores (percentages) of finding the
correct missing symbol among the top-k most likely
symbols (k=1,5,10,15,20) according to the probabilities
estimated by the BRNN model. Up, the training dataset
includes the ideograms. Down, the training dataset does
not include the ideograms.

4.2 Modeling series A&B

At this point we evaluate the performance of the
model learnt from A&B series. In a similar fashion
to D series, we conducted two experiments, one
with synthetic gaps and one with real ones.

4.2.1 Infilling synthetic sequences

To estimate the performance of the model on un-
seen data, the Leave-One-Out Cross-Validation
(LOOCV) is used, since the data are scarce.

We randomly removed syllables from the 426
sequences in order to test the prediction capability
of the BRNN model. The creation of the synthetic
gaps follows the distribution of the real gaps ap-
pearing in the damaged tablets of this category.
67% of the real gaps occur at the beginning of the
sequence, 17% somewhere in the middle of the
sequence and 26% in the end of the sequence. We
created a similar distribution for synthetic gaps.

The model is trained 426 times and the final per-
formance estimate is based on all these runs. We
used the Cross-Entropy loss along with the stochas-
tic gradient descent optimizer with gradient clip-
ping value of 0.5. The network is trained for 55.000
iterations (epochs = 129) - batch−size = 1, with
58 neurons in the single hidden layer and learn-
ing rate, lr = 0.01. For the hidden layer of the
neural network was used the hyperbolic tangent
(Tanh) activation function and as an output acti-
vation function was chosen the softmax function
since it is a d-way classification problem. Finally,
"Glorot/Xavier" was chosen for the initialization
of weight matrices and bias vectors.

Given those choices we came up with the results
in Table 3. The model’s prediction rates on series
A&B are lower than those of its counterpart (Table
2 (down)) on series D. This is mainly due to the fact
that the tablets of series A&B offer fewer sequences
and we could not formulate augmentation rules.

SERIES A&B
TOP-1 TOP-5 TOP-10 TOP-15 TOP-20
30.28% 50.23% 57.75% 61.97% 66.20%

Table 3: Estimated scores (percentages) of finding the
correct missing symbol among the top-k most likely
symbols (k=1,5,10,15,20) according to the probabilities
estimated by the BRNN model. The training dataset
does not include the ideograms.

Figure 4: The image of the damaged Mycenaean tablet
KN Bk 799 + 8306. (© Hellenic Ministry of Culture)
(left) and its drawing (right). It lists men’s names. Thir-
teen of them are complete. Around 6 names remain
unknown.

4.2.2 Infilling real sequences

In this experiment, the model is applied in some
real cases. In order to predict the missing syllables
from the 159 sequences obtained from the dam-
aged tablets of series A&B, we used the BRNN
model from the previous experiment (A) which
was trained on the 426 complete sequences.

In this category, experts have offered their opin-
ion on a number of cases, 29 in all, as to what the
missing syllable might be, based on the visual sim-
ilarity that the remnant might have with the Myce-
naean syllables. For example, experts suggest that
the residue on the tablet in Figure 4 is equally likely
to match the syllables ’ka’ and ’qe’, thus complet-
ing the man’s name ’a-ka-de’ or ’a-qe-de’. More
such results are presented in the Appendix A.

Of the model’s TOP-10 predictions, slightly
more than half (15) match the experts’ estimates.
Of these correct predictions, always in agreement
with the visual assessments of the experts, 9 are in
the top 5 predictions (TOP-5), Table 5. This gives
an indication that the model can learn effectively
from the data. More details are given in the Tables
of the Appendix A.

One way to increase the data of series A&B is
to include the tablets of this series from other sites,
namely Pylos, Thebes, Mycenae etc. However, that
process has to be done with great caution so as not
to contaminate the content of the dataset.
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5 Transfer learning for infilling series
A&B

In the following we investigate different transfer
learning approaches for enhancing the model for
series A&B (target) using the model learnt from
series D (source). Series D data involves more
tablets and is syntactically richer while the data
in series A&B is scarce. However, for the NLP
standards both series are considered very scarce.

We have essentially experimented with 2 simple
TL techniques:

(A) Use the parameters of the model trained on
D, see Section 4.1, as initialization for the training
of the A&B series model (CASE A).

(B) Freeze the D model while training a second
hidden layer using Tanh activation, finally fed to a
softmax output layer (CASE B).

5.1 Case A: Weights initialization from D

We use the pre-trained D model only to initialize
the A&B model.

By replacing, in the weight initialization proce-
dure, the "Glorot/Xavier" method with the optimal
parameters extracted from the training of another
neural network model, we seek to examine whether
there will be an improvement in the results.

The first goal is to use the optimal parameters
extracted from the pre-trained model in series D
corpus, as weight initialization for the training of
series/corpus A&B.

In each LOOCV evaluation/iteration, the opti-
mal parameters from the training of corpus D are
used as weight initialization. The best results from
the training of series D were collected with hyper-
parameters; learning rate = 0.01, mini batch size
= 1, epochs = 43 (110.000 iterations), one hidden
layer with 57 neurons/units.

We experimented with the number of iterations
as hyperparameter and the results of Table 4 (CASE
A) were achieved with 12.000 iterations (epochs ≈
28).

5.2 Case B: Add and train a second hidden
layer

In this case we connected the D model with an addi-
tional neural network layer of 55 neurons (emerged
after many tests), in order to train the A&B corpus,
and to experiment with the following technique:
Freeze the trained model in D and train the attached
layer (CASE B).

CASE A
TOP-1 TOP-5 TOP-10 TOP-15 TOP-20
25.65% 43.66% 54.23% 62.91% 67.37%

CASE B
TOP-1 TOP-5 TOP-10 TOP-15 TOP-20
24.71 42.96 50.70 57.28 63.15

Table 4: Estimated scores (percentages) of finding the
correct missing symbol among the top-k most likely
symbols (k=1,5,10,15,20) according to the probabilities
estimated by the TL models, CASE A and CASE B

Here we kept the weights of the pre-trained layer
frozen while we trained only the attached neural
network layer. The initial layer has 57 neurons,
Nhl1 = 57, since it corresponds to the pre-trained
model in series D, and the second layer has 55 neu-
rons, Nhl2 = 55. In each iteration, iters = 6.000
(epochs ≈ 14), the weights of the initial layer re-
main frozen, while the weights of the higher/second
layer were readjusted/updated. Thus, we ended
up with a bidirectional recurrent neural network
with two hidden layers, which on the second layer
performs one step of stochastic gradient descent
with gradient clipping, ClippingV alue = 0.8,
and learning rate, lr = 0.01. Table 4 (CASE B)
illustrates the results of this architecture.

5.3 Assessment
Comparing the experiments of TL with that of train-
ing on series A&B from scratch, we observe the
following:

• There is no overall improvement in synthetic
gap infilling in comparison to learning from
scratch as displayed in Table 3 and Table 4.

• The results of the trained model of cases A and
B on the 29 real cases of the series A&B are
presented in Table 5. The TL again does not
seem to outperform the model trained from
scratch in A&B series. However, the model
behaves better and actually gives solutions
in some complex cases, in cases where only
one syllable has survived from the incomplete
word (e.g., Mycenaean tablets KN Ak 7022
[+] 7024 and KN Ai 7745), while the model
from supervised learning does not. These are
described in detail in Appendix A.

Surely further investigation is needed on TL
methods. The relative success for the real gap in-
filling task let us assume that if the data of series D
(pre-trained model) increases then we will probably
get better prediction rates.
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Series
A&B BRNN TL CASE A TL CASE B

29 sugges-
tions

TOP5:
9

TOP10:
15

TOP5:
9

TOP10:
12

TOP5:
8

TOP10:
14

Table 5: Number of predictions (TOP-5 and TOP-10)
in agreement with the visual assessments of the experts
in the 29 instances for the three cases concerning the
training of category A&B.

6 Conclusions and future work

Our model exploits a character-level Bidirectional
Recurrent Neural Network and two Transfer Learn-
ing approaches in order to capture the statisti-
cal structure of the Mycenaean documents. Our
methodology is expected to assist the experts re-
cover the missing parts by offering alternatives
along with their probability, which are complemen-
tary to the visual channel. The key takeaways are
described in the following.

Training the BRNN model on the different se-
ries D datasets, by excluding the ideograms, we
experienced a small improvement over the with-
ideograms dataset.

The training of a similar BRNN model in se-
ries A&B from Knossos gives reasonable results.
The prediction rates are reasonably lower, since the
dataset includes significantly fewer tablets and con-
sequently offers fewer sequences; these sequences
are much shorter, most of them a single word, com-
pared to those of series D.

We explored the potential of transfer learning
techniques in a small dataset, with mixed results.
Although the overall performance is not better than
training from scratch, the TL should not be rejected
because it exhibits some complementarity with su-
pervised learning. Further investigation is needed,
potentially with more data series.

The research can be extended to incorporate
more series (apart from series D and A&B there
are about 12 more series to investigate), including
newly discovered or previously unexplored Myce-
naean tablets. Increasing the size and diversity of
the dataset can contribute to the robustness and gen-
eralization of the models, enabling them to handle a
broader range of linguistic variations and complex-
ities. Furthermore, we can incorporate Mycenaean
tablets from other sites, not only from Knossos,
for example from Pylos, Thebes, etc. Such an at-
tempt will not only increase the dataset but will
also contribute to enhancing the diversity of the
data.

The incorporation of the visual modality is an-
other aspect that we have not investigated so far,
but should do in our next steps.
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A Appendix

Here we present the damaged Mycenaean tablets,
along with the experts’ guesses based on the visual
cues of some small parts of the missing syllables
(Chadwick et al., 1987). We compare our mod-
els (Bidirectional Recurrent Neural Network and
Transfer Learning) with those estimations.

The bibliographic comments on the missing sym-
bol, are shown in the third column, and the results
of the model in the fourth one. The symbol ’bl’
corresponds to the ’space’ symbol.

In Table 1 are presented the D series BRNN pre-
dictions for the 15 cases for which we have the
opinions of the experts. Eight of our TOP-5 pre-
dictions agree with the literature recommendations.
In the following we try to give some possible ex-
planations for the remaining 7 model’s predictions,
since there is no hard evidence available:

• On the tablet Dl 933 we find a syllable, ’*83’
(its phonetic value has not been determined
with certainty), which is quite rare and is ob-
served only twice in the training dataset. As a
result, the model is probably not sufficiently
trained in such a context.

• The TOP-5 BRNN predictions are not con-
sistent with the remnant in the KN Dv 1213
and KN Dv 5236 + 532. The model priori-
tizes other syllables, probably due to the short
sequence length, which conveys rather poor
context information. Inclusion of visual evi-
dence in our model in the future could handle
such issues.

• The tablet Da 1341 is a difficult case, since
the visual evidence is very weak and even the
experts note that their degree of certainty is
low.

• For the tablet KN Db 5310 + 6062 + 837 we
notice that the predictions of our model, and
in fact the ’ka’ and ’ra’, are not completely
irrelevant/unrelated to the remnant.

• The tablet Db 5359 + 5565 +7214 is another
difficult case as acknowledged by experts and
their degree of certainty is also low.

• The remnant in tablet KN Do 7740 largely
matches the syllable ’ke’, suggested by the
bibliography. The model in this case probably
failed to predict part of a human name; human
names are typically unique.

As regards Tables 2, 3 and 4 related to the ex-
perts’ suggestions in the 29 real cases of series
A&B, we observe the following:

• There is a convergence of the models after
Transfer Learning with the estimations of the
experts for real gaps. If we observe the pre-
dictions of the BRNN model on the damaged
tablets of series A&B, Table 2, in relation
to those after applying the Transfer Learning
technique, Tables 3 and 4, we will see that
when the predictions of all three models agree
with the bibliographic annotation, tablets KN
Bk 806 + 6053 + frr (eighth row) and KN As
1516 (thirteenth row), then the predictions of
the TL models rank higher (among the TOP-5
predictions).

• Another important observation, concerning
the TL method, results from the tablet KN Ak
7022 [+] 7024. This tablet offers 6 sequences
(twenty-first - twenty-sixth row), Tables 2, 3
and 4. The bibliography for the incomplete
word, "*-ki", suggests the syllable "do". This
syllable begins to appear in the BRNN pre-
dictions of the Table 4, which concerns TL
method (CASE B). It is quite difficult to pre-
dict the rest of a word when there is only one
syllable left. These cases are more likely to
be approached with TL techniques rather than
training from scratch.

• It is no coincidence that results for tablet KN
Ai 7745 (twenty-ninth row), in agreement
with the experts’ opinion, we only have with
TL method and indeed in CASE B (Table 4)
it is the first choice.

• Something similar happens with tablets KN
Bk 5134 (fifteenth row) and KN As 5932 [+]
8342 (twentieth row). Only the TL method
manages to display the desired syllable in the
TOP-10 predictions, Table 4 for the KN Bk
5134 and Table 3 for the KN As 5932 [+]
8342, with the difference that they are not in
the TOP-5.

Due to these reasons we believe that TL methods
need further investigation.
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Damaged
Tablets Sequences Bibliographic

annotation BRNN TOP-5

KN Dq 447 *-ta-wo da-mi-ni-jo possibly ’ka’ or
’qe’

’ka’, ’si’, ’ku’,
’qo’, ’ti’

KN Dl 933 +
968 + 975 *-*83-re-to si-ja-du-we po-ti-ni-ja-we-jo perhaps ’ko’ ’no’, ’a3’, ’ra’,

’wi’, ’do’

KN Dp 1061 *-sa pa-i-ti-ja probably ’to’ ’to’, ’sa’, ’te’,
’po’, ’qa’

KN Dv 1213 *-so u-ta-no ’to’, ’jo’ possi-
ble

’pu’, ’ko’,
’nwa’, ’i’, ’wi’

KN Da 1341 [+]
1454 + 8777 *-no-qa-ta pa-i-to da-mi-ni-jo ’po’ possible,

but difficult
’a’, ’wi’, ’jo’,

’ka’, ’ti’
KN Db 1344 +
6017 + 7268 +
7950 + 8235

*-tu-to pa-i-to we-we-si-jo-jo perhaps ’ti’ ’bl’, ’ku’, ’ra’,
’ti’, ’pa’

KN Da 1401 +
7998 + fr. *-wi da-*22-to perhaps ’na’ ’ro’, ’ri’, ’na’,

’nu’, ’ra’
KN Df 5198 +
5238 + 5269 wi-na-jo ra-* ki-ri-jo-te traces favour

’ja’
’to’, ’ja’, ’su’,

’nwa’, ’pe’
KN Dv 5236 +
5329 *-jo ra-to perhaps ’qa’ or

’wo’
’te’, ’ku’, ’ri’,

’wa’, ’ro’
KN Dv 5278 +
5338 + 8557 *-ma-we qa-mo ’ko’ not impos-

sible
’ja’, ’i’, ’ko’,

’sa’, ’no’
KN Db 5310 +
6062 + 8375 e-*-jo ku-ta-to perhaps ’qa’ or

’ri’
ka’, ’ra’, ’wa’,

’te’, ’se’
KN Db 5359 +
5565 + 7214 *-ma-na-so ra-su-to u-ta-jo ’pi’ not impossi-

ble
’bl’, ’ta’, ’wa’,

’ru’, ’di’

KN Dv 5690 du-ni-* ’jo’ possible ’ja’, ’to’, ’po’,
’ki’, ’mi’

KN Dc 7161 +
7179 + 8365 +
fr.

*-to ku-ta-to u-ta-jo-jo possibly ’ke’ ’ra’, ’ta’, ’ke’,
’ro’, ’ko’

KN Do 7740 *-ta ka-to-ro se-to-i-ja ’ke’ or ’de’ ’u’, ’ku’, ’wa’,
’si’, ’qo’

Table 1: Bibliographic annotations (Chadwick et al., 1987) comparing to BRNN predictions in the 15 sequences
appear in the real cases of series D.

126



Damaged Tablets Sequences Bibliographic annota-
tion BRNN TOP-10

KN B 164 + 5666 +
7136 + 7544 + 8120 +
frr.

o-da-* ’ke’ or ’je’ ’wa’, ’wi’, ’ra’, ’*22’, ’mo’,
’ro’, ’wo’, ’mi’, ’ma’, ’zo’

KN As 605 + 5869 +
5911 + 5931 + frr. *-no pe-ro-qe ’me’ or ’ro’ ’wo’, ’tu’, ’jo’, ’ne’, ’wi’,

’ta’, ’ro’, ’re’, ’no’, ’qa’
KN Bk 799 + 8306 (Fig.
4) a-*-de ’ka’ or ’qe’ ’to’, ’me’, ’ke’, ’pe’, ’ta’,

’mi’, ’di’, ’pi’, ’ko’, ’pa’

KN Bk 802 ra-ti-* ’jo’ ’ja’, ’jo’, ’ri’, ’pu’, ’zo’, ’re’,
’wa’, ’nu’, ’no’, ’to’

KN Bk 804 a-pa-re-* ’u’ ’jo’, ’we’, ’u’, ’da’, ’ta’,
’ne’, ’ti’, ’te’, ’wa’, ’pa’

KN Bk 806 + 6053 + frr. ko-*-no ’pi’ or ’wi’ ’wa’, ’wo’, ’no’, ’to’, ’so’,
’ko’, ’ma’, ’qa’, ’a’, ’ta2’

KN Bk 806 + 6053 + frr. *-wo-ta ’pi’ or ’e’ ’ne’, ’re’, ’a’, ’qi’, ’wo’,
’po’, ’mo’, ’ko’, ’u’, ’ri’

KN Bk 806 + 6053 + frr. ko-*-ka-ra-te-ne ’wo’ ’tu’, ’we’, ’bl’, ’so’, ’no’,
’wa’, ’da’, ’wo’, ’ma’, ’u’

KN B 809 *-sa-do-ro-jo ’ke’ ’ke’, ’bl’, ’to’, ’pi’, ’te’, ’a’,
’we’, ’u’, ’po’, ’mi’

KN As 1516 ko-no-si-ja ra-wa-ke-si-ja *-ki-wa-ta ’a’ or ’a3’ ’a’, ’e’, ’pa’, ’pi’, ’mi’, ’ni’,
’du’, ’wa’, ’a3’, ’do’

KN As 1516 ko-no-si-ja ra-wa-ke-si-ja wa-du-*-to ’ni’ or ’sa’ ’na’, ’*22’, ’we’, ’du’, ’se’,
’ni’, ’de’, ’ra2’, ’za’, ’nu’

KN As 1516 *-ti-jo qa-si-re-wi-ja a-nu-to ’ta’ or ’ra’ ’a’, ’bl’, ’do’, ’i’, ’po’, ’ta’,
’so’, ’du’, ’wa’, ’o’

KN As 1516 ku-*-ti-jo qa-si-re-wi-ja a-nu-to ’ta’ or ’ra’ ’a’, ’du’, ’do’, ’tu’, ’i’, ’ta’,
’to’, ’ku’, ’ro2’, ’au’

KN As 1516 se-to-i-ja qa-si-re-wi-ja pi-*-jo ’ri’ ’si’, ’’ri’, ’wi’, ’ni’, ’ra’, ’u’,
’mi’, ’ro’, ’mo’, ’qi’

KN Bk 5134 to-ke-* ’u’ ’qa’, ’re’, ’zo’, ’pu’, ’ti’,
’su’, ’da’, ’ka’, ’no’, ’ta’

KN Bk 5172 *-wa-ta ’ku’ ’a’, ’ki’, ’ko’, ’re’, ’i’, ’po’,
’wo’, ’ne’, ’ta’, ’qi’

KN Bk 5172 wi-do-*-wi ’wo’ ’e’, ’ro’, ’da’, ’wo’, ’ra’,
’qe’, ’ta’, ’tu’, ’to’, ’re’

KN As 5609 + 6067 *-ke-u ’i’ or ’pa’ ’e’, ’ta’, ’nu’, ’ne’, ’mi’,
’wa’, ’pi’, ’pa’, ’we’, ’do’

KN Am 5882 + 5902 *-so ka-ma-jo ’to’ ’to’, ’no’, ’tu’, ’u’, ’ni’, ’ne’,
’wo’, ’wi’, ’ko’, ’ta2’

KN As 5932 [+] 8342 a-*-we ’ro’ ’ke’, ’re’, ’te’, ’mi’, ’pe’,
’nu’, ’pa’, ’pi’, ’ku’, ’to’

KN Ak 7022 [+] 7024 *-ki ’do’ ’to’, ’jo’, ’wo’, ’bl’, ’ni’,
’ne’, ’te’, ’we’, ’e’, ’po’

KN Ak 7022 [+] 7024 *-ki ko-wa me-zo-e ’do’ ’re’, ’jo’, ’e’, ’wo’, ’ni’, ’ne’,
’mi’, ’to’, ’qa’, ’ri’

KN Ak 7022 [+] 7024 *-ki ko-wa me-wi-jo-e ’do’ ’re’, ’jo’, ’e’, ’wo’, ’to’, ’wi’,
’ka’, ’pu’, ’mi’, ’ni’

KN Ak 7022 [+] 7024 *-ki ko-wo me-zo-e ’do’ ’re’, ’to’, ’wo’, ’ni’, ’tu’,
’jo’, ’mi’, ’e’, ’su’, ’ri’

KN Ak 7022 [+] 7024 *-ki ko-wo me-wi-jo-e ’do’ ’to’, ’re’, ’jo’, ’wo’, ’ni’, ’e’,
’a’, ’su’, ’o’, ’ri’

KN Ak 7022 [+] 7024 *-ki do-e-ra ’do’ ’to’, ’re’, ’qa’, ’te’, ’ke’,
’ka’, ’e’, ’i’, ’pi’, ’qe’

KN Bo 7043 + 7925 *-ra-so ’ka’ or ’qe’ or ’we’ ’ka’, ’bl’, ’ta’, ’qe’, ’si’,
’pa’, ’sa’, ’a’, ’wo’, ’re’

KN Bg 7682 ri-si-* ’jo’ ’jo’, ’ja’, ’ra’, ’nu’, ’pu’,
’mi’, ’wi’, ’no’, ’ro’, ’zo’

KN Ai 7745 *-ja-to si-qa ’ri’ ti’, ’i’, ’re’, ’qe’, ’si’, ’ta’,
’wi’, ’ni’, ’bl’, ’me’

Table 2: Bibliographic annotations (Chadwick et al., 1987) comparing to BRNN predictions in the 29 sequences
appear in the real cases of series A&B.
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Damaged Tablets Sequences Bibliographic annota-
tion BRNN TOP-10

KN B 164 + 5666 +
7136 + 7544 + 8120 +
frr.

o-da-* ’ke’ or ’je’ ’te’, ’su’, ’ka’, ’ra’, ’no’,
’wi’, ’wo’, ’se’, ’bl’, ’so’

KN As 605 + 5869 +
5911 + 5931 + frr. *-no pe-ro-qe ’me’ or ’ro’ ’a’, ’bl’, ’no’, ’ro’, ’i’, ’ko’,

’ka’, ’ta2’, ’qi’, ’na’
KN Bk 799 + 8306 (Fig.
4) a-*-de ’ka’ or ’qe’ ’ta’, ’ra’, ’to’, ’pi’, ’no’, ’re’,

’ja’, ’nu’, ’wo’, ’jo’

KN Bk 802 ra-ti-* ’jo’ ’ja’, ’bl’, ’ke’, ’ka’, ’wa’,
’ti’, ’a’, ’jo’, ’qa’, ’to’

KN Bk 804 a-pa-re-* ’u’ ’so’, ’ta’, ’ka’, ’te’, ’se’, ’si’,
’wa’, ’ti’, ’we’, ’po’

KN Bk 806 + 6053 + frr. ko-*-no ’pi’ or ’wi’ ’a’, ’*56’, ’ko’, ’ta’, ’bl’,
’wo’, ’mo’, ’wa’, ’no’, ’ka’

KN Bk 806 + 6053 + frr. *-wo-ta ’pi’ or ’e’ ’ro’, ’to’, ’da’, ’jo’, ’no’,
’qo’, ’nu’, ’ko’, ’du’, ’di’

KN Bk 806 + 6053 + frr. ko-*-ka-ra-te-ne ’wo’ ’bl’, ’no’, ’a’, ’wo’, ’ja’,
’wa’, ’ta’, ’si’, ’i’, ’e’

KN B 809 *-sa-do-ro-jo ’ke’ ’bl’, ’ta’, ’ro’, ’no’, ’jo’,
’ka’, ’ja’, ’ne’, ’e’, ’so’

KN As 1516 ko-no-si-ja ra-wa-ke-si-ja *-ki-wa-ta ’a’ or ’a3’ ’no’, ’mi’, ’ru’, ’so’, ’pe’,
’da’, ’si’, ’*56’, ’to’, ’do’

KN As 1516 ko-no-si-ja ra-wa-ke-si-ja wa-du-*-to ’ni’ or ’sa’ ’ri’, ’se’, ’*22’, ’qa’, ’ni’,
’su’, ’ru’, ’no’, ’*56’, ’ka’

KN As 1516 *-ti-jo qa-si-re-wi-ja a-nu-to ’ta’ or ’ra’ ’i’, ’do’, ’se’, ’ku’, ’wi’, ’po’,
’na’, ’tu’, ’wa’, ’a’

KN As 1516 ku-*-ti-jo qa-si-re-wi-ja a-nu-to ’ta’ or ’ra’ ’i’, ’ta’, ’se’, ’do’, ’qe’, ’o’,
’su’, ’ra2’, ’ko’, ’nwa

KN As 1516 se-to-i-ja qa-si-re-wi-ja pi-*-jo ’ri’ ’ri’, ’ro’, ’si’, ’re’, ’sa’, ’da’,
’mi’, ’ra’, ’tu’, ’ru’

KN Bk 5134 to-ke-* ’u’ ’a’, ’bl’, ’ka’, ’to’, ’o’, ’ja’,
’e’, ’ti’, ’ru’, ’ta’

KN Bk 5172 *-wa-ta ’ku’ ’ro’, ’bl’, ’ki’, ’di’, ’re’, ’ko’,
’so’, ’u’, ’a3’, ’qo’

KN Bk 5172 wi-do-*-wi ’wo’ ’ti’, ’bl’, ’so’, ’wo’, ’ro’, ’si’,
’su’, ’sa’, ’ne’, ’o’

KN As 5609 + 6067 *-ke-u ’i’ or ’pa’ ’to’, ’ro’, ’te’, ’nu’, ’sa’, ’e’,
’ne’, ’ke’, ’de’, ’zo’

KN Am 5882 + 5902 *-so ka-ma-jo ’to’ ’to’, ’po’, ’na’, ’ko’, ’no’,
’nu’, ’du’, ’pu’, ’ro’, ’e’

KN As 5932 [+] 8342 a-*-we ’ro’ ta’, ’ko’, ’re’, ’te’, ’ma’, ’ro’,
’ra’, ’pi’, ’nu’, ’du’

KN Ak 7022 [+] 7024 *-ki ’do’ ’si’, ’jo’, ’ro’, ’to’, ’no’, ’bl’,
’ta’, ’ja’, ’ne’, ’so’

KN Ak 7022 [+] 7024 *-ki ko-wa me-zo-e ’do’ ’to’, ’te’, ’jo’, ’po’, ’qo’, ’e’,
’na’, ’si’, ’no’, ’me’

KN Ak 7022 [+] 7024 *-ki ko-wa me-wi-jo-e ’do’ te’, ’to’, ’po’, ’jo’, ’qo’, ’si’,
’e’, ’ro’, ’we’, ’no’

KN Ak 7022 [+] 7024 *-ki ko-wo me-zo-e ’do’ ’to’, ’te’, ’po’, ’jo’, ’si’, ’e’,
’na’, ’qo’, ’no’, ’ro’

KN Ak 7022 [+] 7024 *-ki ko-wo me-wi-jo-e ’do’ te’, ’po’, ’jo’, ’to’, ’e’, ’we’,
’si’, ’qo’, ’na’, ’no’

KN Ak 7022 [+] 7024 *-ki do-e-ra ’do’ ’si’, ’ta’, ’no’, ’ro’, ’qa’,
’di’, ’wi’, ’we’, ’sa’, ’i’

KN Bo 7043 + 7925 *-ra-so ’ka’ or ’qe’ or ’we’ ’bl’, ’ti’, ’e’, ’ta’, ’ku’, ’pa’,
’zo’, ’si’, ’ka’, ’wo’

KN Bg 7682 ri-si-* ’jo’ ’ja’, ’jo’, ’no’, ’ta’, ’se’, ’ni’,
’mi’, ’re’, ’ke’, ’de’

KN Ai 7745 *-ja-to si-qa ’ri’ ’ra’, ’ri’, ’ni’, ’ti’, ’na’, ’i’,
’mi’, ’bl’, ’ku’, ’re’

Table 3: Bibliographic annotations (Chadwick et al., 1987) comparing to TL predictions in the 29 sequences appear
in the real cases of series A&B (CASE A).
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Damaged Tablets Sequences Bibliographic annota-
tion BRNN TOP-10

KN B 164 + 5666 +
7136 + 7544 + 8120 +
frr.

o-da-* ’ke’ or ’je’ ’ra’, ’ko’, ’wo’, ’zo’, ’su’,
’*22’, ’to’, ’*56’, ’sa’, ’wa’

KN As 605 + 5869 +
5911 + 5931 + frr. *-no pe-ro-qe ’me’ or ’ro’ ’a’, ’re’, ’qa’, ’to’, ’da’, ’wi’,

’ki’, ’su’, ’ne’, ’ti’
KN Bk 799 + 8306 (Fig.
4) a-*-de ’ka’ or ’qe’ ’to’, ’ta’, ’no’, ’po’, ’te’,

’nu’, ’mi’, ’tu’, ’pe’, ’a’

KN Bk 802 ra-ti-* ’jo’ ’ri’, ’to’, ’e’, ’so’, ’we’, ’i’,
’ti’, ’qa’, ’ni’, ’di’

KN Bk 804 a-pa-re-* ’u’ ’ta’, ’so’, ’i’, ’wa’, ’po’, ’jo’,
’si’, ’we’, ’u’, ’ka’

KN Bk 806 + 6053 + frr. ko-*-no ’pi’ or ’wi’ ’a’, ’wo’, ’ko’, ’to’, ’ta’,
’no’, ’ma’, ’ro’, ’du’, ’po’

KN Bk 806 + 6053 + frr. *-wo-ta ’pi’ or ’e’ ’a’, ’we’, ’ko’, ’po’, ’ra’, ’u’,
’da’, ’qi’, ’bl’, ’o’

KN Bk 806 + 6053 + frr. ko-*-ka-ra-te-ne ’wo’ ’a’, ’wo’, ’to’, ’ta’, ’e’, ’tu’,
’o’, ’bl’, ’ku’, ’da’

KN B 809 *-sa-do-ro-jo ’ke’ ’u’, ’bl’, ’to’, ’a’, ’qa’, ’pi’,
’te’, ’di’, ’we’, ’ka’

KN As 1516 ko-no-si-ja ra-wa-ke-si-ja *-ki-wa-ta ’a’ or ’a3’ ’pu’, ’a’, ’ro’, ’pe’, ’si’, ’wi’,
’pi’, ’se’, ’di’, ’su’

KN As 1516 ko-no-si-ja ra-wa-ke-si-ja wa-du-*-to ’ni’ or ’sa’
’se’, ’si’, ’ri’, ’ke’, ’*22’,

’we’, ’to’, ’po’, ’o’, ’pe’,
’mi’

KN As 1516 *-ti-jo qa-si-re-wi-ja a-nu-to ’ta’ or ’ra’ ’pe’, ’pa’, ’wa’, ’i’, ’do’,
’ni’, ’du’, ’ta’, ’ma’, ’su’

KN As 1516 ku-*-ti-jo qa-si-re-wi-ja a-nu-to ’ta’ or ’ra’ ’ta’, ’su’, ’po’, ’to’, ’pa’,
’du’, ’pe’, ’i’, ’ko’, ’ro2’

KN As 1516 se-to-i-ja qa-si-re-wi-ja pi-*-jo ’ri’ ’ri’, ’ra’, ’ni’, ’da’, ’ti’, ’si’,
’ki’, ’wa’, ’mi’, ’pi’

KN Bk 5134 to-ke-* ’u’ ’ko’, ’ja’, ’so’, ’qa’, ’ku’,
’da’, ’to’, ’u’, ’a’, ’ru’

KN Bk 5172 *-wa-ta ’ku’ ’we’, ’a’, ’po’, ’bl’, ’si’, ’o’,
’ki’, ’te’, ’ti’, ’re’

KN Bk 5172 wi-do-*-wi ’wo’ ’pe’, ’e’, ’sa’, ’po’, ’ra’,
’do’, ’te’, ’zo’, ’ti’, ’pa’

KN As 5609 + 6067 *-ke-u ’i’ or ’pa’ ’pe’, ’te’, ’ri’, ’ke’, ’no’,
’ro’, ’se’, ’zo’, ’wo’, ’do’

KN Am 5882 + 5902 *-so ka-ma-jo ’to’ ’to’, ’ta’, ’ke’, ’do’, ’sa’,
’ni’, ’qa’, ’te’, ’ne’, ’e’

KN As 5932 [+] 8342 a-*-we ’ro’ ’ko’, ’pe’, ’te’, ’po’, ’nu’,
’ke’, ’a’, ’da’, ’me’, ’no’

KN Ak 7022 [+] 7024 *-ki ’do’ ’jo’, ’pe’, ’ni’, ’wo’, ’tu’,
’te’, ’no’, ’to’, ’ja’, ’ta’

KN Ak 7022 [+] 7024 *-ki ko-wa me-zo-e ’do’ ’ni’, ’ka’, ’wi’, ’tu’, ’mi’,
’te’, ’na’, ’pe’, ’to’, ’ki’

KN Ak 7022 [+] 7024 *-ki ko-wa me-wi-jo-e ’do’ ’ni’, ’mi’, ’te’, ’tu’, ’na’,
’wi’, ’ki’, ’re’, ’e’, ’ti’

KN Ak 7022 [+] 7024 *-ki ko-wo me-zo-e ’do’ ’to’, ’ka’, ’ni’, ’na’, ’wi’,
’tu’, ’pe’, ’te’, ’do’, ’ja’

KN Ak 7022 [+] 7024 *-ki ko-wo me-wi-jo-e ’do’ ’ni’, ’ka’, ’to’, ’na’, ’wi’,
’tu’, ’pe’, ’ki’, ’se’, ’do’

KN Ak 7022 [+] 7024 *-ki do-e-ra ’do’ ’ka’, ’ki’, ’to’, ’do’, ’wi’,
’su’, ’mi’, ’ti’, ’tu’, ’ni’

KN Bo 7043 + 7925 *-ra-so ’ka’ or ’qe’ or ’we’ ’ka’, ’si’, ’zo’, ’se’, ’wo’,
’qe’, ’ta’, ’a’, ’nu’, ’mo’

KN Bg 7682 ri-si-* ’jo’ ’ja’, ’wo’, ’jo’, ’ra’, ’ni’,
’to’, ’ta’, ’ti’, ’de’, ’ri’

KN Ai 7745 *-ja-to si-qa ’ri’ ’ri’, ’ro’, ’ni’, ’di’, ’ti’, ’mi’,
’ke’, ’pe’, ’te’, ’re’

Table 4: Bibliographic annotations (Chadwick et al., 1987) comparing to TL predictions in the 29 sequences appear
in the real cases of series A&B (CASE B).
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Abstract

Cuneiform documents, the earliest known

form of writing, are prolific textual sources

of the ancient past. Experts publish edi-

tions of these texts in transliteration using

specialized typesetting, but most remain in-

accessible for computational analysis in tradi-

tional printed books or legacy materials. Off-

the-shelf OCR systems are insufficient for

digitization without adaptation. We present

CuReD (Cuneiform Recognition-Documents),

a deep learning-based human-in-the-loop OCR

pipeline for digitizing scanned transliterations

of cuneiform texts. CuReD has a character error

rate of 9% on clean data and 11% on represen-

tative scans. We digitized a challenging sample

of transliterated cuneiform documents, as well

as lexical index cards from the University of

Pennsylvania Museum, demonstrating the fea-

sibility of our platform for enabling computa-

tional analysis and bolstering machine-readable

cuneiform text datasets. Our result provide the

first human-in-the-loop pipeline and interface

for digitizing transliterated cuneiform sources

and legacy materials, enabling the enrichment

of digital sources of these low-resource lan-

guages.

1 Introduction

The cuneiform writing system was used to write

around a dozen different ancient languages over a

period of more than three millennia. Many of these

complex writing systems were logo-syllabic and of

different language families, from the agglutinative

Sumerian in southern Mesopotamia, to the family

of Hurrian and Urartian in northern Mesopotamia

and Armenia, to Indo-European Hittite and Luwian

in Anatolia. While the records of many of these

languages are in the hundreds or thousands, it is

Semitic Akkadian with its main Babylonian and

Assyrian dialects that is attested on hundreds of

thousands of ancient texts (Vita, 2021). What all

of them share is a similar critical apparatus: a stan-

dard Latin transcription and notation system, de-

veloped by experts in scholarly publications, from

the mid-19th century to the early 20th century (see

Appendix A), and is still used to this day. Legacy

materials such as personal notebooks of curators or

researchers, or card catalogues in universities and

museums use this notation system extensively (Fig.

1).

Many publications and legacy materials have

been scanned or photographed, but are largely un-

available as machine-readable text. The ability to

automatically digitize them using optical charac-

ter recognition (OCR) would make their contents

readily available to experts and the general pub-

lic. They can be further used in computational

research into the languages, cultures, and history

of these societies, as well as a wider use of natu-

ral language processing (NLP) techniques, such as

part-of-speech tagging, named entity recognition,

sentiment analysis, machine translation, and more.

This in turn can further enhance cross-lingual re-

search and the creation of linked open data entities

as well as knowledge graphs (Gutherz et al., 2023;

Homburg et al., 2023; Sahala and Lindén, 2023;

Ong and Gordin, 2024; Smidt et al., 2024).

Existing OCR models trained on texts in other

languages such as English are not suitable for this

task. They do not recognize the diacritics, typo-

graphical oddities like mixed upper- and lower-case

or sub- and super-script, as well as special symbols

required for digitizing cuneiform transliterations.

Furthermore, many off-the-shelf models are biased

by their prior training on character sequences in the
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Figure 1: On the left examples of scanned lexical cards

from the University of Pennsylvania Sumerian lexicog-

raphy collection digitized by Anna Glenn for the Univer-

sity of Munich (Sjöberg, 2023). On the right an example

of cuneiform transliteration from the Neo-Babylonian

text corpus published in the dissertation of R. B. Dillard

(Dillard, 1975).

source language. They are also typically trained

on large datasets of scans with manually-labelled

text, which is not available for more niche use cases

such as those of cuneiform scholars.

In order to overcome these challenges, we trained

a custom deep-learning based OCR model on

transliterations of Akkadian, bootstrapping with

artificially-generated data, and then fine-tuned with

a small set of manually-labelled examples. The

data for training and testing the model were taken

from Open Richly Annotated Cuneiform Corpus

(ORACC) and their equivalent print publications

in PDF format.

However, those texts were from one period (Neo-

Assyrian) and followed the same editorial conven-

tions. To estimate the real-world usability of the

model, we performed two additional digitization

experiments on transliterated text produced with a

typewriter during the 1970s and 80s: (1) 81 previ-

ously undigitized Neo-Babylonian administrative

and archival daily documents published in the 1975

dissertation of Raymond B. Dillard (Dillard, 1975);

(2) 30 index cards produced by Å.W. Sjöberg in the

late 1970s and early 1980s as part of the Sumerian

Lexicography collection housed in the Babylonian

Section of the University of Pennsylvania Museum,

now scanned in their entirety by Anna Glenn for

LMU Munich, and published on the LMU library

online catalogue (Sjöberg, 2023).

Bothwere particularly difficult to OCR, andwere

not a part of the model’s training. In the case of the

Dillard texts, we show that with fine-tuning on only

10 texts, the models’ results rose from 53% to 85%

accuracy. Similarly, in the case of the Sumerian

lexical cards, after only 60 text lines, the model

improved from 87% to 94% accuracy.

Thus, the model requires a minimal number of

examples in order to be a significant assistant in

the digitization process of ancient documents. The

model is published on the Digital Pasts Lab GitHub

repository and is freely available as an online tool

in the Babylonian Engine website, which is under-

going a transformation into a standalone browser-

based application. The tool andmodel will facilitate

the digitization of hundreds of thousands of pub-

lished cuneiform text lines in transliteration, which

were previously unavailable for further computa-

tional or quantitative study.

2 Methods

2.1 Data preparation for training the OCR

model

We used texts from the State Archives of Assyria

(SAA), which are available in both print and dig-

ital forms. The transliterated Akkadian texts are

hosted on the Open Richly Annotated Cuneiform

Corpus (ORACC) as the State Archives of Assyria

online (SAAo), which are part of the Munich Open-

access Cuneiform Corpus Initiative (MOCCI) (Rad-

ner et al., 2015). Also available are scans of the

books containing the texts in print; however, these

cannot directly be used to train an OCR model be-

cause there is no alignment between the digitized

Akkadian text and the location of its print equiva-

lent on the scanned pages.

In order to collect usable pairs of images and cor-

responding digital Akkadian transliterations, we ran

a heuristic algorithm which segmented and local-

ized the transliterations within these scans, as well

as extracting the digitizedAkkadian transcribed text

hosted on the Open Richly Annotated Cuneiform

Corpus (ORACC) and aligning them. The algo-

rithm uses computer vision (CV) methods such as

thresholding and dilation to determine where there

are paragraphs, and then runs a regular OCR on

each paragraph to check whether this is an English
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Figure 2: Segmentation Example from the State

Archives of Assyria volume 1 (Parpola, 2015). Akka-

dian paragraph marked in blue, title marked in green.

paragraph or an Akkadian one. It also tries to locate

titles (Fig. 2).

This method generated pairs of images and Akka-

dian text. The results were highly approximate and

not clean enough to be used directly for training an

OCR system, but allowed us to find examples for

use in fine-tuning and evaluating our final model.

In total, we manually labelled 30 of these images.

Because of this scarcity of labelled data, in order

to train our OCR model from scratch we decided to

bootstrap it with artificially-generated image data.

We took all the digital text editions of the SAAo

and generated images by rendering each line of

text in the dataset as an image file. Our core OCR

model was based on the open-source Kraken OCR

framework developed by Benjamin Kiessling as

described in Romanov et al. (2017).

Figure 3: Artificial data example generated from the

SAAo corpus.

In order to increase the robustness of themodel to

noise and typeface variation, we added noise to the

images by using Kraken’s data augmentation API,

with parameters alpha=0.3 (mean of folded normal
distribution of foreground pixel flip probabilities)

and distortion=3 (mean of folded normal distribu-
tion from which distortion values are sampled). We

found that results were significantly improved by

using multiple fonts to render the images. In order

to match the typefaces most commonly found in

the source materials, we rendered the texts in three

fonts: (1) DejaVu Serif, (2) Garamond, (3) IM Fell

Double Pica.

We also found that it was important to consider

italic text since in Akkadian transliterations lower-

case letters are normally printed in italics. There-

fore, for each font we rendered all lines of the

dataset in both normal and italic letters. Although

this did not exactlymatch the scanned texts in which

normal-styled uppercase letters and italic-styled

lowercase letters were mixed, we found that it gave

acceptable results upon bootstrapping our model.

After generating all lines of the SAAo textual

dataset in all three fonts and in both normal and

italic styles (416,000 images in total), we took a

random subset of 194,000 of these images to use as

our artificially-generated bootstrapping dataset.

In summary the data that we collected and used

in our final model consisted of:

1. 30 manually-labelled pairs of scanned Akka-

dian transliterations and their corresponding

digital texts.

2. 194,000 automatically generated images of

lines of Akkadian transliterations, using vari-

ous fonts and both normal and italic font styles

Since the SAAo data was used for training, we

used scanned data from The Royal Inscriptions of

the Neo-Assyrian Period (RINAP) as test data. We

manually labeled 10 pages of these books, which

gave us about 350 lines of test data.

2.2 OCR workflow and architecture

The typical OCR workflow consists of steps similar

to the following:

• Preprocess images (deskewing, image bina-

rization)

• Segmentation (localizing text on page, line

segmentation)

• Core OCR (converting line to text)

• Post-processing (language model-based cor-

rection)

We found that Kraken’s default preprocessing

and segmentation methods were sufficient for our

purposes, and focused on adapting the core OCR

model to Akkadian transliterations. We assume

input of the form similar to the data we collected,

with paragraphs already localized.
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After binarization and line segmentation, each

line of input was first dewarped and resized to be of

appropriate dimensions for the OCR model. After

dewarping, the height of each line was resized to be

48 units, with the width scaled by the same factor

and with 16 units of (white) padding added to the

left and right sides of the line. Therefore, each sam-

ple input into the OCR model is a tensor of shape

(48, ?, 1), with ? representing the variable width of
a single line of input and 1 the single (grayscale)
channel of input.

The core OCR model that we trained was a hy-

brid CNN-RNN neural network (CRNN) selected

from Kraken with the following sequential archi-

tecture:

• 2D convolutional layer (32 filters, kernel size

4× 2, 4× 2 stride, 1× 0 padding)

• 2D convolutional layer (64 filters, kernel size

4× 2, 1× 1 stride, 1× 0 padding)

• Max-pooling (kernel size 4× 2, stride 4× 2,
no padding, dilation 1)

• 2D convolutional layer (128 filters, kernel size

3× 3, 1× 1 stride, 1× 1 padding)

• Max-pooling (kernel size 1× 2, stride 1× 2,
no padding, dilation 1)

• Reshape (converting input of shape (2, ?, 128)

to output of shape (?, 256))

• BiLSTM (hidden size 256)

• BiLSTM (hidden size 512)

• BiLSTM (hidden size 256)

• Fully-connected (output size 103, linear acti-

vation)

The output of the final layer was chosen to match

the size of the character-level vocabulary: 102 char-

acters found in the training set data, plus the 0 index

to indicate the “blank symbol” meaning no charac-

ter.

Additionally, each convolutional and recurrent

layer was followed by a regularization layer, and

the BiLSTM layers by dropout layers:

• Each convolutional layer was followed by a

group normalization layer with group size 32.

Group normalization is a variant of batch nor-

malization adapted to computer vision tasks

where small batch sizes are required due to

memory constraints. Instead of normalizing

across multiple samples in a batch, group nor-

malization normalizes across channels within

a single sample. In our case, this grouped

channels into groups of 32 and normalized ac-

tivations within each group. For more details,

see Wu and He (2018)

• Each BiLSTM layer was followed by a

dropout layer with dropout probability 0.5.

The outputs of the model for each step are in-

terpreted as logits corresponding to the probability

that each character in the vocabulary is present at

that horizontal location in the line of text. We then

used greedy decoding to identify the most likely

character at each step.

Interpreting the output of such a model requires

an additional merger step. For example, consider

the following output of a similar OCR system (Fig.

4):

Figure 4: Old German OCR, reproduced from Fig. 10

in Martínek et al. (2020).

Since the model’s output represents small dis-

placements in the horizontal direction, the same

character will be identified multiple times in a row.

Therefore we merge the same label when it appears

multiple times in a row, without another label or the

blank symbol appearing in between. This is the con-

nectionist temporal classification (CTC) alignment

introduced by Graves et al. (2006).

2.3 Training

The model was trained in two stages: First, it was

trained from scratch on the 194,000 artificially gen-

erated textual images from SAAo. Then, it was

fine-tuned on the 30 manually labelled paragraph

images from SAA books (about 900 lines of text).

Although our manually labelled dataset was quite

small, we found that the fine-tuning stage was criti-

cal for achieving acceptable results.

The objective used was the so-called connection-

ist temporal classification (CTC) loss. Similar to

the CTC alignment described above, CTC loss is
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used to compare the output of a continuous recog-

nition system like OCR or speech recognition to a

desired string of tokens. The motivation for CTC

loss is twofold:

• The training data available to us is pairs of

images and desired text, without spatial align-

ments.

• The network’s outputs are character scores for

each horizontal position, so the same token

may be identified in multiple adjacent posi-

tions.

As first described in Graves et al. (2006), the

CTC loss function solves these issues as follows.

First, it takes as input the ground truth text and

the network’s outputs (probabilities per character

for each horizontal position). It then calculates the

likelihood of the ground truth text for each possible

path (possible alignment) and sums them together

over all possible paths. This is the objective func-

tion we used to train the network.

For both stages of training, we used the rec-

ommended settings from Kraken: batch size 1,

Adam optimizer (learning rate 1e− 3 and momen-
tum 0.9). In both stages, minimum validation loss

was achieved after a single epoch of training, after

which the model began to overfit, so we used the

results of training on a single epoch.

3 OCR Results on Training and Testing

Data

Results in Table 1 were calculated as follows: The

accuracy we present was measured by computing

the edit distance between the output of the OCR

and the ground truth text in the test data images, di-

vided by text length (averaged between the ground

truth and OCR output texts). Before calculating

edit distance, we normalized newlines and whites-

pace and combined together period (.) and dash (-)

characters, since these can always be distinguished

in context.

The new CuReD model has a character error rate

(CER) of 9% on clean data and 11% on representa-

tive scans. We observe that manually fine-tuning

the model with real dataset images greatly improves

our accuracy, even though the fine-tuning dataset

was extremely small. The baseline model, only

trained on artificial data, overfit to this type of data

and did not generalize well to real scans. Visually

observing the baseline model output showed that

it regularly had trouble distinguishing certain char-

acters (e.g. “a” vs. “u”), and we hypothesize that

this is because of the different appearance of these

characters in the artificial training data fonts and the

fonts used in the test data. Fine-tuning likely helps

the model to quickly adapt to these differences.

Model
Validation

Accuracy

Test

Accuracy

Baseline 99.8% 77%

Fine-tuned 10 Images 91% 89%

Fine-tuned 30 Images 91% 89%

Table 1: OCR performance when training on artificially

generated SAAo data, and finetuned on manually la-

belled SAA scanned transliterations. Accuracy tested

on manually labelled transliterations from RINAP.

The columns “Validation Accuracy” is the accu-

racy of OCR prediction on a validation set selected

from the training data. For the baseline model this

is calculated on artificially generated SAAo translit-

eration images, while for fine-tuning it is calculated

on a validation set of manually-labelled scanned

images of SAA books from the fine-tuning set. The

column “Test Accuracy” is the final accuracy of

OCR predictions on the test dataset of real scanned

transliterations from RINAP books (Fig. 5).

We also observe that even after fine-tuning on 10

images, we already reach a plateau in performance,

and adding another 20 manually-labelled images to

the fine-tuning does not noticeably improve perfor-

mance. Thus, minimal data is needed to fine-tune

the model on previously unseen published translit-

erations.

4 Real-world Experiments with the

CuReD Tool

4.1 A human-in-the-loop pipeline

The OCRmodel released with this paper on GitHub

can continuously improve on new datasets through

fine-tuning. Yet, there remains a gap between

cuneiform specialists and their ability to fine-tune

and improve machine learning (ML) models. A set

of Cuneiform Recognition tools, abbreviated CuRe,

was therefore created. These tools are currently an

online interactive platform for cuneiform experts

as part of the Babylonian Engine project, but are in

the process of becoming a standalone browser ap-

plication for the sake of long-term upkeep; such as

server maintenance costs. The Cuneiform Recogni-

tion Documents or CuReD tool provides a platform
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(a) Sample scan from RINAP test data

(b) Final (fine-tuned) CuReD model output

Figure 5: Comparison of source image with CuReD

OCR output.

Figure 6: The CuReD tool interface.

for correcting the initial results of the OCR model

presented above, and fine-tuning the model on new,

unfamiliar types of transliterations.

There, users can upload currently one-by-one

a PDF or image, place a bounding box around a

text. Then lines of transliteration are automatically

identified, and a corresponding line by line digital

text is generated that can be manually edited for

corrections (Fig. 6). Corrected text is saved for fine-

tuning the model at a later stage, and the machine-

readable output can be downloaded immediately

as plain text. All OCR’ed transliterations are also

searchable in the Babylonian Engine gallery.

The ML models are envisioned as “co-workers”

which provide likely suggestions to the user, aiding

the process of cuneiform scholarly edition publica-

tion, and improving as the user corrects them. This

way, it is not only the ML models that benefit from

the corrections and labeled data created by experts,

but also the experts can enjoy a designated work en-

vironment for cuneiform studies, and download the

results of their work–already advancing cuneiform

scholarship.

In what follows we present two real-world sce-

narios of cuneiform scholarship: text editions pub-

lished in book form, and legacy materials in the

form of lexical cards. Both were created with type-

writer in the late 1970’s and early 80’s of the 20th

century.

4.2 Experiment 1: Text editions

We chose to digitize the texts edited in the disser-

tation of Raymond B. Dillard (1975). Namely, 81

Neo-Babylonian archival and administrative docu-

ments from the Free Library of Philadelphia (FLP),

purchased on the antiquities market in the early 20th

century by John Frederik Lewis.

Why Dillard? First, these texts are not digitized

on any of the large online databases, such as CDLI,

Achemenet, ORACC, or eBL. Second, it is a diverse

corpus chronologically, geographically, and stems

from a variety of archives (see metadata file on

GitHub).

We initially had quite poor results of 53% accu-

racy, but after correcting only 10 texts, the OCR

model reached 85% accuracy. Additional training

on 47 texts increased the model’s performance only

incrementally to 89%. Thus, similarly to our initial

fine-tune phase, the model requires a minimal num-

ber of ca. 10 documents in order to be a significant

assistant in the digitization process of ancient texts

(Fig. 7).

4.3 Experiment 2: Legacy collections

The Sumerian Lexicography collection is housed in

the Babylonian Section of the University of Penn-

sylvania Museum of Archaeology and Anthropol-

ogy. This collection consists of approximately

200,000 index cards (see Fig. 1) compiled by Å. W.

Sjöberg in the late 1970’s and early 1980’s. These

cards serve as the foundation for the intended Penn-

sylvania Sumerian Dictionary (PSD). No other col-

lection of lexicographic cards in the field of Sume-

rian Lexicography matches its scale.

The PSD was never completed. From 1984 to

1992, only the letters A-B were published. In May

2004, the project transitioned to a digital format,

evolving into the electronic Pennsylvania Sumerian
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Figure 7: (a) Neo-Babylonian cuneiform tablet from the Free Library of Philadelphia collection; (b) Its transliteration

in Dillard (1975); (c) Its plain text output from CuReD.

Dictionary (ePSD). It has undergone significant

changes in editorial principles, replacing the man-

ually compiled catalog with a much larger digital

corpus.

The index card collection was digitized in May

2023 by Dr. Anna Glenn on behalf of the Insti-

tute for Assyriology und Hittitology of the LMU

Munich. Hosted by the university library, this digi-

tized collection forms the dataset for the study case

presented here (Sjöberg, 2023).

The project plans to convert these scans into

machine-readable text, and to link the results with

other lexical collections, as part of the eBL plat-

form. For test purposes, we uploaded to CuReD in

the first step 30 cards, a little bit more than 60 lines,

and corrected the results for fine-tuning. Prior to

the training, the accuracy level stood at 87%. Note

that the model at this time was already fine-tuned

on the texts published by Dillard (see above). Fol-

lowing the first training session on this corpus, the

accuracy improved to 94%.

Although the results improved significantly, a

new issue emerged: the OCR fails to recognize a

line when it consists of only a single word (compare

to other lexical index cards digitized by Idziak et al.

(2021)). This is particularly critical because many

lemmas, i.e., lexemes in the Sumerian language,

are made up of a single phoneme, that is, one letter.

5 Related Literature

To the best of our knowledge, this is the first

custom-trained OCR model for transliterated

cuneiform documents, trained initially on translit-

erations. See, however, the Tesseract-based model

used for OCR’ing secondary literature in assyriol-

ogy, which includes text editions (Anderson, 2023).

Human-in-the-loop pipelines for transcribing his-

torical and epigraphical documents from other peri-

ods, however, are revolutionizing how those are be-

ing recorded and studied in the humanities and the

galleries, libraries, archives, andmuseums (GLAM)

sector. Some of the most impactful tools in this

regard are Transkribus and eScriptorium, each of

which has produced hundreds of studies based on

their OCR/HTR engine, and several more are on

the rise (Idziak et al., 2021; Nockels et al., 2022,

2024; Calvelli et al., 2023).

It is important to separate, however, the

OCR/HTR efforts from Latin transliterations and

OCR/HTR of cuneiform signs themselves on

clay tablets, stone inscriptions, etc. Identifying

cuneiform signs requires other designated models,

and the several advances in recent years are summa-

rized in Bogacz andMara (2022); see also the newly

published contribution by Yugay et al. (2024).

The high-performance of our model on mini-

mal ground-truth data was possible due to the rel-
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ative simplicity of generating representative arti-

ficial training data. Improvements in recent years

in the generation of data that is similar enough to

ground truth is proving more and more vital in aid-

ing the digitization of low-resource languages, such

as cuneiform (Rusakov et al., 2019) and Aramaic

inscriptions (Aioanei et al., 2024), to name a few.

These methods are probably to be vital in the up-

coming years to push forward the digitization of

ancient languages (Sommerschield et al., 2023).

Although our work only covers OCR digitization

of transliterations as printed in published sources,

there has also been work on automatic conversion

of such transliterations to phonological transcrip-

tions representing how texts were pronounced in

the Akkadian language. See Sahala et al. (2020) for

an example of a such deep-learning based model.

6 Conclusion

To aid the community of cuneiform experts in dig-

itizing published records of cuneiform texts, we

developed an OCR system for recognizing Akka-

dian Latin transliterations written using standard

scholarly conventions. Because of a lack of natu-

ral labelled training data, we bootstrapped an OCR

model using the Kraken open-source framework

by generating artificial training data, rendering text

from the SAA corpus using various fonts and text

styles. After fine-tuning the resulting model on a

small set of manually-labelled scans, we achieved

89% accuracy on a representative set of scans.

We integrated this model in a human-in-the-loop

tool called CuReD (Cuneiform Recognition Doc-

uments), to allow scholars and students to OCR

various scanned or photographed materials, and

help continuously improve their model. We further

showed this tool in practice, by performing two

real-world experiments OCR’ing text editions and

legacy lexical materials in machine typeface, both

of which included handwritten notation. The fine-

tuning of the two experiments was integrated into

our model, which is also on the CuReD online tool,

making it already highly effective for OCR’ing ma-

chine typed transliterations. Minimal fine-tuning

is needed to improve its results on unseen texts,

and the same should hold true for transliterations

of other languages using the cuneiform script.

We provide this model as an open-source con-

tribution to researchers of the ancient Near East

and the general public, in hopes that it will make

cuneiform inscriptions more accessible in machine-

readable form.

Limitations

Our current OCR system has been tested only on

Latin transliterations of Akkadian and Sumerian

cuneiform texts, but not on the other languages of

the ancient Near East using the cuneiform script.

While we assume this transfer learning would be

easy for the model given the similarities in the

transliteration practices (see Appendix A), that re-

mains to be seen.

Additionally, both experiments show how the

model can be effectively fine-tuned with few exam-

ples to drastically improve performance. However,

the results are never perfect. A common challenge

in both experiments is the presence of many hand-

written notes, such as accents, subscripts, diacrit-

ics, special characters, square brackets, or simply

marginalia scribbled around the text. These factors

lead to inaccuracies in the OCR results, particularly

creating errors in the line segmentation.

The CuReD model, with its human-friendly in-

terface, permits users to quickly correct the re-

maining errors. The fine-tuning process makes

the correction phase extremely efficient. It may

not completely make typing of editions a thing of

the past, but it reduces the time by at least 90%.

In addition, further manual improvements can be

considered, such as validating the OCR’ed results

against known cuneiform sign readings, or com-

bining CuReD with Handwritten Text Recognition

(HTR) (Nockels et al., 2022) to identify marginalia

etc.

Furthermore, the continual fine-tuning of the

model makes it familiar with additional typefaces

and editorial conventions. The significant uptick

in accuracies before fine-tuning between the exper-

iments (from 53% on the Dillard texts to 87% on

the PSD card catalogue) shows this quality, as both

experiments share a similar typeface. Initial results

on unseen texts will thus continue to improve as

more corpora are added for training, and fewer and

fewer examples will be required for fine-tuning.

Ethics Statement

The training data used in this work consists of pub-

licly available scholarly publications and does not

contain any sensitive personal information. The

resulting OCR system is intended as a tool to aid

scholarly research and all code and data is made

freely available under a CC-BY 4.0 license. We do
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A Appendix: Akkadian Latin

Transliteration

We include here a short description of the main fea-

tures of the conventions used for Akkadian Latin

transliteration. This standard system was described

in Gelb (1970) and von Soden (1995), each with

some modifications. It is in large part also used for

other languages written in the cuneiform writing

system, most notably Sumerian, but also with nec-

essary modifications for Eblaite, Elamite, Hurrian,

Urartian, Hittite, Luwian and several minor Anato-

lian languages written in cuneiform (like Hattian).

Besides the usual characters of the Latin alphabet,

cuneiform transliterations can contain the follow-

ing special characters used to represent particular

sounds:

• Š š, equivalent to the English sh-sound

• � �, equivalent to the ts-sound

• � �, an emphatic t-sound (e.g. theatre)

• � �, the voiceless uvular fricative (e.g. Ger-

man acht)

• � and �, aleph (glottal stop) and ayin (pha-

ryngeal fricative), respectively

• G̃ g̃, nasal g (ng-sound)

• Ř ř, alveolar trills (see řeka)

Cuneiform symbols may be used phonetically to

represent syllables with structure V, VC, CV, or

CVC. When used in this way, the transliteration

of these signs is written in italic lowercase letters

with dashes separating syllables of the same word.

For example, the word iddin ’he gave’ may be writ-

ten phonetically as id-din, id-di-in, or using other

variants.

Uppercase, normal-style (i.e. non-italic) let-

ters are used to represent logograms; cuneiform

symbols representing words or morphemes rather

than phonetic values. Some editions represent the

logographic values in small caps instead. The

text in uppercase represents the reading of the lo-

gogram in Sumerian, from which it was borrowed,

although the Akkadian speaker would have proba-

bly read it in their native language. For example,

the transliteration DINGIR represents a cuneiform

sign that would have been read in context as Akka-

dian ilu (“god”). Logogram compounds are sepa-

rated with periods in transliterations; for example,

DUMU.MUNUS-ia “my daughter”.

The Sumerian language for which cuneiform

was originally developed had a large number of

homonymic symbols (symbols with the same pho-

netic value). In order to distinguish these in translit-

eration, scholars use accents and subscript digits.

For example, gu, gú, gù represent three different

cuneiform symbols with the same pronunciation

gu; the fourth such symbol and onwards would be

notated as gu4, the fifth as gu5, and so on. Newer
resources may only use superscript numbers instead

of accents (gu2, gu3). Many homonymic readings

are used simultaneously in cuneiform languages.

Superscript symbols are used to represent de-

terminatives, also known as classifiers, which are

cuneiform signs that do not have an independent

reading but rather clarify the meaning of follow-

ing or preceding sign(s). For example, superscript

d represents the determinative indicating a divine

name, and superscript m indicates a male name.

Since cuneiform inscriptions are often broken

or not fully legible, a number of special symbols

are used to indicate textual anomalies. The most

common of these are:

• Square brackets [ ] - used to indicate missing

signs, such as when there is a hole in the text.

May contain editorial guesses as to the missing

contents, or X to indicate a missing sign.

• Half brackets ⸢ ⸣ - indicate fragmentary but

legible signs
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• Superscript ! - indicates a scribal error

• Superscript ? - indicates an uncertain sign

• angle brackets < > - used to add signs that the

modern editor thinks the ancient scribe has

omitted.

• double angle brackets « » - indicate signs

which the modern editor thinks the ancient

scribe has erroneously added, and believes

should be ignored for phonetic and linguistic

reconstruction.

The notation system for homonymic signs and ed-

itorial marks for textual anomalies are shared across

the transliteration conventions of texts written in

the cuneiform script, as well as combinations of

lowercase, uppercase, and italics. Furthermore, the

Sumerian readings of logograms are shared across

the many languages written in the cuneiform script.

Thus, CuRed is likely to be an efficient baseline

model of transliterations from other cuneiform lan-

guages.
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Abstract

For the automatic processing of Classical Chi-
nese texts it is highly desirable to normalize
variant characters, i.e. characters with differ-
ent visual forms that are being used to represent
the same morpheme, into a single form. How-
ever, there are some variant characters that
are used interchangeably by some writers but
deliberately employed to distinguish between
different meanings by others. Hence, in order
to avoid losing information in the normaliza-
tion processes by conflating meaningful dis-
tinctions between variants, an intelligent nor-
malization system that takes context into ac-
count is needed. Towards the goal of develop-
ing such a system, in this study, we describe
how a dataset with usage samples of variant
characters can be extracted from a corpus of
paired editions of multiple texts. Using the
dataset, we conduct two experiments, testing
whether models can be trained with contextual
word embeddings to predict variant characters.
The results of the experiments show that while
this is often possible for single texts, most con-
ventions learned do not transfer well between
documents.

1 Introduction

A lack of orthographic norms is a common fea-
ture of ancient writing systems. In the case of
Classical Chinese, the written language of ancient
China, this manifests prominently in a high num-
ber of variant characters (yitizi異體字), that is in
a broad sense, characters that are graphically dis-
tinct from each other but are used to write the same
morpheme. For many downstream tasks such as
full-text search, identification of parallel passages
or the analysis of vocabulary, normalization of
variant characters is desirable, as often, they are
completely interchangeable and merely reflect ar-
bitrary choices of copyists or woodblock carvers.
However, there is also a class of quasi-variant
characters that are only interchangeable in some

Figure 1: Images of four characters taken from the Sibu
congkan editions of the Zhaimin yaoshu (first and sec-
ond from the left) and the Baishi changqing ji (third and
fourth from the left), all representing the same word “xu
to need”, transcribed as「xu湏」(first and third from
the left) and「xu須」(second and fourth from the left)
in the digital editions.

contexts, with one variant often being preferred for
one of multiple words1 that can be written with
the characters, more strongly associatedwith a par-
ticular word sense, or only found in certain com-
pounds. For example, the two homophonous and
etymologically related words “li to experience, to
undergo” and “li calender” should, according to
most dictionaries, be written with the two charac-
ters「li歷」2 and「li曆」respectively. While the
usage of these two characters in some editions of
Classical Chinese texts agrees with this distinction,
in others, we find either character used to write
both words, or other variant forms such as「li厯」
replacing them. Hence, a simplistic approach to
normalization based on lists of variant characters
must either risk conflating variants that were in-
tentionally kept apart such as「li歷」and「li曆」,
potentially impacting the understanding of the text,
or ignore such cases, which could e.g. mean miss-
ing a parallel passage in two texts just because one
scribe decided to use「li厯」for both “to experi-
ence” and “calender”.

1Since Classical Chinese is a largely monosyllabic lan-
guage, most morphemes are also words, so in the following,
we will be mostly concerned with words rather than mor-
phemes, although this is of course a simplification.

2In order to distinguish between characters and the words
they represent, we use English quotation marks “” for our
glosses for the latter, and Chinese quotation marks 「」for
the former. To improve readability for readers unfamiliar
with Chinese, Pinyin transliterations for both are supplied, al-
though it should be noted that characters can represent multi-
ple words with different pronunciations.
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The complex history of many characters further
complicates matters, with specialised variants ap-
pearing and disappearing and characters being bor-
rowed to write additional words over time (for a
detailed overview, see Qiu et al., 2000, Chapters
10-12). Also, in China there traditionally was a
taboo on using characters from the ruler’s name,
which was sometimes avoided by using existing
variant forms or even coining new ones (Wang,
1997, 4)3. Furthermore, the physical quality of
texts might vary, and OCR systems as well as pref-
erences of human transcribers can have an impact
on which variant characters are presented to us
in digital versions of the texts. For example, in
Figure 1 four characters are shown that represent
the same word but are transcribed into two differ-
ent, but very similar variant forms, which the Dic-
tionary of Chinese Character Variants (DCCV)
(Ministry of Education, R.O.C) lists as having
overlapping but not identical usage. One case
matches fine variations in the writing style of the
original text while the other appears to be a tran-
scription error. Thus, we anticipate a considerable
amount of variability and noise in the data, and it is
to be expected that there is no single normal form
that “normalization” will result in.
In order to cope with these difficulties, an in-

telligent system for character normalization should
ideally satisfy the following conditions:

1. It should be able to detect in which cases
variants are completely interchangeable, and
when there is a meaningful difference in their
usage.

2. Using that information, when substituting
characters to a more regular form, it should
do so in the direction of higher differentiation,
e.g. replacing「li厯」with「li歷」or「li曆」
depending on which word it represents in its
specific context.

Towards the development of such a system, in
this study, we have extracted a dataset of vari-
ant characters in context from a corpus of texts in
two editions. In two experiments, we have tested
whether contextual word embeddings can be used
to train models to predict variant characters.

3We would like to thank one of the anonymous reviewers
for pointing out the importance of considering this taboowhen
studying the usage of variant characters.

2 Related work

Given the fact that many quasi-variant characters
are distinguished from each other by being pre-
ferred for specific words or word senses, we ex-
pect the problem to be highly similar to word sense
disambiguation. For Classical Chinese, Shu et al.
(2021) and Pan et al. (2022) have recently used
BERT for this task, with some success, although
results for some characters were mixed. Our ap-
proach of using a parallel corpus has already been
successfully applied for learning word sense dis-
ambiguation, using alignments of translated sen-
tences (Ng et al., 2003).
Wang et al. (2023) have developed a dataset of

loangraphs, i.e. characters used to write a word
that is commonly written with another character,
and used BERT embeddings to detect them and
predict the more usual character for writing the
word in question. Many variant characters origi-
nate from loangraphs (Qiu et al., 2000, 371-372),
and the tasks share the problem of having to decide
whether a character should be replaced by another
character, so the study is very similar to the subject
of this study. However, the authors use a hand-
annotated dataset, which compared to ours, has the
advantage of higher accuracy, and greater cover-
age of rare loangraph usage. On the other hand,
the number of samples for each type of character
is quite limited in comparison to our automatically
derived dataset, and since there is no systematic
annotation of an entire corpus, it is impossible to
quantify how widespread the phenomenon is, and
how the usage of loangraphs differs between texts.
A somewhat comparable task for modern Chi-

nese is conversion from simplified to traditional
characters, as one simplified character often re-
places several traditional ones, such as「li历」re-
placing both「li歷」and「li曆」. Hence, ma-
chine learning techniques that take context into ac-
count have been investigated for this task (Pang
and Yao, 2015). The problem of substituting one
character with another, more common character is
shared with spelling correction, for which BERT
has also been used (Wu et al., 2023). An impor-
tant difference to modern languages is of course
that for Classical Chinese, there is no uniformly
accepted normative authority, so it is not a-priori
clear which character is “correct” in a given con-
text.
For Western languages, normalization of his-

toric spelling variations has been intensively stud-
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ied. Bollmann (2019) gives an overview over dif-
ferent techniques, including machine learning ap-
proaches. Jurish (2010) and among others more
recently Makarov and Clematide (2020) introduce
techniques to take context into account to differ-
entiate words, similar to what is attempted here.
However, a key difference between alphabetical
languages and Chinese is that techniques for the
former often rely on edit distances between words,
which is not directly transferable to Chinese char-
acters.

3 Building a dataset

To the best of our knowledge, no comprehensive
annotated corpus to train and test a system for
variant normalization exists. However, there is a
readily available data source which has high po-
tential: works for which different prints or hand-
written editions are digitally available. Since the
usage of variant characters can vary considerably
between several editions of the same text, align-
ing them allows for the mining of variant charac-
ters. Crucially, using an algorithm that will be de-
scribed in detail below, we were able to automati-
cally extract instances of variant characters that are
used concurrently in one edition but correspond to
only a single variant in another, giving potential
cases of quasi-variant characters differentiated by
one writer but not the other.

3.1 A corpus of parallel editions
All texts used in this study were obtained from
two collections of pre-modern Chinese works, the
Wenyuange copy of the Siku quanshu (SKQS),
compiled in the late 18th century, and the 1919 edi-
tion of the Sibu congkan (SBCK), digital versions
of whichwere sourced from theKanseki repository
(Wittern, 2016). In the repository, there are 286
works with editions from both collections.4 For
our purposes, an important distinction between the
two collections is that the editions in the SKQS
were produced as the result of an organised edit-
ing process over some 15 years in the 18th cen-
tury (Guy, 1987, 67-120), whereas the SBCK con-
sists of photographic reproductions of older edi-
tions from different periods of time, prioritizing
early prints where available (Cui andWang, 2011).
Nevertheless, a comparison of different histori-
cal copies of the SKQS has revealed considerable

4According to the catalogue of the repository, there should
be another 30 parallel editions, but our script failed to retrieve
them.

Period
Num.
of

works

Num.
of

chars.
Zhou (1046 BC-256
BC)

8 467 505

Qin (221 BC-206 BC) 2 353 858
Han (202 BC-220 AD) 32 2 644 549
Three Kingdoms (220-
280)

6 537 497

Jin (265-420) 4 411 061
Northern and
Southern Dynasties
(420-589)

11 1 665 058

Sui (581-618) 2 84 228
Tang (618-907) 62 7 694 484
Song (960-1279) 87 17 754 465
Yuan (1271-1368) 29 5 938 237
Ming (1368-1644) 10 3 008 885
Qing (1636-1912) 7 1 622 437
Other 8 859 096

Table 1: Composition of the corpus by period assigned
in the Kanseki repository, with dates from Wilkinson
(2018, 4-5) and length in characters in the SKQS ver-
sion after truncation.

freedom in the choice of variant characters, which
might be attributed to preferences of scribes (Lan,
2015, 49). Hence, the combination of both should
give a good overview of variant character usage by
different editors or scribes from different times.
Table 1 shows the composition of the corpus

by time of origin of the works as recorded in the
Kanseki repository. Of course, the editions of the
works contained in the repository will often be
later.5 As can be seen, although both collections
contain many ancient works, they are in no way
exclusively composed of works in Classical Chi-
nese in the strict sense, i.e. the written language of
China before ca. 0 AD. Instead, they also contain
numerous works from medieval and late imperial
China. We expect that the choice of variant charac-
ters is often more strongly influenced by the copy-
ists than the original authors of documents, and
since the earliest extant editions of ancient texts
are often not that ancient, understanding writing
conventions of later times is highly relevant to our

5Given the high degree of intertextuality present in the
corpus, for any given work, significant parts of the textual
content might not actually originate from the period assigned
in the repository. However, it should at least give a rough
approximation.
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understanding of ancient texts. Hence, we did not
exclude any material based on the time of origin
of the work, and have tested as part of the sec-
ond experiment below whether learning conven-
tions for variant character usage transfers between
documents from different time periods.
From the raw text files obtained from the

Kanseki repository, all metadata was removed,
and all characters that are not Chinese characters
deleted. In order to limit the influence of ex-
traordinarily long documents, the length of each
text was truncated to 500 000 characters. After-
wards, an optimal global alignment for each pair
of editions of the same work was computed using
Hirschberg’s algorithm, using the implementation
from the Python package sequence-align (Ken-
sho Technologies LLC), with gap and mismatch
penalty both at −1, and match score at 1.

3.2 Searching for quasi-variant characters
Subsequently, each pair of aligned sequences was
searched for potential instances of quasi-variant
characters using an algorithm that looks for in-
stances of a single character in one edition corre-
sponding to more than one character in the other
edition, applying some frequency thresholds to
avoid noise. We exclude cases where more than
one of the differentiated characters occurs in both
editions (with a small margin of error of a sin-
gle occurrence), because this indicates either noise
or intentional but divergent differentiation by both
writers. While including these cases would be in-
teresting for a future study, it was decided to err
on the side of caution here and not consider them,
reducing the amount of noise in the dataset.
For an aligned pair of sequences 𝑥 =

𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑛, the algo-
rithm proceeds by the following steps:6

1. Let 𝐶 ← {𝑐 | 𝑐 ≠ ␣ ∧ |{𝑖 | 𝑥𝑖 = 𝑐}| ≥
100}, the set of all characters that are not the
gap character ␣ and that occur at least 100
times in 𝑥.

2. For each 𝑐 ∈ 𝐶 and each 𝑑 ≠ ␣, let 𝑆𝑐,𝑑 ←
{𝑖 | 11 ≤ 𝑖 ≤ 𝑛 − 10 ∧ 𝑥𝑖 = 𝑐 ∧ 𝑦𝑖 =
𝑑 ∧ ∑𝑖+10

𝑗=𝑖−10 𝛿𝑥𝑗,𝑦𝑗
> 10}, the set of all in-

dices where 𝑐 is aligned to 𝑑 (which might
or might not be equal to 𝑐) in 𝑦, and where
at least half the characters in a 21 character

6The implementation of the algorithm as well as all other
code used in this paper can be accessed at https://github.
com/notiho/variants.

span are equal between the two editions to
avoid passages with alignment errors (𝛿𝑥𝑗,𝑦𝑗
denotes the Kronecker delta taking the value
1 if 𝑥𝑗 = 𝑦𝑗 and 0 otherwise).

3. For each 𝑐 and 𝑑 such that |𝑆𝑐,𝑑| < 20, let
𝑆𝑐,𝑑 ← ∅, deleting substitutions without suf-
ficient support.

4. Return as candidates for quasi-variant charac-
ters all 𝑐, 𝑑1, 𝑑2, … , 𝑑𝑘 with 𝑘 ≥ 2 and the re-
spective indices 𝑆𝑐,𝑑𝑖

such that the 𝑑1, … , 𝑑𝑘
are exactly those characters 𝑑 for which 𝑆𝑐,𝑑
is not empty, and such that at most one of the
𝑑1, … , 𝑑2 occurs more than once in 𝑥.

For example, when running the algorithm on
the Xunzi, an ancient philosophical text, with the
SKQS edition as sequence 𝑥 and the SBCK edi-
tion as sequence 𝑦, we start by collecting in 𝐶 a
list of characters that occur at least 100 times in
the SQKS edition, giving in this case 283 different
characters.
Next, in step two, for all the locations where one

of these 283 characters occurs in the SQKS edition
and where in the surrounding context, a reasonably
good alignment was computed by Hirschberg’s al-
gorithm, the two characters in the two editions are
recorded in 𝑆. For example, in the Xunzi, after this
step, 𝑆彊,彊 contains 241 indices, indicating that for
that number of occurrences of 「qiang/jiang 彊」
in the SKQS edition, the parallel passages in the
SBCK edition have the same character. In 𝑆彊,強,
there are another 66 indices of passages where the
SBCK has 「qiang/jiang 強」instead. This pat-
tern of non-substitution and substitution is poten-
tially relevant for our purposes, as the DCCV lists
「qiang/jiang彊」as a variant form of「qiang/jiang
強」, but also has a separate entry for it. On the
other hand, 𝑆彊,能 also contains one entry, which
in this case corresponds to a specific difference in
a single passage between the two editions, which
is not relevant for our study.
Hence, in the third step, entries like those in

𝑆彊,能 with less than 20 indices are deleted from
𝑆.
Finally, in the fourth step, it is checked for which

characters from edition 𝑥 alignments to more than
one character in edition 𝑦 are recorded in 𝑆, and
whether these characters also occur in 𝑥 itself. For
the Xunzi, at this stage, there are only eleven char-
acters left for which 𝑆 contains alignments to more
than one character. Out of these, seven are cases
where a character in the SKQS edition is aligned to
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two characters in the SBCK, both of which are also
used in the SQKS edition. For example, the two vi-
sually highly similar variant forms「de德」and「de
徳」are both used in both editions. Hence, the in-
dices contained in𝑆德,德 and𝑆德,徳 are not returned
by the algorithm. On the other hand,「qiang/jiang
強」does not occur in the SKQS edition of the
Xunzi. Thus,「qiang/jiang彊」and its alignments
to either itself or「qiang/jiang強」are reported as
one of the candidates from this invocation of the
algorithm.
In general, candidates returned by the algorithm

consist of one character that is differentiated into
multiple characters in the other edition. In the fol-
lowing, a candidate 𝑐, 𝑑1, 𝑑2, … , 𝑑𝑘 reported by
the algorithm will be referred to as a substitution
profile 𝑐 ↔ 𝑑1, 𝑑2, … , 𝑑𝑘, and the occurrences
corresponding to it as samples of that substitution
profile from the respective document. Note that
a substitution profile may be attested in multiple
pairs of editions, but that the samples are specific
to each pair.
The algorithm is run on all aligned pairs in

both directions, giving 563 substitution profiles.
These were filtered to remove all instances where
the DCCV lists one of the characters on the right
hand side only as a variant of the other charac-
ter, suggesting that no meaningful difference can
be found.7 For these, an unconditional normaliza-
tion approach is sufficient. The remaining 108 pro-
files originate from 103 of the aligned documents,
showing as a first result that using more than one
variant form of a character is a widespread phe-
nomenon in the corpus.
Table 2 shows four examples from the dataset.

The upper two examples display a meaningful dis-
tinction between「li歷」and「li曆」, while the
lower two are pulled from an edition that arbitrar-
ily uses either「mu母」or「mu/wu毋」to write
“mu mother”.
The number of samples per substitution profile

ranges from 41 to 5139 (mean 562.6, sd 830.3).
On average, each substitution profile is found in

7Variants not found in the dictionary, which usually cor-
respond to minor graphical alterations, were also removed.
Another two profiles were removed as noise resulting from a
difference in how the chapter (juan) number is stated in the be-
ginning of each text file. The full unfiltered list can be found
in the supplementary material. The filtered version is shown
in Appendix A. After inspection of the results, it was further
decided to normalize the minor graphical alterations「li歷」
to「li歴」and「li曆」to「li暦」. This allows us to focus
on the interesting semantic difference between「li歴」and
「li暦」in the following.

2.2 different documents (sd 2.5), with the highest
number of documents for a single profile reaching
14.8 For some of the profiles, one variant form
is highly dominant, accounting for 96.9% of all
samples in the most extreme case (mean 71.1%,
sd 14.7).
Note that some of the substitution profiles do not

consists of variant characters according to the dic-
tionary. For example, we found a profile 留 ↔
㽜留, where 「wan 㽜」is listed as a variant of
「wan 畹」and not 「liu 留」. Since they are vi-
sually highly similar, this could be an artefact in-
troduced by the digitalization process, for which
normalisation is also desirable. The DCCV also
has some variant characters with separate entries
without noting any difference in usage. For exam-
ple, in the profile爾↔尔爾,「er尔」is listed as a
variant form of「er爾」, but also has its own en-
try, which however only states that it is the same as
「er爾」. Since the first experiment described be-
low is specifically designed to test which profiles
represent or do not represent meaningful differen-
tiations in usage, there is no need to remove these
cases a-priori.

3.3 Contextual embeddings

For the 109 profiles found to be potential cases
of quasi-variant characters differentiated in one
edition but not in the other, contextualised BERT
(Devlin et al., 2019) embeddings were collected,
which have shown to be useful for a wide variety
of tasks (Liu et al., 2019). Specifically, the model
from Wang and Ren (2022) was used.9 Compared
to other BERT-family models for Classical Chi-
nese, it has a relatively large vocabulary size of
38 208, making it especially useful for studying
variant characters, some of which are quite rare.10

For the purposes of the study, we are interested
in whether for the substitution profiles, the differ-
entiation on the right hand side is meaningful. We

8The profiles with the highest document frequencies high-
light the importance of taboo characters, as two of the top-five
profiles, 厯↔暦歴 and歴↔暦歴, both involve the char-
acter 「li 暦」, which was part of the personal name of the
Qianlong emperor, under whose reign the SKQS was com-
piled, and whose name thus had to be avoided by the writers
at the time (Wang, 1997, 276).

9Obtained from https://huggingface.co/Jihuai/
bert-ancient-chinese.

10In fact, out of the left hand sides of the substitution pro-
files investigated, which are input into the model, only three
characters, 「chuang 䆫」, 「chi 𠡠」, 「mao 㒵」, were
absent from the vocabulary. Even for these cases, the model
still has the context available, so it is in principle capable of
computing useful embeddings.
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Profile Edition Text
厯↔暦歴 SKQS 非眀 厯 理不足與共事
厯↔暦歴 SBCK 非明 暦 理不足與共事

Translation If someone doesn’t understand the principles of calenders
it is not worth making common cause with them.

厯↔暦歴 SKQS 鄮山昌上人 厯 游諸方獨為此懼
厯↔暦歴 SBCK 鄮山昌上人 歴 游諸方獨爲此懼

Translation
Chang Shangren from Maoshan has experienced
travelling in all the different directions,
but was only ever worried over this.

母↔毋母 SKQS 母 年七十逺在絶域不知死生
母↔毋母 SBCK 毋 年七十逺在絶域不知死生

Translation [My] 70 years old mother is far away in an inaccessible place,
and [I] don’t know whether she is alive or dead.

母↔毋母 SKQS 父 母 妻子徙日南
母↔毋母 SBCK 父 母 妻子徒日南

Translation [Their] fathers, mothers, wives and children were banished to Rinan.

Table 2: Four examples from the dataset, showing passages with relevant context from editions of two works,
belonging to two profiles. The relevant characters are highlighted in red in the original text and our translations.

take this to mean that it is in some way predeter-
mined through the context it occurs in. Hence,
when there is a meaningful difference, the model
should be able to predict the variant used in the
edition corresponding to the right hand side of
the substitution profile having only seen the un-
differentiated version from the left hand side edi-
tion. Accordingly, for each substitution profile
𝑐 ↔ 𝑑1, 𝑑2, … , 𝑑𝑘 only the passages correspond-
ing to the left hand side of the profiles were input
into the BERT model. Specifically, for each oc-
currence of a 𝑐 substituted by one of the 𝑑1, … , 𝑑𝑘,
the 𝑐, alongside with 200 characters each to the
left and right, or less if the end of the document
was reached before that, were extracted. The pas-
sages were then input the model. Since embed-
dings produced by different layers can have signif-
icantly different performance on various tasks (Liu
et al., 2019), the output of all twelve hidden layers
was collected to test which gives the best results.

4 Experiments

4.1 Can conventions in single documents be
learned?

In the first experiment, it was tested which sub-
stitution profiles in which documents correspond
to meaningful differentiations, and which are arbi-
trary. Since many substitution profiles are attested
inmore than one document, and it could be the case

that for the same profile, substitutions are purely
noise in one document, but meaningful in another,
each pair of editions of documents was tested sep-
arately. For this purpose, we have fitted a logis-
tic regression on the contextual embeddings com-
puted from the non-differentiated editions, sepa-
rately for each unique combination of substitution
profile and document. If the resulting model is ca-
pable of predictingwhich of the differentiated vari-
ants should occur in a particular position, this in-
dicates that the choice is in some way determined,
and the differentiation meaningful for that partic-
ular set of variant characters in that particular edi-
tion.

For evaluation, ten-fold cross-validation was
used, that is, for each substitution profile found
in each document, the available samples were ran-
domly partitioned into ten parts, and each part held
out as test data for a model trained on the remain-
ing nine parts. Following among others Shi et al.
(2016), logistic regression was used to fit mod-
els on the contextual embeddings. In particular,
we used the sklearn package (Pedregosa et al.,
2011), with L2 regularization and softmax loss for
those profiles with more than two alternative vari-
ants. After training, the R package caret (Kuhn,
2008) was used to test whether the model’s predic-
tions on the test set are significantly better than a
naive predictor that always predicts the most fre-
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Above
naive Total

Combinations of
profile and docu-
ment

77 (32.4%) 283 (100%)

Profile (at least
one document
above naive)

45 (41.7%) 108 (100%)

Table 3: Counts of unique combinations of profile and
document for which significantly better accuracy com-
pared to a naive classifier was achieved (first row), and
of profiles for which this was the case for at least one
document (second row).

quent class, at a significance level of 0.05, adjusted
for multiple testing with a Bonferroni correction.
The experiment is run twelve times, using the

different hidden layers as input. The highest num-
ber of combinations of document and profile with
prediction significantly better than a naive classi-
fier was achieved when using the output of the fi-
nal hidden layer, where 77 cases could be found,
compared with 69 for the second best, the second-
to-last hidden layer. This agrees with the intuition
that the problem of predicting the precise variant
used in a particular position is highly similar to the
masking problem BERT is trained with, in contrast
to most other tasks where embeddings taken from
middle layers generalize better (Liu et al., 2019).
The results of the experiment, a summary of

which is shown in Table 3, indicate that meaning-
ful differentiation of variants is less common than
free alteration of variants, even after having fil-
tered out variants that are always interchangeable
according to theDCCVas described in Section 3.2.
Only for a minority of unique combinations of pro-
file and document the model learns to predict sam-
ples significantly better than naively predicting the
most frequent class.11
Interestingly, the model is able to predict some

variants which we would expect to be completely
interchangeable based on the DCCV, such as「er
尔」and「er爾」described above, albeit only for
a single document. A manual investigation of that
document, the Taiping yulan reveals that indeed,
one of the editions consistently writes the surname
“Erzhu” as「erzhu尓朱」, but the name of a well-
known gloss dictionary, theErya, as「erya爾雅」,

11A complete list documenting for how many documents
this was the case for each profile can be found in App-
pendix A.

Profile Pairs above naive
classifier / all pairs

厯↔暦歴 112/132
勑↔勅勑 0/20
明↔明眀 0/20
歴↔暦歴 9/12
聲↔声聲 3/12
于↔于扵 0/2
巳↔己已 0/2
歴↔厯歴 0/2
荅↔答荅 0/2
解↔解觧 0/2
須↔湏須 0/2
魯↔嚕魯 1/2

Table 4: Number of directed pairs for which a model
trained on the first document was able to achieve per-
formance significantly better than a naive classifier, by
substitution profile.

whereas the other edition uses「er爾」for both.
Thus, the method has successfully revealed a dis-
tinction not found in the dictionary.
The accuracy achieved by the model is difficult

to compare between different profiles and docu-
ments. For those combinations of profile and doc-
ument where the accuracy is significantly better
than the naive predictor, it ranges from 51.2% to
100% (mean 89.2%, sd 8.7).

4.2 Do conventions transfer between
documents?

The first experiment has shown that in principle, a
simple logistic model is able to learn to predict dif-
ferentiated variant characters from contextual em-
beddings taken from an edition that does not dif-
ferentiate the variants. However, it was only tested
whether this is possible for individual pairs of edi-
tions of documents. Hence, the logistic regression
could have learned to overfit the conventions of an
individual writer, which would not be useful for
normalizing other texts. Thus, in a second experi-
ment, we tested whether what was learned on one
pair of editions of a document (𝑢, 𝑣) can be applied
to another pair of editions of a different document
(𝑥, 𝑦) that exhibits the same substitution profile.
For this purpose, all profiles were selected

where in the first experiment, the model was able
to learn to predict variants for more than one docu-
ment. This was the case for only 12 profiles, which
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are listed in Table 4. Then, for each directed pair12
of documents with above naive classifier perfor-
mance, each consisting in turn of a pair of aligned
editions, a model was fitted with the same basic
setup as in the first experiment, using all sam-
ples from the first document as training data, and
all samples from the second document for testing.
That is, for documents 𝑎 and 𝑏 with aligned edi-
tions (𝑢, 𝑣) and (𝑥, 𝑦) respectively, the model is
trained to predict the variants in 𝑣 based on em-
beddings taken from 𝑢, and it is test on predicting
variants in 𝑦 based on embeddings from 𝑥. Finally,
it was again tested whether the model has signifi-
cantly higher accuracy than a naive classifier that
always predicts themost frequent variant in the tar-
get document, at a significance level of 0.05 with
Bonferroni correction. The counts of pairs where
this was the case are also shown in Table 4.
As can be seen in the table, for most profiles,

a convention learned on one document does not
generalize to other documents in most cases. In
fact, the only profiles where for a majority of di-
rected pairs, a model trained on one document was
successful in predicting variants in the target doc-
ument were the two profiles having「li暦」and「li
歴」on the right hand side. Other than that, only the
profiles聲↔声聲 and魯↔嚕魯 had successful
cross-training cases.
This result suggests that for the other profiles,

idiosyncrasies rather than universal norms are
more frequently found in the corpus. Of course,
training on single documents means the model is
exposed to only one type of content. To stay with
an example from above, although we have only
a single document for it, having learned to write
the surname Erzhu with「er尓」can’t be success-
fully applied to a document that does not mention
a person of that name. And even if it does contain
that name, it would not necessarily agree in that
choice of variant, as historically, there was no gen-
eral consensus to write that name with「er尓」.
Furthermore, there is also the possibility that for
some documents, the model has simply learned to
predict patterns in artefacts that are introduced by
the digitalization process, which also should not
transfer to other documents.
In a similar vein, a manual investigation of the

two documents with successful transfer for the pro-
file聲↔声聲 shows that they share a strong pref-

12For two documents 𝑎 and 𝑏, both (𝑎, 𝑏) and (𝑏, 𝑎) are
considered distinct directed pairs.

erence for writing the name of tones, e.g. “qusheng
departing tone”, with the simplified form「sheng
声」, another convention we do not expect to be
widely adopted.
For the only group where a high degree of trans-

ferability could be observed, i.e. the two profiles
厯↔暦歴 and歴↔暦歴, time of origin of the
works doesn’t appear to have an effect on trans-
ferability. Using the dating information in the
form of dynasties provided by the Kanseki repos-
itory, a chi-squared test shows no dependency be-
tween documents originating from the same time
period and above naive predictor performance of
the model (𝜒2 = 0.5232, 𝑑𝑓 = 1, 𝑝 = .4695). Out
of 94 pairs from different dynasties, 81 (86.2%)
transferred successfully, whereas for pairs from
the same dynasty, it was 40 (80%) out of 50. We
take the result to indicate that conventions regard-
ing the use of「li暦」and「li歴」were quite stable
over time. Further research is needed to determine
how this relates to the time of origin of editions
instead of works.
Accuracy for the models of the same group cal-

culated for each directed pair ranges from 71.8%
to 97.8% (mean 88.4%, sd 6.3). A preliminary ex-
periment suggests that accuracy can be much im-
proved by training on more than one document,
with mean per-document accuracy for the same set
of documents reaching 99.5% (sd 0.9) when divid-
ing the documents randomly into ten parts, using
one part for testing and the others for training. We
leave it to further studies to investigate how this
might be further improved upon.

5 Conclusions

In this article, we have demonstrated the general
viability of using parallel editions and contextual
embeddings for context-aware variant character
normalization for Classical Chinese, by showing
that a simple logistic model can be trained to pre-
dict which of more than one differentiated vari-
ants could replace a character in a given context.
At the same time, our analysis has also revealed
that meaningful variation of variant characters is
quite a rare phenomenon, while in the digital edi-
tions surveyed, alteration between variant charac-
ters without meaningful difference is ubiquitous.
This confirms the need for some form of variant
normalization. In this regard, the failure of the
model to learn to distinguish variants can actually
be highly useful, because it can increase confi-
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dence that for those cases, a simple list based nor-
malization approach does not run the risk of losing
information.
For those cases where the model was able to

learn a differentiation, the results of the second
experiment indicate that idiosyncratic usage of
variant characters is quite common in the corpus.
Training a model on the conventions used by one
writer of one edition of a document does often
not generalize to other documents. Taken together
with the high overall number of variant charac-
ters, this confirms that copyists had considerable
freedom in choosing variant characters, and high-
lights the importance of considering the transmis-
sion process when reading received versions of an-
cient texts.
In terms of the two design goals for an intelligent

system for variant normalization stated in the intro-
duction, we have achieved more progress towards
the first goal. As we have seen with the example
of「er尓」and「er爾」, the system has shown it-
self capable of discovering deliberate variation in a
case where we would not expect it to occur based
on consulting a dictionary. It could be a worth-
while endeavour to rerun the experiments with the
full list of substitution profiles, i.e. without remov-
ing instances that are completely interchangeable
according to the DCCV, to see how widespread
such cases are.
Towards the second goal of normalizing variants

towards specialised forms, we have made signifi-
cant progress only for a single case,「li暦」and「li
歴」. In differentiating these two characters, our
simple approach that did not require any manually
annotated data achieved high accuracy. Since the
second experiment has shown an apparent lack of
uniform conventions in the usage of many variant
characters, further endeavours in this direction will
first need to decide which conventions to adopt.

6 Limitations

Since we did not systematically compare the orig-
inal manuscripts or prints with the digitalized edi-
tions, for some visually similar variants we do not
know whether they are merely the result of incon-
sistencies in the digitalization process.
Due to the lack of a manually annotated dataset,

we do not know how good the recall of our ap-
proach of extracting quasi-variant characters from
an aligned corpus of parallel editions is. Since the
algorithm that computes the list of candidates con-

tains some filters to reduce noise, it might miss
cases where a variant only occurs with very low
frequency.
The approach we took towards determining

whether the variation of variant forms is meaning-
ful or not can only detect differentiations that the
BERT model is aware of, and that are encoded in a
simple enough way for a logistic model trained on
a limited set of data to extract them.
For the cases where the model was able to learn

to predict variant characters, we do not know what
factors the decisions are based on, and whether a
human would find them meaningful.
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A List of substitution profiles and results
of first experiment

Profile

Docs. above
naive classifier

/
docs.

明↔明眀 5/14 厯↔暦歴 12/13
得↔得淂 0/12 歴↔厯歴 2/9
聲↔声聲 4/9 萬↔万萬 1/7
解↔解觧 2/7 於↔于扵 1/6
歴↔暦歴 4/6 爾↔尓爾 1/6
勑↔勅勑 5/5 玉↔玉玊 0/5
等↔䓁等 1/5 須↔湏須 2/5
丘↔丘邱 1/4 京↔京亰 0/4
于↔于扵 2/3 已↔已巳 1/3
幸↔幸𦍒 0/3 爾↔尔爾 0/3
盡↔尽盡 0/3 總↔揔緫 0/3
遷↔迁遷 0/3 體↔体體 1/3
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兹↔兹玆 0/2 厭↔厭猒 0/2
厯↔厯暦 1/2 巳↔己已 2/2
文↔攵文 0/2 最↔冣最 0/2
母↔毋母 0/2 筆↔筆茟 1/2
篇↔篇萹 1/2 總↔緫總 0/2
荅↔答荅 2/2 閒↔閑閒 0/2
魯↔嚕魯 2/2 㒵↔貌貎 1/1
䆫↔牕窓 0/1 于↔于於 0/1
亦↔亦尔 0/1 仙↔仙僊 0/1
以↔㕥以 0/1 伏↔㐲伏 0/1
元↔元玄 1/1 充↔充𠑽 0/1
克↔克𠑽 0/1 全↔全訂 1/1
勅↔勅𠡠 1/1 勢↔勢埶 0/1
十↔十卄卅 1/1 合↔合瑪 1/1
同↔仝同 0/1 名↔名構 1/1
名↔名𤣥 1/1 在↔在抂 0/1
多↔多朶 1/1 已↔己已 0/1
弘↔宏𢎞 0/1 彊↔強彊 1/1
憐↔怜憐 0/1 揔↔揔摠總 0/1
支↔支攴 0/1 明↔明朙眀 1/1
暦↔厯歴 0/1 望↔望朢 0/1
某↔厶某 1/1 校↔挍校 0/1
機↔机機 0/1 檢↔撿檢 1/1
歸↔㱕歸皈 0/1 注↔注註 0/1
無↔旡無 0/1 然↔然肰 0/1
燕↔燕鷰 0/1 爲↔為謂 0/1
爾↔児尓 1/1 爾↔尓尔爾 0/1
牎↔忩窻 0/1 留↔㽜留 0/1
痕↔㾗痕 0/1 皃↔貌貎 1/1
窓↔忩窓窻 0/1 窻↔䆫牎 0/1
答↔答荅 1/1 總↔㹅惣揔 0/1
脫↔托脱 1/1 與↔歟與 1/1
舊↔旧舊 0/1 苟↔苟茍 0/1
茂↔茂荗 1/1 草↔艸草 0/1
謂↔爲謂 0/1 貌↔㒵皃 1/1
貌↔㒵皃貌 0/1 貌↔貌貎 0/1
貎↔㒵皃 1/1 遊↔㳺逰 0/1
醫↔毉醫 0/1 釋↔釋𥼶 0/1
野↔埜野 0/1 鍼↔針鍼 1/1
閑↔閑閒 0/1 閑↔閒闲 1/1
體↔体躰體 0/1 體↔体軆體 0/1
體↔躰體 0/1 𠡠↔勅勑 0/1
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Abstract

In this paper, we present a study of transformer-
based Named Entity Recognition (NER) as ap-
plied to Ancient Greek texts, with an emphasis
on retrieving personal names. Recent research
shows that, while the task remains difficult, the
use of transformer models results in significant
improvements. We, therefore, compare the per-
formance of four transformer models on the
task of NER for the categories of people, loca-
tions and groups, and add an out-of-domain test
set to the existing datasets. Results on this set
highlight the shortcomings of the models when
confronted with a random sample of sentences.
To be able to more straightforwardly integrate
domain and linguistic knowledge to improve
performance, we narrow down our approach
to the category of people. The task is simpli-
fied to a binary PERS/MISC classification on
the token level, starting from capitalised words.
Next, we test the use of domain and linguistic
knowledge to improve the results. We find that
including simple gazetteer information as a bi-
nary mask has a marginally positive effect on
newly annotated data and that treebanks can be
used to help identify multi-word individuals if
they are scarcely or inconsistently annotated
in the available training data. The qualitative
error analysis identifies the potential for im-
provement in both manual annotation and the
inclusion of domain and linguistic knowledge
in the transformer models.

1 Introduction

Identifying the mentions of people in texts is one
of the goals of the broader task of Named Entity
Recognition (NER). For scholars working on his-
torical texts, accurately finding and identifying peo-
ple is particularly valuable for studying the rep-
resentation of individuals, both in qualitative and
data-driven studies. The present research, for in-
stance, is embedded in a broader project aiming
at performing large-scale analysis on the mentions
of individuals in Ancient Greek and Latin texts

(NIKAW, Networks of Ideas and Knowledge in the
Ancient World).

For classical languages, and Ancient Greek in
particular, the task remains challenging to automate.
This study capitalises on recent advancements in
transformer models, which have shown promising
improvements over previous approaches. After in-
troducing the available methods and data for NER
on Ancient Greek (Sections 2 and 3), in Section 4,
we compare four recent transformer models of An-
cient Greek and their performance for NER, with a
focus on identifying mentions of people. This com-
parison allows the selection of a model for further
exploration. Since the Ancient World has a wealth
of domain-specific resources on offer, in Sections
5, we focus on the specific task of predicting PERS
entities by simplifying the NER task, and we ex-
plore how integrating gazetteers (Section 5.2) and
syntactic annotations (Section 5.3) can impact the
process of pinpointing individuals in texts. In the
qualitative error analysis in Section 5.4, we identify
several shortcomings of the reduced transformer
method and discuss how domain knowledge and lin-
guistic information impact the performance. With
this, we contribute to advancing NER for Ancient
Greek, identifying the strengths and limitations of
currently available models and data and offering
concrete suggestions for the way forward.

2 Related Work

The task of NER for historical languages presents
several challenges, which can be traced back to
four main factors (Ehrmann et al., 2023): diversity
of sources, noisiness of data, language change, and
lack of resources. These challenges are transfer-
able to Ancient Greek and Latin corpora. How-
ever, the use of transformer models yields promis-
ing results: this is demonstrated for Latin by Tor-
res Aguilar (2022); Beersmans et al. (2023), and
for Ancient Greek by Yousef et al. (2023); Pal-
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ladino and Yousef (2024). Palladino and Yousef
(2024) present two transformer models finetuned
for the task of Ancient Greek NER. This model
was created by training a XLM-RoBERTa-based
multilingual model that was previously fine-tuned
on the word alignment task for ancient languages,
including Ancient Greek (Yousef et al., 2022a,b)
and an Ancient-Greek-BERT model (Singh et al.,
2021) respectively.

In this paper, we compare the NER performance
of four transformer models for Ancient Greek, de-
scribed in detail in Section 4 and 5. In addition,
recent studies highlight the advantages of incorpo-
rating domain knowledge, in particular gazetteers,
in the training of NER models, especially for low-
resource languages (Zafarian and Asghari, 2019;
Fetahu et al., 2022; Song et al., 2020). Gazetteers
are external resources that often take the form of
name dictionaries, grouped by a specific entity type
(e.g. location or person). To leverage the advan-
tage of domain knowledge, we incorporate the Tris-
megistos Gazetteers of names and name variants
(TM NamVar) (Broux and Depauw, 2015)1 and of
places (TM GeoVar)2 in two approaches described
in Section 5.2. This rejoins the efforts of exploiting
available knowledge bases for annotating Ancient
Greek texts, as discussed in Berti et al. (2019).
Finally, we address the problem of multi-token
entities, which are particularly difficult to label au-
tomatically given their sparsity in the training data
and the potential complexity added by factors such
as overlap, nesting, and non-consecutiveness (Xia
et al., 2019; Alshammari and Alanazi, 2021; Byrne,
2007; Crane, 2011). In Section 5.3, we explore
the effectiveness of expanding single-token entities
into multi-token entities using syntactical depen-
dencies.

3 Data

3.1 Datasets for training and testing

There is currently no dedicated openly available
benchmark dataset for Ancient Greek NER.3 How-
ever, scholars have been annotating entities in
Ancient Greek texts for a variety of goals, such
as the mapping of places.4 We combined four

1https://www.trismegistos.org/ref/about_naw.
php.

2https://www.trismegistos.org/geo/about.php.
3Palladino and Yousef (2024) compiled a dataset similar

to this one, but it is not publicly available.
4See for instance the geographical visualisation available

for the Odyssey.

of such annotated Ancient Greek texts and har-
monised their annotation through rule-based means.
Our harmonised corpus contains data from the
following projects (details summarised in Table
1): First: the Odyssey (henceforth OD) (Pelagios,
2021). Second, the EpiDoc XML of the Deip-
nosophistae of Athenaeus of Naucratis (DEIPN),
retrieved from the Perseus digital library.5. Third,
the Stepbible corpus (SB), available on GitHub
(STE, 2023), which contains the full Ancient Greek
New Testament (for further details, see Section
3.2). And finally: Pausanias’ Periegesis Hellados
(PH), courtesy of the Periegesis project (Foka et al.,
2021). For information on originally annotated en-
tity types per dataset, please refer to Table 12 in
appendix C.

In addition, we manually annotated a random
sample of 596 sentences from the GLAUx corpus
(Keersmaekers, 2021) to test the generalisability of
the results to all literary Greek material (GLAUx
TEST). GLAUx contains most of the literature pro-
duced in Greek between the 8th century BC and
the 4th century CE (about 27 million tokens). It
is partly manually and partly automatically anno-
tated for morphology, lemmas and syntax. While
the predictions were made on the (tokenized) text,
the morphological and syntactic annotation and the
lemmas were used for further experiments (for de-
tails, see Section 5.3). The annotation process of
GLAUx is described in Section 3.3.

3.2 Data Harmonisation

Since the datasets described in the previous section
followed different guidelines, data harmonisation
was necessary, following the steps detailed here.

• All entities were projected from their original
files onto the GLAUx XML files to ensure
similar Unicode character encoding, linguistic
enrichment, tokenization, and capitalisation
standards.

• Similarly to Palladino and Yousef (2024),
we mapped the original annotated entities
to a PERS, LOC, GRP scheme (Appendix
C). PERS is used for identifiable individuals,
LOC for geographical locations (both natu-
ral and human-built) and GRP for ethnonyms,
nationalities and organisations. As the OD
lacked a category suitable for conversion to
GRP, this dataset was not used in the full NER

5For Named Entity retrieval tools for this text in particular,
see The Digital Athenaeus project (Berti, 2021).
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text # tokens annotation method period genre

PH 242,433 manual 2nd century AD travelogue
DEIPN 314,256 semi-automatic 3rd century AD encyclopedic dialogue
OD 104,364 manual 8th century BC epic poetry
SB 158,325 manual 1st -2nd century AD religious

Table 1: Available datasets for Ancient Greek NER

but only in the reduced model described in
Section 5.

• We used the morphological tags available in
the GLAUx corpus to convert all plural words
annotated as a person (often Muses, Cyclopes,
etc.) to GRP.

• The TITLE-category of the SB corpus also
caused issues, including references to Jesus,
the biblical God, and cults. To disambiguate,
all capitalised singular titles (e.g. Jesus Christ)
were re-annotated as PERS, all capitalised plu-
ral titles were re-annotated as GRP (e.g. Phar-
isees) and all non-capitalised titles (e.g. the
non-capitalised word ‘god’) were discarded.

• The PH dataset contains annotated pronouns
or references to entities that do not include
a name (e.g. ‘the island’). We rely on capi-
talisation and discard all entities that do not
include at least one capitalised word. For con-
sistency, this rule was adopted in all datasets,
even though non-capitalised entities were rare
in the others.

• For all datasets, all entities that were not an-
notated with one of our final entity types (i.e.
PERS, LOC, GRP), e.g. Συμποσίῳ, ‘in the
Symposium’, referring to the title of a work,
were dropped.

Finally, we split the data in a train, validation
and test set using a 75%-12.5%-12.5% split. Af-
ter harmonisation, multi-token entities were scarce
(see Table 2, a total of 2,376 on 55,454 entities). In
DEIPN, for example, no multi-token entities were
annotated.

3.3 Annotation of GLAUx

As mentioned before, the overarching goal of our
project is to conduct a large-scale analysis of the
mentions of individuals in Ancient Greek (and
Latin) texts. For this purpose, we start from the
GLAUx corpus (Keersmaekers, 2021), introduced
in Section 3.

In order to evaluate the performance of the model

Figure 1: Confusion matrix for the IAA on GLAUx

on GLAUx, we annotated a random sample of 596
sentences, each containing at least one capitalised
word, for a total of 1,012 entities (excluding the
ones annotated as O),6 as shown in Table 2. We
annotated the entity types PERS, LOC, and GRP,
following the definitions described in Section 3.2.
For multi-token entities such as e.g. Ἀρχαγόρας
Ἀργεῖος, ‘Archagoras the Argive’, we allowed
nested annotation: in this case B-PERS I-PERS
for the entire string, with an additional B-GRP for
Ἀργεῖος.

172 sentences of the random GLAUx sample
were annotated by two of the co-authors, resulting
in an Inter Annotator Agreement (IAA) of 0.97 (Co-
hen’s kappa coefficient), calculated on word level.
When excluding the O’s, the two annotators agreed
on the label of 95% of the entities. The confusion
matrix is shown in Figure 1. After IAA was cal-
culated, both annotators discussed the differences
to agree on a final annotation.7 Surprisingly, the

6Entities annotated as O are those that do not fit the PERS,
LOC, GRP scheme, such as, for example, book titles, titles
of people without an actual named entity (e.g. Caesar or
Pharaoh), and astronomical entities.

7Detailed information, both concerning the origi-
nal annotations used to compute the IAA and the final
annotation after discussion, can be found in the docu-
ment final_glaux_sample_iaa.csv on our GitHub repos-
itory: https://github.com/NER-AncientLanguages/
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TRAIN TRAINody VAL VALody Held out TEST TESTody GLAUx TEST

B-PERS 21,307 2,033 4,054 381 3,090 400 578
I-PERS 290 25 122 1 83 0 51
B-LOC 8,261 699 1,345 85 1,105 76 233
I-LOC 1,061 18 278 0 196 0 11
B-GRP 8,884 41 1,291 2 1,384 4 201
I-GRP 182 0 9 0 49 0 0
O 494,668 75,248 81,968 12,547 83,182 12,519 13,454

Table 2: Entities annotated in the train, validation and tests sets. The ody datasets are exclusively used for the
models predicting PERS/MISC. The GLAUx TEST dataset was annotated for this project to evaluate performance
on data representative of all Ancient Greek literature.

main source of confusion was the attribution of the
B-PER label, where one of the two annotators as-
signed O five times. This mostly concerned names
mentioned as names or nicknames, that serve as ad-
ditional specifications for a different, already men-
tioned entity. For instance, in the sentence "and
they call his name ‘the Emmanuel’", ‘Emmanuel’
was not considered an entity by one of the annota-
tors. After discussion, these cases were considered
entities in the final annotation. The annotators also
disagreed twice on the annotation of a standalone
ethnonym, here referring to a specific individual:
the "Samaritan" was annotated by one annotator
as B-PERS and by the other as B-GRP. The an-
notators agreed on B-GRP, to be consistent with
the plural occurrences of ethnonyms. Concerning
differences in boundaries, in the case of sequences
such as Φᾶσιν ποταμὸν, ‘river Phasis’, only one of
the two annotators included ποταμὸν, ‘river’, in the
entity. The final annotation includes both words.

4 Models for normal NER

In this section, we compare the performance of
four transformer-based models for NER. We have
a twofold objective: determine the best-performing
model for the general NER task,8 and determine to
what extent the inclusion of domain knowledge can
improve the results of the best-performing trans-
former models.

4.1 Trained models

We trained a total of four models and tested them
on both the Held out TEST and GLAUx TEST
datasets. Two of these models are also included in

NERAncientGreekML4AL.
8The best model will be published on HuggingFace upon

acceptance, while the code for training the models is available
on GitHub (ibid.)

Palladino and Yousef (2024): the first is Ancient
Greek BERT (henceforth AG_BERT), a modern
Greek BERT model fine-tuned on Ancient Greek
text data from the Perseus Digital Library and the
First1KGreek project (Singh et al., 2021). The sec-
ond is a multilingual XLM-RoBERTa model fine-
tuned on Perseus data, the First1KGreek project,
and various treebank datasets for Ancient Greek
translation alignment, developed in the context of
the UGARIT project (henceforth UGARIT). Be-
cause our training data differ from theirs, we re-
trained the two models instead of comparing met-
rics for the fine-tuned models directly. In all cases,
we used a random 10-fold hyperparameter search
to optimise the weight decay, the learning rate, and
the number of epochs to maximise the F1 score on
the validation dataset. The search space and final
hyperparameters are detailed in Tables 7 and 8 in
Appendix A.

We added two other models for comparison.
Firstly, Ancient Greek ELECTRA-small (hence-
forth ELECTRA) (Mercelis and Keersmaekers,
2022), trained on Ancient Greek texts from Homer
up until the 4th century CE. It is smaller than
the other models and significantly faster to train.
Secondly, GrεBerta (Riemenschneider and Frank,
2023), an XLM-RoBERTa model trained on a cor-
pus of 200 million Ancient Greek tokens. The texts
are partially sourced from digitisation projects such
as the Perseus Digital Library and First1KGreek
and partially from OCRed text from the Internet
Archive.

4.2 Results on test sets

Table 3 shows the results of the four models on
the ‘Held out TEST’ and the ‘GLAUx TEST’ sets.
Metrics are calculated on the entity level (e.g. for
multi-word entities, all comprising words of said
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entities must be correctly annotated by the model
to be considered a true positive). Unless otherwise
specified, we indicate the F1 score per category.
The evaluation focuses on the assignment of entity
type to every token and thus I-tags are not explicitly
shown in the table because of the inconsistency of
the annotation of these entities in the training data,
as done by (Palladino and Yousef, 2024). However,
it is important to note that Recall for I-tags of all
types was low, as can be seen in Table 10 in Ap-
pendix B. This can be attributed to their relative
scarcity in training and validation data, and a way
to improve these results is discussed in Section 5.3.

First, it is notable that all the models perform
better on the Held out TEST than on the GLAUx
TEST. For PERS, the best-retrieved category, this
translates into a minimum drop of 0.01 (GrεBerta)
to a maximum of 0.05 (UGARIT). Secondly, while
on the Held out TEST AG-BERT, ELECTRA and
UGARIT have a very similar performance, on the
GLAUx TEST, AG-BERT outperforms the other
three.

5 Predicting PERS entities (Reduced
models)

Because the overarching project in which this re-
search is embedded is primarily interested in the
mentions of people, and because, as demonstrated
by Table 3, the prediction of LOC and GRP entities
is more difficult than PERS, the next part of the
paper focuses on adapting the NER task to predict
individuals as comprehensively and consistently
as possible. We propose the three following ap-
proaches:

• Simplify the task from standard NER to pre-
dicting whether a single token references a
person (PERS) or not (MISC) (see 5.1).

• Incorporate information from the TM Nam-
Var and GeoVar gazetteers as either a post-
processing rule or a binary mask added to the
model input (see 5.2).

• Utilise the GLAUx syntactic dependencies to
(re)create multi-token entities after annotation
by the models (see 5.3).

5.1 Training models to predict PERS-MISC
To create the data for the simplified NER task,
which only predicts an entity label (PERS or MISC)
for every capitalised token, and by default pre-
dicts O for all other tokens, we automatically re-
annotated all capitalised words of the entity type

PERS without B- or I- specifications: so, for ex-
ample, the name ‘Simon Petrus’ was re-annotated
as PERS PERS. This process causes a difference
in entity count compared to the data used for the
normal model, as visible in the ‘support’ columns
of Tables 3 and 4. All other capitalised tokens were
annotated as MISC. Non-capitalised tokens are al-
ways classified as non-entities. Critical editions of
Ancient Greek text often lack a sentence-initial cap-
ital, so it is reasonable to assume that anything that
is capitalised is an entity of some kind. In earlier
work, capitalisation in critical editions of Ancient
Greek (and Latin) texts has been similarly lever-
aged for NER e.g. in the Perseus Project (Crane,
2011) and Trismegistos (Broux and Depauw, 2015).
We use the same base models and hyperparameter
optimisation method as described above for the
normal NER (details available in Table 9 in Ap-
pendix A). The results in Table 4 show that all
models perform well on this task, with AG_BERT
marginally outperforming the others. We thus only
use this model (from now on AG_BERT_simple),
for gazetteer and dependency incorporation.

5.2 Gazetteer approaches
As detailed in Section 2, including domain knowl-
edge in the training of NER models may be advan-
tageous. Here, in collaboration with the Trismegis-
tos team, we explore the incorporation of the TM
gazetteers NamVar and GeoVar (see Section 2), au-
thoritative lists widely used in the field of ancient
history.

TM NamVar aims at an exhaustive coverage of
personal names attested in Ancient Greek (800
BCE - 800 CE), including all spelling and linguis-
tic variants. For names outside Egypt, TM Nam-
Var has integrated the Greek Lexicon of Personal
Names (LGPN).9 The coverage of the regional
LGPN volumes varies over time, e.g. regarding the
inclusion of non-Greek names. TM is in the pro-
cess of adding whatever names are missing, both
in epigraphic and in Greek literary texts. Currently
there are 81,588 Greek name variants (out of a total
of 239,201 for all languages and scripts). TM Geo-
Var for Ancient Greek currently focuses mainly
on spelling and linguistic variants of place names
found in texts from Egypt

5.2.1 Rule-based approach (AG_BERT_rule)
To create AG_BERT_rule, a post-processing rule
was added to the prediction of AG_BERT_simple:

9https://www.lgpn.ox.ac.uk/.
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AG-BERT Electra GrεBerta UGARIT support

Held out TEST

PERS 0.87 0.86 0.76 0.86 3,090
LOC 0.73 0.71 0.57 0.73 1,105
GRP 0.81 0.80 0.68 0.83 1,384
Macro F1 0.80 0.79 0.67 0.81 5,579

GLAUx TEST

PERS 0.78 0.76 0.73 0.79 578
LOC 0.75 0.71 0.60 0.66 233
GRP 0.78 0.78 0.73 0.76 201
Macro F1 0.77 0.75 0.68 0.74 1,012

Table 3: Results (F1 score) for NER per label on in-domain (Held out TEST) and out-of-domain (GLAUx TEST)
data

AG_BERT Electra GrεBerta UGARIT support

Held out TEST

PERS 0.90 0.87 0.83 0.89 3,539
MISC 0.90 0.88 0.84 0.89 3,706
macro F1 0.90 0.88 0.83 0.89 7,245

GLAUx TEST

PERS 0.88 0.84 0.81 0.85 605
MISC 0.88 0.87 0.83 0.86 699
macro F1 0.88 0.86 0.82 0.86 1,304

Table 4: Results (F1 score) for the prediction of PERS and MISC labels on in-domain (Held out TEST) and
out-of-domain (GLAUx TEST) data

if the lemma of a capitalised token appears in TM
NamVar, but not in TM GeoVar, it is always clas-
sified as a person. Both on Held out TEST and
on GLAUx TEST, this approach increases Recall
(by ca. 0.03 points) but has a detrimental effect
on Precision (drop of more than 0.06 points) (see
Table 5).

5.2.2 Machine Learning approach
(AG_BERT_mask)

For AG_BERT_mask, we incorporated the rule de-
scribed in Section 5.2.1 as input for the model. A
binary mask was added to the training data where 1
indicated the rule applied and 0 that it did not. This
mask was provided as additional input informa-
tion to the model. We retrained AG_BERT_simple
with the same final hyperparameters as described
in Section 5. The results in Table 5 show that
while no effect is visible on Held out TEST, this
approach improved Precision on GLAUx TEST

from 0.84 to 0.90, with a slight drop in Recall
(from 0.92 to 0.91). We thus conclude that the ML
approach yields better results than the rule-based
approach, and we integrate the syntax on the top of
AG_BERT_mask.

5.3 Incorporating syntax for the retrieval of
multi-token entities (AG_BERT_syntax)

In the training data, names with ethnonyms and
patronyms are rarely annotated as multi-token enti-
ties. They are frequently annotated as two separate
entities, as is the case DEIPN (e.g. Λεωνίδης ὁ
῾Ηλεΐος, ‘Leonides of Elis’, annotated as B-PERS
O B-GRP) and PH (e.g. Δεκελεύς Σωφάνης,
‘Sophanes of Decelea’, annotated as B-GRP B-
PERS), although there are exceptions (e.g. in PH
Θεοδώρου τοῦ Σαμίου, ‘Theodorus of Samos’, an-
notated as a B-PERS I-PERS I-PERS). However,
for the disambiguation and linking of people re-
trieving the full name is crucial.
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AG_BERT_simple AG_BERT_rule AG_BERT_mask support

Pr Rc F1 Pr Rc F1 Pr Rc F1

Held out TEST

PERS 0.88 0.93 0.90 0.79 0.96 0.87 0.88 0.93 0.90 3,539
MISC 0.93 0.88 0.90 0.96 0.75 0.84 0.93 0.88 0.90 3,706
Macro 0.90 0.90 0.90 0.87 0.86 0.86 0.90 0.90 0.90 7,245

GLAUx TEST

PERS 0.84 0.92 0.88 0.78 0.95 0.86 0.90 0.91 0.90 605
MISC 0.92 0.84 0.88 0.95 0.76 0.85 0.92 0.91 0.91 699
Macro 0.88 0.88 0.88 0.86 0.86 0.85 0.91 0.91 0.91 1,304

Table 5: Results (Precision, Recall and F1 score) for the prediction of PERS and MISC labels on in-domain (Held
out TEST) and newly annotated (GLAUx TEST) data, by not including the Gazetteer (AG_BERT_simple), including
the Gazetteer with a rule-based approach (AG_BERT_rule) and with a mask (AG_BERT_mask).

Figure 2: Dependency representation of sentence
1793 in DEIPN. https://perseids-publications.
github.io/glaux-trees/0008-001/2066

In this approach, we rely on a dependency-
based representation of Ancient Greek sentences
as shown in Figure 2. If a capitalised word (in
this case Λυγκεὺς) is annotated as a PERS by
AG_BERT_mask, we check whether any of the
direct children of said word is capitalised and re-
annotate the entity as a multi-token. Thus, in
this example, Λυγκεὺς ὁ Σάμίος, ‘Lynceus of
Samos’, is re-annotated as B-PERS O I-PERS. Ta-
ble 6 shows the results of dependency incorpora-
tion (AG_BERT_syntax) compared to the perfor-
mances of the AG_BERT trained on the available
data with respect to B-PERS, I-PERS. Only capi-
talised words are taken into account for calculating
the metrics. For AG_BERT, the MISC category
is created by grouping together all predictions of
non-PERS tags. As shown in Table 6, dependency
information greatly improves results for I-PERS
tokens.

5.4 Qualitative error analysis

We performed a qualitative error analysis on the
predictions of the models described in sections
5.2 and 5.3. We first describe the errors of

AG_BERT_simple compared to AG_BERT_rule
and AG_BERT_mask (as seen in ??), and second,
evaluate the improvement on multi-token entities
with AG_BERT_syntax (as seen in 6).

5.4.1 Difficult categories

Several entity categories can be identified where
AG_BERT_simple failed to predict correctly and
neither AG_BERT_rule nor AG_BERT_mask of-
fered any improvement. First, all predict MISC for
nicknames such as Κακεργέτης, ‘the Evildoer’, or
for tokens that frequently appear as non-capitalised
common nouns in the training data, e.g. the PERS
entity Λύχνος, the name of a deity, identical to the
non-entity λύχνος, with the meaning of ‘candle’.

Second, PERS is predicted for many of the
MISC entities that are capitalised tokens annotated
by experts as O: for example, capitalised tokens
such as mathematical notations to designate geo-
metrical entities such as points, lines, circles, etc.
in texts such as Euclid’s Elementa (GLAUx ID:
1799-001). Other examples are capitalised tokens
that are entities that do not fit the PERS, LOC,
GRP scheme (see 3.3) such as titles of books (e.g.
Γραφὴ, ‘the Scripture’, i.e. the Bible) and titles for
people (e.g Φαραώ, ‘Pharaoh’, and Καίσαρα, ‘Cae-
sar’). Overall, these issues stem from mismatches
between training and testing data: some, such as
mathematical entities were not present in the train-
ing data, others, such as titles for people, were
annotated differently.
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AG_BERT_syntax AG_BERT support

Pr Rc F1 Pr Rc F1

B-PERS 0.88 0.89 0.89 0.90 0.81 0.85 581
I-PERS 0.70 0.60 0.65 0.50 0.02 0.04 50
MISC 0.91 0.91 0.91 0.82 0.95 0.88 673
macro avg 0.83 0.80 0.81 0.74 0.59 0.59 1,304

Table 6: Results for retrieving multi-word PERS entities using the syntax approach compared to training on available
data, on the newly annotated GLAUx_test

5.4.2 Difference between AG_BERT_rule and
AG_BERT_mask

The predictions of the two gazetteer models show
significant differences. AG_BERT_mask improves
upon AG_BERT_rule in cases where an entity ap-
pears in TM NamVar but is a MISC entity, such
as GRP entities that in singular could be a person,
e.g. Νύμφαι, ‘Nymphs’. Second, AG_BERT_mask
is the only model that correctly predicts MISC for
the majority of the mathematical entities described
above. In the few cases where AG_BERT_rule
was an improvement on AG_BERT_simple and
AG_BERT_mask not, issues stem again from the
inconsistencies in the training data. Sometimes
forms of the same word appear annotated as dif-
ferent entity categories, e.g. ῞Αιδου, ‘Hades’, an-
notated as O, PERS or LOC. The annotation with
PERS and LOC stems from the inherent ambiguity
of the word Hades, which can indeed refer both
to the god Hades and the underworld. In other
cases there are differences in annotation choices
between the harmonised training data and our anno-
tation, e.g. epithets annotated as PERS in GLAUx
TEST, but as MISC in TRAIN. Lastly, for nested
entities, AG_BERT_mask predicts the overarch-
ing level where the other two predict the second
level, e.g. for Κωνσταντίνου [B-LOC nested B-
PERS] ἀγορὰν [I-LOC], ‘the Forum of Constan-
tine’, AG_BERT_mask predicts MISC for Κων-
σταντίνου, ‘Constantine’.

Under-representation of certain types of entities
is also an issue for AG_BERT_mask. One exam-
ple is personal names ending in an alpha. A spe-
cific case is personal names ending in -ίᾳ (feminine
noun, dative ending): tokens with this ending are
primarily annotated MISC (total: 441, total PERS:
83) in the training data (e.g. Ἀδρίᾳ, ‘the Adriatic’,
MISC with mask = 1), resulting in the prediction
of MISC instead of PERS for tokens ending in -
ίᾳ such as for Ἀμεινίᾳ, ‘Ameinias’, with mask = 1.

Only when the exact same form appears in the train-
ing data, is the prediction correct. For those tokens
with mask = 1, naturally AG_BERT_rule’s predic-
tion is always correct. Training on the gazetteer
mask had a detrimental effect for AG_BERT_mask
in this case as several MISC entities in this cate-
gory, like the examples given above, did receive a
mask = 1, allowing the model the possibility that
forms like this can be MISC even though they have
mask = 1.

5.4.3 Syntax models
Last, AG_BERT_syntax shows significant improve-
ment in predicting I-labels as compared to the
AG_BERT model, as described in Section 5.3. This
approach improved multi-token entity recognition
for entities consisting of up to three separate to-
kens or with up to three non-entity tokens present
between the B- and I- tokens. However, for multi-
token entities that have both more than two tokens
and gaps between the B- and I- tokens, performance
is not increased. The majority of these errors are
not caused by any error in the method but either by
incorrect syntactic information encoded in GLAUx
as the result of automatic analysis or because our
rule-based method of using the syntactic trees could
not retrieve all I-entities, e.g. we did not add spe-
cial rules for coordination, which is complicatedly
annotated in the syntactic annotation of GLAUx
(see Section 3.3).

6 Conclusion

The goal of our study is to consistently and fully
automatically annotate attestations of people us-
ing transformer-based NER. We trained several
transformer models on available data for Ancient
Greek NER and evaluated performance both on
a Held out TEST set and on randomly annotated
data representative for Greek literary data. While
all models performed adequately, we conclude that
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inconsistency in annotation remains an obstacle
in achieving high performance —which is in line
with the findings by Palladino and Yousef (2024)
and Beersmans et al. (2023), especially concerning
multi-token entities. The approaches introduced in
Sections 5.1-5.3 increase the performance for de-
tecting persons specifically, but we recognise that
there is still room for improvement (see Section
7). In future work, we will consider the integra-
tion of other available gazetteers,10 and incorporate
attestation counts as weights. The syntactically
informed annotation of multi-token entities could
equally benefit from an improvement of the rule-
based extraction through a more careful analysis of
the structure of I-entities in the dependency tree.

7 Limitations

One of the main limitations is our dependency on
the capitalisation choices of the compilers of the
(digital) editions we rely on. This also makes this
approach difficult for truly transferring to even
more low-resource languages. Secondly, gazetteers
cannot ensure complete coverage of the attestations.
In addition, we aimed at finding an exact match be-
tween the lemma in the text and the form resulting
in the gazetteer. For this reason, small language
variations resulted in a mismatch between the text
and the gazetteer form. This could be addressed
by allowing a certain degree of variation. For the
use of syntactic relations, we largely relied on auto-
matic parsing, a notably hard task, which resulted
in some missed retrievals due to erroneous syn-
tactic annotation. This aspect is hard to address
because large-scale manual syntactical annotation
is not achievable.
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A Hyperparameters

parameter values

learning rate uniform distribution: [1× 10−6, 1× 10−4]
weight decay {0.1, 0.01, 0.001}
number of training epochs {3, 4, 5, 6}

Table 7: Hyperparameter search space

AG_BERT ELECTRA GrεBerta UGARIT

learning rate 6.041e-05 9.889e-05 2.715e-05 5.784e-05
weight decay 0.01 0.1 0.01 0.01
epochs 3 5 4 5

Table 8: overview final hyperparameters on the regular NER task

AG_BERT/AG_BERT_mask ELECTRA GrεBerta UGARIT

learning rate 1.263e-05 8.703e-05 2.961e-05 2.490e-05
weight decay 0.01 0.1 0.1 0.001
epochs 6 5 4 6

Table 9: overview final hyperparameters on the PERS/MISC task
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B Detailed results

AG_BERT Electra GrεBerta UGARIT support

B-PERS 0.87 0.87 0.77 0.87 3,090
I-PERS 0.58 0.50 0.05 0.56 83
B-LOC 0.75 0.73 0.58 0.75 1,105
I-LOC 0.17 0.08 0.00 0.13 196
B-GRP 0.82 0.81 0.68 0.84 1,384
I-GRP 0.00 0.00 0.00 0.00 49
macro_f1 0.53 0.50 0.35 0.53

Table 10: overview detailed results test set

AG_BERT Electra GrεBerta UGARIT support

B-PERS 0.84 0.82 0.78 0.85 578
I-PERS 0.04 0.00 0.08 0.07 51
B-LOC 0.77 0.73 0.62 0.68 233
I-LOC 0.22 0.14 0.00 0.31 11
B-GRP 0.78 0.78 0.73 0.76 201
macro_f1 0.53 0.50 0.44 0.53

Table 11: overview detailed results GLAUx_test
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C Entity conversion

PH DEIPN OD SB

original converted original converted original converted original converted

person PERS/GRP person PERS/GRP person PERS/GRP PERSON PERS/GRP
place LOC ethnic GRP place LOC LOC LOC
place.proxy GRP place LOC PERS-G GRP
artwork O group GRP LOC-G GRP
event O title O TITLE O/PERS/GRP
work O festival O
epithet O month O
tx O language O
material O constellation O
attribute O
movement O
measure O
animal O
object O
focalisation O
intervention O
transformation O

Table 12: entity conversion table
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Abstract 

Natural language processing for Greek and 

Latin, inflectional languages with small 

corpora, requires special techniques. For 

morphological tagging, transformer models 

show promising potential, but the best 

approach to use these models is unclear. For 

both languages, this paper examines the 

impact of using morphological lexica, 

training different model types (a single 

model with a combined feature tag, 

multiple models for separate features, and a 

multi-task model for all features), and 

adding linguistic constraints. We find that, 

although simply fine-tuning transformers to 

predict a monolithic tag may already yield 

decent results, each of these adaptations can 

further improve tagging accuracy. 

1 Introduction 

Morphological information is an essential 

enrichment for corpora of highly inflectional 

languages such as Ancient Greek and Latin. Yet 

given that the field of natural language processing 

has traditionally been heavily oriented to Modern 

English, a relatively analytic language, the 

automated processing of morphologically rich 

languages has been a challenge for some time 

already (see e.g. Tsarfaty et al., 2010). 

For Ancient Greek (henceforth simply ‘Greek’) 

and Latin, Sommerschield et al. (2023) have noted 

that, as for many other languages, the transformer-

based approach has recently become popular for 

morphological tagging, showing promising results. 

However, it is still an open question what the most 

appropriate way is to employ transformer models 

for this task, i.e. whether specific adaptations are 

necessary for inflectional languages. 

 
1 For example, for each type (unique word form) in the 

GUM English Universal Dependencies Treebank (see 

https://universaldependencies.org/) there are 10.7 tokens. 

For the Latin PROIEL treebank there are only 6.5, and for 

The aim of this paper is therefore to 

systematically compare a number of adaptations 

that were previously found to be beneficial for 

morphological tagging of Greek and Latin using 

older methods and assess the importance of these 

adaptations in a transformer context. We will first 

discuss previous work related to this topic (Section 

2). Next, we will present the experimental set-up of 

this project (3), including the data and models we 

used, and assess which parameter combinations 

contribute to optimal performance for the two 

languages (4.1). We will also give a general 

evaluation of the errors of the best-performing 

models (4.2). Finally, we will summarize the main 

results of this study and discuss ways for further 

improvement (5), and address its limitations (6).  

2 Previous work 

Given the vast body of literature on morphological 

tagging, this section will focus on related work to 

the central topic of this paper, viz. transformer-

based approaches to Greek and Latin 

morphological tagging, as well as earlier 

approaches that have explicitly aimed to adapt 

tagging techniques to the typological 

characteristics of these languages. We will 

therefore not discuss studies that focus on 

comparing a number of readily available tagging 

tools (e.g. Celano et al., 2016; Poudat and Longrée, 

2009), since these tools typically differ on various 

parameters, so that it is difficult to tell why exactly 

certain tools are better to handle Greek and Latin 

than others.  

The morphological richness of Greek and Latin 

has various consequences: data sparsity arises due 

to a high number of tokens compared to types,1 the 

tag set (i.e. the number of possible combinations of 

the Greek Perseus treebank even less, viz. 4.8 (note that 

they are all roughly similar in size: 212K, 205K and 202K 

tokens respectively). 

Adapting transformer models to morphological tagging of two highly 

inflectional languages: a case study on Ancient Greek and Latin 
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morphological features) is very large and 

morphology and syntax are often interrelated (e.g. 

with case marking). As for data sparsity, Hajic 

(2000) advocates for the use of morphological 

dictionaries for inflectional languages in general, 

viz. knowledge bases containing lists of 

morphologically inflected forms and their analysis. 

In this way the correct analysis for unattested or 

lowly attested forms can be retrieved from this 

dictionary instead of solely relying on the training 

data of the tagger (additionally, even if multiple 

analyses are present in the lexicon for a given form, 

the number of possible tags will be heavily 

constrained by it). Various researchers have 

observed a positive effect of employing such lexica 

for Greek (e.g. Dik and Whaling, 2008; 

Keersmaekers, 2020) and Latin (e.g. Eger et al., 

2015). 

As for the size of the tag set, it is important to 

remark that it is only large if we treat the 

combination of part-of-speech and all the 

morphological features as one singular label (as is 

customary for English), i.e. the tag would be ‘noun, 

singular, feminine, dative’. Some researchers on 

inflectional languages have recommended 

‘splitting’ the tags, i.e. making separate predictions 

for all the individual morphological features, 

instead (e.g. Schmid and Laws, 2008; Tkachenko 

and Sirts, 2018). Such an approach has been 

advocated by e.g. Keersmaekers (2020), 

Riemenschneider and Frank (2023) for Greek and 

Eger et al. (2015) for Latin, but so far it has not 

been compared to a ‘singular label’-approach yet. 

Finally, as for the interrelatedness of 

morphology and syntax, some scholars (e.g. Lee et 

al., 2011) have shown that performing 

morphological tagging and syntactic parsing 

jointly can help both tasks, but since this requires a 

high performing syntactic parsing model as well, 

such an approach falls outside the scope of this 

paper. 

As noted in the introduction of this paper, 

recently (encoder-only) transformer models have 

become popular for Greek and Latin 

morphological tagging. They have been employed 

in various ways, including directly finetuning a 

pretrained large language model (LLM) for this 

task (Mercelis and Keersmaekers, 2022a; Wróbel 

and Nowak, 2022; Riemenschneider and Frank, 

2023), by extracting the embeddings of a pretrained 

 
2 Although sometimes a modern language model is 

finetuned for ancient languages, as e.g. in Singh et al., 2021. 

LLM and processing them combined with other 

information through a simpler architecture (Straka 

and Straková, 2020; Singh et al., 2021; Swaelens et 

al., 2023), or, occasionally, utilizing prompts on 

generative transformer architectures (Stüssi and 

Ströbel, 2024). 

The effect of the various parameters described 

above, including the use of a morphological 

lexicon and the ‘splitting’ of morphological tags, 

has so far not been systematically investigated in a 

transformer context. In fact, there are reasons to 

suspect that their effect may be diminished, given 

that transformer architectures have specific 

adaptations to handle data sparsity and 

morphological richness. Firstly, transformer 

models are typically pre-trained on millions (or 

billions in the case of modern languages) of 

unannotated tokens, allowing them to recognize 

forms beyond the specific training set for 

morphological tagging. Nevertheless, the problem 

remains that morphological richness inherently 

implies a proportionally larger number of word 

form types, and due to the closed nature of 

historical language corpora these pre-trained 

models are also typically trained on lower amounts 

of data as compared to modern languages. 2 

Secondly, in most modern transformer 

architectures subword tokenization is typically 

employed (see e.g. Kudo and Richardson, 2018), 

which splits morphologically complex words in 

several parts, based on statistical pattern 

recognition. For example, the tokenizer of the 

transformer model we will employ for Latin (see 

3.1) splits the morphologically complex verb 

honorificentur into honorific+entur, so that even if 

the full form honorificentur might be scarcely 

attested, the individual parts honorific- and -entur 

would be more frequent. In this paper we will 

therefore systematically investigate whether 

modern transformer architectures have completely 

superseded the need for any special adaptations for 

inflectional languages, or if morphological lexica 

and splitting tags may still offer improvements. 

3 Methodology 

3.1 Data and models 

In this paper, we compare morphological tagging 

for Greek and Latin. While these languages are 

typologically rather similar (both highly 
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inflectional Indo-European languages), the 

external resources we used for each of them 

respectively results in two very different 

experimental conditions. 

For Greek we have a relative large and diverse 

body of manually tagged data (1.46M tokens, of 

which we reserved 1.24M as training data and 

219K as test data), which is a result of a data 

homogenization effort of various treebanks by the 

GLAUx project (Keersmaekers, 2021). This 

dataset consists of various text genres (29 in total 

according to the GLAUx classification) from all 

three major Ancient Greek time periods (archaic, 

classical and post-classical). We could also make 

use of a morphological lexicon from GLAUx 

which was specifically developed to be compatible 

with the treebank data (see 3.3). 

In contrast, while for Latin various treebank 

project exists and some effort has recently been 

undertaken to homogenize them (Gamba and 

Zeman, 2023), these efforts have only been 

published very recently and we were not aware of 

them when we wrote this paper. We therefore 

instead made use of the largest dataset present in 

the Universal Dependencies (UD) project (Nivre et 

al., 2020) that was relatively diverse, viz. the 

PROIEL treebank (Haug and Jøhndal, 2008), 

consisting of 205K tokens, including the Vulgate 

New Testament, a late classical work by Palladius 

as well as more classical texts (by Caesar and 

Cicero). This dataset was therefore substantially 

smaller (we used the ‘train’ subset, consisting of 

178K tokens, and the ‘test’ subset, 14K tokens). 

The lexicon we used was also not specifically 

developed to be compatible with this treebank (see 

3.3). On the other hand, this allowed us to compare 

results for a situation that is rather typical for low-

resource languages, where large datasets and 

standardized resources are typically absent. 

As for our morphological tagging approach, our 

basic method was relatively simple: we fine-tuned 

pre-trained transformer models to predict either 

one or multiple labels (see 3.2) consisting of part-

of-speech and morphological information. For 

Greek, we used electra-grc (Mercelis and 

Keersmaekers, 2022b), a small ELECTRA model 

trained on the GLAUx corpus, allowing us to use a 

model that was trained on a corpus with a data 

standard that was consistent with our tagging 

 
3 To give just one example, Greek possesses several 

feminine words that have an identical ending in the genitive 

singular and the accusative plural, viz. -ας. Obviously in 

dataset. For Latin, we used LaBERTa, a base-size 

RoBERTa model offering state of the art 

performance for Latin morphological tagging 

(Riemenschneider and Frank, 2023). Since our data 

was tokenized into subwords, the training and 

predictions were always based on the final 

subwords of the token. We fine-tuned all models 

for a fixed number of 10 epochs, using a batch size 

of 16 and a learning rate of 5e-5. 

3.2 Splitting tags 

We evaluate the impact of predicting a single tag 

containing the part-of-speech proper and all 

morphological information (we call this approach 

MonoTag in what follows), vs. predicting each 

morphological feature separately. We compared 

two methods to perform the latter task: the simplest 

way is to train a tagging model for each feature 

(MultiTag). We then calculate the probability of a 

morphological tag as the product of the 

probabilities of each individual feature, and select 

the tag with the highest probability – this is the 

Multiclass Multilabel model described in 

Tkachenko and Sirts (2018). While this approach is 

statistically rather naïve, given that the 

probabilities of the various features are not 

independent,3 it yielded decent results on the Greek 

and Latin datasets evaluated by them. 

Another approach is to employ multi-task 

learning, as was done by Riemenschneider and 

Frank (2023) for Greek. In this approach 

(MultiTag-MultiTask), we do not train separate 

models for each feature, but rather train them all 

together. To achieve this, we use a shared encoder 

with for each feature a classification head on top. 

In this way, the model should generalize better and 

capture how the various morphological features 

interrelate during the training phase due to the 

shared loss function. Additionally, this method is 

computationally more efficient and less prone to 

overfitting. 

Figure 1-3 visualize the three approaches. 

such a case the probabilities of the features ‘case’ and 

‘number’ are highly dependent on each other. 

Figure 1: MonoTag approach. 
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3.3 Morphological lexica 

We test the impact of employing an external 

lexicon consisting of inflected forms and their 

possible morphological analyses. For Greek, we 

used a lexicon from the GLAUx project, which was 

based on the morphological analysis tool Morpheus 

(Crane, 1991) and of which its output was 

converted and homogenized in order to be 

compatible with the morphological tagging of 

GLAUx. For Latin, we analyzed all forms in the 

test data with LEMLAT (3.0) (Passarotti et al., 

2017). Since the output of this analyzer was not 

compatible with the UD annotation of PROIEL, we 

created a script in order to convert it to the latter 

format using a number of rules. 

Concretely, we employed these lexica as 

follows: if an inflected form occurred in the 

lexicon, the possible tags that could be predicted 

were constrained to the ones corresponding to this 

form. To avoid the problem that some words may 

have analyses that are not present in this lexicon, 

we also added all forms from the training data and 

their tags to it. Our lexica covered the test data very 

well: for both languages only 0.4% of the forms in 

the test data were not present in the lexicon. 

Figure 4 illustrates the integration of a lexicon in 

the MultiTag-MultiTask approach (in MonoTag and 

MultiTag, the integration happens analogically). 

 

 
4 Although this does not occur very often, for Latin there 

were 12 tokens and for Greek 18 where this was the case. 

3.4 Constraining the outcome space 

When predicting the various features individually, 

one risk is that linguistically nonsensical feature 

combinations could be predicted (e.g. a passive 

noun). While the use of a lexicon may already 

reduce this problem to a great extent (since the 

possible combinations are limited to the ones 

occurring in the lexicon for a specific form), the 

problem potentially remains for forms that are not 

present in it. We therefore experiment with two 

approaches adding additional constraints on the tag 

outcomes: firstly, we restrict the possible tags that 

could be predicted to the ones occurring in the 

training data. A disadvantage of this approach is 

that if a feature combination does occur in the test 

data but not in the training data, it can never be 

predicted. 4  We therefore also tried a second 

approach, which consists of adding an external list 

of linguistically valid feature combinations for 

Greek and Latin to the list of tags occurring in the 

training data, based on a number of constraints that 

we defined for both languages (e.g. nouns cannot 

receive the feature voice, the future tense cannot 

occur in the subjunctive mood). In this way, all 

feature combinations that could logically occur in 

Greek and Latin could in theory be predicted. 

Figure 5 illustrates the addition of constraints to 

the outcome space in the MultiTag-MultiTask (in 

MonoTag and MultiTag this again happens 

analogically), which can either come from the 

training data or an external list (e.g. in Figure 5, an 

external list has determined that the s[ubjunctive] 

mood and f[uture] tense are not compatible). 

 

Figure 4: Integrating a lexicon in the tagging process. 

Figure 3: MultiTag approach. Figure 2: MultiTag-MultiTask approach. 
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4 Results 

4.1 Parameter comparison 

4.1.1 Greek 

Tables 1-3 show the results for the three training 

approaches described in section 3.2 (MonoTag, 

MultiTag, MultiTag-MultiTask) for Greek. Firstly, it 

is clear that the use of a lexicon has a positive effect 

across all three approaches, allowing for a 15-20% 

error reduction. These differences are also 

statistically significant: with McNemar’s test, 

p<0.01 in all cases when comparing the models 

with and without lexicon. Taking the MonoTag 

approach as an example, the lexicon corrected 1569 

tagging mistakes, although it also introduced 240 

new mistakes. An example of the former case is (1), 

in which φθιμένῃ (phthiménēi) was originally 

tagged as a present participle, but corrected by the 

lexicon to an aorist participle (the correct analysis). 

Given that the present of the same verb would be 

superficially similar (φθι(ν)ομένῃ phthi(n)oménēi), 

intricate knowledge of Greek verbal morphology is 

necessary to predict that it is an aorist, which the 

transformer model was not able to pick up. In 

particular, the lexicon was a valuable asset to 

handle Greek verbal morphology in a better way 

than the transformer model was able to do: verbs 

consisted of 26.5% of the mistakes when no 

lexicon was employed, but 22.0% when a lexicon 

was employed, the largest difference among all 

parts of speech. 

(1) καίτοι φθιμένῃ μέγα κἀκοῦσαι τοῖς 

ἰσοθέοις σύγκληρα λαχεῖν. (Soph. Ant. 

836-7) 

kaítoi phthiménēi mega kakoûsai toîs 

isothéois súgklēra lakheîn. 

“Yet it is great for someone who died to 

earn a fate equal to that of the gods.” 

Nevertheless, there were some new mistakes 

that the lexicon introduced. These were typically 

cases in which the lexicon was not strictly 

incorrect, but simply inconsistent with the data. For 

example, in (2), ὠμόφρονος ōmóphronos was 

tagged without the lexicon as an adjective (as it 

appears in the data) but with a lexicon as a noun. 

Since it has an adjectival meaning but 

morphologically it shares characteristics with 

nouns (having no gender inflection), both analyses 

could be argued to be correct, especially since there 

were no strict annotation guidelines in the data we 

used (see 3.1) to handle such cases. 

(2) σίγα, τέκνον, μὴ κινήσῃς ἀγρίαν ὀδύνην 

πατρὸς ὠμόφρονος. (Soph. Trach. 975-6) 

síga, téknon, mḗ kinḗsēis agrían odúnēn 

patrós ōmóphronos. 

“Be quiet, child, so that you will not stir the 

savage pain of your savage-minded 

father.” 

Comparing the three training approaches, the 

MultiTag approach performs slightly better than the 

MonoTag approach. In the best case (when also 

combined with constraints on the tag outcomes, see 

below), this allows for a 10% error reduction both 

with (96.9% to 97.2% accuracy) and without 

Lexicon  Accuracy 

No 0.963 (210635) 

Yes 0.969 (211964) 

Table 1:  Greek tagger results (MonoTag), with 

accuracy and N correct predictions. 

 

 

Lexicon  Tag constraints Accuracy 

No None 0.964 (210891) 

Training data 0.967 (211569) 

Tag list 0.967 (211529) 

Yes None 0.972 (212567) 

Training data 0.972 (212596) 

Tag list 0.972 (212592) 

Table 2:  Greek tagger results (MultiTag), with 

accuracy and N correct predictions. 

 

 

Lexicon  Tag constraints Accuracy 

No None 0.964 (210805) 

Training data 0.964 (210950) 

Tag list 0.964 (210929) 

Yes None 0.970 (212169) 

Training data 0.970 (212177) 

Tag list 0.970 (212176)  

Table 3:  Greek tagger results (MultiTag-

MultiTask), with accuracy and N correct 

predictions. 

 

 

Figure 5: Constraining the outcome tag space. 
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(96.3% to 96.7%) lexicon. These differences are 

also statistically significant (p<0.01 with 

McNemar’s test in both cases). Taking the lexicon-

based approach, without any constraints on the 

outcome tags, as an example, the MultiTag method 

was able to correct 1898 mistakes but unfortunately 

also introduced 1295 new mistakes. One obvious 

advantage of this approach is with scarcely attested 

tag combinations: for example, tag combinations 

that occur 50 times or less in the training data 

constitute 6.5% of mistakes with the MonoTag 

approach (448 in total) but 4.3% with the MultiTag 

approach (268). It introduced quite a large number 

of new mistakes, however. An example is (3), in 

which βέλτιστ᾿ béltist’ (literally ‘best’) was tagged 

correctly as a masculine singular vocative by the 

MonoTag approach but as a neuter (plural) vocative 

by the MultiTag approach. Obviously in this case 

the morphological features are highly dependent on 

each other: if βέλτιστ᾿ béltist’ is analyzed as a 

vocative (used in appellative contexts), it is much 

more likely that it refers to a masculine than a 

neuter entity. Cases such as this one might explain 

why the statistically ‘naïve’ approach of predicting 

each feature individually, assuming independence 

between these features, may return worse results 

than predicting one tag containing all 

morphological information. 

(3) μὴ δὴ πράγματ᾿, ὦ βέλτιστ᾿, ἔχε· (Men. 

Dysc. 338) 

mḗ dḗ prágmat’, ô béltist’, ékhe. 

“Don’t worry, my dear friend.” 

It would be expected that the multi-task model 

would improve in such cases (see Section 3.4), 

however, as can be judged from Tables 2-3, the 

multi-task models consistently performed slightly 

worse than the separately trained models. Taking 

again the lexicon-based approach without any 

constraints on the tag outcomes as an example, 

while the multi-class model corrected 1163 of the 

mistakes of the separately trained model, it also 

introduced 1561 new mistakes. It is difficult to 

explain why this is the case: the general qualitative 

characteristics of the errors of the multi-class 

models were similar to those of the separately 

trained models (see 4.2), but simply quantitatively 

more numerous. 

Finally, the effect of adding constraints to the 

possible tag outcomes is rather mixed. If the 

possible tags are restricted to those occurring in the 

training data, this has a somewhat visible positive 

effect for the MultiTag model when no lexicon is 

employed (about an 8% error reduction) and a tiny 

positive effect with a lexicon as well (about a 0.5% 

error reduction) – note that these constraints only 

apply for forms that do not occur in the lexicon 

(since the lexicon already acts as a constraint for 

the other forms), which are only 3% of all errors of 

this model (215/6220), so a large error reduction is 

not expected. For the multi-task model, the 

differences are barely visible. Focusing on the 

MultiTag approach with a lexicon, constraining the 

tag outcomes to the ones occurring in the training 

data corrected 29 mistakes while not introducing a 

single new mistake. Most of these 29 mistakes 

were impossible feature combinations: for example, 

in (4) ἐξόπιστο eksópisto ‘from behind’ was 

predicted as an adverb with the aorist tense, 

presumably because the tagger was conflicted 

between an adverbial and a verbal analysis (since -

το -to is a common verbal ending). 

(4) εἰ σπόδρ᾿ ἐπιτυμεῖς τὴ γέροντο πυγίσο, τὴ 

σανίδο τρήσας ἐξόπιστο πρώκτισον. 

(Aristoph. Thesm. 1123-4) 

ei spódr’ epitumeîs tḗ géronto pugíso, tḗ 

sanído trḗsas eksópisto prṓktison. 

“If you desperately want, have anal sex 

with the old man, make a hole in the board 

and penetrate him from behind.” 

Restricting the possible tag combinations to the 

ones occurring in the training data has an obvious 

disadvantage: if the feature combination does not 

occur in the training data, it cannot be predicted. 

For Greek this occurs very rarely due to the size of 

the training data, but there are still 18 tokens in the 

test where this is the case (typically containing very 

rare features: 13/18 cases have dual number, which 

died out in an early stage in Greek). As argued in 

Section 3.4, adding an external list of possible tag 

combinations might help in these cases. 

Unfortunately, as can be judged from the numbers 

in Tables 2-3, in all cases this has a very small net 

negative effect instead. Again focusing on the 

MultiTag approach with a lexicon as an example, in 

all the 18 cases mentioned above a wrong tag was 

still predicted, while there were 4 new mistakes. 

Apparently the possible tags list was a little too 

permissive, introducing feature combinations that 

we would not expect to occur in the corpus and 

which were then erroneously applied in some cases. 

For example, one form (ἆπις âpis) was analyzed as 

a nominative masculine singular personal pronoun, 
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which was present in the possible tags list but we 

would not expect to actually occur in Greek texts.5 

4.1.2 Latin 

Tables 4-6 show the results for the three training 

approaches (MonoTag, MultiTag, MultiTag-

MultiTask) for Latin. 

In contrast to Greek, adding a morphological 

lexicon does not seem to have a positive effect – in 

some cases even a slightly negative one, although 

the difference in absolute numbers is minimal. 

Taking the MultiTag model with the possible tags 

constrained by the training data as an example, 

even though the lexicon corrected 84 mistakes, it 

unfortunately also introduced 102 new ones. Many 

of these new mistakes involved proper nouns (36 

out of 102), where the vocabulary of LEMLAT 

seemed to be incomplete. For example, the proper 

noun Furio (here in the dative case) is included in 

the lexicon as an adjective, or a verb form. Note 

that these are valid options, but the proper noun 

analysis should have been included as well. 

 In comparison with the Ancient Greek tagger, 

the multi-task model again falls just short of the 

simpler MultiTag approach. For Latin, the model 

corrects 202 mistakes, while it introduces 212 new 

mistakes. Again, it is difficult to explain why, since 

as for Greek, no general categories can be found in 

the newly introduced errors. 

For the addition of constraints, we observe that 

constraining the output to combinations that occur 

in the training data has a positive effect on the 

MultiTag model, while the effect is much smaller 

for the MultiTag-MultiTask model. When we take 

the lexicon into account as well, the constraint 

options yield no differences at all. 

As for Greek, the use of an external list of 

possible tags had a net negative effect on the result. 

More precisely, of the 12 tokens in the test data that 

had a tag that did not occur in the training data, only 

1 received the correct tag (primis, an ablative 

masculine plural adjective without the degree 

feature). Meanwhile, the list introduced 13 new 

errors. Again, these were mainly cases where the 

list of possible tags was too permissive: for 

example, for the form mi (a dative of ego, I) the 

tagger predicted that it was in the vocative case, 

which would not be possible for a first person 

personal pronoun. 

 
5 Note that first and second person personal pronouns were 

never gendered in our corpus, since Greek makes no 

morphological gender distinctions. The only personal 

4.2 Error analysis 

In this section, we will analyze the remaining errors 

of two high-performing models, viz. the model 

with split tags, lexicon and morphological tags for 

both languages. We will do this by analyzing a 

random sample of 100 errors for both languages. In 

appendix, we also provide plots analyzing more 

general qualitative characteristics of the tagging 

errors, viz. the accuracy by morphological feature 

(appendix A) and by text type (appendix B). 

pronouns that can be gendered are reflexive third person 

personal pronouns, but these never occur in the nominative 

case.  

Lexicon  Accuracy 

No 0.936 (13191) 

Yes 0.933 (13151) 

Table 4:  Latin tagger results (MonoTag), with 

accuracy and N correct predictions. 

 

 

Lexicon  Tag constraints Accuracy 

No None 0.932 (13131) 

Training data 0.937 (13210) 

Tag list 0.937 (13198) 

Yes None 0.936 (13192) 

Training data 0.936 (13192) 

Tag list 0.936 (13192) 

Table 5:  Latin tagger results (MultiTag), with 

accuracy and N correct predictions. 

 

 

Lexicon  Tag constraints Accuracy 

No None 0.936 (13193) 

Training data 0.937 (13203) 

Tag list 0.937 (13200) 

Yes None 0.934 (13168) 

Training data 0.934 (13168) 

Tag list 0.934 (13168)  

Table 6:  Latin tagger results (MultiTag-

MultiTask), with accuracy and N correct 

predictions. 

 

 

Error  Proportion 

Mistake gold data 41% 

Data consistency 15% 

Syntactic structure 11% 

Mistake lexicon 10% 

Various 24% 

Table 7:  Error analysis for Greek. 
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4.2.1 Greek 

A quantitative description of the mistakes we found 

is presented in Table 7. Strikingly, a very large part 

(41%) of them were actually cases where the gold 

data was incorrectly annotated and the tagger was 

correct, suggesting that the actual accuracy of the 

tagger is even higher than 97% (although it could 

also be the case that some analyses labeled as 

‘correct’ were in fact wrongly annotated in the gold 

data as well). An additional 15% of errors were 

issues of data consistency, typically related to part-

of-speech, where the boundaries between part-of-

speech can be fluid and there are no consistent 

choices in the training/test data, as was already 

discussed above. 

Moving to the actual errors, 11% of cases can be 

explained because the transformer model 

understood the syntactic structure of the sentence 

incorrectly. For example, in (5), βασιλήιον 

basilḗion was analyzed as a noun by the tagger. The 

noun βασιλήιον basilḗion, meaning ‘palace’, 

certainly exists, but in this case it is clearly an 

adjective ‘royal’ modifying the noun τεῖχός teîkhós 

‘fortress’ (if it was a noun, it would not fit in the 

sentence context, given that the subject slot of 

ἐδέδμητο edédmēto ‘it was built’ is already taken 

up by τεῖχός teîkhós). 

(5) ἐν τῷ τεῖχός τε ἐδέδμητο βασιλήιον τοῦτο 

τὸ δὴ Δορίσκος κέκληται… (Hdt. 7.59.1) 

en tôi teîkhós te edédmēto basilḗion toûto 

tó dḗ Dorískos kéklētai… 

“at which that royal fortress was built 

which was called Doriscus…” 

10% of errors were simply related to mistakes in 

the tagger lexicon: even though it had a net positive 

effect, fixing these mistakes could therefore further 

improve the results. The remaining 24% of errors 

were rather diverse. Interestingly, in 6% of cases 

the correct morphological analysis could only be 

made by logical inferences. For example, in (6) 

δακρύων dakrúōn was analyzed as a noun instead 

of the participle of δακρύω dakrúō ‘to cry’, which 

it could theoretically be: in that case θάλασσαν 

δακρύων thálassan dakrúōn would mean ‘sea of 

tears’. While we could plausibly expect such an 

expression in e.g. a poetic context, it is much more 

logical that δακρύων dakrúōn means ‘crying’ in 

this context rather than that the farmer would curse 

his own massive torrent of tears. Obviously such 

logical inferences are easy to make for humans, but 

pose a challenge for a tagger. 

(6) γεωργός τις ἰδὼν ναῦν ἐν θαλάσσηι 

κυμαινομένην καὶ βυθῶι πεμπομένην, 

κατηρᾶτο τὴν θάλασσαν δακρύων. (Aes. 

Fab.) 

geōrgós tis idṓn naûn en thalássēi 

kumainoménēn kaí buthôi pempoménēn, 

katērato tḗn thálassan dakrúōn. 

“A farmer, seeing a ship being tossed on 

the waves and being sent into the deep sea, 

cursed the sea while crying.” 

Some other errors include cases related to the 

coreference chain (5, e.g. the gender of a pronoun 

was incorrectly determined, because the entity that 

the pronoun refers to occurs in another sentence), 

to the diversity of the Greek corpus (3, e.g. dialectal 

forms that were difficult to determine correctly) 

and general problems related to data sparsity (2), to 

damage/corruption to the actual text (2), 1 case 

clearly related to the issue that the morphological 

features were independently predicted (see 4.1), 1 

case of true ambiguity (i.e. both the gold and the 

predicted tag can be argued to be correct, 

depending how the sentence is interpreted) and 

finally 3 cases where we did not find any 

explanation for. 

4.2.2 Latin 

Our results (see Table 8) largely reflect similar 

problems to the ones for Greek. While the data 

contained less wrongly annotated forms than the 

Greek data (24%), an even larger proportion of the 

mistakes related to annotation conventions (45%). 

In this latter category, a very large proportion of 

problems (28/45) involved double- (23) and triple- 

(5, meaning no gender at all in the PROIEL 

annotation) gendered forms. In the error analysis, 

we considered a form to be triple-gendered if it 

does have a case and a number, but no gender. An 

example is (7), in which multis (which theoretically 

can be all three genders) agrees with regionibus. 

Since the PROIEL treebank is not very consistent 

in which cases forms are considered double/triple-

gendered, it is not surprising that the tagger 

Error  Proportion 

Data consistency 45% 

Mistake gold data 24% 

Syntactic structure 16% 

Various 15% 

Table 8:  Error analysis for Latin. 
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analyzed it as feminine (as regionibus is), even 

though it was triple-gendered in the gold data. 

(7) et multis regionibus Samaritanorum 

evangelizabant (Acts 8:25) 

“and they preached the gospel to many 

villages of the Samaritans” 

As for Greek, some errors were related to the 

transformer model misinterpreting the syntactic 

structure of the sentence (16%), while mistakes 

caused by errors in the lexicon are more rare (only 

2% – specifically cases where the lexicon was 

incomplete, such as Furio as described in 4.1.2). As 

for the other problems (13%), they are rather 

analogous to the problems found for Greek, so we 

will not discuss them here. 

5 Conclusions 

The aim of this paper was to investigate whether 

transformer models need special adaptations to 

morphologically tag highly inflectional languages 

with data sparsity, using Ancient Greek and Latin 

as a test case. We show that, although the most 

simple approach – i.e. finetuning a transformer 

model on tags containing all morphological 

information – already performs decently, special 

adaptations tailored to the typological nature of 

these languages can still further improve tagging 

accuracy. 

Firstly, the use of a morphological lexicon had a 

clear positive effect on Greek tagging accuracy. On 

Latin, conversely, the effect was negative in most 

cases. This can largely be explained by the quality 

of the respective lexica: the Latin lexicon contained 

a relatively large number of cases (primarily proper 

nouns) where not all possible analyses for a given 

token were recorded in the lexicon, and therefore 

introduced new tagging errors. Nevertheless, the 

proportion of errors that the Latin lexicon corrected 

(84/881, or about 10%) was still relatively modest. 

There are multiple explanations why a 

morphological lexicon might be less necessary than 

for Greek: this might be because Greek could be 

morphologically more complex, or because the 

pretrained transformer for Latin was trained on 

much more data than for Greek, or because the 

Latin data was simply more homogeneous. 

Training separate models for each individual 

morphological feature had a positive, although 

very modest effect for both languages. 

Surprisingly, however, multi-task learning did not 

further improve the results, but had a (slight) 

detrimental effect instead. We were not able to 

explain why this was the case. In the future, 

however, we plan to experiment with other 

methods to combine the outputs of the individual 

feature models, as described in Tkachenko and 

Sirts (2018). 

As for constraining the tag outcomes to the ones 

occurring in the training data, this had a very slight 

positive effect for Greek and no effect for Latin. 

Further adding a linguistically-based list of 

possible tags did have a slight negative effect for 

both languages, however. This was caused by a too 

permissive list of combinatory possibilities, so that 

feature combinations were predicted that could not 

co-occur. This is therefore a consequence of the 

quality of the concrete external list we used, and 

since it is only through such a list that feature 

combinations can be predicted that do not occur in 

the training data, we still generally recommend 

using this technique. 

An error analysis revealed where there was room 

for further improvement. For both languages, data 

errors and consistency issues made up a very large 

proportion of errors. Most improvement can 

therefore not be made through more sophisticated 

machine learning algorithms, but by simply 

improving the quality of the data. Some other errors 

(e.g. related to logical inferencing or co-references 

across sentences) would also be hard to solve by 

the current generation of NLP techniques. A more 

promising category of errors were related to co-

dependence of morphological and syntactic 

analysis. In this case, joint syntactic parsing and 

tagging may offer a possible solution. 

Finally, we should note that, while this paper 

focused on Greek and Latin, the techniques we 

explore are not solely tied to these historical 

languages, given that there are many other 

inflectional languages with sparse datasets. We 

therefore hope that the solutions offered here could 

also inspire researchers working on similar 

languages. 

For the sake of reproducibility and to allow other 

researchers to make use of the resources this study 

produced, all the code and datasets we used can be 

found on GitHub (see ‘Supplementary Material’). 

6 Limitations 

There are some limitations inherent to the 

experiments carried out in this paper. Firstly, to 

avoid having to compare too many models, we 

chose one specific method to employ transformer 

models for tagging, viz. finetuning the transformer 
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network. As mentioned in Section 2, various 

alternative methods exist, and it would be 

interesting to compare which of them works best 

for our data. Similarly, for each language model we 

chose one pretrained transformer model, instead of 

comparing several of them. This, again, was in 

order to avoid having to run too many experiments, 

as well as the fact that the available transformer 

models for Greek and Latin differ on too many 

parameters (transformer architecture, data that it 

was trained on, tokenizer, training method etc.) so 

that a fair comparison could not be made. 

Finally, this study was only limited to 

transformer-based approaches. While they are 

highly popular currently, there is no hard evidence 

that they are the best performing method for Greek 

and Latin morphological tagging. It would 

therefore be interesting to systematically 

investigate in the future whether they are actually 

the way to move forward or whether better 

performing approaches can be found.    
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A Tagging accuracy by morphological 

feature 

 

 

B Tagging accuracy by text type 

 

 

 

 

 

C Supplementary Material 

All the datasets used in this study can be found on 

https://github.com/alekkeersmaekers/transformer-

tagging. The code (including the tagger settings for 

the experiments described here) can be found on 

https://github.com/alekkeersmaekers/glaux-nlp.  

Feature Accuracy 

Person 0.999 (218532) 

Voice 0.999 (218499) 

Mood 0.998 (218443) 

Tense 0.997 (218113) 

Number 0.996 (217953) 

Degree 0.995 (217745) 

XPOS 0.993 (217279) 

Case 0.991 (216736) 

Gender 0.989 (216292) 

Table 7:  Tagging accuracy by morphological 

feature (Greek) (N=218,787) 

 

 
Feature Accuracy 

Reflex 1.000 (14091) 

Polarity 1.000 (14088) 

Poss 1.000 (14085) 

Mood 0.998 (14064) 

Person 0.997 (14055) 

Aspect 0.997 (14053) 

VerbForm 0.997 (14049) 

Voice 0.997 (14046) 

Tense 0.995 (14023) 

PronType 0.995 (14015) 

Degree 0.993 (13991) 

Number 0.992 (13980) 

Case 0.989 (13934) 

UPOS 0.983 (13854) 

Gender 0.972 (13699) 

Table 8:  Tagging accuracy by morphological 

feature (Latin) (N=14,091) 

 

 

Text type Accuracy 

Mythography 0.994 (167/168) 

Religious History 0.986 (17172/17419) 

Religious Epistle 0.985 (7224/7333) 

Religious Prophecy 0.983 (1686/1715) 

Paradoxography 0.982 (639/651) 

Religious Narrative 0.981 (254/259) 

Dialogue 0.979 (1050/1072) 

Biology 0.979 (94/96) 

Alchemy 0.978 (391/400) 

Biography 0.976 (8958/9181) 

Oratory 0.975 (14905/15289) 

Epistolography 0.975 (1234/1266) 

Narrative 0.974 (12255/12584) 

Philosophic Dialogue 0.973 (3833/3938) 

Medicine 0.973 (803/825) 

Epic poetry 0.973 (36641/37657) 

History 0.973 (60353/62027) 

Rhetoric 0.970 (2835/2924) 

Geography 0.968 (1341/1385) 

Polyhistory 0.966 (6460/6686) 

Philosophy 0.965 (8847/9166) 

Military 0.963 (2327/2417) 

Tragedy 0.957 (15679/16384) 

Engineering 0.951 (1402/1474) 

Scientific Poetry 0.945 (52/55) 

Mathematics 0.945 (240/254) 

Comedy 0.944 (4085/4327) 

Language 0.913 (506/554) 

Lyric poetry 0.905 (1159/1281) 

Table 9:  Tagging accuracy by text type (Greek) 

 

 

Text Accuracy 

Jerome’s Vulgate 0.952 (6588/6922) 

Commentarii belli Gallici  0.941 (1989/2114) 

Epistulae ad Atticum 0.921 (2871/3116) 

De officiis 0.921 (820/890) 

Opus agriculturae 0.898 (942/1049) 

Table 10:  Tagging accuracy by text type (Latin) 
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Abstract

In this paper we present a deep learning
pipeline for automatically dating ancient Greek
papyrus fragments based solely on fragment
images. The overall pipeline consists of sev-
eral stages, including handwritten text recog-
nition (HTR) to detect and classify characters,
filtering and grouping of detected characters,
24 character-level date prediction models, and
a fragment-level date prediction model that
utilizes the per-character predictions. A new
dataset (containing approximately 7,000 frag-
ment images and 778,000 character images)
was created by scraping papyrus databases, ex-
tracting fragment images with known dates,
and running them through our HTR models
to obtain labeled character images. Transfer
learning was then used to fine-tune separate
ResNets to predict dates for individual charac-
ters which are then used, in aggregate, to train
the fragment-level date prediction model. Ex-
periments show that even though the average ac-
curacies of character-level dating models is low,
between 35%-45%, the fragment-level model
can achieve up to 79% accuracy in predicting
a broad, two-century date range for fragments
with many characters. We then discuss the limi-
tations of this approach and outline future work
to improve temporal resolution and further test-
ing on additional papyri. This image-based
deep learning approach has great potential to
assist scholars in the palaeographical analysis
and dating of ancient Greek manuscripts.

1 Introduction

With the meteoric rise in deep learning tech-
nologies, many fields are rapidly adopting
these tools and incorporating them into their
workflow. Palaeography, the study of the hand-
writing in ancient and medieval manuscripts,
is one such discipline that has benefited
from these methods. Projects such as READ
(https://eadh.org/projects/read) and DigiPal
(https://eadh.org/projects/digipal), for example,

have focused on applying these methods to issues
of writer identification, layout analysis, and
frameworks for digital palaeographical content,
especially via handwritten text recognition (HTR).
One important project of note is Ithaca (Assael
et al., 2022) which, among other uses, can attribute
a date range to an inscription. Our approach differs
in that while Ithaca takes digital transcriptions as
input, our pipeline relies solely on images. In this
paper, we present our latest contribution to this
research effort, consisting of a dataset and deep
learning pipeline for dating ancient Greek papyrus
fragments. This pipeline takes as input an image
of an ancient Greek papyrus fragment and outputs
a predicted date range. We describe the training
methodologies used to create the various models
constituting the pipeline as well as a number of
performance metrics.

1.1 Palaeography and the Dating of Greek
Papyri

The method for dating Greek papyri begins with
manuscripts that can be accurately dated. This
mostly pertains to documentary texts (letters, pe-
titions, taxes, leases, etc.) that preserve their date
of composition. Documentary papyri lacking a
date can, of course, still be dated accurately, if
they mention historical events or figures that gen-
erally locate them within a given century. Palaeo-
graphic analysis of these papyri, i.e. the study of
the handwriting and the features of the characters
preserved, is important for those papyri that are
not dated, especially the immense number of liter-
ary and sub-literary papyri that never contain the
date of their production. Those papyri must be
assigned a date based on a meticulous compari-
son between the Greek characters they preserve
and those in reliably dated papyrus manuscripts.
Palaeographical handbooks containing human ob-
servations, discernible patterns, and even conjec-
tured styles have thus been published and they con-
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stitute the sources by which papyrologists assign
dates to papyri (Roberts, 1955; Turner, 1987; Cav-
allo and Maehler, 2008).

In respect to the actual number of papyri pre-
served, however, these handbooks only contain a
small number of manuscripts for comparison. It is
not uncommon that an assigned date is later reeval-
uated and changed as more papyri are viewed and
compared. The ability of deep learning methods
to assist papyrologists in dating papyri by analyz-
ing thousands of manuscript images holds great
potential. To do so, this requires not only train-
ing models for the task at hand, but also creating
a palaeography dataset to facilitate accurate dat-
ing. Previous work on the Ancient Lives Project
provides a foundation for reaching these goals.

1.2 Ancient Lives & AL-ALL

Between 2011 and 2018, the Ancient Lives Project,
a Zooniverse.org collaboration, enlisted the aid
of citizen scientists in annotating the images
of thousands of highly degraded, ancient Greek
manuscripts (Williams et al., 2014). The project
resulted in millions of annotations which were key
to the creation of the first large-scale machine learn-
ing dataset for digital papyrology, AL-ALL (Swin-
dall et al., 2021). This dataset consists of over
400,000 images of handwritten Greek characters
on papyrus and has been successfully used to cre-
ate various deep learning models. This dataset also
includes images from fragments that are currently
under papyrological study and have not been pub-
lished. For a releasable dataset, a smaller, updated
version of the published material, AL-PUBv2,
has been made available at https://www.kaggle.
com/datasets/miswindall/al-pub-v2.

1.3 HTR Models

The development of our dataset and pipeline for
palaeographical dating rests on our two core HTR
models, each of which perform a key HTR task:
character detection and character classification.

1.3.1 Character Detection with YOLO
The character detection model is essentially an ob-
ject detection model trained to locate Greek char-
acters in images of papyri. Similar existing work
refers to this process as ’character spotting’ (Majid
and Smith, 2022; Mondal et al., 2022). To train
this model, YOLOv5s (Ultralytics, 2023) was fine-
tuned using 212 images of papyrus fragments from
the Oxyhrynchus papyri (Bowman et al., 2007)

Figure 1: Example of character detection and classifi-
cation using the HTR models. The YOLO model pro-
duces bounding boxes for each detected character. The
bounded region is then cropped, resized, and given to
the ResNet for classification.

containing 4097 character locations annotated dur-
ing the Ancient Lives Project. YOLO is typically
trained for multiple classes, but this model was
fine-tuned to search for a single class: Greek char-
acters. The model achieved precision and recall of
0.88 and 0.84, respectively, on the validation data,
as well as validation box loss below 0.04. Further
metrics are detailed in Figure 2.

Figure 2: Training and validation metrics for the YOLO-
based character detection model show that this model
performs well on the task of locating Greek characters
in images of damaged papryi.

1.3.2 Character Classification with ResNet
Our character classification model is a ResNet
trained on the recently updated AL-ALLv2 dataset.
The latest version of the dataset consists of 419,445
character images of all 24 characters in the ancient
Greek alphabet, including the Lunate Sigma (C, ς)
which typically replaces the more familiar Sigma
(Σ, σ) in ancient papyri. This model achieved a
training accuracy of 96.69% and a validation accu-
racy of 94.11%. Previous versions of this model
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4th-3rd BCE 2nd-1st BCE 1st-2nd CE 3rd-4th CE 5th-6th CE Total
Fragments 299 729 3418 2002 570 7018

Table 1: The number of fragments from each century in the palaeography dataset.

4th-3rd BCE 2nd-1st BCE 1st-2nd CE 3rd-4th CE 5th-6th CE Total
α 6736 7582 36233 16548 4036 71135
β 302 219 1270 955 254 3000
γ 2914 2216 7765 3910 716 17521
ϵ 6508 5977 14132 7025 1795 35437
δ 903 1261 6679 2221 343 11407
ζ 354 288 2431 1158 284 4515
η 1741 3766 12873 7769 2105 28254
θ 299 729 3418 2002 570 7018
ι 4825 6951 24308 11785 4482 52351
κ 2886 2747 7343 5024 1828 19828
λ 971 2099 9766 3394 998 17228
µ 1362 2826 17883 7520 2573 32164
ν 4851 12339 28077 11578 3500 60345
ξ 62 93 653 410 106 1324
o 7011 13017 53709 24570 10146 108453
π 2293 3010 14785 7122 2043 29253
ρ 3389 4039 16570 9895 3414 37307
σ 4856 7732 28246 11490 4397 56721
τ 11823 14300 44502 23982 4910 99517
υ 2224 4727 12985 7165 1698 28799
ϕ 505 530 2652 1536 568 5791
χ 997 1944 6151 3557 1239 13888
ψ 135 108 499 265 53 1060
ω 1046 3176 20221 8912 2932 36287
Total 68993 101676 373151 179793 54990 778603

Table 2: The number of characters from each century in the palaeography dataset.

were released as a supplement to (Swindall et al.,
2022), including models trained on a synthetically
augmented version of AL-ALL in an effort to re-
duce sampling bias.

2 A Dataset for Palaeographical Dating

The development of the palaeographical dating
pipeline necessitated the construction of a dataset
containing images of papyrus fragments, their con-
stituent characters, and their dates of composition.
Three large papyrus databases were scraped for
their fragment images and metadata (including
dates of composition). The databases chosen were
the Berlin Papyrus Database, Papiri della Società
Italiana (PSI), and the Duke Papyrus Archive. For
the first iteration of this dataset, we focused only
on documentary papyri that preserve an exact date
or are reliably dated within a range of a century
or two. Since the format of the dates varied, the
dates were processed and converted to a common
format containing only the century or range of two
centuries of composition. To reduce the difficulty
of the dating task, we decreased the temporal res-
olution of the date classes from the one-century
level to the two-century level: 4th-3rd BCE, 2nd-
1st BCE, 1st-2nd CE, 3rd-4th CE, and 5th-6th CE
(future work will consist of increasing the tempo-
ral resolution). The fragment images were then
passed through our HTR models, thus obtaining
cropped and classified images of each fragment’s
constituent characters. These character images are

assigned the same date classes as the fragment on
which they were written.

The character and fragment counts for each time-
period in the dataset are detailed in Tables 1 and
2. As can be seen, we have examples of all 24
Greek characters from the 4th BCE to the 6th CE.
There is also significant imbalance in both the char-
acters and the dates. Concerning the characters,
there are only 1,060 psis (Ψ, ψ) but 108,453 omi-
crons (O, o). Fortunately, transfer learning permits
one to use a smaller dataset while still getting use-
ful results since the majority of the layers have
already been trained. Concerning the dates, 1st-
2nd CE contains the largest number of characters
and fragments (373,151 and 3,418, respectively)
while 4th-3rd BCE contains the least (68,993 and
299, respectively).

It should be noted that this dataset is actually
a subset of all that was scraped from the papyrus
archives and run through the HTR pipeline. Many
of the characters in the full dataset are of poor qual-
ity and were filtered out to create the final dataset.
Filtering was done based on two factors: 1) image
saturation entropy and 2) ResNet prediction en-
tropy. The first is done in order to eliminate YOLO
false positives which often consist of images with
few ink pixels. Consequently, false positives of this
type tend to have a low entropy in the distribution
of their pixel saturation and can be reliably (though,
not completely) eliminated by applying a simple
threshold. The second filter removes images which
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Figure 3: The palaeography pipeline performs HTR on the fragment image, obtaining images of individual characters.
Poor character images (YOLO false positives, uncertain classifications, etc.) are filtered out. Remaining characters
are grouped according to their character and sent to individual ResNet character dating models. These predicted
character dates are then used as input to a final Gaussian Process fragment dating model.

were unreliably classified by the ResNet. Again,
these can be fairly reliably eliminated by applying
a threshold to the entropy of the ResNet’s predicted
class probabilities.

3 A Pipeline for Palaeographical Dating

Given the goal of producing a deep learning
pipeline which can take an image of an ancient
Greek papyrus fragment as input and output a
predicted date of composition, the primary task
is to determine the proper architecture for such
a pipeline. Figure 3 depicts the chosen architec-
ture, which consists of five core stages: HTR, fil-
tering/grouping of characters, character dating, fea-
ture engineering, and fragment dating.

3.1 HTR, filtering, and grouping

The first step of the dating pipeline takes the input
image and passes it through the HTR models, thus
obtaining cropped and classified images of the frag-
ment’s constituent characters. The filtering steps
described above are then applied to these charac-
ter images to remove any unreliable samples. The
characters are then grouped based on their charac-
ter class (alpha, beta, etc.) before being sent to the
next step of the pipeline.

3.2 Character dating models

Next, each group of characters is sent to another
round of ResNet models which predict individual
characters’ date of composition. These models
were developed via performing transfer learning
on the ResNet discussed earlier. Naturally, the
last two dense layers were retrained and the output

layer was altered to have five output neurons (one
per date class) instead of 24 (one per character).

While the transfer learning aspect was trivial,
the data wrangling required to properly train these
models was more complicated. Splitting the dataset
into training and validation sets was done at the
fragment level so that no fragment had constituent
characters present in both sets of each individual
ResNet model. As discussed above, there is a sig-
nificant class imbalance with respect to the time
periods (with 1st - 2nd CE having the overwhelm-
ing majority of samples). Thus, a great deal of
balancing was performed. This was done by sam-
pling the less frequent classes with replacement
such that all classes had the same number of sam-
ples as the most frequent class. This was done
separately for the training and validation sets. Ad-
ditionally, data augmentation was performed using
Keras’s ImageDataGenerator so that there would
not be identical copies of the images. The ranges
for zoom, width shift, and height shift were all set
to 0.1. No rotation was applied since the slant of
characters is useful for determining their date of
composition. This augmentation helps to increase
the variability for less frequently occurring cen-
turies which have many duplicated images due to
sampling with replacement.

A custom loss function inspired by the
Kolmogorov-Smirnov test was utilized since it is
better suited for the ordinal nature of date labels
than categorical cross entropy. Equation 1 illus-
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4th-3rd BCE 2nd-1st BCE 1st-2nd CE 3rd-4th CE 5th-6th CE
α 0 1 10 4 0
β 0 3 2 0 1

Table 3: An example of (one-hot encoded) raw features created from the output of the character dating models.

trates this loss function.

loss =
N−5∑

i=0

(tci − pci )
2 (1)

Here, N = 5 is the number of classes and tci , p
c
i

are the true and predicted cumulative class prob-
abilities, respectively. By comparing the cumula-
tive probabilities, we can essentially form a metric
which allows the ResNet’s optimizer to take advan-
tage of the fact that (given a true date of 5th-6th
CE) a predicted date of 4th-3rd BCE is worse than
1st-2nd CE.

3.3 Feature engineering and fragment dating
model

Once each character has received a predicted date,
we then utilize these outputs to predict the date of
the fragment as a whole. This is done via a sim-
ple dense neural network which outputs identical
date classes as the ResNet in the previous step of
the pipeline. Although the ordinal loss function de-
scribed above worked well for the character models,
it did not work well for the fragment model. Thus,
categorical cross entropy was used.

For the fragment dating model’s input, some
clever feature engineering was done on the char-
acter dating model predictions. In what follows,
all indices are assumed to start at zero. Let Ck ∈
{0, 1, 2, · · · , 23} (where k ranges over all the char-
acters in a particular fragment) be the predicted
character class. Also, let, pkj (where j = 0, · · · , 4
ranges over the number of date classes) be the pre-
dicted probability that character k belongs in date
class j. Now, we construct the raw features X ′:

X ′
ij =

∑

k∋(Ck=i)

pkj (2)

This sum adds the total probability for all α’s, β’s,
etc. into separate columns. Table 3 shows a sim-
plified example where, for the sake of simplicity,
it is assumed that all of the probabilities are effec-
tively one-hot encoded. These raw features are then
processed with two more steps, obtaining the final

features X:

Xij =
1 +X ′

ij

5 +
∑

j X
′
ij

(3)

First, Laplace’s rule of succession is applied,
adding a 1 to all entries of X ′ (we will explain
the reason for this step below). Next, we nor-
malize all of the rows (date-wise) by dividing
by their sum. The normalization step ensures
that all of the different fragments’ feature values
will be within the same range of values (between
0 and 1). The rule of succession is applied to
preserve a kind of confidence that would other-
wise be lost in the normalization step. Consider
two fragments whose α rows are [0,0,1,0,0] and
[0,0,5,0,0], respectively. Without application of
the rule of succession, both columns would be
normalized to [0,0,1,0,0]. Yet this is misleading
since the second fragment has more α’s predicted
to be from 1st-2nd CE. We should want this in-
creased confidence to be reflected in the features.
Thus, by applying the rule of succession, we obtain
[1,1,2,1,1] and [1,1,6,1,1] for the pre-normalization
step and [0.166,0.166,0.333,0.166,0.166] and
[0.1,0.1,0.6,0.1,0.1] for post-normalization. No-
tice how 0.6 is larger than 0.333, thus preserving
the confidence due to having a larger number of
characters.

Finally, as with the character-level data, there
is also significant class imbalance at the fragment-
level, though less severe. To combat this, we manu-
ally balance the training set of the fragment model
by sampling with replacement.

4 Model Evaluation

In this section, we will discuss the performance
of the models which comprise the palaeographical
dating pipeline.

4.1 Character dating performance
Figure 4 shows the loss curves for each of the char-
acter dating models. Each model was trained for
200 epochs with a batch size of 256. A Keras call-
back was written which would store the model with
the lowest validation loss in case of overfitting. The
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Figure 4: Loss curves for the character dating models. The vertical green line shows the epoch of lowest validation
loss.

vertical green lines in the plots show when these
best models were found. A range of behaviors can
be seen across each of the model histories. Perhaps
the most obvious is the range of optimal losses
achieved. Note the difference in the values for
omega and omicron. Also, some models converge
in a fairly low number of epochs (such as alpha
and omicron) while others have yet to converge
after 200 epochs (beta and xi). This is likely due
to the vast difference in sample size between the
different characters. Characters with more samples
are effectively trained more than those with fewer
samples.

Figure 5 contains plots of the confusion matrices
for each character dating model. To construct these
statistics, we used Keras’s ImageDataGenerator to
create 1,000 augmented images per character/date
combination and compare the character models’
predictions on these images to the true date label
(which is equivalent to that of the fragment from
which the augmented character image was taken).
The rows of the confusion matrices were then nor-
malized for simplicity. All 24 models achieve over-
all accuracies between 35%-45%. These values
are quite low, but we will see a significant increase
once we see the fragment model’s results.

There are several points to note about these con-
fusion matrices. First, we can see that 3rd-4th CE
is consistently the least accurately predicted date
class across all characters. Second, the lower trian-

gular portions of the matrices have a consistently
higher value than the upper triangular portions.
This is likely due to the fact that older handstyles
can persist into the future but newer handstyles
cannot retroject into the past. As such, we see a
diffusion of the class probability as we move from
earlier to later date classes (reading from top to
bottom), causing confidence to decrease. Thirdly,
we see a consistent trend in the final column which
suggests that predictions of 5th-6th CE tend to have
many false positives. This is likely due to the pres-
ence of a great variety of handstyles in this period,
with papyri exhibiting character shapes present in
older manuscripts.

4.2 Fragment dating performance

For our fragment dating model, we manually bal-
anced the training set and performed 5-fold cross
validation (five was chosen in order to keep the
validation set from being too small). We present
here the results obtained from a model trained on
one of the folds. The accuracy of the fragment
dating model depends heavily on the number of
characters present in the fragment. As such, Figure
7 shows a boxplot of model accuracy (across the
five folds). Note that the validation fragments have
been grouped based on quartiles of the number of
extant characters (which passed through the filter
step). Additionally, we show in Figure 6 a set of
confusion matrices for each of these groups.
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Figure 5: Confusion matrices for the character dating models.
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Figure 6: Confusion matrices for the fragment dating model. Each matrix contains only fragments within the
specified range of number of characters.

Figure 7: A box plot of the fragment dating model’s
accuracy of the five folds grouped based on quartiles of
the number of characters in the fragments.

For the group of fragments with 1-11 charac-
ters, the average accuracy across the folds was 26%
(only 6% above random chance). The confusion
matrix corresponding to this group varied signifi-
cantly across the folds, showing that dating frag-
ments with a small number of characters is highly
unreliable (as it is for humans). However, mov-
ing from left to right (increasing the number of
characters in the fragment), we see increasing accu-
racy and a progressively more pronounced diagonal
trend. A maximum accuracy of 79% (averaged over
the folds) was achieved for fragments with between
132-7,255 characters. Thus, we can see the effect
of something like the law of large numbers present
in the fragment model. Although the character dat-
ing models are not very accurate, they are accurate
enough that the most frequently predicted class will
be correct (i.e., the probability of a correct predic-
tion is significantly above chance). Therefore, the
more characters contained within a fragment, the
greater the probability of a correct date prediction.

5 Conclusions

While this research is still in its early stages, our
results suggest that deep learning can perform the
task of palaeographically dating ancient Greek pa-
pyri based solely on image input. This initial
dataset and pipeline thus has the potential to fur-
ther enhance the field of digital palaeography. Fu-
ture work will pertain to increasing that tempo-
ral resolution and to leveraging the large number
of individual characters in the dataset for analyz-
ing handwriting features across time. Addition-
ally, we plan to investigate the use of similar tech-
niques for the location attribution of Greek papyri.
More importantly, as noted above, this pipeline
focuses on documentary papyri. Although these
kinds of manuscripts constitute the ground truth
for assigning dates to other papyri, literary and
sub-literary papyri, which never preserve their date
of production, have unique features of their own.
How these models perform on and/or adapt to these
manuscripts will also be a critical next step.
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Abstract
Beginning with the discovery of the cuneiform
writing system in 1835, there have been
numerous grammars published illustrating
the complexities of the Sumerian language.
However, the one thing the published gram-
mars have in common is their omission of
dependency rules for syntax in Sumerian
linguistics. For this reason we are working
toward a better understanding of Sumerian
syntax, by means of dependency-grammar in
the Universal Dependencies (UD) framework.
Therefore, in this study we articulate the
methods and engineering techniques that
can address the hardships in annotating
dependency relationships in the Sumerian
texts in transliteration from the Electronic
Text Corpora of Sumerian (ETCSUX). Our
code can be found at https://github.
com/ancient-world-citation-analysis/
UD-ETCSUX.

1 Introduction

The Sumerian language has been studied academi-
cally by philologists since Henry Rawlinson’s dis-
covery of the cuneiform writing system in 1835
(Cathcart, 2011). Since then, there have been nu-
merous grammars published illustrating the com-
plexities of the Sumerian language, including: epig-
raphy, orthography, phonology, morphology, and
semantics. While not all of these grammars are
in agreement, the one thing they have in com-
mon is their general lack of rules for dependency-
grammar. This is because Sumerian is a highly
inflected language with post-position particles for
cases, numbers, and persons, and an agglutina-
tive verbal system that reflects these same features
for a given clause or sentence in the verbal chain,
thereby reducing the need for complex syntax rules.
For this reason, we are working toward a better
understanding of Sumerian syntax, by means of
dependency-grammar in the Universal Dependen-
cies (UD) framework (Nivre et al., 2017), in order

𒇳𒁺 𒄰𒀀 𒅆 𒁇𒊏

Cuneiform

ukur₃ tu₇-a igi bar-ra

Transliteration

A poor man staring into the soup.

Translation

ukur₃    tu₇-a    igi                    bar-ra

poor     soup   eye                  outside

nsubj

compound:prt

obj

nsubj -- nominal subject

compound:prt -- compound particle

obj -- object

Dependency Parsing

Figure 1: A dependency parsing example of Sumerian
transliteration.

to model the many different dependencies of a poly-
semous sentence and illustrate the results using UD
treebanks. This paper is meant to serve as the first
step in motivating the much-needed collaboration
of computational linguists and Sumerologists in the
development of open-source tools for the Sumerian
language, and the cuneiform writing system. Our
contribution is summarized as follows:

• We release the first dependency dataset for
Sumerian UD-ETCSUX.

• We present a dependency parser for Sumerian
texts in transliteration.

• We identify the two major challenges in Sume-
rian syntax studies.

2 Related Work

2.1 Sumerian Language
Sumerian has a problematic past from the mo-
ment of its decipherment, in that a few modern
philologists were motivated to situate Sumerian
as the progenitor of their own linguistic family
trees (Cooper, 1991). Further compounding the
historical linguistic study of Sumerian is the fact
that the natural language died out near the end of
the third millennium B.C. (Michalowski, 2000).
From that point onward (i.e. from 2000 B.C. to
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539 B.C.), the Sumerian language was studied and
taught in scribal schools throughout Mesopotamia
and was preserved much like Latin in Medieval
Europe (Kraus, 2020). Our modern understanding
of Sumerian relies on the Sumerian-Akkadian ref-
erence works (e.g. lexicons, syllabaries, commen-
taries, and translations) made by many generations
of Mesopotamian scribes who continued to elab-
orate on Sumerian’s complex morpho-graphemic
orthography, and who integrated the frozen-form
Sumerian logograms into the vocabulary of a con-
siderable number of contemporary languages, like
Akkadian, Elamite, and Hittite (Seri, 2010).

2.2 Computational Linguistics Tools

Due to the complex nature of Sumerian syntax,
current computational tools for Sumerian transliter-
ation have primarily focused on lemmatization and
part-of-speech (POS) tagging. Of note are the re-
cent contributions from specialists in Helsinki (Sa-
hala and Lindén, 2023), who introduced BabyLem-
matizer, a neural framework that applies machine
translation methodologies to train annotators for
POS and lemmatization. This approach conceptu-
alizes tagging challenges as translation tasks, uti-
lizing a sequence-based transformer model to gen-
erate tags. However, there remains a gap in the
research as no existing studies have explored ef-
fective computational techniques for dependency
labeling in Sumerian.

2.3 Cuneiform Corpora

Developing high-quality corpora is pivotal for ad-
vancing Sumerian language tools. Fortunately, the
online (aka ’electronic’) publications of Sumerian
texts got an early start in ETCSL, the electronic
text corpus of Sumerian literature (Black et al.,
1998–2006), and ETCSRI, the Sumerian royal in-
scriptions (Zólyomi, Gábor - Tanos, Bálint - Söveg-
jártó, Szilvia, 2008). The first study to develop UD
labels for Sumerian was the MTAAC project (Pagé-
Perron et al., 2017), with a goal to translate 100,000
Sumerian texts from the Ur III period (2100-2000
B.C.). In preparation for this goal, they designed
dependency sets tailored for Sumerian in transliter-
ation, of which there are currently 370 published
examples in the CDLI (CDLI contributors, 2024).
The culmination of these efforts underscores a col-
laboration between NLP experts and Assyriologists
to build a Sumerian text retrieval system, enhancing
accessibility through a specialized NLP pipeline
and linguistically linked open data. Although the

Sumerian Lemma Dependency Head
ur-gir15-gin7 urgir amod 5
ki ki compound:prt 3
za-za zaza aux 5
hul hulu compound:prt 5
a-ab-gig gig root+nsubj 5

Table 1: Examples from UD-ETCSUX dataset: "Like a
dog, he hates to grovel."

focus has been on morphological annotation in the
MTAAC workflow, comprehensive steps for de-
pendency parsing remain less detailed, with only
a handful of examples in CONLLU format docu-
mented by (Chiarcos et al., 2018).

2.4 Syntax Parsing

Dependency parsing is a syntactic parsing tech-
nique that represents the structure of a sentence
in terms of binary relations between words, cap-
turing the head-dependent relationship (Jurafsky
and Martin, 2009). This parsing method facilitates
the understanding of syntactic and semantic struc-
tures, aiding various applications such as machine
translation and information extraction. Among
contemporary models, spaCy’s dependency parser
(Honnibal et al., 2020) stands out due to its effi-
ciency and accuracy. spaCy utilizes state-of-the-art
neural network architectures and pre-trained word
embeddings to capture complex linguistic patterns,
making it highly effective for parsing diverse and
morphologically rich languages. Its robust perfor-
mance and ease of integration have made spaCy
a popular choice for researchers and developers
working on a wide range of NLP tasks.

3 UD-ETCSUX Dataset

In this section, we delineate the methodology of our
dependency dataset, UD-ETCSUX. Initially, we ex-
tracted Sumerian transliterations along with their
English equivalents from the ETCSRI (Zólyomi,
Gábor - Tanos, Bálint - Sövegjártó, Szilvia, 2008)
and ETCSL (Black et al., 1998–2006) datasets.
Subsequently, we utilized the spaCy framework
(Honnibal et al., 2020) to perform dependency tag-
ging on the English translations. Using the depen-
dency tags derived from the Universal Dependen-
cies (UD) and the English translations, we manu-
ally transferred the UD labels from the English
texts to the corresponding Sumerian translitera-
tions, guided by the lemmatization and English
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gloss words provided in ETCSRI and ETCSL. This
methodology enables annotators with limited exper-
tise in Sumerian to initiate the annotation of basic
structures in the language. With UD labels directly
attached to Sumerian transliterations, this process
facilitates the later migration of the labeled data
into a UD-compatible format. We present an exam-
ple from UD-ETCSUX in Table 1. Currently, we
have curated dependency trees for 133 Sumerian
transliterations, containing a total of 573 labeled
data. We also plan to incorporate feedback from the
scholarly community and will modify our labels
based on their input in future versions. To address
the challenge of a limited number of training exam-
ples, we employed data augmentation techniques.
We selected 60 labeled Sumerian transliterations
and used a trained embedding model to find the
most semantically similar words in the corpus, re-
placing the original transliterations with new words
of similar meaning. This process generated 60 new
transliterations, with an example presented in Ta-
ble 2.

4 Sumerian Dependency Parser

In this section, we present the complete workflow
that forms our dependency parser.

4.1 Compound Verbs
Compound verbs represent a distinctive but chal-
lenging aspect of Sumerian transliteration. Due
to their extensive variety and frequent occur-
rences, coupled with morphological variations, ac-
curately identifying compound verbs can be time-
consuming for annotators (see Table 1). To stream-
line the annotation process and improve the accu-
racy of dependency labeling, we have developed
a compound verb detector. This tool contains 674
general compound verbs, and a total of 1055 vari-
ations derived from the general compound verbs
in its dictionary and is designed to automatically
detect potential compound verbs and provide their
corresponding English meanings given a Sumerian
transliteration. We present some examples of our
compound verb detector in the Appendix.

4.2 Word Embeddings
To enhance the performance of our dependency
parser, we trained two types of word embedding
models using the entire ETCSRI and ETCSL cor-
pora, which contain 277,247 lines of Sumerian
text in transliteration. We utilized FastText (Bo-
janowski et al., 2016) and Pointwise Mutual Infor-

Sumerian Lemma Dependency Head
nita nita nsubj 4
zig zig acl 1
mumun mumun obj 4
al al root 4

Table 2: Example of augmented data: "A male aroused
eats salt."

mation (PMI) (Church and Hanks, 1990) embed-
ding techniques for this purpose. For exploration,
we calculated one set of embeddings on translit-
erations and another on lemmas, setting the em-
bedding dimension to 512. Four embedding mod-
els were incorporated into our dependency parsing
training regimen. The comparative effectiveness of
these models is thoroughly evaluated in the Experi-
ments section.

4.3 Implementation Details

We built our dependency parser using the training
framework of spaCy (Honnibal et al., 2020), tok-
enizing Sumerian transliterations by spaces. Given
our dataset of 125 sentences, we performed a 10-
fold cross-validation to evaluate the parser’s effec-
tiveness. Utilizing a custom embedding layer, the
parser was trained for 20 epochs per fold with a
minibatch size of 12. To prevent overfitting and
enhance robustness against minor labeling errors,
we applied a dropout rate of 0.8.

5 Experiments

We evaluated both PMI and FastText embedding
methods trained on lemmas and transliterations, re-
spectively. For each 10-fold cross-validation, we
report the average Unlabeled Attachment Score
(UAS) (Ratnaparkhi, 1996) and Labeled Attach-
ment Score (LAS) (Buchholz and Marsi, 2006)
across the folds.

The UAS measures the parser’s ability to identify
the sentence structure, focusing on the correctness
of the head assignments. In contrast, the LAS eval-
uates the parser’s performance on both dependency
tags and sentence structure, assessing both head as-
signments and the correct labeling of dependency
relations. Both scores are reported as percentage
accuracy, ranging from 0 to 100, with 100 being
complete correctness. The detailed scores are pre-
sented in Table 3.

From Table 3, we observe that our parser
performs slightly better with FastText embed-
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Lemma Transliteration
PMI FastText PMI FastText

UAS 50.69 51.54 50.47 51.27
LAS 13.19 13.23 12.84 13.29

Table 3: Results for 10-fold validation.

dings compared to PMI embeddings, regardless of
whether the embeddings were trained on lemmas
or transliterations. Specifically, FastText embed-
dings trained on lemmas yield the highest UAS
at 51.54, indicating a more effective approach in
capturing syntactic structure. The LAS, which eval-
uates both dependency tags and sentence structure,
shows a similar trend, with FastText generally out-
performing PMI, though the differences are less
pronounced. However, both UAS and LAS scores
are relatively low across all methods, with the high-
est UAS at 51.54 and the highest LAS at 13.29, in-
dicating significant room for improvement. These
low scores reflect the challenges of parsing Sume-
rian text, likely due to the limited dataset size and
the language’s complexity. To improve accuracy
with limited resources, we trained our parser with
60 additional augmented data. The same evaluation
is presented in Table 4.

Lemma Transliteration
PMI FastText PMI FastText

UAS 51.96 51.86 50.62 51.20
LAS 13.47 13.75 14.19 13.82

Table 4: Results for 10-fold validation with 60 aug-
mented data.

Compared to Table 3, we observe consistent im-
provements in both UAS and LAS across all em-
bedding settings. This highlights the promising
potential of using data augmentation techniques to
temporarily mitigate the negative impacts of low-
resource data in enhancing parsing performance for
Sumerian.

6 Qualitative Evaluation

We present two examples to illustrate the perfor-
mance of our dependency parser.

Table 5 showcases a correct inference where the
parser accurately identified the nominal subject
(nsubj), object (obj), compound particle (comp.prt),
and root. This demonstrates the parser’s ability to
handle straightforward Sumerian sentences effec-
tively. Notably, it also highlights the effectiveness

of our compound verb detector. During inference,
the detector successfully identified "igi" and "bar"
as a compound verb, assigning "igi" the compound
particle label directly and thereby preventing po-
tential confusion for the parser. The dependency
relations and head assignments align with the ex-
pected structure, reflecting the parser’s proficiency
in parsing simple syntactic constructions.

Truth Predicted
Sumerian Dep. Head Dep. Head

ukur3 nsubj 4 nsubj 4
tu7-a obj 4 obj 4
igi comp.prt 4 comp.prt 4

bar-ra root 4 root 4

Table 5: Example of a correct inference: "A dog climbed
up onto the roof."

Truth Predicted
Sumerian Dep. Head Dep. Head

ur nsubj 4 nsubj 4
si-im-si-im amod 1 nsubj 4

e2-e2-a obj 4 obj 4
ku4-ku4 root 4 root 4

Table 6: Example of an incorrect inference: "A sniffing
dog entering all the houses."

Table 6 presents a failed case. The parser mis-
classified "si-im-si-im" as a nominal subject (nsubj)
instead of an adjectival modifier (amod), which af-
fected the overall dependency structure. We believe
this misclassification is due to the parser’s limited
exposure to diverse sentence structures and the im-
balance in the training data, making it challenging
to accurately recognize and differentiate adjectival
modifiers, which are less common, from nominal
subjects. Such failures underscore the need to in-
corporate more diverse and complex sentences into
UD-ETCSUX to broaden the parser’s capabilities.

7 Future Directions

We plan to incorporate additional feedback from
language experts and continuously expand and en-
hance the quality of UD-ETCSUX, with the ulti-
mate goal of publishing it in the Universal Depen-
dency Treebank. Additionally, we will conduct
inter-annotator agreement studies in future work to
ensure the reliability and consistency of our anno-
tations. Furthermore, we have identified two issues
that require targeted solutions in future research.
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7.1 Morphology Inclusion

Sumerian has a highly-inflected morphology,
which in many instances encapsulates multiple
parts of speech and phrasal elements into a sin-
gle word, as seen in Table 1, which contains both
the subject and root in three signs or one token.
In order to properly identify each of the phrasal
elements of a sentence, it will be necessary to an-
notate these sub-word particles, especially for the
verbs. Fortunately, this format has been clearly ar-
ticulated in recent Sumerian grammars, but it has
only been applied to the ETCSRI corpus, and has
not yet been extended to the rest of the electronic
text corpora of Sumerian. We see this as a critical
step in order to allow for an automated process of
dependency parsing. As such, we plan to provide
the full repertoire of Sumerian texts with annota-
tions for sub-word particles in subsequent versions
of the UD-ETCSUX dataset.

7.2 Multiple Translations

Also mentioned above is the fact that much of the
vocabulary and many of the literary texts in Sume-
rian exhibit forms of word-play, parallelism, poly-
semy, and double-entendre. (Alster, 1975) A good
example of this may be seen in the sentence in Ta-
ble 1, which ETCSL translates: "Like a dog, he
hates to grovel," but which could also be read, "he
hates to grovel like a dog." The former implies
the dog’s hatred of groveling and the latter only
likens the subject’s act of groveling to a dog’s. Both
readings are possible because there is no separate
subject in the sentence outside of the verbal chain.
While including such polysemy in our model might
over-complicate the process from the start, we hope
to include the plurality of dependency parsings in
the future to reflect the rich layers of meaning em-
bedded in the Sumerian text.

8 Conclusion

In this work, we presented UD-ETCSUX, a concise
dataset for Sumerian dependency parsing. Addi-
tionally, we introduced tools to enhance parsing ac-
curacy, such as compound verb detection and data
augmentation techniques. Our dependency parsing
analysis compared various embedding methods and
identified areas for future improvement. We hope
our contributions will prove valuable and inspire
language experts to further advance the understand-
ing of Sumerian syntax.
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10 Limitations

While our dataset effectively supports the initial
objectives of this study, its current scope is limited,
restricting our ability to fully explore the diverse
linguistic scenarios in Sumerian languages. Fur-
thermore, more extensive expert validations are
required to enhance our dataset’s robustness. We
are still in the process of receiving and incorporat-
ing feedback from Sumerian language specialists,
and we are committed to expanding the dataset
and deepening expert collaborations to refine the
quality and applicability of our findings.
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Abstract

Sumerian transliteration is a conventional sys-
tem for representing a scholar’s interpretation
of a tablet in the Latin script. Thanks to vi-
sionary digital Assyriology projects such as
ETCSL, CDLI, and Oracc, a large number of
Sumerian transliterations have been published
online, and these data are well-structured for a
variety of search and analysis tasks. However,
the absence of a comprehensive, accessible
dataset pairing transliterations with a digital
representation of the tablet’s cuneiform glyphs
has prevented the application of modern Natu-
ral Language Processing (NLP) methods to the
task of Sumerian transliteration.

To address this gap, we present SumTablets,
a dataset pairing Unicode representations of
91,606 Sumerian cuneiform tablets (total-
ing 6,970,407 glyphs) with the associated
transliterations published by Oracc. We con-
struct SumTablets by first preprocessing and
standardizing the Oracc transliterations before
mapping each reading back to the Unicode rep-
resentation of the source glyph. Further, we
retain parallel structural information (e.g., sur-
faces, newlines, broken segments) through the
use of special tokens. We release SumTablets
as a Hugging Face Dataset (CC BY 4.0) and
open source data preparation code via GitHub.

Additionally, we leverage SumTablets to im-
plement and evaluate two transliteration base-
lines: (1) weighted sampling from a glyph’s
possible readings, and (2) fine-tuning an
autoregressive language model. Our fine-
tuned language model achieves an average
transliteration character-level F-score (chrF) of
97.55, demonstrating the immediate potential
of transformer-based transliteration models in
allowing experts to rapidly verify generated
transliterations rather than manually transliter-
ating tablets one-by-one.

colesimmons/SumTablets (CC BY 4.0)

colesimmons/SumTablets

Figure 1: An administrative Sumerian cuneiform tablet
from Shuruppak, dated to the Early Dynastic IIIa period
(ca. 2500 BCE). (British Museum, 1896)

1 Introduction

Sumerian is the world’s earliest attested written
language, marking the transition from prehistory
into history as well as reflecting a rich written tradi-
tion spanning three thousand years. These texts are
an invaluable resource in the study of ancient Near
Eastern culture, politics, economics, and more.
During the latter half of the fourth millen-

nium BCE, a sophisticated record-keeping system
emerged in southern Mesopotamia, now known as
proto-cuneiform (Selz, 2020). Over time this sys-
tem evolved1 to handle natural language. By about
2900 BCE this writing system, known as cuneiform,
is concretely recognizable as encoding Sumerian.
Mesopotamian scribes originally devised the

cuneiform script to write Sumerian. This script
was later adapted to encode other languages
throughout the Near East, such as Akkadian. To
form glyphs, scribes would typically compose sty-
lus impressions on a wet clay tablet2. Because

1There continues to be considerable ambiguity and dis-
agreement about the extent to which evolution occurred grad-
ually or was the result of a single inventor. For a more com-
prehensive treatment of the topic, see (Sproat, 2023).

2Although not all texts are clay or in the form of a tablet,

192

https://huggingface.co/datasets/colesimmons/SumTablets
https://github.com/colesimmons/SumTablets


ID Period Genre Glyphs (Inputs) Transliteration (Targets)

Q001103 Early Royal <SURFACE> <SURFACE>
Dynastic IIIb Inscription 𒀭𒂗𒆤 {d}en-lil2𒈗𒆳𒆳𒊏 lugal kur-kur-ra

𒀊𒁀𒀭𒀭𒌷𒉈𒆤 ab-ba dingir-dingir-re2-ne-ke4𒅗𒂵𒈾𒉌𒋫 inim gi-na-ni-ta
… …

Table 1: A sample paired glyph–transliteration example from SumTablets, dating ca. 2600–2300 BCE.

cuneiform writing was impressed or inscribed
on durable materials, texts have survived to the
present in tremendous quantity (Finkel and Tay-
lor, 2015). Uncovered during archaeological ex-
cavations of ancient cities beginning in the nine-
teenth century CE, these tablets had to be subse-
quently deciphered. Deciphering Sumerian, a lan-
guage isolate, proved particularly challenging, and
some periods and genres are still not completely
understood.
Sumerian cuneiform glyphs are frequently poly-

valent; that is, they have many possible readings
(of no necessary semantic or phonetic relation) de-
pending on the context. For instance,𒅗 can be
read as ka “mouth,” dug4 “to speak,” kiri3 “nose,”
zuh “to steal,” the syllable ka, and more. When
reading a tablet, an Assyriologist must often con-
sider various possibilities for each glyph to achieve
a set of consistent readings. They represent their in-
terpretation through the process of transliteration.
Transliteration is a modern, conventional sys-

tem for representing Sumerian in the Latin al-
phabet. Conventions were established at various
points in the modern, 150-year history of Sume-
rian decipherment and do not necessarily reflect
the current understanding of Sumerian phonology
or morphology. In transliterations, homophones
are distinguished via subscripts; for instance, e and
e2 are homophonic—but semantically unrelated—
readings of different glyphs. Additionally, hy-
phens are used to join nominal/verbal roots with
affixes (Michalowski, 2004).
In 1996, the Electronic Text Corpus of Sumerian

Literature (ETCSL) (Black et al., 2016) project be-
gan publishing transliterations online. This project
became archival in 2006, soon followed by other
projects such as the Cuneiform Digital Library
Initiative (CDLI) (CDLI contributors, 2024) and
the Open Richly Annotated Cuneiform Corpus
(Oracc) (ORACC contributors, 2024). Thanks to

we follow Assyriological convention by referring to texts
generically as tablets.

these and other projects, a large number of translit-
erations have been published online and their data
made available for use with open licenses. Our
work would not be possible without the decades of
dedicated efforts by contributors to these projects.
Because Assyriologists are reading from either

the physical text or an image, no digital repre-
sentation of the original text’s glyphs is typically
recorded. Today, most cuneiform glyphs have
been added to Unicode3. However, easily accessi-
ble4, standardized datasets of paired Sumerian Uni-
code glyphs and transliterations remain limited,
barring the development of transliteration models.
In this paper, we present the first large-scale, eas-

ily accessible dataset of 91,606 Sumerian tablets
as glyph–transliteration pairs, containing a total of
6,970,407 glyphs. We additionally include IDs5,
period, and genre metadata for each tablet to be
used for results analysis.
Our dataset, SumTablets, is derived from a col-

lection of publicly available Sumerian language
resources, primarily the Electronic Pennsylvania
Sumerian Dictionary (ePSD2) (Tinney et al., 2024)
and the Oracc Sign List (OSL) (Veldhuis et al.,
2024). These projects aggregate and index translit-
eration data from across Oracc, which shares data
with CDLI and includes data from other current
and former projects6.
Because of how they are formatted and because

they do not include parallel Unicode glyph tablet
representations, however, the data on Oracc are
not immediately suited for glyph-to-transliteration
tasks. We preprocess these data to clean and stan-
dardize them, converting structure-related anno-

3All online Sumerian data aggregation and collaboration
was limited to ASCII for more than a decade: The first
cuneiform was added to Unicode in 2006.

4We define easily accessible as being easily utilized pro-
grammatically and requiring no or minimal Assyriological ex-
pertise to contribute to development of models based on these
datasets.

5IDs are consistent with those in Oracc and CDLI.
6ePSD2 credits
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tations into special tokens. Then, since a given
reading maps back to only one glyph, we utilize
Unicode–reading dictionaries provided by ePSD2
and OSL to convert each reading back into its
source glyph.
We upload our dataset to Hugging Face (Hug-

gingFace Inc., 2024), the largest and most widely
utilized library for sharing datasets for machine
learning tasks. We intend to use Hugging Face’s
git-based version control to provide experiment re-
producibility over time, with versions containing
snapshots of the continuously updated Oracc data.
Our dataset, SumTablets, builds on previous

open-source projects by:

1. being the largest dataset of parallel glyph–
transliteration examples.

2. standardizing the data available in Oracc,
optimizing formatting for the transliteration
task while maintaining the morphosyntactic
fidelity of the texts.

3. vastly facilitating the use of this data in ma-
chine learning projects, simplifying access
via the common Hugging Face Datasets li-
brary.

Using our dataset, we develop and compare two
baseline transliteration approaches. The first is a
weighted dictionary mapping; for each glyph we
sample one of the glyph’s possible readings ac-
cording to its frequency. The second is a lan-
guage model that we fine-tune for the glyph-to-
transliteration task. As far as we are aware, we
are the first to develop an automatic Sumerian
transliteration model. Evaluated on a held-out
test set, the dictionary-lookup approach obtains a
character-level F-score (chrF) (Popović, 2015) of
61.22, while the fine-tuned model achieves a chrF
score of 97.54.
Our goals in releasing this dataset are to fa-

cilitate the development of transliteration mod-
els and to demonstrate the potential of adapting
large pretrained multilingual models for the task.
We envision web-based tooling built on top of
neural transliteration models helping Assyriolo-
gists to generate transliterations more quickly—
allowing them to rapidly validate model outputs
rather transliterating each tablet from scratch—
and target review of potential errors in existing
transliterations. Additionally, transliteration mod-
els serve as an essential step in eventually devel-
oping a complete Sumerian translation pipeline.

Finally, as a language isolate, Sumerian poses a
unique syntactic challenge for cross-lingual mod-
els, and opens new avenues of research into the
transfer of language understanding.

2 Related Work

To the best of our knowledge, our work repre-
sents the first to formulate Sumerian translitera-
tion as an NLP task and to develop a translit-
eration model. However, prior works have uti-
lized NLP techniques for other tasks in parsing
and analyzing Sumerian cuneiform. The Machine
Translation and Automated Analysis of Cuneiform
Languages (MTAAC) project (Pagé-Perron et al.,
2017) sought to develop a pipeline for Sumerian
annotation, translation, and information extrac-
tion, working primarily with Ur III transliterations.
Chiarcos et al. expanded this data to include the
Electronic Text Corpus of Sumerian Royal Inscrip-
tions (ETCSRI) (Zólyomi et al., 2019). Bansal
et al. then used MTAAC data in conjunction with
CDLI and ETCSL data to train models for part-
of-speech (POS) tagging, named entity recognition
(NER), and translation, aiming primarily to build
generalizable cross-lingual methods for perform-
ing these tasks on low-resource languages. The
COMPASS (Veldhuis, 2024) also explores using
cuneiform data for research tasks, such as recon-
structing social graphs. Perhaps most similar to
our work, Gordin et al. develop a neural network
to automatically transliterate Akkadian from Uni-
code cuneiform glyphs.
Others have built datasets also representing

tablets’ glyphs in Unicode. Jauhiainen et al. uti-
lized Oracc dataset to build a dataset of 13,662
tablets for the task of language and dialect iden-
tification. More recently, Chen et al. used CDLI
data to create CuneiML, a dataset of 38,947 tablets
with photos, Unicode glyphs, transliterations, and
metadata, also designed primarily for classifica-
tion tasks. Both of these datasets include both
Sumerian and Akkadian texts, whereas our dataset
only includes monolingual Sumerian texts. Fur-
thermore, our dataset is larger, designed specifi-
cally for the transliteration task, and is easily ac-
cessible through Hugging Face.
Outside of NLP, an exciting area of research

is using computer vision methods to identify
cuneiform signs from images (Dencker et al.,
2020). Efforts in visual classification and tran-
scription of cuneiform are enabled by projects that
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have open-sourced high-quality 2D and 3D images
of tablets (Dahl et al., 2019; Mara and Homburg,
2023). And beyond cuneiform, Assael et al. used
deep learning methods to restore fragmented an-
cient texts in ancient Greek.

As Sumerian is a low-resource language, it is
infeasible to train a transformer-based language
model on Sumerian from scratch rather than adapt-
ing cross-lingual representations in existing mod-
els. Fortunately, the recent success of large cross-
lingual NLP models such as mBERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020), m-
T5 (Liu et al., 2020), and BLOOM (BigScience
Workshop et al., 2023) have steadily raised the
bar for zero- and few-shot cross-lingual perfor-
mance on benchmarks such as XTREME (Hu et al.,
2020) and MEGA (Ahuja et al., 2023). Recently,
benchmarks to measure a model’s ability to per-
form NLP tasks in extremely low-resource and
orthographically-diverse languages have emerged,
such as IndicXNLI (Aggarwal et al., 2022) for low-
resource Indian languages, and Sukhareva et al.
who develop a POS tagging benchmark for Hittite,
another cuneiform language. SumTablets marks
the first benchmark for Sumerian neural machine
transliteration.

3 Creating SumTablets

SumTablets is built upon the metadata and translit-
erations provided by ePSD2 via JSON files7.
These transliterations were created or manually
typed by scholars working in different projects
around the world over decades of evolving knowl-
edge of Sumerian vocabulary and grammar; they
also contain extensive (but not useful for our pur-
poses) embedded ASCII annotation. We begin by
preprocessing the transliterations to normalize con-
ventions, remove annotations, and convert format-
ting information into special tokens. Then, we use
dictionaries built from ePSD2 and OSL resources
to map each reading back to a Unicode represen-
tation of its source glyph. The result is a set of
Unicode glyph–transliteration pairs with parallel
formatting, allowing language models to most ef-
fectively learn the relationships between the two
representations.

7https://oracc.museum.upenn.edu/epsd2/json

3.1 Initial Data Cleaning
We first parse and type-check the ePSD2 JSON
data using custom Pydantic8 classes. The translit-
erations are structured in a recursive format called
cdl (for the three node types: chunk, delimiter, and
lemma) at the document level, which we navigate
in order to reconstruct the transliteration as a single
string with embedded formatting information.
We then remove annotations embedded in the

transliterations. Many of these represent the edi-
tor’s interpretation beyond what is visible on the
tablet; for instance, text enclosed in square brack-
ets represents the editor’s belief of what was origi-
nally in a now-missing segment. While this infor-
mation is academically useful, it can inject an un-
desirable bias when training transliteration models.
Our goal is to best represent only what is on the
tablet. We remove text enclosed in square brack-
ets (broken) and single angle brackets (graphemes
must be supplied for the sense but are not present),
replacing the former with a ... special token to in-
dicate breakage. For text enclosed in upper square
brackets (partially visible) and double angle brack-
ets (graphemes are present but most be excised for
the sense), we remove the notation but retain the
text. These examples are a few of many conven-
tions are used in the provided transliterations. For
each type, we either remove the notation but re-
tain the text, remove the notation and the text, or
replace the notation and text with a special token
(described in subsection 3.3).
The Oracc data are supplied with metadata that

varies depending on the project in which a tablet
was digitized. After performing an inner join on
all of the data, we found the period and genre
to be the most salient, universally-supplied meta-
data; because we provide the original Oracc IDs,
removed fields can easily be reintegrated.

3.2 Mapping transliterations to glpyhs
For each of the transliterations, we generate the as-
sociated glyphs in three steps:

1. First, we split each transliteration by spaces
to get a list of words, which we then split fur-
ther into individual glyph readings (i.e., mor-
phemes).

2. Next, for each reading, we look up the corre-
sponding glyph name. Each glyph in Sume-
rian has a conventional name that is an up-

8https://docs.pydantic.dev/latest/
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percase version of one of its readings; for in-
stance, the glyph𒅗 is referred to as KA.
Like most glyphs, it can be read a number of
different ways (e.g., ka, dug4, inim). Impor-
tantly, these readings are readings only of KA
and can be mapped back to it. If we cannot
ascertain the glyph name, we replace the read-
ing with <UNK>. Sign names are often used in
place of a reading (to say that the reading is
uncertain), in which case we replace the read-
ing with <UNK> but will still use the corre-
sponding Unicode. The first row of Table 2
shows the proportion of readings that we are
able to map to glyph names.

3. Finally, we convert each glyph name to the
Unicode representation of that glyph name;
for instance, we convert BU to𒁍. For the
rare glyphs that are not represented in Uni-
code, we replace both the glyph and associ-
ated reading with <UNK> tokens. The bottom
row of Table 2 shows the proportion of glyphs
names that we able to map to Unicode.

To map from transliteration to glyph name and
from glyph name to Unicode, we leverage ePSD2
and OSL.

Preprocessing Step Success Rate

Readings→ Glyph Name 6,724,498 (99.93%)
Glyph Name→ Unicode 6,638,081 (99.96%)

Table 2: Preprocessing steps with associated amount of
maintained glyphs in constructing SumTablets.

3.3 Extra-semantic tokens
In addition to the aforementioned preprocessing
steps, we add the following special tokens to main-
tain structural information about each tablet in cor-
responding locations in the glyph and translitera-
tion examples:

• <SURFACE> – The start of a surface. For a
tablet, this may be the start of the obverse or
reverse side. For other types of artifacts (like
statues), the number of surfaces and their re-
lationship to each other depends on the form.

• \n – A line break. These are important to re-
tain because it is extremely rare that a word-
form runs over to a subsequent line.

• ... – Breakage. Ellipses on their own line
indicate an indeterminate number of missing

lines, while ellipses on a line with text in-
dicate an indeterminate number of missing
glyphs.

• <RULING> – A horizontal line drawn by the
scribe to separate sections of the tablet.

• <COLUMN> – The start of a new column of
text. Not all tablets are formatted in columns.

• <BLANK_SPACE> – The scribe left some
amount of blank space before continuing on.

3.4 Metadata

As part of the dataset, we include additional meta-
data associated with each tablet: the time period
each tablet dates from and the semantic genre of
each tablet (e.g. administrative, legal). In total, we
define 10 unique time periods and 14 genres (see
Table 3).

Period Train Val Test

Ur III 71,116 3,951 3,951
Old Akkadian 4,766 265 265
Early Dynastic IIIb 3,467 192 192
Old Babylonian 1,374 73 73
Lagash II 788 44 44
Early Dynastic IIIa 755 42 42
Early Dynastic I-II 77 4 4
Unknown 68 4 4
Neo-Assyrian 20 1 1
Neo-Babylonian 14 1 1
Middle Babylonian 7 0 0

Total 82,452 4,577 4,577

Genre Train Val Test

Administrative 77,193 4,259 4,291
Royal Inscription 2,611 151 146
Literary 1,000 63 62
Letter 718 48 33
Legal 544 35 36
Unknown 269 14 7
Lexical 69 0 0
Liturgy 40 4 1
Math/Science 8 3 1

Total 82,452 4,577 4,577

Table 3: Composition of tablets by period and genre in
SumTablets.
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3.5 Data Partitions
For the purposes of developing automatic translit-
eration approaches, we split our corpus into train,
validation, and test partitions using a 90%/5%/5%
split. As an artifact both of what was produced as
well as what sites have been excavated, there is a
considerable imbalance in the number of examples
between historical periods and genres. To ensure
that we are training, validating, and testing evenly
on how the language was used over time, we strat-
ify the splits by period—Table 3 shows the number
of examples in each by split. Because the genres
of texts produced correlates strongly with period,
stratifying by period results in a nearly equal split
of genres, also shown in Table 3. Importantly, we
removed the lexical texts before splitting, and then
added them back to the train set after.9

4 Evaluating Transliteration
Performance

The scale and standardization of SumTablets en-
ables new methods to be applied to the task
of Sumerian transliteration. In this section, we
leverage our dataset to develop and compare two
transliteration approaches: a straight-forward ‘dic-
tionary baseline’ and a ‘neural baseline’. First, we
define the transliteration task.

4.1 The Transliteration Task
We model transliteration as a sequence-to-
sequence conversion task, where the input
sequence is defined as glyphs and the output as
a sequence of alpha-numeric characters, hyphens
and white spaces. Table 1 illustrates example pairs
of input (glyphs) and output (transliterations). As
we model it, the transliteration task is more akin to
a translation task, where each input sequence can
be mapped to a large space of output sequences,
rather than a token classification task. Given
our framing of the transliteration task, we use
character-level chrF score as the evaluation metric,
defined as:

chrF = (1 + β)2
chrP · chrR

β2 · chrP + chrR
(1)

where chrP and chrR stand in for character-
level precision and recall scores. Throughout our

9Lexical texts are lists of words that were used in scribal
training. We believe that it does not make sense to evaluate
against them, but leave it up to the user to decide whether they
provide productive noise during training.

analysis, we set β = 2, and use a character n-
gram order of 6, as proposed by Popović. We com-
pute the chrF score over the transliterated tokens
for each tablet individually and then average these
scores together over the dataset.

4.2 Dictionary Baseline
As part of previous transliteration efforts, Sume-
rian language experts have hand-crafted dictionar-
ies that map a glyph to all possible readings of
that glyph. We cross-analyze our dataset with the
ePSD2 and OSL Sumerian dictionaries and find
that the average number of different readings for
a glyph, weighted by glyph frequency, is 22.17.
The availability of these dictionaries yields

a simple automatic Sumerian transliteration ap-
proach: for each glyph in the test set, sample
over its possible readings in proportion to their fre-
quency10. This baseline results in an average chrF
score of 61.22.

4.3 Neural Baseline
We explore whether the cross-lingual abilities
of existing multilingual language models can be
leveraged to solve the Sumerian transliteration
task. Although Sumerian is a language isolate,
it shares grammatical features with other modern
languages: like Basque, it has ergative–absolutive
alignment; like Turkish and Japanese, it is aggluti-
native; and like Korean, it is SOV (Michalowski,
2004). Therefore, the key to our approach is to
leverage XLM-R (Conneau et al., 2020), a trans-
former language model pre-trained on over 100
languages.

𒈗  𒆳     𒆳    𒊏Input

Embeddings

 Transliteration Encoder

 <s>     lugal     kur  

Embeddings
Glyph Transliteration 

 Transliteration Decoder

lugal kur -Output

Figure 2: Illustration of the neural baseline model ar-
chitecture. Inputs are read in as glyph tokens, while
outputs are transliteration tokens.

The lack of tokenization support for Sumerian
presents a first challenge in applying the XLM-R
model to transliterating Sumerian. To deal with

10We recorded occurrence counts in the process of con-
structing the dataset.

197



Period Genre

Category Dictionary Neural Category Dictionary Neural

Ur III 62.89 98.46 Administrative 63.15 98.14
Old Akkadian 64.52 94.03 Royal Inscription 54.58 95.15
Early Dynastic IIIb 62.51 97.08 Literary 37.73 90.67
Old Babylonian 37.70 90.38 Letter 47.43 90.99
Lagash II 58.55 93.97 Legal 56.19 96.14
Early Dynastic IIIa 67.85 95.02 Unknown 69.84 97.58
Early Dynastic I-II 73.72 96.82 Liturgy 55.92 77.68
Unknown 64.98 89.87 Math/Science 62.00 95.12
Neo-Assyrian 40.83 89.79
Neo-Babylonian 42.47 97.81

Overall 61.22 97.54 61.22 97.54

Table 4: Results by period and genre. Average chrF scores of transliterations generated in the dictionary baseline
compared against those generated in the neural baseline.

this, we retrain the default SentencePiece tokenizer
(Kudo and Richardson, 2018) used by the XLM-
R model twice: once to build a ‘glyph tokenizer’
that is trained only on the Sumerian glyphs in
SumTablets, and once to build a ‘transliteration
tokenizer’ that is trained only on the correspond-
ing Sumerian transliterations in SumTablets. The
‘glyph tokenizer’ has a vocab size of 632 glyph to-
kens and is used by the encoder model to gener-
ate ‘glyph embeddings’ from a string of Unicode-
encoded glyphs. The ‘transliteration tokenizer’
has a vocab size of 1024 transliteration tokens and
is used by the decoder model to output transliter-
ations. The vocabularies of both the glyph and
transliteration tokenizers include eleven special to-
kens, including the extra-semantic special tokens
discussed in section 3.3.
We structure our transliteration model as a

sequence-to-sequence (encoder-decoder) model.
We initialize both the encoder and decoder sepa-
rately with the pre-trained weights of an XLM-R
model.
We train the model in three stages: First, we

independently fine-tune the pretrained encoder
model on the Unicode cuneiform glyphs using
a masked language modeling task (MLM). This
step yields a model with effective internal rep-
resentations for the glyphs. Then, we integrate
the decoder, training the full encoder-decoder
model to take glyph sequences as input and auto-
regressively predict target transliterations token-
by-token. To stabilize the auto-regressive training
of the joint encoder-decodermodel, we decompose

this process two stages. We first freeze the en-
coder weights (only training the decoder) for one-
third of the time that we train the joint encoder-
decoder model. For the rest of training, we un-
freeze the encoder weights and allow both the en-
coder and decoder to receive gradient updates. Fig-
ure 2 showcases the encoder–decoder model archi-
tecture. An added benefit of using both an encoder
and a decoder is that the encoder can function in-
dependently from the decoder to predict missing or
unknown glyphs, as illustrated in Figure 3.
Both the encoder and decoder are initialized

with the pre-trained weights of a 279 million pa-
rameter XLM-R model 11. We initially fine-tune
the encoder on the MLM task for 50 epochs, with
sequences lengths of 64 tokens, a learning rate of
5e-05, batch size of 2,048, and 200 warmup steps.
We set the MLM masking probability to 0.10 and
use the same 80-10-10masking procedure as in De-
vlin et al.. Next, the encoder-decoder with frozen
encoder weights is trained with a learning rate of
1e-04 for 2 epochs. Finally, we unfreeze the en-
coder weights and train the full encoder–decoder
model with a learning rate of 5e-05 for a further
4 epochs. For both encoder–decoder learning pro-
cedures, we set the train batch size to 128 and
the number of warmup steps to 100. All train-
ing used the AdamW optimizer (Loshchilov and
Hutter, 2019) and was run on a single A100 SXM
80GB. For transliteration generation, we use beam
search decoding with a beam size of 5.

11For a full description of the XLM-R model, refer to:
https://huggingface.co/FacebookAI/xlm-roberta-base
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Throughout our experiments, we set the max-
imum sequence length to 128. For tablets
with more than 128 glyphs, we divide both
the pre-tokenized glyphs and transliterations by
newlines—these divisions align due to how we de-
sign SumTablets to preserve tablet structures. We
then tokenize chunks of N lines, with N decreas-
ing in size progressively from 16 down to 1, until
the resulting chunk contains slightly less than 128
tokens. This segmentation ensures that all resul-
tant chunks contain a maximum amount of tokens
within the valid sequence length.
After processing the data into chunks of se-

quence length 128, we find that the dataset
comprises 178,208 administrative examples and
23,282 non-administrative examples. To address
the imbalance, we up-sample non-administrative
examples by a factor of 5 for the initial two epochs
of training and then reduce the up-sampling factor
to 3 for the remaining epochs.

𒈗  𒆳   <unk>   𒊏Input

Embeddings

 Transliteration Encoder

Glyph

𒆳 𒊏𒂗 𒁍
Prob. Distribution

Figure 3: The encoder model can produce a probabil-
ity distribution over possible glyphs that can replace an
<UNK> token. This is because the encoder is trained us-
ing an MLM objective.

Our encoder-decoder model achieves an aver-
age character-level chrF score of 97.54 on unseen
test data, setting, to the best of our knowledge,
a new state-of-the-art benchmark performance on
the transliteration task. We report results for both
baselines and across all time periods and genres in
Table 4. Our work demonstrates the capability of
large multilingual models to model and transliter-
ate Sumerian, despite the highly fragmented nature
of these extant texts and the language being both
low-resource and an isolate.

4.4 Analysis

We derive several key takeaways from our results.

The genre of the texts impacts transliteration
performance. The difference in transliteration
performance across genres that we observe in Ta-
ble 4 is intuitive given the nature of the underlying

data. Because the training data is dominated by ad-
ministrative examples, it is natural that that would
be the best performing category. These texts also
tend to be relatively formulaic. Liturgical, letter,
and literary texts, on the other hand, have a dif-
ferent style, form, and vocabulary from the rest of
the corpus. These genres (liturgical in particular)
are also some of the most challenging for experts.
Genre also affects performance insofar as for most
genres there are so few examples on which to train
or evaluate.

Inconsistent transliteration conventionsmud-
dle performance. Some of the different readings
for a glyph stem not from a tangible semantic dif-
ference but from phonetic or aesthetic disagree-
ment. For instance, “saŋ” and “sag” represent the
same thing, but Assyriologists have a preference
in how they represent the nasal ‘g.’ A lack of stan-
dardization on matters like this fragments the pat-
terns in which models observe a reading occurring.

It is difficult to predict phonemes in names.
Manual error analysis showed that some errors oc-
curred when selecting a reading that serves as part
of a name (playing a phonetic role). Our neural
baseline model would often predict a valid read-
ing for a glyph, but a different one than in the true
transliteration. Future work will incorporate ex-
pert evaluation to determine whether these predic-
tions are any more or less plausible than those in
the original transliteration.

5 Limitations

We note that our work has some limitations, both
in terms of the SumTablets dataset and the translit-
eration model.

5.1 Dataset Limitations

Administrative documents have an outsized repre-
sentation in the train, validation, and test data. This
dataset imbalance is a natural by-product of the cat-
egory of documents produced by Mesopotamian
peoples and is an unavoidable consequence of
working with Sumerian texts. Although we chose
to oversample non-administrative tablets in the
train set by a factor of 5 during training of our
model, we leave the choice of how to best handle
this imbalance to the consumer.
While the set of Unicode cuneiform glyphs is

largely complete, there are still glyphs that are
not represented in this set, particularly some com-
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plex compound glyphs. We currently convert
these glyphs and their corresponding readings into
<UNK> tokens, but future work could incorporate
unique identifiers for these glyphs as a placeholder
until they are added to the Unicode standard.
Finally, there is considerable orthographic vari-

ation in glyphs over time, and representing these
in Unicode flattens these (potentially meaningful)
variations into a single, universal representation.

5.2 Model Limitations

In this paper, we train an XLM-R model on
SumTablets as a fully supervised neural baseline
for Sumerian glyph transliteration. We give our
model access to the entire training set to explore
the limit of a pre-trained cross-lingual model to
perform this novel task. Our work, however, does
not study the zero- and few-shot abilities of cross-
lingual models, which is typically of more inter-
est when evaluating a model’s cross-lingual abili-
ties. Nor do we study the performance of a model
trained from scratch on our dataset. We encour-
age future work to use SumTablets as a few- and
zero-shot cross-lingual benchmark task to evaluate
how a multilingual model’s language understand-
ing transfers to the Sumerian language.
Moreover, we recognize that the dictionary base-

line that we implement is very simple, and that a
better point of comparison would be an N-gram
model.

6 Conclusion

We introduce SumTablets, the first collection
of paired glyph-transliterations extracted from
91,606 Sumerian tablets. Our dataset provides
a resource for experts and non-experts alike to
contribute to the development of transliteration
models. We define the transliteration task, eval-
uation method, and establish a baseline perfor-
mance so that future results may be compared. We
also demonstrate that—despite Sumerian’s status
as a low-resource language and language isolate—
large pretrained multilingual language models can
be adapted to perform the sequence-to-sequence
task of transliterating a sequence of Unicode
cuneiform glyphs with remarkable accuracy.
With such an abundance of extant texts and so

few specialists capable of reading them, we believe
transliterationmodels will enable Assyriologists to
spent less time on tedious, from-scratch transliter-
ation and more time on research and translation.
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Abstract

Existing Latin treebanks draw from Latin’s
long written tradition, spanning 17 centuries
and a variety of cultures. Recent efforts have
begun to harmonize these treebanks’ annota-
tions to better train and evaluate morphological
taggers. However, the heterogeneity of these
treebanks must be carefully considered to build
effective and reliable data. In this work, we
review existing Latin treebanks to identify the
texts they draw from, identify their overlap,
and document their coverage across time and
genre. We additionally design automated con-
versions of their morphological feature anno-
tations into the conventions of standard Latin
grammar. From this, we build new time-period
data splits that draw from the existing treebanks
which we use to perform a broad cross-time
analysis for POS and morphological feature
tagging. We find that BERT-based taggers out-
perform existing taggers while also being more
robust to cross-domain shifts.

1 Introduction

Large-scale digitized Latin archives now document
cultures across many centuries in wide a variety of
genres from literature to legal documents. With in-
creasingly powerful Latin natural language process-
ing tools (e.g. Bamman and Burns, 2020; Burns,
2023), morphological feature tagging is a promis-
ing method for Latin-based computational humani-
ties. The goal of morphological tagging is to iden-
tify a set of morphological feature-value pairs for
each token of a given sentence. These features can
help researchers analyze agency, power, and other
morphosyntactically-signalled phenomena which
have been fruitfully investigated in English (Sap
et al., 2017; Greene and Resnik, 2009) and other
languages (Rashkin et al., 2017). For example,
Voice (active, passive verbs) and Case (e.g., nom-
inative, accusative ablative nouns) are useful for
studying power and agency.

Figure 1: From our curated metadata (§2), the number
of sentences per century (3rd BCE—14th CE) across the
5 UD treebanks and LASLA, shown with three broad
time periods.

Although Latin taggers have relatively good per-
formance, in our experience they often perform
poorly on rarer feature values—such as passive
voice–that may prove crucial for downstream anal-
yses. Toward this end, we hope to develop a Latin
morphological tagger whose accuracy is robust
across time and genre by leveraging the recent de-
velopment of five separate Latin Universal Depen-
dencies (UD; de Marneffe et al., 2021) treebanks
and recent efforts to harmonize their morphologi-
cal tags (Gamba and Zeman, 2023a). In this work
we review these harmonized treebanks1 plus the
non-UD treebank LASLA (Denooz, 2004), and
conclude that more data curation is required to
fully evaluate and improve morphological tagging’s
cross-domain accuracy.

Our contributions include: 1) precisely doc-
umenting genre and historical context for the
544 texts within the UD treebanks as a machine-
readable, cross-treebank resource that will enable

1Perseus (Bamman and Crane, 2011), PROIEL (Haug and
Jøhndal, 2008), LLCT (Cecchini et al., 2020b), ITTB (Pas-
sarotti, 2019), and UDante (Cecchini et al., 2020a)
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future work to examine morphosyntactic associ-
ation against these variables; 2) harmonizing the
UD and LASLA treebanks to reduce annotation
differences that can affect training; 3) proposing
edits to the UD tagset that better align with stan-
dard analyses of Latin grammar to facilitate work
by researchers with standard Latin training; and 4)
conducting a cross-time analysis with experimen-
tal results broken down by historical period that
show the promise of our harmonization efforts and
BERT-based morphological taggers.2

2 Latin Treebanks Revisited

2.1 Time and Genre Metadata

Detailed metadata on the texts included in the Latin
UD treebanks is difficult to aggregate or lacking al-
together. Information on the included works’ time
period, genre, author, and relative size has not been
compiled in one place. Our work takes major steps
to fill this gap. For all 544 texts across the five UD
treebanks, we manually collected the following
metadata: the source treebank, time period, cen-
tury, internal treebank identifiers, cumulative and
split-level sentence counts, author, and exhaustive
genre labels.

Genre. Figure 2 shows the genre coverage of
the UD treebanks. Previous EvaLatin campaigns
(Sprugnoli et al., 2020, 2022) have implicitly de-
fined several genres (prose, poetry, epics, and histo-
ries), which were then used to analyze cross-genre
tagging accuracy on Classical era, non-UD data.
We expand upon these genres by including more
fine-grained labels and by covering non-Classical
texts.

We annotate nine exclusive genres: short poems,
epics, letters, histories, satires, speeches, legal texts,
treatises, and the Bible.6

Time. We define the (approximate) century of
each text (Figure 1 and 2). For cross-time analysis,
we define three very broad time periods:

2We have publicly released our new text-level metadata,
standardized morphologically tagged text from described tree-
banks, and conversion software on Github.

3Although unreleased, we determined the feature-value set
by examining LatinCy’s outputs.

4EvaLatin 2020 also has annotated data that is not directly
sourced from LASLA but consists of a subset of LASLA’s
texts. This data is not annotated with morphological features.

5EvaLatin 2022 is a near-subset of LASLA because it has
one non-Classical text that is not in LASLA.

6We also annotate additional non-exclusive genres (§A.1).

Figure 2: Number of sentences in the UD treebanks per
century, colored by genre.

• Classical is defined as 3rd century BCE
through the 2nd century CE, in line with con-
ventional definitions of the Classical Latin lan-
guage and periods (Sala and Posner, 2024) and
previous Latin NLP literature (Sprugnoli et al.,
2020, 2022).

• Biblical is defined as its own genre and time
period, consisting solely of Jerome’s Vulgata
from the 4th century CE. It is significantly dif-
ferent from other texts given it is a translation
(from much earlier material), and has relatively
simpler grammar (Nunn, 1922).

• Post-Classical is defined as 4th century CE and
later, excluding the Bible, thus including Late
and Medieval Latin texts. For simplicity, we do
not split it further.

Prior work in cross-time tagging either used a
smaller set of time periods (Sprugnoli et al., 2022)
or considered each UD treebank its own time period
(Gamba and Zeman, 2023a), which we argue is too
approximate given our metadata findings (§2.2).

2.2 UD Treebanks
Currently, there are five UD treebanks for Latin.7

Four of these—Perseus, PROIEL, LLCT, and
ITTB—were automatically converted to UD for-
mat, while the fifth, UDante, was annotated di-
rectly in UD. Collectively, this corresponds to
about 58,000 annotated sentences and 979,280 an-
notated tokens. As Figure 1 shows, these treebanks
cover a wide range of time but far from evenly.

7In May 2024, a sixth, CIRCSE, was added; it is a subset
of LASLA.
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Name Text Data Standard Data Paper/Version
Grammar? Source

1 Pre-UD 4 non-UD Mixed Perseus, PROIEL Bamman and Crane 2011; Haug and Jøhndal 2008
LLCT1,ITTB Korkiakangas and Passarotti 2011; Passarotti 2019

2 UD v2.8+ 5 UD Mixed UD Site UD v2.8-11
3 LatinCy Edits 5 UD Yes3 Unreleased Burns 2023
4 Harmonized UD 5 UD No Github (acc. 1/24) UD v2.13; Gamba and Zeman 2023a
5 LASLA 1 non-UD Mixed Github (acc. 2/24) Denooz 2004
6 EvaLatin 20224 near-subset of 55 Mixed Github Sprugnoli et al. 2022
7 CIRCSE 1 UD; subset of 5 Mixed Github UD v2.14

8 Harmonized + 5 UD + LASLA, Yes Github This work
Standardized New Splits

Table 1: Summary of data sources and history of Latin treebanks (for morphological tagging only).

We find that the three Post-Classical treebanks
(LLCT, ITTB, and UDante) are quite distinct from
each other in terms of genre and time period. LLCT
consists entirely of medieval legal charters from the
8th and 9th centuries. ITTB consists of three philo-
sophical and religious works by Thomas Aquinas
from the 13th century. Finally, UDante is com-
prised of Dante Alighieri’s 14th century Latin
works, including treatises, letters, and poems.

The two remaining treebanks, Perseus and
PROIEL, are more diverse. Most texts in Perseus
are Classical, although 154 sentences are from
Jerome’s Vulgata (the Book of Revelation). While
PROIEL also includes Classical texts, the major-
ity (11785) of its 18411 sentences are also taken
from Jerome’s Vulgata. There is overlap between
Perseus and PROIEL, as both share at least 145 sen-
tences from the Book of Revelation.8 Aside from
Classical and Biblical texts, PROIEL also includes
one 4th-5th century work, Opus Agriculturae by
Palladius.

2.3 LASLA: Additional Classical-era
treebank

LASLA is a large, non-UD treebank for Latin (De-
nooz, 2004). By our own count, LASLA has 134
unique texts with 95,974 sentences and about 1.8M
tokens.9 All texts are Classical. All genres included
in UD are covered, in addition to plays. Unlike the
UD treebanks, LASLA does not have dependency
relations.

8See Table 8 for a breakdown of annotation agreement
between these duplicate sentences.

9A full list of authors, works, and tokens per text is avail-
able here.

3 Harmonizing UD and LASLA
Annotations

In this section, we describe steps taken to reduce
the annotation differences between the Harmonized
UD treebanks (Table 1 row 4) and LASLA (1
row 5). Throughout this section, we sometimes
use "UD" as a shorthand for Gamba and Zeman
(2023a)’s Harmonized UD treebanks.

In §3.1, we outline the annotation agreement
between Harmonized UD and LASLA before any
intervention on our part. Then, we describe two
types of changes: harmonization (§3.2) and stan-
dardization (§3.3). During harmonization, we en-
force consistency of arbitrary values to have fair
training and evaluation. Standardization is more
involved, where we change the grammatical sys-
tem to be more Latin-specific. Both of these steps
are done automatically and simultaneously through
conversion scripts.

3.1 Annotation Agreement Between UD and
LASLA

Author Work # Dups
Caesar Gallic War 1127
Cicero De Officiis 447
Cicero In Catilinam 118
Ovid Metamorphoses 010

Petronius Satyricon 407
Propertius Elegies 183
Sallust Bellum Catilinae 228
Tacitus Historiae 50
Vergil Aeneid 47

Table 2: For the nine texts shared between LASLA and
UD (collectively; specifically, Perseus and PROIEL),
number of duplicate sentences.

10Ovid’s Metamorphoses appears in both treebanks, but
they cover different books of the text.

205

https://github.com/PerseusDL/treebank_data/tree/master
https://github.com/proiel/proiel-treebank
https://zenodo.org/records/3633607
https://itreebank.marginalia.it/view/download.php
https://universaldependencies.org/#language-la
https://github.com/fjambe/Latin-variability
https://github.com/CIRCSE/LASLA/tree/main
https://github.com/CIRCSE/LT4HALA/tree/master/2022/data_and_doc
https://github.com/UniversalDependencies/UD_Latin-CIRCSE
https://github.com/slanglab/latin-standardized-treebanks


UD and LASLA happen to have re-annotated many
of the same sentences, which gives a way to analyze
annotation agreement between the projects. We
detect sentences that appear in both datasets (§A.2),
finding 2607 such duplicates across eight Classical
texts (Table 2), which may be an underestimate
since our duplicate detector will miss cases where
sentence segmentation or tokenization differ.

We calculate annotation agreement before and
after harmonization and standardization on our re-
duced set of features (Table 3). Some features,
such as Degree, Tense, and VerbForm, have low
agreement due to mismatches between their pos-
sible value sets in UD and in LASLA. Other fea-
tures, such as Gender, Person, and UPOS have
low agreement due to remaining annotation differ-
ences.11

3.2 Our Harmonization Efforts

Gamba and Zeman (2023a) have already performed
the bulk of the harmonization necessary for the UD
treebanks. However, we are additionally attempt-
ing to harmonize LASLA with the UD treebanks.

Remaining inconsistencies we’ve harmonized.
We have found some remaining inconsistencies,
both within the UD treebanks and between UD and
LASLA. Usually, neither is incorrect in their an-
notation, but without normalization this will cause
unfair evaluation. Thus, we enforce consistent, ar-
bitrary values in these cases. See §A.4 for specifics.

Collapsing feature values. Another issue we en-
countered is that some UD treebanks lack certain
feature values that are present in the others. Gamba
and Zeman (2023a) were aware of this issue, and
chose not to harmonize these values in order to
preserve as much information as possible. This is
understandable, as these features may be of inter-
est to researchers. However, for our purposes, we
have collapsed certain feature values together in
order to have fairer evaluation of models trained on
different treebanks.

For UPOS (universal part of speech), we have
collapsed INTJ into PART across all treebanks,
since two UD treebanks (ITTB and LLCT) do not
use INTJ, instead using the value PART. Addition-
ally, for Degree, we have collapsed Degree=Pos
into Degree=None, since LASLA is the only
treebank to use Pos. The distinction between

11See appendix for agreement rates across all features (Ta-
ble 9) and a comprehensive overview of the feature inventories
(Table 12).

Degree=Pos and Degree=None is debated.12 We
note that Gamba and Zeman (2023a) also collapsed
Degree=Pos and Degree=Dim into Degree=None,
so this decision has precedent.

3.3 Conversion to Standard Latin Grammar

Before After
Feature % same # same # total % same # same # total
Case 97.8 20372 20821 97.8 20372 20821
Degree 8.5 598 6998 69.5 598 860
Gender 74.7 14965 20034 75.2 14964 19911

(loose) 97.2 19481 20034 97.8 19477 19911
Mood 99.4 5279 5312 97.3 8621 8864
VerbForm 93.2 8264 8867 – – –
Number 97.9 25672 26211 97.9 25543 26088
Person 91.0 6089 6692 91.0 6089 6692
Tense 77.3 5228 6766 96.7 8184 8465
Voice 96.0 7493 7809 96.5 8554 8864
UPOS 93.0 34814 37425 93.0 34821 37425

Table 3: Percent and number of tokens in the duplicate
LASLA and Harmonized UD sentences that have the
exact same value for each feature, before and after our
harmonization and standardization. Percent is out of to-
kens that had a non-None value in either UD or LASLA.
After our changes, Mood and VerbForm are collapsed
into Mood only, but we list them separately before. Per-
centages after our changes are boldfaced when there is
improved agreement.

UD was developed with cross-linguistic goals in
mind, offering a set of universal tags applicable to
all languages. However, prior to the harmonization
efforts by Gamba and Zeman (2023a), many Latin
UD treebanks employed standard Latin values for
certain features, reflecting a long-standing desire
for a more Latin-specific tagset. Harmonization
and conversion to UD has relegated these Latin-
specific values to a secondary status. This poses a
key challenge for evaluation, as these two annota-
tion styles are not comparable.

Although UD provides a valuable cross-
linguistic framework, we believe Latin is also use-
ful to study on its own, within long-standing ap-
proaches to Latin linguistics (e.g. Greenough and
Allen 1903). The UD treebanks remain the most
complete, high-quality source of morphological an-
notations for Latin. To bridge the gap between UD
and standard Latin linguistics, we offer an alterna-
tive version that uses more standard Latin grammar.
In particular, we standardize the treebanks to follow
Pre-UD Perseus’s (Table 1 row 1) features: UPOS,
person, number, tense, mood, voice, gender, case,
and degree. This set is nearly identical to Burns

12See the UD documentation for Degree in Latin here.
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Figure 3: Example of how a token’s set of morphologi-
cal features changes after standardization, from Cicero’s
Letters to Atticus Book 3 Letter 9.

(2023)’s, except that LatinCy separately predicts
Mood and VerbForm (which we combine). For
most of these features, UD has a corresponding
feature that we can easily extract. The exceptions
are Tense and Mood, where we developed a more
elaborate method of standardization (§A.5). For
example, Latin tense traditionally has six possible
values (present, imperfect, perfect, future, pluper-
fect, future perfect) which are standardized across
pedagogical materials (Greenough and Allen, 1903;
Wheelock and LeFleur, 2010). However, UD’s
Tense feature only includes four of these values
(present, past, future, pluperfect), which is why we
must perform a conversion.

We choose to convert to Standard Latin Gram-
mar before training, rather than perform postpro-
cessing on the predictions of a model trained on the
UD tagset, for two reasons: 1) preprocessing allows
for more precise conversions based on known tree-
bank sources, addressing inconsistencies between
treebanks, and 2) model predictions may combine
features from various annotation schemes and be
grammatically inconsistent, making postprocessing
complex and potentially unreliable.

3.4 Remaining Inconsistencies

After our harmonization and standardization, most
features have high annotation agreement between
LASLA and UD (Table 3). Degree and UPOS, two
features that already had low agreement within UD
(Table 8), saw improved but not high agreement
after UD-LASLA harmonization. These are likely
due to fundamental differences in the annotation
process which may require reannotation to fix.

We modify how our models are trained to ac-
count for the two following differences (§5.1):

• In LASLA, the Gender feature can take multi-
ple values to represent possible genders based
only on the word form (disregarding the con-
text of the sentence). In the UD treebanks,
Gender is assigned one value that depends on
the sentence. This causes the low annotation
agreement for Gender in Table 3. If we use a
looser criterion—counting the annotations as
the same when the UD gender value matches
one of LASLA’s gender values—we do see
higher agreement ((loose) in Table 3).

• In LASLA, personal pronouns are annotated
with Person=None, but in the UD treebanks
personal pronouns have non-None values.13

We list additional differences in §A.6.

3.5 Our Custom Data Splits

Time Train Dev Test

Classical (UD) 6524 201 1041
Classical (UD+LASLA) 102498 201 1041
Bible 10451 322 1021
Postclass 32661 1010 5003

Table 4: Number of sentences in our proposed train, dev,
and test splits

We create new data splits to emulate EvaLatin’s
cross-time sub-task which evaluates models on
texts of a different time period than what they are
trained on. When creating train/test splits for each
time period, we keep the following constraints in
mind: 1) Individual works should be within a single
split. For example, Ovid’s Metamorphoses should
only appear in either the train or test set, rather than
having a random sample of sentences in the train
set with the rest in the test set. 2) Make sure the
test set is large enough for reasonable statistical
power. We specifically choose to have a minimum
of 1000 sentences in each test set. 3) Only evaluate
on UD data and not LASLA. Due to some anno-
tation differences (see §3.4), UD treebanks have
more complete information than LASLA. This is
in contrast to EvaLatin campaigns which evaluate
on subsets of LASLA.

To make our dev sets, we randomly sample 3%
of sentences from each work in the train sets, mak-
ing sure that we never sample from LASLA or any
UD sentences that also appear in LASLA.

13This will be simple to fix in future work, since there are
limited personal pronoun lemmas in Latin.
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Due to these constraints, we are unable to keep
the original UD test sets. Since we want test sets
for each time period, we must construct Classical-
specific splits. Perseus, despite being largely Clas-
sical, is too small for effective training. PROIEL
contains some Classical texts but is mostly com-
prised of Biblical texts. We separate the Biblical
content and combine the Classical texts from both
treebanks to ensure a sufficiently large Classical
train set. Due to the first constraint, we cannot use
ITTB’s original train/test splits since Summa Con-
tra Gentiles appears in both the train and test set.
To help meet our second constraint, we do not use
UDante’s and LLCT’s original splits.

To achieve our third constraint, our Classical
train set must include all works that appear in both
LASLA and UD, shown in Table 2. We want to test
two scenarios: training with and without LASLA
data. In order to have enough training sentences
in the UD-only scenario, we treat the letters of
Cicero’s Letters to Atticus as separate texts (i.e.
that can be distributed across the Classical train
and test set), even though this conflicts with our
first constraint.

We include a detailed description of which works
appear in our custom train and test sets in the Ap-
pendix (Table 13).

4 Related Work: Morphological Tagging

There is a long history of work analyzing POS
and morphological tagging of Latin (Eger et al.,
2015, 2016; Straka and Straková, 2020). Our work
follows recent trends of using transformer-based
contextual representations.

Several recent papers have explored morphologi-
cal tagging for Latin. As part of the 2022 EvaLatin
feature identification task (Sprugnoli et al., 2022),
participants trained and tested on a subset of data
from the LASLA corpus that had been automati-
cally converted to UD format (Wróbel and Nowak,
2022; Mercelis and Keersmaekers, 2022). Only a
subset of UD morphological features were retained,
partly to limit the task to morphological features
identifiable by the word form, and partly to avoid
features affected by annotation differences. Partici-
pants were then able to train on combined UD and
LASLA data if they wished, but models were only
evaluated on EvaLatin test sets, not UD test sets.

Nehrdich and Hellwig (2022) used LatinBERT
(Bamman and Burns, 2020) to train a morpholog-
ical tagger predicting the case, gender, number,

tense and verbform features. Its outputs were then
fed into the authors’ dependency parser, outper-
forming prior work using UDPipe and static word
embeddings (Straka et al., 2019). Their training
and test data came from three UD treebanks (ITTB,
PROIEL, and Perseus).

Burns (2023) developed LatinCy, a full NLP
pipeline for Latin which includes morphological
feature classification.14 Notably, this pipeline was
trained on all five UD treebanks with early attempts
made at harmonization, using a smaller tagset than
UD that is closer to standard analyses of Latin
grammar (Table 1 row 3). Recently, Gamba and
Zeman (2023a) performed more rigorous harmo-
nization of morphological features across the five
UD Latin treebanks (Table 1 row 4). They reported
accuracy before and after harmonization, training
and testing on each pair of treebanks using fast-
text embeddings (Grave et al., 2018) with UDPipe
(Straka et al., 2016) or Stanza (Qi et al., 2020). Har-
monization was shown to improve accuracy when
training and testing on two different treebanks.

Part-of-speech (POS) tagging is closely related
to morphological tagging. In the 2020 EvaLatin
campaign, participants trained and tested POS tag-
gers on a subset of the LASLA corpus (Sprugnoli
et al., 2020). More recently, Riemenschneider and
Frank pretrained a trilingual RoBERTa (Liu et al.,
2019) model on English, Ancient Greek, and Latin
which surpassed the 2022 EvaLatin competitors
(Table 1 row 6). Thus, the current SOTA models
for Latin POS tagging are all transformer-based.
Additionally, Riemenschneider and Frank’s trilin-
gual model underperformed their monolingual An-
cient Greek model, suggesting a monolingual Latin
model could prove even stronger, given sufficient
pretraining data.

Researchers have also experimented with using
GPT3.5-Turbo and GPT4 for POS tagging of 16th
century Latin texts (Stüssi and Ströbel, 2024). No
POS-annotated data exists for 16th century Latin,
so the authors experimented with zero-shot prompt-
ing and finetuning using data from the five UD
treebanks. Although the UD testsets are not en-
tirely comparable with EvaLatin’s, the accuracy
of these GPT-based approaches seems low when
compared to the results of EvaLatin’s POS tagging
shared task.

Although substantial progress has been made in
Latin morphological tagging, gaps still exist. Aside

14Using SpaCy (Honnibal and Montani, 2017)
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from Gamba and Zeman (2023a) and Burns (2023),
prior work has not leveraged all five UD treebanks
for training and evaluation. While Gamba and
Zeman (2023a) measure overall tagging accuracy,
more detailed analysis of specific morphological
features and diachronic trends has been left to fu-
ture work. Moreover, to our knowledge no recent
paper has evaluated the currently available taggers
on UD test data.

5 Experiments

We use three metrics in our evaluations: whole
string morphological accuracy, macro F1 for indi-
vidual features, and F1 for particular feature-values.
See A.8 for more detailed explanations.

5.1 Our LatinBERT-based Tagger
Following other recent working finding SOTA per-
formance with transformer-based taggers (Sprug-
noli et al., 2022; Riemenschneider and Frank,
2023), we finetune a tagger on top of LatinBERT
(Bamman and Burns, 2020). Similar to Riemen-
schneider and Frank (2023), our tagger uses a sepa-
rate classification head for every morphological fea-
ture, all trained simultaneously—a simple choice
which could be improved upon in future work.

When training on LASLA, we sometimes do not
train a particular feature head based on a token’s
feature values. First, if Gender has multiple values
we do not train the Gender prediction head. We
want to keep our set of possible Gender values lim-
ited to the standard three (Masc, Fem, and Neut).
Second, if the token is a personal pronoun and
Person=None, we do not train the Person predic-
tion head. Having a null value here is inconsistent
with the rest of our data. Since we do not know the
true value, we choose not to train in this instance. If
either of these two cases apply to a particular token,
then that token will not contribute to the loss for
either the Gender or Person classifier head. Other
heads are unaffected.

5.2 Comparison to Previous Taggers
In this section, we use the official UD train/test
splits for comparison to previous work but con-
verted to our harmonized and standardized tagset.
We compare our BERT taggers to two sets of tag-
gers previously evaluated on UD data: LatinCy
(Table 1 row 3) and five Stanza models trained on
the five Harmonized UD treebanks (Table 1 row
4). LatinCy uses a non-transformer neural archi-
tecture as part of the SpaCy pipeline, along with

Model Train per- pro- llct ittb uda-
Set(s) seus iel nte

LatinCy All UD .726 .740 .792 .809 .736
BERT All UD .929 .962 .969 .982 .910
Stanza In-Domain UD .787 .929 .969 .965 .819
BERT In-Domain UD .915 .962 .977 .984 .903

Table 5: Whole string accuracy of morphological fea-
tures. Train set is either All 5 UD treebanks, or a single
In-Domain UD Treebank (i.e., same as the Test column).

Model Metric per- pro- llct ittb uda-
seus iel nte

Stanza POS Macro F1 .072 .253 .284 .227 .122
BERT POS Macro F1 .066 .191 .185 .144 .101
Stanza Morph Acc .058 .179 .275 .177 .077
BERT Morph Acc .016 .069 .186 .074 .030

Table 6: Average difference between in and out of do-
main performance, for each of the 5 UD treebank test
sets (columns); this work (BERT rows) always attains a
smaller difference.

static floret vectors (Boyd and Warmerdam, 2022).
Stanza has a Bi-LSTM architecture for its POS and
morphological taggers and uses either word2vec
(Zeman et al., 2018) or fasttext (Bojanowski et al.,
2017) embeddings, depending on the language. For
a fair comparison, we must convert between the
different tagsets used by each tagger. For LatinCy,
rather than retraining the SpaCy pipeline ourselves,
we convert its predictions on each official UD test
set to our tagset. This required little modification as
LatinCy predicts a near-identical set of features and
values.15 For the Stanza models, we retrain them
on our harmonized and standardized versions of
each UD training set (Table 1 row 8), since Gamba
and Zeman (2023b)’s models and their predictions
are unreleased. Replicating Gamba and Zeman
(2023b), we only train the Stanza models on each
individual treebank, rather than all UD data. We
also use the same Latin fasttext embeddings (Grave
et al., 2018) and default training parameters.

We report whole string morphological accuracy
for each UD test set in Table 5. Our BERT tag-
gers consistently have the highest accuracy. The
smallest treebanks, Perseus and UDante, see the
most benefit from the BERT architecture and the
out-of-domain training data.16

15LatinCy lacks two possible Tense values, Perf and FutP,
which our tagset includes. In a more generous evaluation,
where Fut and Imp are considered correct predictions for
gold FutP and Perf, respectively, all morphological accuracy
scores in Table 5 increase by ≤ 5%, with maximum accuracy
on the LLCT test set at 0.826.

16We see similar trends for UPOS; see Table 10.
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Model classical bible postclass
UPOS Macro-F1

classical-ud 0.964 0.937 0.864
classical-all 0.949 0.799 0.839
bible 0.868 0.976 0.834
postclass 0.866 0.920 0.980
all-ud-custom 0.961 0.975 0.976
all-both-custom 0.948 0.964 0.980

Morph Accuracy
classical-ud 0.946 0.936 0.905
classical-all 0.945 0.941 0.908
bible 0.914 0.956 0.885
postclass 0.916 0.931 0.973
all-ud-custom 0.946 0.956 0.973
all-both-custom 0.939 0.960 0.974

Table 7: Performance of our BERT-based taggers when
evaluated on custom time-period test sets.

When comparing two models’ performance, we
calculate statistical significance via randomized
permutation testing (Wasserman 2004).17 When
comparing our All-UD model to LatinCy and our
in-domain models to Stanza, all comparisons were
significant (p=0) for both UPOS Macro-F1 and
morphological accuracy, except for LLCT UPOS
Macro-F1 (p=0.13). So, in nearly all cases our
BERT taggers performed significantly better at
both UPOS and morphological tagging than pre-
viously released taggers, when trained on all or
in-domain data.

We also find that our BERT taggers are more ro-
bust to out-of-domain data than the Stanza taggers.
In Table 6, for each UD test set, we report the aver-
age difference between the in-domain test perfor-
mance (training and testing on the same treebank)
and out-of-domain test performance (training on a
different treebank). This difference is always lower
for our BERT models than for the Stanza models,
suggesting that BERT has better cross-domain per-
formance than Stanza.

5.3 Performance on Our Custom Splits
In total, we train six models including four trained
on the sets described in Table 4. The other two
models are all-ud-custom, trained on the Clas-
sical (UD Only), Bible, and Postclass train sets;
and all-both-custom, trained on the Classical
(UD+LASLA), Bible, and Postclass train sets.
Since our LatinBERT taggers outperform the other
taggers, we limit our focus to these BERT-based
taggers. We find that it is generally unneces-

17As detailed in §A.9, we simply report p-values based on
10,000 null simulations; thus p=0 is possible and could be
more conservatively interpreted as p < .0003 (“rule of three”:
Eypasch et al. 1995).

sary to train a period-specific model. As Table 7
shows, models trained on all time periods have only
slightly reduced UPOS Macro F1 and have slightly
increased morphological accuracy compared to the
models trained on a single domain.

Addition of LASLA data boosts performance
for some rare feature values, but decreases it
for other features. Although there is only a
slight difference in overall morphological accuracy
with the addition of LASLA data, F1 of particu-
lar feature-values improves. When evaluating the
classical-ud and classical-all models on the
Classical test set, F1 increases from 0.907 to 0.941
for Case=Dat (p=0.0028), and 0.800 to 0.909 for
Mood=Ger (p=0.0). We also found that some fea-
tures’ Macro F1 scores decreased with the inclusion
of LASLA. This behavior is most prominent for
Degree (0.96 to 0.91, p=0.0001) and UPOS (0.96
to 0.95, p=0.0). Since the duplicate sentences in
LASLA and UD have low annotation agreement
for Degree and UPOS (Table 3), the addition of
LASLA data likely led to noisier training labels for
these two features.

Most errors involve acontextual ambiguity. We
randomly sample 100 tokens whose morphology
was predicted incorrectly by our all-ud-custom
model,18 and annotated them according to six error
types: illegal, lexical, genuine acontextual ambigu-
ity, annotation differences, gold wrong, other.

Illegal. We found four illegal errors in which
the model combined morphology and/or UPOS in a
way that breaks rules of grammar. Three of these in-
volved the token quod. For example, when the gold
annotation labeled quod as SCONJ, the model cor-
rectly predicted SCONJ but incorrectly predicted
Gender=Neut and Number=Sing, when a SCONJ
should have no value for those features. In the
fourth case, when the gold was PRON, the model
again correctly predicted PRON but incorrectly pre-
dicted Case=None and Number=None, even though
a PRON should have values for those features.

Lexical. We found eight lexical errors where the
predicted combination of UPOS and morpholog-
ical features is legal in general, but is impossible
given the particular token based on lexical infor-
mation. For example, let’s consider the token ista
whose gold annotation is a DET with Case=Nom,
Gender=Fem, and Num=Sing. This word is a

1833 tokens from Classical texts, 33 from the bible, 12 from
Aquinas’ works, 11 from LLCT, 11 from Dante’s works.
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Figure 4: Example of an error in the model’s prediction
due to acontextual ambiguity, from Cicero’s Letters to
Atticus Book 3 Letter 9.

demonstrative adjective with 1st and 2nd declen-
sion endings, so out of context there are only a few
combinations of morphological features possible:
either Case=Nom,Abl|Gender=Fem|Num=Sing or
Case=Nom,Acc|Gender=Neut|Num=Plur. Our
tagger incorrectly predicted Case=Acc but cor-
rectly predicted Gender=Fem and Num=Sing. Even
though its predictions for Gender and Number are
correct, they do not form a valid combination of
feature values for this token.

Genuine acontextual ambiguity. Most errors
(67) were due to genuine acontextual ambiguity.
This means that, out of context, the model’s predic-
tion is legal and valid given the particular token’s
lexical information, but in context it is incorrect.
We would hope that BERT, as a contextual model,
could still predict these cases correctly but it seems
to struggle. Figure 4 shows an example of this
error type. In other contexts, the token opera can
be accusative plural, as the model predicted, but
within this sentence it must be ablative singular.
The verb perierimus (we have been ruined) does
not take an object, so opera cannot be accusative.
Additionally, the structure of quorum opera is re-
peated with quorum insidiis and quorum scelere.
The nouns insidiis and scelere are clearly ablative,
suggesting that opera should be the same case. This
makes more sense contextually: perierimus (we
have been ruined) quorum opera (by whose work).

Annotation differences. Nine errors were due
to remaining annotation differences, discussed
more thoroughly in §A.6.

Gold wrong. Nine errors were caused by incor-
rect gold annotations. These include missing Case
value for nouns, and incorrect UPOS and morpho-
logical features.

Words segmented by the tokenizer have a higher
error rate. Because of the presence of lexical er-
rors in our model’s predictions, we investigated

whether the LatinBERT tokenizer segments words
in a morphologically-aware manner. We find that
the majority (81%) of words in our three custom
test sets correspond to a single subtoken for the tok-
enizer. For these word tokens, our all-ud-custom
model achieves 98.3% accuracy on UPOS and
97.2% accuracy on all morphological features. In
the case that word tokens are split into multiple
subtokens, performance degrades; Accuracy drops
slightly for UPOS to 97.5% and more dramati-
cally for morphological features to 93.6%. Since
most words are not segmented and those that
are have worse performance, we hypothesize that
the model is not able to learn Latin’s inflections,
which could hypothetically aid in the tagging of
rarer words. The relationship between token fre-
quency, word segmentation, and downstream per-
formance is a promising direction for analysis in
future work. This aligns with previous findings
for English that transformer models with Word-
Piece tokenizers have lower generalization ability
than those with morphologically-aware tokeniza-
tion (Hofmann et al., 2021).

6 Conclusion and Future Work

In this work, we consider the diverse time periods
represented in the Latin treebanks when training
and evaluating morphological taggers. We hope the
genre metadata we provide can be used for future
cross-genre analysis of Latin, similar to the cross-
time analysis we present in this paper.

We also believe further improvements can be
made through the harmonization of remaining an-
notation differences (§3.4) and more informed
modeling choices. Specifically, we hypothesize
that (1) conditioning morphological feature predic-
tion on UPOS, or vice versa; (2) enforcing gram-
matical constraints through modeling, rather than
only through training data; and (3) constructing a
morphologically-aware tokenizer may all lead to
improved performance.
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A Appendix

A.1 UD Genres

We mark the following 12 genres: narrative, poem,
short poem, letter, epic, history, satire, speech, trea-
tise, Christian, Bible, legal.

These genres are not exclusive, so each text will
have at least one, but possibly more genres marked.

In Figure 2, for simplicity we showed a subset
of genres which are mutually exclusive. This also
ensures the number of sentences shown in the figure
exactly matches the number of sentences that exist
in the UD treebanks. The additional genres that we
left out of the figure are broader, covering multiple
sub-genres. Specifically, narratives includes some
(not all) texts from every genre except for legal
texts and speeches. Poems includes epics and short
poems, the two of which are mutually exclusive.
Christian includes the Bible itself, as well as the
religious treatises of Thomas Aquinas.

A.2 Finding Duplicate Sentences in LASLA
and UD Treebanks

In order to detect duplicate sentences between the
treebanks, we first normalize the orthographic vari-
ation across the UD treebanks and LASLA. We
used CLTK’s (Johnson et al., 2021) JV replacer
on the harmonized UD treebanks, since LASLA’s
texts do not use the letters ‘j’ or ‘v’. We also re-
move any punctuation present in the UD treebanks,
as LASLA does not have punctuation.

We search for duplicate sentences by finding
sentence pairs with exact character or token overlap
at the beginning or end of each sentence.

Within the duplicate sentences, we identify du-
plicate tokens by searching for the longest over-
lapping, contiguous subsequence of tokens of each
sentence. We search for exact token matches. Our
reported number of duplicate tokens is an underesti-
mate, since there are sometimes token mismatches
within sentences that are genuine duplicates. For
example, one sentence may have a numeral where
the other has the word form of the number.

A.3 Annotation Agreement

In Table 8, we show the annotation agreement be-
tween duplicate sentences in Perseus and PROIEL
after our standardization and harmonization. No-
tably, these are both (Harmonized) UD treebanks
(Table 1 row 4), and some annotation differences
still remain, although agreement is generally still
higher than between UD and LASLA.

Feature % same # same Total
Case 96.1 794 826
Degree 50.0 5 10
Gender 94.7 767 810
Mood 93.1 349 375
Number 97.7 1097 1123
Person 100.0 347 347
Tense 95.4 356 373
Voice 98.4 369 375
UPOS 97.6 1538 1576

Table 8: Percent and number of tokens in the dupli-
cate Perseus and PROIEL sentences that have the exact
same value for each feature, after our harmonization
and conversion to Standard Latin grammar

Feature % same # same Total
AdpType 76.8 2115 2753
AdvType 0.0 0 357
Aspect 97.1 8608 8864
Case 97.8 20372 20821
Compound 0.0 0 1
ConjType 0.0 0 5
Degree 8.5 598 6998
Foreign 0.0 0 2
Gender 74.7 14965 20034
Gender_loose 97.2 19481 20034
InflClass 0.0 0 27580
InflClass[nominal] 0.0 0 3394
Mood 99.4 5279 5312
Number 97.9 25672 26211
Number[psor] 100.0 281 281
NumForm 0.0 0 268
NumType 71.2 497 698
PartType 6.2 4 65
Person 91.0 6089 6692
Person[psor] 96.3 501 520
Polarity 35.1 267 760
Poss 96.3 501 520
PronType 78.2 4952 6333
Reflex 91.7 584 637
Tense 77.3 5228 6766
Variant 0.0 0 43
VerbForm 93.2 8264 8867
Voice 96.0 7493 7809
UPOS 93.0 34814 37425

Table 9: Percent and number of tokens in the duplicate
LASLA and Harmonized UD sentences that have the
exact same value for each feature, before any harmo-
nization or standardization by us.
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In Table 9, we show the annotation agreement
between Harmonized UD and LASLA, before our
harmonization and standardization. This table also
shows the union of UD and LASLA’s feature sets.
There are many features we did not consider which
could benefit from harmonization.

Finally, Table 12 is a venn diagram showing all
possible features and values in UD and LASLA,
before our harmonization and standardization.

A.4 Remaining Inconsistencies We’ve
Harmonized

Here is a full list of arbitrary values we’ve enforced
for certain grammatical constructions. For each
of these items, there are arguably multiple correct
ways to annotate—and the Latin treebanks were
annotating these differently.

• Gerunds, Infinitives, and Supines should have
Number=None

• Gerunds, Gerundives, and Supines should
have Tense=None

• If UPOS is AUX, then Voice=Act. This al-
most entirely applies to forms of sum.

• Gerunds should have Voice=Act, and Gerun-
dives should have Voice=Pass.

• Supines have Voice=Act, unless used in
a construction with iri, in which case
Voice=Pass.

• Gerunds, Infinitives, and Supines should have
Gender=None.

A.5 Standardizing Tense and Mood

Tense We use the TraditionalTense field of the
harmonized treebanks (Gamba and Zeman, 2023a),
rather than the UD approach to tense. Altogether,
the UD Latin treebanks include four tenses (present,
past, future, pluperfect) and four aspects (imper-
fective, perfective, prospective, inchoative). When
tense and aspect are considered together, they can
represent the seven traditional Latin tenses. How-
ever, this is less intuitive for Classicists or those
whose goal is to study only Latin. We chose to
revert back to the traditional tenses. We were able
to use the TraditionalTense field for most tags,
but to differentiate between future and future per-
fect it is also necessary to look at Aspect. Addi-
tionally, we found that infinitives did not have a

TraditionalTense, so we looked to the Aspect
feature value to determine the tense of infinitives.

For LASLA, since it does not have a
TraditionalTense field, we look at both Tense
and Aspect feature values to determine tense.

Our final set of tenses is: present, imperfect,
perfect, pluperfect, future, and future perfect.

Mood Similar to tense, the non-finite moods
are represented by a combination of the Mood
and VerbForm fields in Gamba and Zeman
(2023a)’s harmonized treebanks, with references
to Latin-specific constructions being moved to the
TraditionalMood field. Strictly speaking, non-
finite verbs do not have mood, but traditional Latin
grammars still classify the different non-finite verb-
forms as "mood."19 Again, we opt to use the tradi-
tional terminology and follow the same tagset as the
Perseus treebank. For finite verbs, this includes in-
dicative, subjunctive, imperative; and for non-finite
verbs, infinitive, participle, gerund, gerundive, and
supine.

For LASLA, we are able to take the mood
directly from the Mood feature for finite verbs,
and from VerbForm feature for non-finite verbs.
This is because LASLA uses the Latin-specific
Ger,Gdv,Sup values for VerbForm, unlike the har-
monized UD treebanks.

A.6 Remaining Inconsistencies We’re Unable
to Harmonize

We are aware of the following differences, but leave
their harmonization to future work:

• The pre-UD Perseus treebank (Table 1 row 1)
has an additional Voice value for deponent
verbs. After Gamba and Zeman (2023a)’s har-
monization, deponent verbs in Perseus always
have Voice=Act, but deponent verbs in ev-
ery other UD treebank have Voice=Pass. We
would like a system more similar to pre-UD
Perseus with an additional Voice=Dep value.

• ITTB is the only treebank that sometimes
marks esse, the infinitive of sum, as NOUN
with Mood=None.

The following annotation differences were found
to cause 9% of sampled errors in our BERT tagger’s
morphological predictions:

19This is explained in the EvaLatin 2022 guidelines: https:
//github.com/CIRCSE/LT4HALA/blob/master/2022/
data_and_doc/EvaLatin_2022_guidelines_v1.pdf
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Model Train per- pro- llct ittb uda-
Set(s) seus iel nte

LatinCy All UD .729 .800 .800 .786 .737
BERT All UD .872 .974 .982 .980 .855
Stanza In-Domain UD .809 .967 .982 .977 .841
BERT In-Domain UD .867 .977 .984 .986 .880

Table 10: Macro F1 of UPOS. Train set is either All 5
UD treebanks, or a single In-Domain UD Treebank (i.e.,
same as the Test column).

• Whether to have Case=None for undeclined
nouns.

• Whether deponent verbs should be labeled as
Voice=Act or Voice=Pass.

• Whether infinitives should have a value for
Case.

• Whether infinitives can have their UPOS be
NOUN, Mood=None, and Tense=None.

• Whether the pronoun sui should always have
Number=None.

A.7 Finetuning Details

We use the same hyperparameters that Bamman
and Burns (2020) used to finetune a POS tagger:
Adam optimizer with learning rate 5× 10−5, early
stopping patience of 10 epochs, batch size 32,
dropout rate 0.25. We keep the model with the
lowest validation loss across all epochs.

A.8 Metrics

Whole-String Morphological Accuracy Follow-
ing the convention of Gamba and Zeman (2023a)
and Sprugnoli et al. (2022), we consider the
model’s prediction correct when every morpholog-
ical feature is correctly predicted. We construct
a morphological feature string from the predicted
feature set, making sure to sort the features alpha-
betically. Then, we can test whether the predicted
morphological string is an exact match to the gold
string. Although this is a strict criteria, it indicates
whether the model understands how all the mor-
phological features fit together.

Macro F1 for Individual Features For UPOS
and each individual morphological feature, we re-
port Macro F1 in order to see how the model per-
forms on rare feature values. If we define F as a
particular feature and VF = {v1, ..., vn} as the set
of possible values that F can take, then macro F1
is defined as 1

n

∑n
i=1 F1(vi). Note that v = None

Feature classical bible postclass
Case 0.946 0.953 0.948
Degree 0.977 0.987 0.965
Gender 0.968 0.977 0.982
Mood 0.859 0.938 0.982
Number 0.987 0.988 0.992
Person 0.994 0.993 0.992
Tense 0.955 0.977 0.954
Voice 0.969 0.973 0.990

Table 11: Macro f1 of each individual feature for the
all-ud-custom model. Note that macro f1 for Mood
on the Classical test set seems low (0.859) because the
model never predicts Mood=Sup (supine). Excluding
that value, its macro f1 is 0.967.

is a possible value for every morphological feature,
and is included in our calculation.

A.9 Randomized Permutation Testing
Within a null simulation, for each test set sentence
we shuffle the two models’ predictions, and store
the absolute difference in the performance metric
calculated from the entire shuffled test set. We fi-
nally report the p-value as the fraction of 10,000
simulated absolute differences that are larger than
the observed absolute difference. p=0 simply
means the observed difference is larger than in all
simulations; it could be more conservatively inter-
preted as p < .0003 (Eypasch et al., 1995) due to
Monte Carlo error.
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Feature Union UD Only Values Value Intersection LASLA Only Values
Abbr Yes
AdpType Post Prep
AdvType Loc, Tim
Aspect Inch Imp, Perf, Prosp
Case Loc, Acc, Abl, Voc, Nom,

Dat, Gen
Compound Yes
ConjType Cmpr
Degree Dim Abs, Cmp Pos
Foreign Yes
Form Emp
Gender Fem, Neut, Masc Fem,Neut, Fem,Masc,Neut,

Fem,Masc, Masc,Neut
InflClass LatPron, LatI, LatAnom, In-

dEurU, IndEurO, LatI2, In-
dEurI, LatA, IndEurE, In-
dEurA, LatX, Ind, IndEurX,
LatE

IndEurA,IndEurO, In-
dEurInd

InflClass[nominal] IndEurX IndEurI, IndEurO, Ind, In-
dEurA

IndEurA,IndEurO, IndEurU

Mood Ind, Sub, Imp
NameType Lit, Ast, Oth, Met, Giv, Nat,

Let, Rel, Cal, Com, Sur,
Geo

Number Plur, Sing Plural
Number[psor] Plur, Sing
NumForm Reference, Word Roman
NumType Card, Dist, Mult, Ord
NumValue 2
PartType Int, Emp
Person 2, 3, 1
Person[psor] 2, 3, 1
Polarity Neg
Poss Yes
PronType Ind, Rel, Art, Rcp Tot, Neg, Con, Prs, Rel, Int,

Dem, Ind
Emp

Proper Yes
Reflex Yes
Tense Past, Pqp, Fut, Pres
Typo Yes
UPOS PUNCT SCONJ, ADP, ADJ, AUX,

VERB, X, NUM, _, PART,
INTJ, ADV, NOUN, DET,
CCONJ, PROPN, PRON

Variant Greek
VerbForm Conv, Vnoun Fin, Inf, Part Ger, Gdv, Sup
VerbType Mod
Voice Pass, Act

Table 12: Feature and Values Comparison between UD and LASLA. Note that Perseus and PROIEL (the only UD
treebanks that overlap with LASLA) lack some feature values that the other UD treebanks have, but this shows the
union of all UD features.
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Classical (UD Only) Bible Post Classical
Work # Sents Work # Sents Work # Sents
BellumGallicum 1445 jerome_vulgata-Mark 1257 aquinas_summa-contra-

gentiles
23687

DeOfficiis 557 jerome_vulgata-1-John 12 dante_de-vulgari-eloquentia 419
InCatilinam 137 jerome_vulgata-2-John 3 dante_letters 376
Metamorphoseon 183 jerome_vulgata-3-John 4 dante_questio-de-aqua-et-terra 133
PetroniusSatiricon 547 jerome_vulgata-John 1765 dante_eclogues 111
PropertiusElegiae 224 jerome_vulgata-Luke 2044 llct_39 165
Catilina 336 jerome_vulgata-Galatians 189 llct_79 670
TacHistoriae 64 jerome_vulgata-Titus 39 palladius_opus-agriculturae 955
Aeneis 68 jerome_vulgata-1-

Thessalonians
97 llct_36 276

cicero_letters-to-atticus-1 703 jerome_vulgata-James 7 llct_80 571
cicero_letters-to-atticus-2 800 jerome_vulgata-Acts 1490 llct_72 271
cicero_letters-to-atticus-4 703 jerome_vulgata-Hebrews 13 llct_83 812
cicero_letters-to-atticus-5 688 jerome_vulgata-Colossians 29 llct_73 518
cicero_letters-to-atticus-6 270 jerome_vulgata-revelation 763 llct_40 324

jerome_vulgata-1-Corinthians 736 llct_84 771
jerome_vulgata-2-Peter 2 llct_86 826
jerome_vulgata-Matthew 1978 llct_75 462
jerome_vulgata-2-Corinthians 345 llct_38 276

llct_74 404
llct_81 288
llct_77 333
llct_76 216
llct_85 807

Total 6725 Total 10773 Total 33671
phaedrus_fabulae 389 jerome_vulgata-1-Peter 5 aquinas_forma 3290
augustus_res-gestae 38 jerome_vulgata-1-Timothy 4 dante_monarchia 682
suetonius_life-of-augustus 109 jerome_vulgata-2-

Thessalonians
37 llct_37 170

cicero_letters-to-atticus-3 420 jerome_vulgata-2-Timothy 47 llct_78 389
cicero_letters-to-atticus-7 85 jerome_vulgata-Ephesians 100 llct_82 472

jerome_vulgata-Jude 22
jerome_vulgata-Philemon 25
jerome_vulgata-Philippians 97
jerome_vulgata-Romans 684

Total 1041 Total 1021 Total 5003

Table 13: Number of UD sentences in our custom train (top) and test (bottom) splits. Works that appear only in
LASLA are not listed, as there are too many. See LASLA’s website for a full list.
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Abstract

This study analyzes the verses of the Rigveda,
the oldest Sanskrit text, from a metrical per-
spective. Based on metrical structures, the
verses are represented by four elements: light
syllables, heavy syllables, word boundaries,
and line boundaries. As a result, it became
evident that among verses traditionally cate-
gorized under the same metrical name, there
are those forming distinct clusters. Further-
more, the study reveals commonalities in met-
rical structures, such as similar metrical pat-
terns grouping together despite differences in
the number of lines. Going forward, it is antic-
ipated that this methodology will enable com-
parisons across multiple languages within the
Indo-European language family.

1 Introduction

The oldest of the Vedic literature, the Rigveda, pos-
sesses a metrical structure. Metrical analysis in-
volves examining the patterns of syllables, word
boundaries, and poetic line boundaries, which are
foundational elements in the study of ancient Indo-
European poetry. Metronome analysis that is solely
based on the metrical structure was demonstrated
in Latin and some languages (Section 3). Similar to
Latin, Vedic Sanskrit also considers the elements of
syllable weight, word boundaries, and poetic line
boundaries as components of its metrical structure
(Section 2). By focusing on the metrical structure,
the same analysis as Latin can be applied to San-
skrit, especially Vedicpoetry, as discussed in Sec-
tion 4. Consequently, analyzing the Rigveda based
on its metrical elements revealed that even when
assigned the same metrical name, they clearly be-
long to different clusters (Section 5). This research
enables us to uncover patterns and structures that
are not immediately apparent through traditional
philological or linguistic methods (Section 6).

2 Vedic Meter

Sanskrit, belonging to the Indo-Aryan branch of the
Indo-Iranian subfamily within the Indo-European
language family, has literature with a metrical struc-
ture. In particular, the Vedic literatures, in which
Vedic Sanskrit is used, an ancient stage of the San-
skrit language, are known for their metrical com-
position. The calculation of meter in Sanskrit is
syllabic; that is, Sanskrit poetry shapes its rhythm
based on the number of syllables and their weight.

In this context, an overview of the meter in the
Rigveda, which is used for analysis, is provided.
The Rigveda is the oldest among the Vedic litera-
ture and consists of metrical verses. In the tradition
of Rigveda studies, “meter” refers to the rhythmic
pattern of entire verses composed of lines with a
consistent rhythm. The meters of the Rigvedic
verses are mentioned in traditional literature writ-
ten in Sanskrit (Macdonell, 1886), Anukraman. ı̄.

Table 1 lists some primary meters. Taking the
Tris.t.ubh meter as an example, verses with this me-
ter consist of four lines, each having eleven sylla-
bles. Additionally, in each line, the last four sylla-
bles repeat the pattern –heavy + light– twice. Gen-
erally, heavy syllables are represented as , light
syllables as , and when not specified as heavy or
light, it is denoted as . Vedic metrical texts, in-
cluding the Rigveda, are recited, and in the context
of meter calculation, the last syllable of each line
is pronounced long, whether it is heavy or light.

Although metrical patterns refer to the rhythmic
patterns of entire verses in the Rigveda, the fun-
damental unit in actual structural patterns is the
individual line. As shown in Table 1, when the
number of syllables per line is determined, the ca-
dence, which is the latter part of the line, tends to
follow a certain syllabic pattern. Specifically, for
an eight-syllable line, there is a repetition of the
light and heavy pattern , for an eleven-
sylalble line, a repetition of the heavy and light
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Table 1: Poplular meters

Meter Syllables per line Lines in a verse Syllabic pattern in the cadence
Tris.t.ubh 11 4
Gāyatrı̄ 8 3
Jagatı̄ 12 4
Anus.t.ubh 8 4

pattern , and for a twelve-syllable line,
a repetition of the heavy and light pattern twice,
followed by one syllable . However,
despite the relatively strict regularity of cadence
patterns, there are irregular lines that deviate from
the presented patterns (Oldenberg, 1888). Addi-
tionally, for eight-syllable lines, such as Gāyatrı̄
and Anus.t.ubh, there are cases where the pattern is
reversed, resulting in a repetition of the heavy and
light pattern . 1

In addition to these, there exists a less strict reg-
ularity in lines with eleven and twelve syllables.
The forepart of lines of these syllable counts are
further divided into two parts: opening and caesura.
This division often aligns with word boundaries.
Moreover, the rhythm patterns in the initial part of
caesura also exhibit some regularity (Oldenberg,
1888; Arnold, 1905).

The representative studies of meters in the
Rigveda (Oldenberg, 1888; Kuryłowicz, 1927;
Arnold, 1905; Gippert, 1997, 1999) have frequently
focused on aspects such as syllable counts and syl-
lable weight patterns in the cadence. This emphasis
arises from the strong tendency in the Rigveda to
strictly determine the rhythm based on syllable
counts and syllabic weight patterns in the cadence.

3 Related Research

Nagy et al. (2023) analyzed Latin poetry using
four elements known as the metronome: light syl-
lable, heavy syllable, word boundary, and poetic
line boundary. Following the metronome analy-
sis code, we represent light syllables as ‘w’, heavy
syllables as ‘S’, word boundaries as ‘.’, and po-
etic line boundaries as ‘|’. By substituting these
elements in Latin poetry, the verse is considered
as a sequence of these four elements. Texts com-
posed of these four metrical elements are similar to
genes consisting of four types of base pairs, akin
to genetic sequences.

The study of Vedic meter made significant ad-
vancements following the research of Oldenberg

1Known as Trochaic Gāyatrı̄.

(Oldenberg, 1888). About a century later, Gippert
pioneered the computer-based analysis of meters
(Gippert, 1999). Recent research on Vedic meter
(Ittzés, 2012; Beguš, 2015), including the studies
mentioned above (Oldenberg, 1888; Gippert, 1997,
1999), focuses on the phonology of Vedic Sanskrit
and the historical changes of sounds from Proto-
Indo-European to Sanskrit. While these studies
focus on phonological aspects and the development
of phonological theories based on metrical patterns,
there has been limited exploration of Vedic meters
from a stylometric perspective. Our research aims
to bridge this gap by applying a stylometric ap-
proach to the analysis of Vedic poetry, inspired by
the metronome analysis of Latin poetry.

4 Method

This study follows the metronome analysis pro-
posed by Nagy (2023); Nagy et al. (2023). Simi-
lar to their approach, it converts all verses in the
Rigveda into four elements of the metronome, ‘w’
for a light syllable, ‘S’ for a heavy syllable, ‘.’ for
a word boundary, and ‘|’ for a verse boundary, to
perform metrical analysis. An example of the trans-
formation of Rigveda text into the metronome is
provided in Table 22. The skeleton structure rep-
resents short vowels by V, long vowels by W, and
consonants by C.

Table 2: Examples of transformation into metronome

Text agním ı̄l.e puróhitam.
Skeleton VCCVC WCW CVCWCVCVC
metronome Sw.SS.wSwS|

Specifically, the steps for the analysis are as
follows. The electronic text of the Rigveda
(Martínez García and Gippert, 1995) is utilized, and
it undergoes a transformation into the metronome.
The metronome sequences are then subjected
to a score calculation using the Python module

2The detailed steps for transformation are outlined in Sec-
tion A.
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metronome3. Subsequently, a hierarchical cluster-
ing analysis is performed on the metronome se-
quences of Rigvedic verses4. For distance calcu-
lations, Euclidean distance, normalized Euclidean
distance, Chebyshev distance, and Minkowski dis-
tance are employed. As for linkage methods, aver-
age, centroid, complete, median, single, and ward
are used. All possible combinations of these dis-
tances and methods, resulting in twenty-four vari-
ants, are employed for clustering. By employing all
possible combinations of these distances and link-
age methods (resulting in twenty-four variants), the
study aims to ensure robustness in the clustering
results.

For clarity in the analysis results, the scope of
the text is limited. Since the Rigveda comprises ten
books with a total of over 10,000 verses, the analy-
sis is conducted book by book. Notably, Books 2
to 7 of the Rigveda are known as family books, con-
sisting of verses attributed to a single poetic family.
Family books are considered to contain relatively
more ancient verses of the Rigveda, making them
particularly significant (Oldenberg, 1888; Arnold,
1905).

5 Result

First, we shall focus on books 2 to 7 of the Rigveda,
known as family books, and also include the first
and second halves of book 8. 5

Figure 1 shows the result of clustering on Book
7, whose author is Vasis.t.ha6. The color threshold
is set to 15. While the upper three groups (brown,
purple, and red) are mainly Tris.t.ubh verses, the
green group contains Tris.t.ubh and Jagatı̄ verses.
Distant from these, the bottom yellow group con-
tains eight-syllable verses. The other family books
also have the tendency that some of Tris.t.ubh verses
are more similar to Jagatı̄ than other Tris.t.ubh and
eight-syllable verses are close despite their differ-
ence in the number of syllable.

Upon closer examination of eight-syllable verses,
it can be seen that Gāyatrı̄, Anus.t.ubh, Paṅkti (= 8
syllables × 5 lines), and Br

˚
hatı̄ (= 8 syllables × 2

lines followed by two-syllable line and ending with
3https://github.com/bnagy/metronome
4Scripts for converting the Rigveda into metronome and

for a clustering analysis are accesible in https://github.
com/Yuzki/metronome_veda

5Book 8 consists of the first half by the Kan. va family and
the second half by the Aṅgirasa family. Therefore both are
often treated as ones of family books.

6Due to space constraints, it is not possible to present all
patterns in the figure. Representative examples are shown.

eight-syllable line) form a cohesive group (Figure
2). However, it is not possible to discern the differ-
ence between Gāyatrı̄ in tone and Gāyatrı̄ in

tone here.

6 Conclusion

The analysis in this study revealed that some verses
with the Tris.t.ubh meter, traditionally considered
to have rhythmical pattern similar to that of the
Jagatı̄ meter (Arnold, 1905; Van Nooten and Hol-
land, 1994)., are distinctly different from standard
Tris.t.ubh verses. Even though Tris.t.ubh verses were
traditionally labeled as such, it was empirically
known that some lines within these verses exhib-
ited the rhythmic pattern of Jagatı̄ meter lines in the
cadence. In practice, scholars have sometimes cate-
gorized Tris.t.ubh and Jagatı̄ as trimeter (= opening
+ caesura + cadence) and Gāyatrı̄, Anus.t.ubh, and so
on as dimeter (= opening + cadence), respectively,
while at other times making clear distinctions based
on syllable counts.

Regarding eight-syllable verses, Gāyatrı̄,
Anus.t.ubh, Paṅkti all share the commonality of
having eight syllables per line, with the only
difference being the number of lines. Generally, it
is believed that the rhythmic pattern is determined
by the number of syllables per line, regardless
of the number of lines. This study reveals that
various eight-syllable verses do form cohesive
clusters, indicating that the rhythmic pattern is
indeed primarily influenced by the number of
syllables per line. Additionally, a closer look at this
cluster reveals that Gāyatrı̄ and Br

˚
hatı̄ meters each

form distinct subclusters, showcasing rhythmic
similarities based on differences in the number
of lines. Unlike previous studies mentioned in
the section 3 that focus solely on cadence, our
research examines the entire verse, leading to these
significant findings of the similarity of different
syllable counts. This comprehensive approach
highlights the importance of considering the whole
verse.

This study contributes to Vedic philology by pro-
viding a nuanced understanding of the rhythmic
structures within Rigvedic verses. By identifying
distinct clusters and subclusters based on metrical
patterns, our research contributes to a better under-
standing of the development of Vedic meters over
time and can offer insights into the chronological
aspects of Rigvedic verses.

While this study primarily focuses on the
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Figure 1: Rigveda Book 7, Euclidean distance, Ward’s method

Figure 2: Enlarged view of the Gāyatrı̄ section from Figure 1 (G: Gāyatrı̄, A: Anus.t.ubh, B: Br
˚

hatı̄)

Rigveda, the methodology and findings have
broader implications for other Vedic texts and even
extend to other Indo-European poetries. The rhyth-
mic patterns and clustering identified in this study
could serve as a model for analyzing similar me-
ter structures in other Vedic texts, as well as later
Sanskrit literatures.

Acknowledgments

This work was supported by JSPS KAKENHI
Grant Number 23K18646.

References
Edward Vernon Arnold. 1905. Vedic metre in its histor-

ical development.

222



Gašper Beguš. 2015. A new rule in Vedic metrics. Jour-
nal of the American Oriental Society, 135(3):541–
550.

Jost Gippert. 1997. Laryngeals and Vedic metre. In
Sound law and analogy. Papers in honor of Robert
S.P. Beekes on the occasion of his 60th birthday,
pages 63–79. Amsterdam: Rodopi.

Jost Gippert. 1999. Neue Wege zur sprachwis-
senschaftlichen Analyse der vedischen Metrik.
In Compositiones Indogermanicae in memoriam
Jochem Schindler, pages 97–125. Praha: Enigma.

Máté Ittzés. 2012. Initial y in the Rigveda. In Ro-
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A Transformation Method to Metronome

This section demonstrates the method of transform-
ing verses of the Rigveda into metronome format.

A.1 Metrical Calculation
First, we verify the metrical calculation method for
Sanskrit, specifically clarifying the syllable struc-
ture and the definitions of light and heavy syllables.

Syllable formation spans word boundaries. For
example, when a word ends with a consonant and
the following word begins with a vowel, the final

consonant of the first word and the initial vowel
of the second word together form one syllable. In
the case of agním īl.e as seen in Table 2, the final
consonant -m of agním forms a syllable with the
initial vowel ī- of the following word īl.. Thus,
dividing agním ı̄l.e puróhitam. into syllables, we get
the following:

ag ní mı̄ l.e pu ró hi tam. |
VC CV CW CW CV CW CV CVC.

The structure in the second line is called the
skeleton structure, consisting of consonants (C)
and vowels (short vowel V, long vowel W).

The lightness or heaviness of a syllable is deter-
mined by the length of the syllable nucleus vowel
and the presence or absence of a final consonant. A
light syllable has a short vowel as its nucleus and
no final consonant. A heavy syllable has a long
vowel as its nucleus or a final consonant. Based on
this, the skeleton structure text shown above has the
following light and heavy syllable patterns:

ag ní mı̄ l.e pu ró hi tam. |
VC CV CW CW CV CW CV CVC.

A.2 From Skeleton Structure to Metronome
Using the skeleton structure seen in the previous
section, we perform the conversion to metronome.
In the original text, when there is a word boundary
between the nuclei of two adjacent syllables, this
word boundary is noted between the corresponding
skeleton structures. These word boundaries within
the defined skeleton structure are provisional. This
is because word boundaries in the original text and
those in the skeleton structure do not necessarily
match, as syllable formation spans word bound-
aries. Additionally, due to a phonological phe-
nomenon called sandhi, sounds at the boundary
of adjacent words may merge. In such cases, the
merged entity is not separated back into the original
individual words.

Using the method shown so far, the original text
can be transformed into metronome format as fol-
lows. For readability, light and heavy syllables
are indicated by , word boundaries by #, and
verse boundaries by /.
ag ní mı̄ l.e pu ró hi tam. ,
VC CV CW CW CV CW CV CVC,

# # /.
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Abstract
LLMs have revolutionized the landscape of in-
formation retrieval and knowledge dissemina-
tion. However, their application in specialized
areas is often hindered by limitations such as
factual inaccuracies and hallucinations, espe-
cially in long-tail knowledge distributions. In
this work, we explore the potential of retrieval-
augmented generation (RAG) models in per-
forming long-form question answering (LFQA)
on a specially curated niche and custom knowl-
edge domain. We present VedantaNY-10M,
a dataset curated from extensive public dis-
courses on the ancient Indian philosophy of
Advaita Vedanta. We develop and benchmark a
RAG model against a standard, non-RAG LLM,
focusing on transcription, retrieval, and genera-
tion performance. A human evaluation involv-
ing computational linguists and domain experts,
shows that the RAG model significantly outper-
forms the standard model in producing factual,
comprehensive responses having fewer hallu-
cinations. In addition, we find that a keyword-
based hybrid retriever that focuses on unique
low-frequency words further improves results.
Our study provides insights into meaningfully
integrating modern large language models with
ancient knowledge systems.

1 Introduction

Generic LLMs have proven to be highly effective
for broad knowledge domains. However, they of-
ten encounter challenges in niche and less popular
areas, suffering from issues such as factual inaccu-
racies and hallucinations for long-tail knowledge
distributions (Kandpal et al., 2023; Mallen et al.,
2023). Moreover, the inability to verify responses
against authentic sources is particularly problem-
atic in these long-tail domains, where LLMs can
generate highly inaccurate answers with unwar-
ranted confidence (Kandpal et al., 2023; Menick
et al., 2022).

In response to these limitations, there has been a
growing interest in retrieval-augmented generation

(RAG) models (Guu et al., 2020; Karpukhin et al.,
2020; Lewis et al., 2020b; Izacard et al., 2022; Ram
et al., 2023). These models, which integrate exter-
nal datastores to retrieve relevant knowledge and
incorporate it into LLMs, have demonstrated higher
factual accuracy and reduced hallucinations com-
pared to conventional LLMs (Shuster et al., 2021;
Borgeaud et al., 2022; Menick et al., 2022). Ad-
ditionally, updating these external datastores with
new information is more efficient and cost-effective
than retraining LLMs.

Recent studies on the societal impact of
LLMs (Malhotra, 2021; Yiu et al., 2023) have
highlighted the increasing significance of LLMs
as cultural technologies akin to libraries for search
and retrieval. Analogous to earlier technologies
like writing, print, libraries and internet search, the
power of LLMs can be harnessed meaningfully to
preserve and disseminate human knowledge (Som-
merschield et al., 2023). In this vein, we argue
that RAG models show immense potential for sup-
plementing study in diverse knowledge domains.
Hence, there is a growing need to examine the ap-
plications of RAG models for unconventional, cus-
tom knowledge domains that are often niche and
scarcely represented in pre-training data. The capa-
bility of RAG models to provide verified, authentic
sources when answering questions is particularly
advantageous for end-users.

In this work, we develop and evaluate a RAG-
based language model specialized in the ancient
Indian philosophy of Advaita Vedanta (Upan-
ishads, >3000 B.C.E.; Bhagavad Gita, 3000 B.C.E.;
Shankaracharya, 450 B.C.E.). To ensure that the
LLM has previously not been exposed to the source
material, we construct VedantaNY-10M, a custom
philosophy datastore comprising transcripts of over
750 hours of public discourses on YouTube from
Vedanta Society of New York. We evaluate stan-
dard non-RAG and RAG models on this domain,
and find that RAG models perform significantly

224



better. However, they suffer from a number of is-
sues, including irrelevant retrievals, sub-optimal
retrieval passage length, retrieval-induced halluci-
nations, and reliance on outside knowledge. In
early attempts to mitigate some of these issues, we
find that traditional sparse retrievers have a unique
advantage over dense retrievers in niche domains
having specific terminology—Sanskrit terms in our
case. Hence, we propose a keyword-based hybrid
retriever that effectively combines sparse and dense
embeddings to upsample low-frequency or domain-
specific terms. In addition, a simple keyword-based
retrieval refinement serves to shorten or lengthen
retrievals to further refine context.

We conduct an extensive evaluation comprising
both automatic metrics and human evaluation with
5 computational linguists and 3 domain experts,
assessing the models along three dimensions: tran-
scription, retrieval, and generation. Our findings
are twofold. First, the standard RAG model signif-
icantly outperforms the generic non-RAG model
along all axes, offering more factual, comprehen-
sive, and specific responses while minimizing hal-
lucinations. User preference for the RAG model
over the generic counterpart is evident, with a pref-
erence rate of 81%. Second, the keyword-based
hybrid RAG model further outperforms the stan-
dard deep-embedding based RAG model in both
automatic and human evaluation metrics. Our study
also includes detailed long-form responses from the
evaluators, with domain experts specifically indi-
cating the likelihood of using such LLMs to sup-
plement their day-to-day study. Our work offers
a step toward building and evaluating real-world
RAG models for niche and esoteric ancient knowl-
edge domains, highlighting the opportunities and
challenges arising thereof.

2 Related Work

Language models for ancient texts Sommer-
schield et al. (2023) recently conducted a thorough
survey of machine learning techniques applied to
the study and restoration of ancient texts. Span-
ning digitization (Narang et al., 2019; Moustafa
et al., 2022), restoration, (Assael et al., 2022), at-
tribution (Bogacz and Mara, 2020; Paparigopoulou
et al., 2022) and representation learning (Bamman
and Burns, 2020), a wide range of use cases have
benefitted from the application of machine learning
techniques to study ancient texts. Recently, Lugli
et al. (2022) released a digital corpus of romanized

Buddhist Sanskrit texts, training and evaluating em-
bedding models such as BERT and GPT-2 on them.
However, the use of LLMs as a question-answering
tool to enhance understanding of ancient esoteric
knowledge systems has not yet been systematically
studied. To the best of our knowledge, ours is the
first work that studies the effects of RAG-based
models in the niche knowledge domain of ancient
Indian philosophy.

Retrieval-Augmented LMs. In current LLM
research, retrieval augmented generation models
(RAGs) are gaining popularity (Izacard et al.,
2022; Ram et al., 2023; Khandelwal et al., 2020;
Borgeaud et al., 2022; Menick et al., 2022). A
key area of development in RAGs has been their
architecture. Early approaches involved finetun-
ing the language model on open-domain question-
answering before deployment. MLM approaches
such as REALM (Guu et al., 2020) introduced a
two-stage process combining retrieval and read-
ing, while DPR (Karpukhin et al., 2020) fo-
cused on pipeline training for question answering.
RAG (Lewis et al., 2020b) used a generative ap-
proach with no explicit language modeling. AT-
LAS (Izacard et al., 2022) combined RAG with
retrieval-based pre-training, employing an encoder-
decoder architecture. Very recently, in-context
RALM (Ram et al., 2023) showed that retrieved
passages can be used to augment the input to the
LLM in-context without any fine-tuning like prior
work. In this work, we adopt the in-context re-
trieval augmented methodology similar to (Ram
et al., 2023), where neither the retriever nor the
generator is fine-tuned. This also enables us to use
any combination of retrieval and generation models
that best suits our application.

Applications of RAGs. The applications of
RAGs are diverse and evolving. ATLAS (Izac-
ard et al., 2022) and GopherCite (Menick et al.,
2022) have shown how fine-tuning and reinforce-
ment learning from human feedback can enhance
RAGs’ ability to generate verifiable answers from
reliable sources. GopherCite notably focused on
producing answers with verifiable quotes without
modifying the retrieval model. Prompting tech-
niques have also seen innovation. kNNPrompt (Shi
et al., 2022) extended kNN-LM for zero or few-
shot classification tasks, and retrieval in-context
approaches (Ram et al., 2023; Shi et al., 2023)
have proven effective in utilizing retrieval at the
input stage. Retrieval-LMs have been shown to
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be particularly valuable for handling long-tail or
less frequent entities (Kandpal et al., 2023; Mallen
et al., 2023), updating knowledge (Izacard et al.,
2022), improving parameter efficiency (Izacard
et al., 2022; Mallen et al., 2023), and enhancing
verifiability (Bohnet et al., 2022), making them
increasingly relevant in a wide range of applica-
tions. In our work, we examine the application
of RAGs for long-tail knowledge, conducting an
extensive study on a niche knowledge domain of
ancient Indian philosophy.

Evaluation of LFQA The field of long-form
question answering (LFQA) is an emerging area
of active research (Krishna et al., 2021; Nakano
et al., 2021; Xu et al., 2023). Recently, Xu et al.
(2023) conducted a thorough examination of vari-
ous LFQA metrics, encompassing both human and
automatic evaluation methods, and found that ex-
isting automatic metrics don’t always align with
human preferences. Based on their suggestions,
we place special emphasis on conducting an ex-
tensive human evaluation utilizing the expertise of
experienced computational linguists and domain
experts.

3 The VedantaNY-10M Dataset

We first describe our niche domain dataset creation
process. The custom dataset for our study needs
to satisfy the following requirements: (1) Niche:
Must be a specialized niche knowledge domain
within the LLM’s long-tail distribution. (2) Novel:
The LLM must not have previously encountered the
source material. (3) Authentic: The dataset should
be authentic and representative of the knowledge
domain. (4) Domain experts: should be available
to evaluate the model’s effectiveness and utility.

Knowledge domain. To satisfy the first require-
ment, we choose our domain to be the niche knowl-
edge system of Advaita Vedanta, a 2500-year-old
Indian school of philosophy (Shankaracharya, 450
B.C.E.) based on the Upanishads (>3000 B.C.E.),
Bhagavad Gita (3000 B.C.E.) and Brahmasutras
(3000 B.C.E.)1. It is a contemplative knowledge
tradition that employs a host of diverse tools and

1Currently there exists no consensus on accurately dating
these ancient scriptures. The Upanishads (which are a part of
the Vedas) have been passed on orally for millennia and are
traditionally not given a historic date. However, they seem to
have been compiled and systematically organized sometime
around 3000 B.C.E. by Vyasa. Likewise, the time period
of Adi Shankaracharya also varies and he is usually placed
between 450 B.C.E to 700 C.E.

techniques including analytical reasoning, logic,
linguistic paradoxes, metaphors and analogies to
enable the seeker to enquire into their real nature.
Although a niche domain, this knowledge system
has been continuously studied and rigorously devel-
oped over millenia, offering a rich and structured
niche for the purposes of our study. Being a living
tradition, it offers the additional advantage of pro-
viding experienced domain experts to evaluate the
language models in this work.

Composition of the dataset. Considering the
outlined criteria, we introduce VedantaNY-10M,
a curated philosophy dataset of public discourses.
To maintain authenticity while ensuring that the
LLM hasn’t previously been exposed to the source
material, we curate our dataset from a collection of
YouTube videos on Advaita Vedanta, sourced from
the Vedanta Society of New York. It contains 10M
tokens and encompasses over 750 hours of philo-
sophical discourses by Swami Sarvapriyananda, a
learned monk of the Ramakrishna Order. These
discourses provide a rich and comprehensive expo-
sition of the principles of Advaita Vedanta, making
them an invaluable resource for our research.

Languages and scripts. The dataset primarily
features content in English, accounting for approx-
imately 97% of the total material. Sanskrit, the
classical language of Indian philosophical litera-
ture, constitutes around 3% of the dataset. The
Sanskrit terms are transliterated into the Roman
script. To accommodate the linguistic diversity
and the specific needs of the study, the dataset in-
cludes words in both English and Sanskrit, without
substituting the Sanskrit terms with any English
translations. Translating ancient Sanskrit techni-
cal terms having considerably nuanced definitions
into English is a non-trivial problem (Malhotra and
Babaji, 2020). Hence, our dual-language approach
ensures that the Sanskrit terms and concepts are
accurately represented and accessible, thereby en-
hancing the authenticity of our research material.
For a sample of the Sanskrit terms present in the
corpus, please refer to Appendix Tab. 2.

4 In-context RAG for niche domains

We now discuss the methodology adopted to build
an in-context retrieval augmented chatbot from the
custom dataset described above.

We first define a generic chatbot Cg that does
not use retrieval as follows: Cg : q → ag where q
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Figure 1: Sanskrit terms in VedantaNY-10M. Fre-
quently occurring Sanskrit terms in the corpus.

is the user query and ag is the answer generated by
the chatbot. Now, let Dt represent the textual data
corpus from our knowledge domain and R be the
retriever. Our goal is to build a retrieval-augmented
generation chatbot Cr : q × R(Dt, q) → ar that
will generate answer ar for the query by retrieving
relevant context from Dt using R. An overview of
our approach is illustrated in Fig. 2. We first build
Dt from 765 hours of public discourses on Advaita
Vedanta introduced in Sec. 3. When deployed, the
system processes q by first using retriever R to
identify the top-k most relevant passages P from
Dt using a similarity metric. Subsequently, a large
language model (LLM) is prompted with both the
query and the retrieved passages in-context, follow-
ing Ram et al. (2023), to generate a contextually
relevant response.

We now describe each of the components in de-
tail. We follow a four-stage process as follows:

Transcription. We first need to create a dense
textual corpus targeted at our niche domain. Since
our dataset consists of YouTube videos, we first
employ a transcription model to transcribe the au-
dio into text. Our video corpus Dv consists of
612 videos totaling 765 hours of content, with an
average length of 1.25 hours per video. We ex-
tract audio content from Dv and transcribe it using
OpenAI’s Whisper large-v2 model (Radford et al.,
2023). This step converts the spoken discourses
into a transcribed textual corpus Dt consisting of
10M tokens in total. Since Whisper is a multi-
lingual model, it has the capacity to support the
dual-language nature of our dataset. We evaluate
the transcription quality of Whisper in Sec. C.1.

Datastore creation. The transcribed text in Dt

is then segmented into shorter chunks called pas-
sages P , consisting of 1500 characters each. These
chunks are then processed by a deep embedder to
produce deep embedding vectors zdense. These em-

bedded chunks are stored in a vector database Dz .
Ultimately, we store approximately 25,000 passage
embeddings z ∈ Dz , each representing a discrete
chunk of the philosophical discourse in Dt.

Retrieval. To perform retrieval-augmented gen-
eration, we first need to build a retrieval system
R : Dz × q → P that retrieves contextually rel-
evant textual passages P from Dt given Dz and
q. The retriever performs the following operation
to retrieve relevant passages: P = Dt[argTop-
kz∈Dzsim(q, z)], where we use cosine similarity
as the similarity metric. Standard RAG models em-
ploy state-of-the-art deep embedders to encode doc-
uments and retrieve them during inference. How-
ever, these semantic embeddings can struggle to
disambiguate between specific niche terminology
in custom domains (Mandikal and Mooney, 2024).
This can be particularly problematic in datasets
having long-tail distributions such as ours. In
addition, retrieved fixed-length passages are sub-
optimal. Short incomplete contexts can be partic-
ularly damaging for LFQA, while longer contexts
can contain unnecessary information that can con-
fuse the generation model. To mitigate these two
issues, we experiment with two key changes: (1) a
keyword-based hybrid retriever to focus on unique
low-frequency words, and (2) a context-refiner to
meaningfully shorten or expand retrieved context.

1. Keyword-based retrieval. To emphasize
the importance of key terminology, we first
employ keyword extraction and named-entity
recognition techniques on the query q to ex-
tract important keywords κ. During retrieval,
we advocate for a hybrid model combining
both deep embeddings as well as sparse vector
space embeddings. We encode the full query
in the deep embedder and assign a higher im-
portance to keyphrases in the sparse embedder.
The idea is to have the sparse model retrieve
domain-specific specialized terms that might
otherwise be missed by the deep model. Our
hybrid model uses a simple weighted combina-
tion of the query-document similarities in the
sparse and dense embedding spaces. Specifi-
cally, we score a document D for query q and
keywords κ using the ranking function:

Shybrid(D, q) =λ Sim
(
zd(D), zd(q)

)
+

(1− λ) Sim
(
zs(D), zs(κ)

)

(1)
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Figure 2: Overview of the RAG model. We build VedantaNY-10M, a datastore from 750+ hours of public
discourses on the ancient Indian philosophy of Advaita Vedanta and build a Retrieval-Augmented Generation
(RAG) chatbot on this knowledge domain. At deployment, given a query q, the retriever R first retrieves the top-k
most relevant passages P from the datastore using a hybrid keyword-based retriever. It then refines this retrieved
context using a keyword-based context reshaper to shorten or lengthen the passage. Finally, an LLM is invoked by
prompting it with the query and the retrieved passages in-context. An extensive evaluation is conducted to evaluate
this model with the help of computational linguists and domain experts to assess its real-world utility and identify
challenges.

Where zd and zs denotes the dense and sparse
embedding functions and Sim is cosine simi-
larity measuring the angle between such vec-
tor embedddings. In our experiments, we set
λ = 0.2. Amongst the top-n retrieved pas-
sages, we choose k passages containing the
maximum number of unique keywords.

2. Keyword-based context refinement. Fur-
thermore, we refine our retrieved passages
by leveraging the extracted keywords using
a heuristic-based refinement operation to pro-
duce P ′ = Ref(P, κ). For extension, we ex-
pand the selected passage to include one pre-
ceding and one succeeding passage, and find
the first and last occurrence of the extracted
keywords. Next, we trim the expanded context
from the first occurrence to the last. This can
either expand or shorten the original passage
depending on the placement of keywords. This
ensures that retrieved context contains relevant
information for the generation model.

Generation. For answer generation, we construct
prompt p from the query q and the retrieved pas-
sages (P ′

1, P ′
2, ..., P ′

k) ∈ P in context. Finally, we
invoke the chatbot Cr to synthesize an answer ar

from the constructed prompt. For an example of
the constructed RAG bot prompt, please refer to
Fig. 4. This four-stage process produces a retrieval-
augmented chatbot that can generate contextually
relevant responses for queries in our niche domain.

Implementation Details. For embedding and
generation, we experiment with both closed and
open source language models. For RAG vs
non-RAG comparison, we use OpenAI’s text-
embedding-ada-002 model (Brown et al., 2020) as
the embedder and GPT-4-turbo (OpenAI, 2023)
as the LLM for both Cr and Cg. For com-
paring RAG model variants, we use the open
source nomic-embed-text-v1 (Nussbaum et al.,
2024) as our deep embedder and Mixtral-8x7B-
Instruct-v0.1 (Jiang et al., 2024) as our gen-
eration model. For keyword extraction, we
use an ensemble of different models including
OpenKP (Xiong et al., 2019), KeyBERT (Groo-
tendorst, 2020) and SpanMarker (Aarsen, 2020).
We experimented with using language models such
as ChatGPT for keyword extraction, but the re-
sults were very poor as also corroborated in Song
et al. (2024). For further implementation de-
tails of the eval metrics, see Appendix Sec. A.
The VedantaNY-10M dataset, code and evalua-
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tion is publicly available at https://github.com/
priyankamandikal/vedantany-10m.

5 Evaluation

We now evaluate the model along two axes: auto-
matic evaluation metrics and a human evaluation
survey. To ensure a broad and comprehensive eval-
uation, we categorize the questions into five distinct
types, each designed to test different aspects of the
model’s capabilities:

1. Anecdotal: Generate responses based on sto-
ries and anecdotes narrated by the speaker in
the discourses.

2. Comparative: Analyze and compare differ-
ent concepts, philosophies, or texts. This cate-
gory tests the model’s analytical skills and its
ability to draw parallels and distinctions.

3. Reasoning Require logical reasoning, critical
thinking, and the application of principles to
new scenarios.

4. Scriptural: Test the model’s ability to ref-
erence, interpret, and explain passages from
religious or philosophical texts.

5. Terminology: Probe the model’s understand-
ing of specific technical terms and concepts.

For a sample set of questions across the above
five categories, please refer to Appendix Tab. 4.

5.1 Automatic Evaluation

Inspired by Xu et al. (2023), we conduct an exten-
sive automatic evaluation of the two RAG models
on our evaluation set. We describe each metric
type below and provide implementation details in
Appendix Sec. A. Due to the lack of gold answers,
we are unable to report reference-based metrics.

Answer-only metrics: We assess features like
fluency and coherence by analyzing responses with
specific metrics: (1) Self-BLEU (Zhu et al., 2018)
for text diversity, where higher scores suggest less
diversity, applied in open-ended text generation; (2)
GPT-2 perplexity for textual fluency, used in prior
studies on constrained generation. We also consider
(3) Word and (4) Sentence counts as length-based
metrics, owing to their significant influence on hu-
man preferences (Sun et al., 2019; Liu et al., 2022;
Xu et al., 2023).

(Question, answer) metric: To ensure answers
are relevant to the posed questions, we model
p(q|a) for ranking responses with RankGen (Kr-
ishna et al., 2022). This encoder, leveraging the
T5-XXL architecture, is specially trained via con-
trastive learning to evaluate sequences generated by
models based on their congruity with a given prefix,
in this context, the question. A higher RankGen
score indicates a stronger alignment between the
question and the answer, serving as a measure of
relevance.

(Answer, evidence) metric: A key challenge in
LFQA is assessing answer correctness without ded-
icated factuality metrics, akin to summarization’s
faithfulness. We apply QAFactEval (Fabbri et al.,
2022), originally for summarization, to LFQA by
considering the answer as a summary and evidence
documents as the source. Answers deviating from
source content, through hallucinations or external
knowledge, will score lower on this metric.

5.2 Human Evaluation

We have three experienced domain experts eval-
uate the models across the five categories. Each
of these experts is closely associated with Vedanta
Society of New York, and has extensively studied
the philosophy in question for up to a decade on
average, being well-versed with domain-specific
terminology and conceptual analysis. We conduct
the human survey along two dimensions: retrieval
and generation. For retrieval, we evaluate relevance
and completeness, and for generation we evaluate
factual correctness and completeness. In addition,
we ask the reviewers to provide free-form justifi-
cation for their choices, which proves to be very
useful in analyzing the two models.

Relevance: Defined as the relevance of the re-
trieved passages to the user query, this metric is
scored on a scale from 1 to 5 (where 1 = Not at all
relevant, 5 = Extremely relevant).

Correctness: Factual accuracy of the generated
answer (1 = Factually inaccurate, 5 = No inaccura-
cies)

Completeness: This metric measures if the re-
trieved passage and generated answer comprehen-
sively cover all parts of the query (1 = Not at all
comprehensive - misses crucial points, 5 = Very
comprehensive and specific).
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GenerationTranscription

Retrieval Hallucinations Outside Knowledge

Figure 3: Human evaluation: RAG vs non-RAG. The RAG model outperforms the generic model across
various metrics, particularly in factuality, completeness and specificity, while being marginally lower in ease of
understanding.

5.3 Results: RAG vs Non-RAG

We first conduct a human evaluation survey with 5
computational linguists and 3 domain experts on
RAG vs non-RAG models. In the evaluation of the
generation capabilities of our models, we consider
five metrics: factuality, completeness, specificity,
ease of understanding, and faithfulness. The per-
formance of the RAG model is compared against a
baseline non-RAG model across these dimensions
in Fig. 3. The RAG model substantially outper-
forms the non-RAG model across various metrics,
particularly in factuality, completeness and speci-
ficity, while being marginally lower in ease of un-
derstanding. Sample responses in Figs. 6-10.

5.4 Results: Standard RAG vs
Keyword-based RAG

We report results in Tab. 1. All human evalua-
tion scores are normalized between 0 to 1. The
keyword based RAG model shows strong improve-
ment across all automatic metrics while signifi-
cantly outperforming the standard model in the
human evaluation. Amongst the answer-only met-
rics, the model tends to produce longer, more com-
prehensive answers (indicated by longer length),
which are more coherent (lower self-bleu and per-
plexity). The question-answer RankGen (Krishna

et al., 2022) metric evaluates the probability of the
answer given the question. A higher score for the
model suggests more relevant answers to the ques-
tion. Most notably, the keyword model does very
well on QAFactEval (Fabbri et al., 2022). It eval-
uates faithfulness by comparing answers from the
summary (in our case, the answer) and the evidence
document (retrievals). A higher score indicates
greater faithfulness of the answer to retrieved pas-
sages, indicating fewer hallucinations and reliance
on outside knowledge.

Coming to the human evaluation, from Tab. 1, a
relevance rating of 0.87 for keyword-based RAG
vs 0.58 for standard RAG indicates a strong align-
ment between the retrieved content and the users’
queries for our model, demonstrating the efficacy
of the retrieval process. On the other hand, the stan-
dard model sometimes fails to disambiguate unique
terminology and retrieves incorrect passages (see
Fig. 11). In assessing the accuracy of the gener-
ated answer, the keyword-based RAG model signif-
icantly outperforms the standard model, indicating
better alignment with verifiable facts. Refer to
Fig. 12 for an example of a factually inaccurate
response from the generic model. The keyword
model gets higher completeness scores for both the
retrievals as well as generation. Sample responses
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Category Mean Anecdotal Comparative Reasoning Scriptural Terminology
RAG Model M1/M2 M1/M2 M1/M2 M1/M2 M1/M2 M1/M2

Automatic metrics
Answer-only

Self-bleu ↓ 0.16/0.13 0.11/0.05 0.10/0.06 0.15/0.27 0.13/0.16 0.09/0.14
GPT2-PPL ↓ 16.6/15.3 16.6/16.6 16.9/15.7 13.9/11.9 14.2/14.7 21.5/17.7
# Words ↑ 196/227 189/189 174/206 218/282 225/243 216/261
# Sentences ↑ 9.0/10.1 8.2/7.6 7.8/9.4 9.6/11.8 10.0/10.6 9.4/11.0

(Question, answer)
RankGen ↑ 0.46/0.48 0.42/0.52 0.44/0.47 0.41/0.43 0.51/0.52 0.52/0.46

(Answer, retrievals)
QAFactEval ↑ 1.36/1.60 1.01/1.14 1.53/1.94 1.18/1.61 1.52/1.36 1.56/1.95

Human evaluation
Retrieval

Relevance ↑ 0.59/0.82 0.41/0.88 0.79/0.85 0.73/0.83 0.48/0.73 0.55/0.81
Completeness ↑ 0.52/0.79 0.41/0.86 0.72/0.79 0.57/0.83 0.37/0.68 0.52/0.79

Answer
Correctness ↑ 0.61/0.86 0.40/0.89 0.81/0.88 0.71/0.85 0.52/0.81 0.63/0.89
Completeness ↑ 0.58/0.85 0.42/0.92 0.80/0.85 0.72/0.81 0.49/0.77 0.63/0.91

Table 1: Automatic and human evaluation: standard RAG (M1) vs keyword-based RAG (M2). We report both
automatic and human evaluation metrics calculated on 25 triplets of {question, answer, retrievals} across 5 different
question categories. The key-word based RAG model shows strong improvement across all automatic metrics while
significantly outperforming the standard model in the human evaluation.

are shown in Figs. 11-15.

6 Challenges

The evaluation in Sec. 5 shows that the RAG model
provides responses that are not only more aligned
with the source material but are also more compre-
hensive, specific, and user-friendly compared to the
responses generated by the generic language model.
In this section, we discuss the challenges we en-
countered while building the retrieval-augmented
chatbot for the niche knowledge domain of ancient
Indian philosophy introduced in this work.

Transcription. Our requirement of using a niche
data domain having long-tail knowledge precludes
the use of source material that the LLM has previ-
ously been exposed to. To ensure this, we construct
a textual corpus that is derived from automated tran-
scripts of YouTube discourses. These transcripts
can sometimes contain errors such as missing punc-
tuations, incorrect transcriptions, and translitera-
tions of Sanskrit terms. A sample of such errors is
shown in Appendix Tab. 3. A proofreading mech-
anism and/or improved transcription models can
help alleviate these issues to a large extent.

Spoken vs written language. Unlike traditional
textual corpora that are compiled from written
sources, our dataset is derived from spoken dis-
courses. Spoken language is often more verbose
and less structured than written text, with the
speaker frequently jumping between concepts mid-
sentence. This unstructured nature of the text can

be unfamiliar for a language model trained exten-
sively on written text, which expects a more coher-
ent and structured input. A peculiar failure case
arising from this issue is shown in Appendix Fig. 5.
This can be addressed by converting the spoken
text into a more structured prose format with the
help of well-crafted prompts to LLMs, followed by
human proofreading.

Context length. The passages retrieved in the
standard model are of a fixed length and can some-
times be too short for many queries, especially for
long-form answering. As an example, the retrieved
passage may include a snippet from the middle of
the full context. As a result, the chatbot response
may be incomplete or incoherent (Fig. 10). This
motivated us to employ a keyword-based context-
expansion mechanism to provide a more compre-
hensive context. While this results in much better
answer generation, the retrieved passage may con-
tain too much information, making it difficult for
the generator to reason effectively. Moreover, the
increase in the number of tokens increases process-
ing time. Future work can explore more advanced
retrieval models capable of processing longer con-
texts and summarizing them effectively before in-
put to the LLM.

Retrieval-induced hallucinations. There are
scenarios when the RAG models can latch onto
a particular word or phrase in the retrieved passage
and hallucinates a response that is not only irrele-
vant but also factually incorrect. A sample of such
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a hallucination is shown in Fig. 9. This is a more
challenging problem to address, however retrieval
models that can extract the full context, summa-
rize it and remove irrelevant information should
be capable of mitigating this issue to a reasonable
extent.

7 Conclusion

In this work, we integrate modern retrieval-
augmented large language models with the ancient
Indian philosophy of Advaita Vedanta. Toward this
end, we present VedantaNY-10M, a large dataset
curated from automatic transcriptions of extensive
philosophical discourses on YouTube. Validating
these models along various axes using both auto-
matic and human evaluation provides two key in-
sights. First, RAG models significantly outperform
non-RAG models, with domain experts expressing
a strong preference for using such RAG models
to supplement their day-to-day study. Second, the
keyword-based hybrid RAG model underscores the
merits of integrating classical and contemporary
deep learning techniques for retrieval in niche and
specialized domains. While there is much work
to be done, our study underscores the potential of
integrating modern machine learning techniques to
unravel ancient knowledge systems.

Limitations and Future Work

While our study demonstrates the utility of integrat-
ing retrieval-augmented LLMs with ancient knowl-
edge systems, there are limitations and scope for
future work. First, this study is conducted for a
single niche domain of Advaita Vedanta as taught
by a single teacher. Extending this study to in-
clude other ancient systems of philosophy such as
the Vedantic schools of Vishishtadvaita, Dwaita,
as well as the various Buddhist and Jain schools
will be an interesting extension of this work. Sec-
ond, expanding the evaluation set and involving
more subjects for evaluation and will considerably
strengthen the scope of the study. Third, in addition
to the spoken discourses, incorporating the primary
scriptural sources that the philosophical school is
based on will further enhance the authenticity of
the RAG model generation. Fourth, while we only
experiment with RAG models in this study, fine-
tuning the language models themselves on the phi-
losophy datasets is an interesting future direction.
Finally, while the language models in this work are
primarily in English and in the Latin script, build-

ing native LLMs having the capacity to function
in the original Sanskrit language of the scriptures
using Devanagari script is essential future work.
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Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. EMNLP.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. ICLR.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mo-
hit Iyyer. 2022. Rankgen: Improving text gener-
ation with large ranking models. arXiv preprint
arXiv:2205.09726.

Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021.
Hurdles to progress in long-form question answering.
Association for Computational Linguistics.

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and
Marti A. Hearst. 2022. Summac: Re-visiting nli-
based models for inconsistency detection in summa-
rization. Transactions of the Association for Compu-
tational Linguistics, 10:163–177.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020a.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020b. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems.

Yixin Liu, Alexander R. Fabbri, Pengfei Liu, Yilun
Zhao, Linyong Nan, Ruilin Han, Simeng Han,
Shafiq R. Joty, Chien-Sheng Wu, Caiming Xiong,
and Dragomir R. Radev. 2022. Revisiting the gold
standard: Grounding summarization evaluation with
robust human evaluation. ArXiv, abs/2212.07981.

Ligeia Lugli, Matej Martinc, Andraž Pelicon, and Senja
Pollak. 2022. Embeddings models for buddhist San-
skrit. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference.

Rajiv Malhotra. 2021. Artificial Intelligence and the Fu-
ture of Power: 5 Battlegrounds. Rupa Publications.

Rajiv Malhotra and Satyanarayana Dasa Babaji. 2020.
Sanskrit Non-Translatables: The Importance of San-
skritizing English. Amaryllis.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Hannaneh Hajishirzi, and Daniel Khashabi. 2023.
When not to trust language models: Investigating
effectiveness and limitations of parametric and non-
parametric memories. ACL.

233

https://doi.org/10.18653/v1/2020.emnlp-main.528
https://doi.org/10.18653/v1/2020.emnlp-main.528
https://doi.org/10.18653/v1/2020.emnlp-main.528
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://aclanthology.org/2021.naacl-main.393
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


Priyanka Mandikal and Raymond Mooney. 2024.
Sparse meets dense: A hybrid approach to enhance
scientific document retrieval. In The 4th CEUR Work-
shop on Scientific Document Understanding, AAAI.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Jacob Menick, Maja Trebacz, Vladimir Mikulik,
John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-
Gillingham, Geoffrey Irving, et al. 2022. Teaching
language models to support answers with verified
quotes. arXiv preprint arXiv:2203.11147.

Ragaa Moustafa, Farida Hesham, Samiha Hussein, Badr
Amr, Samira Refaat, Nada Shorim, and Taraggy M
Ghanim. 2022. Hieroglyphs language translator us-
ing deep learning techniques (scriba). In 2022 2nd In-
ternational Mobile, Intelligent, and Ubiquitous Com-
puting Conference (MIUCC). IEEE.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Sonika Narang, MK Jindal, and Munish Kumar. 2019.
Devanagari ancient documents recognition using sta-
tistical feature extraction techniques. Sādhanā, 44.
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A Implementation Details

A.1 Automatic Metrics
Following Xu et al. (2023), we implement a num-
ber of automatic evaluation metrics for LFQA as
described below.

Length We use the Spacy package (Honnibal
et al., 2020) for word tokenization.

Self-BLEU We calculate Self-BLEU by regard-
ing one sentence as hypothesis and all others in the
same answer paragraph as reference. We report
self-BLEU-5 as a measure of coherence.

RankGen For a given question q and a model-
generated answer a, we first transform them into
fixed-size vectors (q,a) using the RankGen en-
coder (Krishna et al., 2022). To assess their rel-
evance, we compute the dot product q · a. We
utilize the T5-XXL (11B) encoder, which has been
trained using both in-book negative instances and
generative negatives.

QAFactEval QAFactEval is a QA-based metric
recently introduced by Fabbri et al. (2022). It has
demonstrated exceptional performance across mul-
tiple factuality benchmarks for summarization (La-
ban et al., 2022; Maynez et al., 2020). The pipeline
includes four key components: (1) Noun Phrase
(NP) extraction from sentence S represented as
Ans(S), (2) BART-large (Lewis et al., 2020a) for
question generation denoted as QG, (3) Electra-
large (Clark et al., 2020) for question answering la-
beled as QA, and (4) learned metrics LERC (Chen
et al., 2020), to measure similarity as Sim(pi, si).
An additional answerability classification module
is incorporated to assess whether a question can
be answered with the information provided in doc-
ument D. Following Xu et al. (2023), we report
LERC, which uses the learned metrics to compare
AnsS and AnsD(a).

A.2 Chat Prompt
For an example of the constructed RAG bot prompt,
please refer to Fig. 4. In this scenario, the RAG
bot Cr is presented with the top-k retrieved pas-
sages alongside the query for generating a response,
whereas a generic bot Cg would only receive the
query without additional context.

B Sample Sanskrit terms

Tab. 2 contains excerpts from passages containing
Sanskrit terms. The Sanskrit terms are italicized

RAG Bot
You are a helpful assistant that accurately 
answers queries using Swami Sarvapriyananda's 
YouTube talks. Use the following passages to 
provide a detailed answer to the query: {query}
Passages:
{Passage 1}
{Passage 2}
...
{Passage k}

Generic Bot
You are a helpful assistant that accurately 
answers queries using Swami Sarvapriyananda's 
YouTube talks. Provide a detailed answer to the 
query: {query}

RAG Bot

Generic Bot

Figure 4: Prompts for the RAG and generic chatbots.
RAG Bot receives the top-k retrieved relevant passages
in the prompt along with the query, while the generic
bot only receives the query.

and underlined. Notice that the passages contain
detailed English explanations of these terms. To
retain linguistic diversity, authenticity and compre-
hensiveness of the source material, we retain these
Sanskrit terms as is in our passages as described in
Sec. 3. Note that these are direct Whisper (Radford
et al., 2023) transcriptions with no further post-
processing or proofreading. Transcriptions may
not always be accurate.

C Transcription

We asses the transcript quality and list out some
common errors.

C.1 Transcript Evaluation
Transcription quality is scored on a scale from 1 to
5 (where 1 = Poor, 5 = Perfect). On 10 randomly
sampled transcripts, evaluators assign a high av-
erage score of 4.48 suggesting that the transcrip-
tion of YouTube audio into text is highly accurate
and clear, indicating that our constructed custom
dataset Dt is of high quality.

C.2 Transcript Errors
Tab. 3 contains a few sample transcription errors.
The transcriptions are largely good for English
words and sentences. However, errors often arise
from incorrectly transcribing Sanskrit terms and
verses. Other less common errors include missing
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or incorrect punctuation. Human proofreading will
remove these errors to a large extent.

D Spoken vs written language

Unlike traditional textual corpora that are compiled
from written sources, our dataset is derived from
spoken discourses. Spoken language is often more
verbose and less structured than written text, with
the speaker frequently jumping between concepts
mid-sentence. This unstructured nature of the text
can be unfamiliar for a language model trained ex-
tensively on written text, which expects a more
coherent and structured input. Fig. 6 shows a pecu-
liar failure case arising from this issue. The speaker
jumps between speaking about Aldous Huxley and
Alan Watts. As a result, the RAG bot incorrectly
attributes information about Huxley to Watts while
answering the query. Due to the unstructured na-
ture of the spoken text, such errors can occur. This
can be addressed by converting the spoken text into
a more structured prose format with the help of
well-crafted prompts to LLMs, followed by human
proofreading.

E Question Categories

To ensure a broad and comprehensive evaluation,
we categorize the questions into five distinct types—
anecdotal, teminology, scriptural, comparative and
reasoning. Questions from each of these categories
is provided in Tab. 4. Each category is designed
to test different aspects of the model’s capabilities.
For details, refer to Sec. 5.

F Sample Responses: RAG vs Non-RAG

In Figs. 6-10, we present the sample queries and
responses from the RAG and generic chatbots for
five sample queries. The query is highlighted in
yellow, RAG response is in the green box. Non-
RAG response is in the red box. We use GPT-4-
turbo (OpenAI, 2023) as the large language model
for both of them.

G Sample Responses: Standard RAG vs
Keyword-based Hybrid RAG

In Figs. 11-15, we present the sample queries and
responses from the standard RAG and keyword-
based hybrid RAG model for one query each
from five categories. We additionally also show
the human-annotated and model generated key-
words. Keyword-RAG response is in the green
box. Standard-RAG response is in the red box.
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RAG Bot

Was Alan Watts' associated with Vedanta?

Figure 5: Subject confusion: Aldous Huxley vs Alan Watts. In the retrieved passage, the speaker jumps between
speaking about Aldous Huxley and Alan Watts. Moreover, the transcription has poor punctuation. As a result, the
RAG bot incorrectly attributes information about Huxley to Watts in the response. Due to the unstructured nature of
the spoken text, such errors can occur. This can be addressed by converting the spoken text into a more structured
prose format with the help of well-crafted prompts to LLMs, followed by human proofreading.
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Sl. No. Excerpts from passages Notes

1. Om Bhadram Karne Bhishrinu Yamadevaha Bhadram
Pashyam Akshabhirya Jatraaha Sthirai Rangai Stushta
Vagam Sasthanubhi Vyase Madevahitaiyadayoh Swasthina
Indro Vriddha Shravaha Swasthina Phusa Vishwa Vedaaha
Swasthina Starksho Arishta Nemi Swasthino Brihas Patir
Dadhatu Om Shanti Shanti Shanti.

This is a Sanskrit chant which
is directly Romanized and pro-
cessed. The automatic tran-
scriptions often contain errors
in word segmentation for San-
skrit verses.

2. Samsara is our present situation, the trouble that we are
caught in, the mess that we are caught in. Samsara is this.
In Sanskrit, normally when you use the word samsara, it
really means this world of our life, you know, being born
and struggling in life and afflicted by suffering and death
and hopelessness and meaninglessness.

Samsara is a Sanskrit term.
The excerpt contains an expla-
nation of the concept in En-
glish.

3. The problem being ignorance, solution is knowledge and the
method is Jnana Yoga, the path of knowledge. So what is
mentioned here, Shravana Manana Nididhyasana, hearing,
reflection, meditation, that is Jnana Yoga. So that’s at the
highest level of practice, way of knowledge.

The excerpt contains an expla-
nation of Jnana Yoga, the path
of knowledge.

4. In Sanskrit, ajnana and adhyasa, ignorance and superim-
position. Now if you compare the four aspects of the self,
the three appearances and the one reality, three appearances,
waker, dreamer, deep sleeper, the one reality, turiyam, if
you compare them with respect to ignorance and error, you
will find the waker, that’s us right now. We have both igno-
rance and error.

Ajnana, adhyasa and turiyam
are Sanskrit terms. Notice that
the passage implicitly contains
rough English translations of
these terms in the context of
the overall discourse. For in-
stance, ajnana is translated
as ignorance and adhyasa is
translated as superimposition.

5. Mandukya investigates this and points out there is an un-
derlying reality, the Atman, pure consciousness, which has
certain characteristics. This is causality, it is beyond causal-
ity. It is neither a cause nor an effect. The Atman is not
produced like this, nor is it a producer of this. It is be-
yond change. No change is there in the Atman, nirvikara.
And third, it is not dual, it is non-dual, advaitam. This is
kadyakarana in Sanskrit, this is kadyakarana vilakshana
Atma. In Sanskrit this is savikara, this is nirvikara Atma.
This is dvaita, this is advaita Atma. So this is samsara and
this is moksha, freedom.

The excerpt contains an ex-
planation of different Sanskrit
technical terms.

Table 2: Excerpts from passages containing Sanskrit terms. These excerpts contain detailed English descriptions
of technical terms in Sanskrit (italicized and underlined). To retain authenticity to the source material, we retain
these Sanskrit terms as is in our passages. Note that these are direct Whisper (Radford et al., 2023) transcriptions
with no further post-processing or proofreading, so transcriptions may not always be accurate. For more details,
refer to Sec. B.
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Sl. No. Transcription errors Notes

1. That’s what Sam Altman, Chachjipiti, some-
body asked him.

Should be ChatGPT

2. Last year, you studied extensively with Profes-
sor Garfield, I believe, studying Vajamaka and
the teachings of the Garjuna.

Should be Madhyamaka
and Nagarjuna, respec-
tively

3. From attachment comes desire, raga, I want
it and if that desire is satisfied then there is no
end to it, greed, lobha. But if it is somehow
thwarted, then anger, kama krodho vijayate.

Should be bhijayate

4. In fact, one of the terms which is used
in Mandukya Upanishad, Brahman is
abhyavaharyam.

Should be avyavaharam

5. So, one of them was the Brahmo Samad,
which was quite popular in Calcutta in those
days.

Should be Samaj

6. I am awareness I’m eternal consciousness Al-
dous Huxley Christopher Isherwood Gerald
Hurd all of them were very close to Swami
Prabhavananda in Southern California in Hol-
lywood and look at the product of that Ish-
erwood wrote that one of the most amazing
biographies

The transcripts sometimes
miss punctuation marks,
making the passage dif-
ficult to comprehend for
both humans and language
models

Table 3: Sample transcription errors. For constructing our text corpus, we directly use the transcripts obtained
from Whisper (Radford et al., 2023) with no further post-processing or proofreading. The transcriptions are largely
good (with a score of 4.5/5 from human evaluators). However, errors arise from incorrectly transcribing Sanskrit
terms, missing punctuations, etc. Human proofreading will remove these errors to a large extent.
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Category Description Questions

Anecdotal

Stories and
anecdotes
narrated by the
speaker in the
discourses

• Does Swami speak about Wittgenstein’s thesis defense?
• Does Swami narrate any incident surrounding Shivaratri?
• Does Swami speak about The Matrix movie?
• Does Swami speak about Vachaspati Mishra? Does he narrate
how Bhamati came to be written?
• What was Christopher Isherwood’s contribution to Vedanta?

Terminology

Probe the
model’s
understanding
of specific terms
and concepts

• What is Adhyaropa Apavada?
• What is Vikshepa Shakti?
• What is the significance of the word ‘Shraddha’?
• What is Upadana Karana?
• What constitutes Sadhana Chatushtaya?

Scriptural

Reference,
interpret, and
explain
passages from
religious or
philosophical
texts

• In Mandukya Upanishad, what is the significance of the word
‘Om’?
• In the Gospel, what parable does Sri Ramakrishna use to portray
intense longing for God?
• In the Mundaka Upanishad, how do we interpret the parable of
the two birds?
• How is Phala Vyapti and Vritti Vyapti defined in Vedantasara?
• In the Gospel of Sri Ramakrishna, how do we understand the
analogy of the salt doll that Thakur provides?

Comparative

Analyze and
compare
different
concepts,
philosophies, or
texts

• As mentioned in the Yoga Sutras, is Samadhi necessary to attain
enlightenment according to Advaita Vedanta?
• Would Sri Ramakrishna’s teachings be considered purely Ad-
vaitic?
• In Kashmir Shaivism, Chit is both Prakasha and Vimarsha i.e. it
is both self-lumious and self-reflective. Would Advaita Vedanta
agree with this?
• How does Sankhya differ from Advaita Vedanta?
• What is the main difference between Buddhist Shunyavada and
Advaita Vedanta?

Reasoning

Require logical
reasoning,
critical thinking,
and the
application of
principles to
new scenarios

• Can AI ever become conscious?
• Is the waking state similar to a dream or absolutely indistinguish-
able from the dream state?
• Do our senses report reality to us?
• Dis-identifying myself from the body-mind seems to require a
lot of effort. Did the reverse process of identification also involve
as much effort?
• If Brahman as Existence-Consciousness-Bliss is the eternal sub-
ject that cannot be objectified, yet eternally reveals itself to give
rise to apparent objects through the principle of Maya, can we
infer that Brahman is Existence-Consciousness-Bliss-Maya? That
is, is Brahman inseparable from Maya?

Table 4: Question categories. To ensure a broad and comprehensive evaluation, we categorize the questions into
five distinct types, each designed to test different aspects of the model’s capabilities. For details, refer to Sec. 5.
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Generic Non-RAG Bot

RAG Bot

Sam Altman says that he believes in the absolute equivalence of 
Brahman and Atman. What does it mean?

Figure 6: RAG vs Non-RAG: Sam Altman on Atman and Brahman. The retrieved passages are very good at
capturing the context of the query. The first passage references the monk speaking about Sam Altman and his
views on Atman and Brahman. The second passage contains a brief explanation of Atman and Brahman that is
helpful to answer the query. The generic bot also generates a reasonable answer. However, it has a sentence stating
that, “Atman is a part of Brahman”. This is incorrect in the context of Advaita Vedanta as it is not the same as
equivalence—this point was highlighted by the domain experts in the survey.
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Generic Non-RAG Bot

RAG Bot

Does Swamiji speak about Wittgenstein’s dissertation defense?

Figure 7: RAG vs Non-RAG: Wittgenstein’s thesis defense. The retrieved passage is about the monk narrating a
story about Wittgenstein’s thesis defense, which is highly relevant to the query. The generated RAG bot response
makes use of this passage to answer the query. However, the latter half of the response is not relevant to the query
and is purely hallucinated. The generic bot response, on the other hand, is completely fabricated and references a
non-existent YouTube talk.
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Generic Non-RAG Bot

RAG Bot

Can AI ever become conscious?

Figure 8: RAG vs Non-RAG: AI and Consciousness. The retrieved passages are again highly relevant to the
query and the generated answer is coherent. However, it does contain a statement about “a mirror reflecting a face”
which is not present in the passages. This was pointed out by the experts as a relevant statement possibly drawn
from outside knowledge. The generic bot’s response is highly general and does not represent the monk’s views on
the topic.
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Generic Non-RAG Bot

RAG Bot

Do our senses report reality to us?

Figure 9: RAG vs Non-RAG: Senses and reality. In this scenario, the retrieved passages provide only partial
context needed to answer the query, with additional irrelevant information. For example, one passage mentions
cognitive scientist Donald Hoffman, inadvertently influencing the LLM to generate a response linking the Swami’s
views to Hoffman’s concept of the world as a virtual reality. This is an instance where the LLM diverges from the
query, using incomplete information from the passage. To mitigate this, implementing retrieval models capable of
processing longer contexts and summarizing them effectively before input to the LLM could be beneficial. Despite
this, the rest of the response aligns reasonably well with Advaita Vedanta philosophy, similar to the generic bot’s
response, which is also congruent with the philosophical context.
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Generic Non-RAG Bot

RAG Bot

Dreams feel absolutely real while dreaming. What is the guarantee that 
I am not fast asleep in my bed and dreaming right now?

Figure 10: RAG vs Non-RAG: Waking and dreaming. The passages retrieved for the query are relevant but only
offer a segment from a broader context. As stated earlier, this can be mitigated by using more advanced retrieval
models that summarize longer contexts before input to the LLM. The RAG bot’s response, while relevant, is lengthy
and complex, making it challenging to comprehend. The generic bot’s response although more concise and coherent,
is completely general and has no relation to the Advaita Vedanta philosophy.
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Standard RAGKeyword-based RAG

Keywords
Human-annotated: Shivaratri 
Model ensemble: Shivaratri

Category: Anecdotal

Query: Does Swami narrate any incident surrounding Shivaratri?

Figure 11: Keyword-RAG vs Standard-RAG: Anecdotal. The keyword-based retriever accurately retrieves the
correct snippet, while the dense retriever confuses “Shivaratri” with “Shivamayananda”, possibly owing to similar
embeddings and completely misses the context. As a result, the generated standard RAG answer is meaningless
and lacks substance. The keyword-RAG model identifies the two key incidents relating to Shivaratri correctly and
effectively summarizes them.
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Standard RAGKeyword-based RAG

Keywords
Human-annotated: Shraddha 
Model ensemble: Shraddha, significance

Figure 12: Keyword-RAG vs Standard-RAG: Terminology. The keyword-RAG model retrieves a comprehensive
exposition on the concept of Shraddha, loosely translated as conviction, in the context of qualifications for the study
of Advaita Vedanta. The standard RAG although retrieves a passage containing the word, it is however not directly
related to what the questioner intends. This seems to be an unfortunate case of false positive for standard RAG due
to inadequate or implied meaning in the query.
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Standard RAGKeyword-based RAG

Figure 13: Keyword-RAG vs Standard-RAG: Comparative. This is a case where both models retrieve meaningful
passages, with the keyword-based model providing greater context due to retrieval expansion. The standard model
also seems to be using outside knowledge not mentioned in the passage.
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Standard RAGKeyword-based RAG

Keywords
Human-annotated: Om significance, Mandukya 
Model ensemble: Om, Mandukya Upanishad

Figure 14: Keyword-RAG vs Standard-RAG: Scriptural. Both models retrieve from the correct scripture.
However, while the retrieved passage in keyword-RAG is very comprehensive and accurately captures the context
of the question, the standard RAG misses the point of the question and gives a generic answer.
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Standard RAGKeyword-based RAG

Figure 15: Keyword-RAG vs Standard-RAG: Reasoning. The retrieved passage in keyword-RAG is technical
and comprehensive and the generated answer effectively summarizes the main points. The standard model is also
good, although the explanation is not as effective owing to the quality of retrieval.
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Abstract

In literary critical applications, stylometry can
benefit from hand-curated feature sets captur-
ing various syntactic and rhetorical functions.
For premodern languages, calculation of such
features is hampered by a lack of computational
resources for accurate part-of-speech tagging
and semantic disambiguation. This paper re-
ports an evaluation of POS taggers for Latin
and their use in augmenting a hand-curated sty-
lometric feature set. Our analyses show that
POS-augmented features not only provide more
accurate counts but also perform well on tasks
such as genre classification. In the course of
this work, we introduce POS n-grams as a fea-
ture for Latin stylometry.

1 Introduction

Although most associated with studies of author-
ship attribution and chronology (Stamatatos, 2009;
Jockers and Witten, 2010; Stover and Kestemont,
2016), computational stylometric methods have
increasingly been deployed to address broader lit-
erary questions and to augment more traditional
approaches to criticism (Jockers, 2013; Moretti,
2013; Long and So, 2016; Piper, 2019; Under-
wood, 2019). For premodern literary traditions,
such work has encompassed applications ranging
from profiling the evolution of Latin prose style
to computational restoration of Greek inscriptions
and manuscripts (Dexter et al., 2017; Assael et al.,
2022; Graziosi et al., 2023), as well as genre classi-
fication across multiple languages (Chaudhuri et al.,
2019; Gianitsos et al., 2019; Storey and Mimno,
2020). For instance, for their genre classification
work Chaudhuri et al. (2019) developed a set of 26

Latin stylometric features, including curated func-
tion word lists (e.g., prepositions, conjunctions, and
pronouns), subordinate clauses, and sentence and
clause length. Although calculated using only word
or character n-gram counts and a small number of
language-specific heuristics, these features proved
highly effective for genre classification of classical
texts, with the best-performing models achieving
F1 > 97%.

It is the strength of a model, however, that it can
withstand the frailties of individual features, at least
up to a point. Hand-curated lists of words, such as
those employed by Chaudhuri et al. (2019), may
be insensitive to homonyms, semantic ambiguity,
and other potentially challenging facets of natu-
ral language. While such issues may not impede
success on certain tasks, increasing the accuracy
of feature counts may be essential for others, es-
pecially those involving fine distinctions. Recent
developments in NLP for Latin have led to the cre-
ation of tools that can plausibly improve on existing
stylometric methods. Notably, the EvaLatin 2020
campaign (Sprugnoli et al., 2020) proposed shared
tasks in lemmatization and part-of-speech (POS)
tagging for classical Latin. Submissions introduced
POS tagger models based on gradient boosters
(Celano, 2020), ensemble methods (Stoeckel et al.,
2020), and LSTMs (Straka and Straková, 2020)
that achieved accuracies of up to 96%.

Here, we evaluate several POS taggers and as-
sess how they improve and expand the feature set
published by Chaudhuri et al. (2019). We per-
form error analysis on our POS-augmented fea-
tures to quantify these improvements. We also
train a classifier to distinguish Latin verse from
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prose using either a POS-augmented or the origi-
nal feature set, and we compare the accuracy and
feature importances for each set. In doing so, we
demonstrate the stylometric and literary relevance
of POS-augmented features and showcase a tran-
sition from general tool development to specific
literary applications in a lower-resource language.

2 Methods

2.1 POS taggers and test corpora
We evaluate 4 POS taggers to identify an optimal
model for feature augmentation. Two models are
pre-trained: a gradient boosting model developed
as the Leipzig team’s submission (Celano, 2020)
for the EvaLatin 2020 task using LightGBM (Ke
et al., 2017), and a FLAIR model developed by
Stoeckel et al. (2020) for the EvaLatin 2020 task.
We also consider Lapos (Tsuruoka et al., 2011) and
MarMoT (Mueller et al., 2013), 2 well-established
POS taggers that are not specific to Latin and were
not pre-trained.

We test the models on the Perseus (Bamman
and Crane, 2011), PROIEL (Haug and Jøhndal,
2008), and ITTB (Cecchini et al., 2018) Univer-
sal Dependencies (UD) Treebanks in addition to
EvaLatin’s (Sprugnoli et al., 2020) test corpora: a
classical dataset consisting of texts from the same
genre and time period as the training data, a cross-
genre dataset consisting of Latin poetry rather than
prose, and a cross-time dataset consisting of me-
dieval rather than classical Latin. These datasets
are annotated using the UD POS tag set (Petrov
et al., 2012), and training and test sets are pre-split
by EvaLatin or the respective UD treebank. We
directly evaluate the 2 pre-trained POS taggers on
the test data, and we train Lapos and MarMoT on
the corresponding training data before evaluating
them on each test set.

2.2 Augmenting existing stylometric features
We leverage predicted POS tags in 3 primary
ways: to reduce the need for hand-engineered
heuristics, to disambiguate polysemous function
words, and to calculate additional features based
on POS n-grams. Table 1 summarizes our modifi-
cations and additions to the published feature set
(Chaudhuri et al., 2019).

2.2.1 Minimization of hand-engineered
heuristics

Chaudhuri et al. (2019) compute the frequency of
conjunctions and frequency of prepositions by iden-

tifying the tokens in a text that are in a hand-curated
list of words. POS tagging eliminates the need for
such lists by enabling direct counts of the corre-
sponding POS tags. POS tagging also allows for
frequency calculations with parts of speech that are
too numerous to list exhaustively (e.g., all nouns or
verbs).

In addition, Chaudhuri et al. (2019) identify su-
perlatives by searching for the infix -issim-. We
take a first step in improving that feature by only
considering words tagged as ADJ or ADV and
omitting non-adjective and non-adverb matches.
Although an improvement, this count still does not
encompass irregular Latin superlatives. We also
supplement the hand-engineered feature calculat-
ing the frequency of vocatives with a new feature
counting the frequency of contiguous blocks of
words tagged as INTJ, reflecting the frequency of
interjection and exclamation within a text. We ex-
clude lone instances of ‘O’ to avoid redundancy
with the vocative feature and to capture a more
specific interjective subset.

2.2.2 Disambiguation of function words
Chaudhuri et al. (2019) rely on n-gram matching
to identify keywords and compute corresponding
features such as pronoun frequencies. For features
that count largely monosemous words (e.g., ipse),
this approach presents no problems. Some feature
computations, however, involve words that can take
on multiple meanings in different contexts. In these
cases, blunt token matching cannot distinguish be-
tween a polysemous word’s various usages. This
ambiguity limits the value of counting 3 words in
particular, ut (which can be an adverb or conjunc-
tion), cum (“when” or “with”), and quod (“because”
or “which”).

As noted above, the frequency of ut feature fails
to distinguish between adverbial and conjunctive
usages. Using POS tagging, we can inspect ut at a
higher resolution and tabulate separate frequency
features for its adverbial (ADV) and conjunctive
(SCONJ) meanings. In addition, the feature cal-
culating the frequency of cum clauses attempts to
isolate conjunctive cum from prepositional cum
by requiring that the word immediately following
cum not have a standard ablative ending. This rule-
based requirement is leaky and prone to false neg-
ative calls, in which instances of cum are uninten-
tionally excluded from the count. Compared to a
gold standard annotation of Livy 22.1-15, Chaud-
huri et al. (2019) identify cum clauses with a pre-

252



cision of 1 but a recall of only 0.52. POS tags
can directly distinguish between cum as “when”
(SCONJ) or “with” (ADP) and remove this source
of error.

Finally, the features concerning relative clauses
(fraction of sentences containing a relative clause
and mean length of relative clauses) rely on search-
ing for inflected instances of qui (qui, cuius, cui,
quem, quo, quae, quam, qua, quod, quorum, quibus,
quos, quarum, or quas). This token matching incor-
rectly includes quod when used as a subordinating
conjunction. POS tagging can again distinguish
quod’s 2 meanings (PRON vs. SCONJ), reduc-
ing the error in relative clause features and also
enabling the tabulation of a new feature, the fre-
quency of quod as a subordinating conjunction.

2.2.3 Frequency of POS tag n-grams

POS tagging enables additional features based on
the frequency of POS tag n-grams. These fre-
quency features have been proposed and imple-
mented in English stylometric work (Iyer and Os-
tendorf, 1999) but, to our knowledge, have never
been applied to Latin. The number of possible
n-grams, and therefore the number of frequency
features, grows exponentially as n increases. We
consider up to 2-grams in the current analysis.

2.3 Application to prose vs. verse
classification

POS augmentation yields 3 distinct feature sets:

• Original: The original set of 26 features pub-
lished by Chaudhuri et al. (2019).

• Modified: Feature set with POS-augmented
preposition, conjunction, ut, cum clause, rela-
tive clause, and superlative features replacing
the corresponding original features (see the
direct modifications in Table 1).

• Expanded: All possible features, including
the union of the original and modified feature
sets and additional features enabled by POS
tagging (see the additions in in Table 1).

We extract these 3 feature sets for a selection of
154 prose texts and 180 verse texts drawn from the
Tesserae Project (Coffee et al., 2012) and train a
random forest model to classify the texts by genre
using each individual feature set.

3 Results

3.1 POS tagger evaluation and selection

We first consider the overall accuracy and F1 scores
for the 4 taggers’ POS tag predictions (Table 2).
Among these, the LightGBM and FLAIR models
are pre-trained on EvaLatin data, while we train
MarMoT and Lapos on EvaLatin training data for
the EvaLatin test sets and UD treebank training
data for each treebank test set. This retraining
accounts for MarMoT and Lapos’ higher perfor-
mance on the UD treebank test sets, compared to
to the LightGBM and FLAIR models.

Inconsistencies between dataset annotations pro-
vide further explanation for the LightGBM and
FLAIR models’ worse performance on the UD tree-
banks. POS annotation guidelines vary between
the EvaLatin data and the treebank data (as well
as between different UD treebanks). For example,
the Perseus Treebank does not use the UD DET
tag, whereas EvaLatin does; this difference in an-
notation accounts for 32% of the FLAIR model’s
incorrect predictions (6% of its overall error on
the Perseus test set). Therefore, treebank datasets
impose inherent limits on the performance of the
EvaLatin models.

Given these inconsistencies in annotation, we
narrow our focus to the 3 EvaLatin test sets and
more closely evaluate the 4 taggers trained on the
EvaLatin training set: FLAIR, LightGBM, Lapos,
and MarMoT. Out of these taggers, FLAIR exhibits
the highest accuracies and F1 scores in the classical
and cross-genre tasks but the poorest performance
in the cross-time task (83% accuracy) (Figure 1).
However, the accuracies of all the taggers are gener-
ally comparable and have a range of only 2% in the
classical test data. We break down these seemingly
similar performances by considering subclasses
particularly relevant to feature augmentation: the
tokens cum, ut, and quod. When considering to-
kens that fall into these subclasses of interest, the
margin between FLAIR and the other taggers on
the classical and cross-genre classes widens consid-
erably. For instance, the gap between the F1 scores
of the highest and lowest performing classifiers in
the classical subtask increases from 0.04 overall to
0.21 in the ut class (Figure 1).

Furthermore, performance on these subclasses of
interest demonstrates trends that contrast with over-
all performance. Although FLAIR has the worst
overall performance on the cross-time task, it has
the highest performance on quod and cum tokens
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Original Feature Modification or Addition
Frequency of prepositions Count ADP tags (eliminate need for hand-curated list)

Frequency of conjunctions
Count SCONJ and CCONJ tags (eliminate need for
hand-curated list)

Frequency of ut Frequency of ut tagged as ADV
Frequency of ut tagged as SCONJ

Frequency of cum clauses Only consider cum tagged as SCONJ
Fraction of sentences containing
relative clause

Only consider forms of qui tagged as PRON
(exclude instances of quod used as SCONJ)

Mean length of relative clauses
Frequency of superlative
adjectives and adverbs

Only consider words tagged as ADJ or ADV

N/A Frequency of quod used as a SCONJ
N/A Frequency of contiguous instances of INTJ tags
N/A Frequency of POS tag n-grams and n-skip-grams

Table 1: Table of selected original features from Chaudhuri et al. (2019) (left) and modifications or additions enabled
by POS tagging (right). POS augmentation of the feature set includes direct modifications of existing features
(indicated by a completed left and right column) as well as additions to the feature set (indicated by “N/A” in the
left column).

Figure 1: F1 score for LightGBM, FLAIR, MarMoT, and Lapos on EvaLatin test sets overall and on subsets most
relevant to feature augmentation (ut, cum, quod).
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Accuracy F1
LightGBM FLAIR MarMoT Lapos LightGBM FLAIR MarMoT Lapos

EvaLatin Classical 0.96 0.97 0.95 0.95 0.92 0.93 0.89 0.89
EvaLatin Cross-Genre 0.89 0.91 0.87 0.87 0.79 0.89 0.82 0.81
EvaLatin Cross-Time 0.82 0.83 0.85 0.84 0.74 0.68 0.74 0.72
UD Perseus Treebank 0.77 0.80 0.84 0.84 0.50 0.53 0.72 0.73
UD PROIEL Treebank 0.79 0.82 0.95 0.95 0.69 0.73 0.95 0.94
UD ITTB Treebank 0.69 0.73 0.97 0.97 0.46 0.48 0.89 0.90

Table 2: POS tagger accuracy and F1 score across 3 EvaLatin test sets and 3 UD treebank test sets for 2 EvaLatin
taggers (LightGBM and FLAIR) and 2 models that are not Latin-specific (MarMoT and Lapos) trained on EvaLatin
or treebank data.

in that task. All taggers exhibit their highest per-
formance on the classical subtask and poorer per-
formance on the cross-time and cross-genre sub-
tasks, but F1 scores for cum tokens for each tagger
show the opposite trend, albeit with smaller mar-
gins. Given the pre-trained FLAIR model’s strong
performance overall as well as on ut, cum, and
quod tokens, we use the model to augment the sty-
lometric feature set. We apply the model to texts
only within the classical and cross-genre domains,
in which it demonstrates high performance.

3.2 Error analysis for POS-augmented
features

Calculating stylometric features requires identify-
ing tokens of interest and tabulating their frequency
or some other summary metric. The method of to-
ken identification underlying a feature determines
its accuracy. For example, it is necessary to identify
identify conjunctive cum accurately to calculate the
frequency of cum clauses. We perform an error
analysis to compare the tokens identified by the
original features and by POS-augmented features
to the tokens marked by ground truth labels in the
EvaLatin classical test dataset.

POS-augmented features overcome some limi-
tations of the original methodology (see Table 3).
When identifying conjunctions, counting words
tagged as XCONJ (SCONJ or CCONJ) rather than
using a hand-curated list increases F1 score from
0.69 to 0.97, an improvement of 0.28. When iden-
tifying prepositions, using the ADP tag decreases
precision from 1 to 0.99 but increases recall by
0.67, from 0.33 to 1. The identification of cum
clauses and relative clauses also improves when
considering predicted POS tags. In this EvaLatin
dataset, Chaudhuri et al. (2019)’s strict, rule-based
method identifies cum with a precision of 0.92 but
a recall of 0.55. Recall increases to 0.91 when
counting instances of cum marked as SCONJ (Ta-

ble 3). Chaudhuri et al. (2019)’s relatively loose
criteria for identifying relative clauses (retrieve all
instances of inflected qui) leads to a recall of 1
but a precision of only 0.59. Requiring instances
of qui to be tagged as PRON increases the recall
to 0.67 but still results in 353 false positives, sug-
gesting that the method would benefit from further
improvements (Table 3).

We also inspect token identification for features
that lack definite ground truth labels in our dataset
(Table 4). Requiring superlatives to be tagged as
ADJ or ADV reduces the superlative count from
330 to 318. Manual inspection reveals that the 12
words omitted are forms of the verb dissimulo and
are false positive hits. In addition, we count 6 voca-
tives and 13 INTJ blocks in the test data. There
is no overlap between those sets. While the voca-
tive feature identifies instances of direct address
following ‘O’, the INTJ block feature identifies
direct address without an ‘O’ marker and more gen-
eral interjections such as age (“go”), me hercule
(“by Hercules”), and ecce (“behold”). We thus
improve the calculated frequency of superlatives
feature and complement the calculated frequency
of vocatives. Error analyses of remaining POS-
augmented features, which include the frequency
of conjunctive quod, conjunctive ut, adverbial ut,
subordinating conjunctions, and pronouns, yield
varying F1 scores with a minimum of 0.74 for con-
junctive quod (Table 5).

3.3 POS-augmented features in prose vs.
verse classification

We evaluate classifier performances with the origi-
nal, modified, and expanded feature sets described
above. There is no significant difference between
the accuracy distributions for the different feature
sets, although mean accuracy does increase to 98%
for the expanded feature set (Table 6).

We also rank features in each set according to
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Cum Clauses Relative Clauses Conjunctions Prepositions
SCONJ Original PRON Original XCONJ Original ADP Original

TP 217 132 725 729 5549 3743 3726 1227
FP 7 11 353 501 151 1425 36 0
FN 21 106 4 0 135 1941 16 2515
Precision 0.97 0.92 0.67 0.59 0.97 0.72 0.99 1.00
Recall 0.91 0.55 0.99 1.00 0.98 0.66 1.00 0.33
F1 0.94 0.69 0.80 0.74 0.97 0.69 0.99 0.49

Table 3: Use of POS tag information improves the identification of cum clauses, relative clauses (marked by forms
of qui), conjunctions, and prepositions. TP denotes true positives, FP denotes false positives, and FN denotes false
negatives. Relative clause identification requires punctuation information omitted by EvaLatin, so we evaluate
relative clauses on the UD ITTB test data instead.

Superlatives Superlatives (ADJ and ADV) Vocatives INTJ Blocks
Instance count (predicted POS) 330 318 6 13
Instance count (true POS) N/A 318 N/A 13

Table 4: Number of tokens counted by the original superlative feature, POS-augmented superlative feature, original
vocative feature, and INTJ block feature enabled by POS information. Predicted POS tags match POS ground truth
labels with 100% accuracy for all words relevant to the features shown, so the instance counts using predicted POS
tags and ground truth POS labels are identical.

Gini importance (Table 7). The original and modi-
fied feature sets share 5 out of their 10 most highly
ranked features (and 7 out of 10 when considering
the POS-augmented versions of the superlatives
and prepositions features). Furthermore, 4 of the
top 6 features in the modified feature set are POS-
augmented (frequencies of prepositions, conjunc-
tions, and conjunctive ut). In addition, in the fully
expanded set, the top 10 features include frequency
of relative clauses (notably not the POS-augmented
version), prepositions, quidam, and gerunds, all of
which are also highly ranked in the original or mod-
ified set. However, POS n-gram features have the 2
highest Gini importances and represent 6 of the 10
most important features in the set, demonstrating
their relevance to the differentiation of Latin genre.

3.4 POS-augmented features in
differentiating epic vs. didactic

Despite the improvements enabled by POS-tagged
features, the interpretive payoff can seem modest
because of the relative simplicity of the evaluation
task: even the original approach of using hard-
coded lists achieves F1 > 97% in distinguishing
prose and verse. We therefore apply our suite of
feature sets to the subtler question of distinguishing
works of Latin narrative epic and didactic poetry,
which are composed in the same hexameter verse
form. These genres differ in topical content and
rhetorical structure: epic typically recounts stories

of war, while didactic describes technical and sci-
entific matters; epic alternates between narrative
and speech, while didactic consists of philosophi-
cal argument and explanation. These characteristic
qualities are not directly captured in the feature
sets, which focus on functional and syntactic ele-
ments rather than literary ones. Prior research has
demonstrated, however, that these genres can be
distinguished on the basis of such features (Chaud-
huri et al., 2019), and we find reasonably discrete
groupings in our selective hexameter corpus; in
particular, certain didactic authors are more clearly
separated from their epic peers.

Fig. 2 shows that this central result replicates for
POS-augmented features. The inclusion of POS n-
gram features, however, reduces generic separation,
with the notable exception of Lucretius’ De Rerum
Natura, which remains emphatically distinct. The
differences in results across the 3 feature sets there-
fore illustrate the complex relationship between
the 2 genres as a whole and the individual works
comprising each genre – on the one hand, broadly
similar in their sequences of parts of speech; on the
other hand, crucially different in sentence length
and sentence subordination, and above all different
from one author to another.
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quod (SCONJ) ut (SCONJ) ut (ADV) SCONJ PRON
TP 125 365 112 1553 4172
FP 45 26 27 137 105
FN 43 27 26 130 136
Precision 0.74 0.93 0.81 0.92 0.98
Recall 0.74 0.93 0.81 0.92 0.97
F1 0.74 0.93 0.81 0.92 0.97

Table 5: Performance metrics for POS-augmented features not discussed in the main text. These features identify
conjunctive quod, conjunctive ut, adverbial ut, subordinating conjunctions, and pronouns with F1 scores ranging
from 0.74 to 0.97. TP denotes true positives, FP denotes false positives, and FN denotes false negatives.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean SD
Original 0.96 0.99 0.96 0.99 0.97 0.97 0.015
Modified 0.99 0.97 1.00 0.97 0.95 0.98 0.017
Expanded 1.00 1.00 1.00 0.95 0.97 0.98 0.021

Table 6: 5-fold classifier accuracies for models using the original feature set, the directly modified feature set, and
the fully expanded feature set in the prose vs. verse classification task.

Figure 2: Principal component analyses of Latin nar-
rative and didactic epic with the original (top), POS-
augmented (middle), and hybrid stylometric and POS
n-gram (bottom) feature sets.

4 Conclusion

We evaluate state-of-the-art POS taggers and select
a FLAIR tagger to augment the stylometric feature
set published by Chaudhuri et al. (2019). Using
predicted POS tags, we first reduce dependency
on hand-engineered heuristics in feature calcula-
tions to gain more complete POS counts, increasing
recall by 0.32 for conjunctions and 0.67 for prepo-
sitions when comparing POS-augmented features
to their original counterparts. Second, we disam-
biguate polysemous words such as cum, ut, and
quod, increasing F1 score from 0.69 to 0.94 for
cum clause identification and from 0.74 to 0.80
for relative clause identification. Finally, we calcu-
late newly enabled features including POS n-gram
frequencies.

We then train a random forest classifier to distin-
guish verse from prose, and through feature impor-
tance analysis we demonstrate that POS-augmented
and POS n-gram features in particular quantify sty-
lometric qualities highly relevant to genre classifi-
cation. In these ways, we apply advances in Latin
NLP to literary critical questions regarding generic
style. More generally, we showcase a methodology
for Latin that we hope will inform the quantitative
criticism of other premodern languages as well.

5 Limitations

The current work uses established models for
which performance on benchmark tasks has been
well documented, such as the EvaLatin UDPipe
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Rank Original Modified Expanded
1 superlatives 0.31 superlatives* 0.14 AUX* 0.13
2 quidam 0.14 quidam 0.13 SCONJ ADP 2-gram* 0.09
3 gerunds 0.13 prepositions* 0.10 relative clauses 0.07
4 relative clauses 0.09 conjunctions* 0.09 prepositions* 0.07
5 vocatives 0.08 gerunds 0.07 quidam 0.06
6 idem 0.07 ut (SCONJ)* 0.07 gerunds 0.05
7 personal pronouns 0.04 antequam 0.05 ADJ PROPN 2-gram* 0.04
8 antequam 0.03 alius 0.05 INTJ blocks* 0.04
9 prepositions 0.02 mean sentence length 0.05 PART ADP 2-gram* 0.04
10 alius 0.01 idem 0.05 ADP PRON 2-gram* 0.03

Table 7: For the original, modified, and expanded feature sets, the 10 features with highest Gini importance
(feature name in left subcolumn, Gini importance in right subcolumn). Features improved or newly enabled by
POS augmentation are denoted with *. Unless otherwise noted, each feature name in the table corresponds to the
frequency of the indicated class.

model, which won all subtasks of the EvaLatin
open division (Straka and Straková, 2020). The use
of other models that reflect more recent advances
is likely to have an effect on tagger accuracy and
downstream performance for specific applications.
Furthermore, models trained on a more diverse cor-
pus may improve performance on cross-time tasks
in particular. Finally, our use of POS n-grams as
a stylometric feature is limited to 2-grams. Given
their relatively high ranking among features con-
tributing to successful classification, consideration
of longer sequences, as well as of n-skip-grams,
may be warranted.
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Abstract

Past research has modelled statistically the lan-
guage of the Homeric poems, assessing the de-
gree of surprisal for each verse through diverse
metrics and resulting to the HoLM resource.
In this study we utilise the HoLM resource to
explore cross-poem affinity at the verse level,
looking at Iliadic verses and passages that are
less surprising to the Odyssean model than to
the Iliadic one and vice-versa. Using the same
tool, we investigate verses that evoke greater
surprise when assessed by a local model trained
solely on their source book, compared to a
global model trained on the entire source poem.
Investigating deeper on the distribution of such
verses across the Homeric poems we employ
supervised learning to further analyse quantita-
tively cross-poem affinity in selected books.

1 Background

The precise process by which the monumental an-
cient Greek epics, the Iliad and the Odyssey, came
into being remains a point of speculation. That they
have survived to the present day may be traced back
to the Hellenistic period of ancient Greece (c. 330
BCE), when early scholars focused on issues of
textualisation, primarily editing, in order to curate
the canonical version of Homer. Less clear is how
the poems arrived at this point. Though ever more
detailed and in-depth references to them had been
occurring over the previous two centuries, there is
no documentation relating to the moment of their
composition, primarily because they were the prod-
uct of a vibrant oral society. Rather than being seen
as the beginning of a Western tradition, it is more
fruitful to think of the Homeric poems as coming
at the end of a long tradition of in-performance
improvisation, where poets recut the cloth of what
they had inherited to weave new stories. The way
into thinking about the oral traditionality (Foley,
1991) of these poems is through their language, and,

*Corresponding author: mkonst@helit.duth.gr.

in particular, the repeated phrases or epithets that
have long been regarded as a characteristic feature
of them. Phrases such as “swift-footed Achilles”
— a line that recurs throughout the Iliad, for exam-
ple – are not designed to capture a moment in a
specific way but rather “trigger a chain of associa-
tions” (Graziosi and Haubold, 2005, p. 53) in the
minds of audiences, who have grown up with these
stories and poems of this kind. The more familiar
with other (earlier) uses of such phrases, the more
an audience can derive meaning from their present
application (Barker and Christensen, 2019). Since
“oral poetry works like a language, only more so”
(Foley, 2002, p. 127), there is great potential in
leveraging language modelling for better under-
standing how the Homeric poets have been put
together. Such work might not be able to resolve
the so-called Homeric Question: whether, that is,
one person — let’s call him Homer — composed
both (or one of) the Iliad and Odyssey in the form
that have come down to us. Yet, it is the contention
of this paper that language modelling can lift the
curtain on the mechanics of oral competitive po-
etics, either by drawing attention to the points of
connection between the poems or to other epics
(such as those of Hesiod), or, on the contrary, by
revealing moments of rupture from the norm. In
this way, we hope to set out some ground rules
for identifying, and thinking about, the practice
by which individual passages generate meaning by
playing on audience expectations and their very
familiarity with traditional story patterns, themes,
and phraseology.

Our starting point is the HoLM resource, devel-
oped to assist scholars studying linguistic hetero-
geneity within the Homeric poems at the level of
different structural elements (verses, passages and
books) (Pavlopoulos et al., 2024), where related
work is also discussed. In this study, we use the
cross-score metric to calculate the number of verses
per book exhibiting greater linguistic affinity (i.e.,
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reduced surprise) with the opposite poem than to
their original source poem. Such verses, either indi-
vidual or in clusters, suggest complexities beyond
simple interpolations. They hint at potential con-
tamination between the poems or common origins
for specific passages. As a means of generating
supplementary data complementing existing ma-
terial, we train three text classifiers to assess the
verses of nine books selected from both poems, five
from the Iliad and four from the Odyssey.

1.1 The HoLM resource

The HoLM resource uses character level statistical
language models to score the Iliad and the Odyssey
with a variety of metrics that assess each verse’s
linguistic unexpectedness to the trained models
(Pavlopoulos et al., 2024). The dataset comprises a
‘cross-score’ computed for each verse, designed to
compare the degree of unexpectedness across the
two poems. In this work, we also consider relations
between books of the same poem. To compare un-
expectedness between the individual source book
(local model) of a verse and its entire source poem
(global model), we use the two Perplexity (PPL)
scores provided in HoLM, ‘local PPL’ and ‘global
PPL’.

1.2 The formulaic character of Homeric
poetry

Homeric poetry, much like other forms of oral lit-
erature, fundamentally relies on repetition, both
linguistic and thematic. These repetitions serve
several crucial purposes, acting as mnemonic de-
vices that aid the poet in structuring the material,
and as triggering devices that enable an audience to
derive meaning from it — all the more critical for
narratives as extensive and all-encompassing as the
Iliad and the Odyssey. As has been long recognised,
the use of formulas — repetitive epithets, phrases,
half-verses, and even entire verses — constitutes a
significant feature of Homeric poetry (Parry, 1971).
These formulas function as the building blocks of
the poetry, ensuring a smooth and continuous po-
etic flow. For instance, recurring phrases like “rosy-
fingered dawn” or “swift-footed Achilles” serve not
only to describe characters and scenes vividly but
also to fit the metrical requirements of the epic’s
dactylic hexameter. This technique provides the
poet with ready-made segments of verse that can
be adapted to various narrative contexts, thus fa-
cilitating the composition of long, complex stories
in real-time performance. At the same time, these

repetitive elements also enhance an audience’s un-
derstanding of the thematic coherence of the story-
in-performance, as well as appreciation for the
story it has to tell. They help create a sense of
continuity and unity, by enabling an audience to
anchor different parts of the narrative and grasp key
ideas, particularly when heard in and against the
stories that have been sung before. The extensive
use of these formulas results in a high degree of
repetition within the Homeric poems, both intra-
and inter-poem. Identical or near-identical verses,
often repeated multiple times, are scattered across
the poems. Of the 15,683 verses in our version of
the Iliad, 2,019 are duplicate (approximately 13%);
that is, they are repeated one or more times. In the
Odyssey 1,884 out of the 12,107 verses (approx-
imately 15.5%) are duplicates.1 There are many
more near-duplicate verses, typically hemistichs
(half-verses), and a lot of shorter formulas consist-
ing of two or three words. So well-established is
the idea of formularity in oral poetry, that schol-
ars need to argue in favour of the uniqueness and
the non-formulaic nature of Homeric diction, esti-
mating that at least one third of it is not affected
by formulas (Finkelberg, 2020). Dealing with for-
mulas in a computational study presents several
complex challenges that necessitate a comprehen-
sive, separate investigation. Key issues include
defining what constitutes a formula (e.g., whether
two words should be considered as one) and un-
derstanding how these formulas interact with the
metrical structure of the verses (Bozzone, 2022).
Additionally, the overall language modelling of
the text must be considered in connection with re-
peated expressions: recent studies have established
that the density of formulas in Homeric texts is
not exceptional and that contemporary speech ex-
hibits a comparable degree of formularity (Erman
and Warren, 2000). In our study, duplicate and
near-duplicate verses are not excluded for training.
Additionally, they score, as expected, a lower PPL
both with the source poem model and the other
poem model, since the same formulas can be found
in both works. Table 1 presents examples of dupli-
cate verses repeated within the Iliad. Table 2 shows
recurrent verses in both poems.

1HoLM uses the (Allen, 1931) edition for the Iliad and for
the Odyssey the (von der Mühll, 1962) one.
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Verse no Text
16,711 μῆνιν ἀλευάμενος ἑκατηβόλου ἀπόλλωνος

1,297 ἄλλο δέ τοι ἐρέω σὺ δ᾿ ἐνὶ φρεσὶ βάλλεο σῇσι
5,444 μῆνιν ἀλευάμενος ἑκατηβόλου ἀπόλλωνος
20,19 τὸν δ᾿ ἀπαμειβόμενος προσέφη νεφεληγερέτα ζεύς

22,182 τὴν δ᾿ ἀπαμειβόμενος προσέφη νεφεληγερέτα ζεύς
24,64 τὴν δ᾿ ἀπαμειβόμενος προσέφη νεφεληγερέτα ζεύς
8,477 τὴν δ᾿ ἀπαμειβόμενος προσέφη νεφεληγερέτα ζεύς
5,764 τὴν δ᾿ ἀπαμειβόμενος προσέφη νεφεληγερέτα ζεύς
23,93 τὸν δ᾿ ἀπαμειβόμενος προσέφη πόδας ὠκὺς ἀχιλλεύς

14,311 τὴν δ᾿ ἀπαμειβόμενος προσέφη νεφεληγερέτα ζεύς

Table 1: The verses with the ten lowest PPL scores in
the Iliad are all duplicates

2 Motivation and method

Our objective is to broaden the scope of research
on the phenomenon of unexpectedness by mov-
ing beyond the mere identification of surprising
verses or passages within a model trained on the
source text. Among the verses identified as unex-
pected in HoLM, we perform a quantitative analy-
sis specifically on verses/passages that appear to be
linguistically more surprising to their immediate
surroundings than to other, more remote parts of
the Homeric poems. In short, we focus on three
levels of surroundings that provide increasingly
broader contexts for assessing the linguistic sur-
prise of verses or passages:

• Immediate surroundings: This refers to
the immediate context of a verse or passage
within its own book; specifically, the verses di-
rectly preceding and following the target verse.
We investigate this level by seeking consecu-
tive or near-consecutive outlier verses.

• Individual book > Source poem: This level
expands the scope beyond the immediate sur-
roundings to include the entirety of the book
containing the verse or passage, compared to
the source poem from which it originates. It
assesses the verse’s surprise factor within the
context of its book in relation to the entirety
of its source poem.

• Source poem > Other poem: This evalu-
ates the level of surprise of a verse or passage
within its source poem, juxtaposed with the
surprise calculated using a model trained on
the entirety of the other Homeric poem (e.g.,
the Iliad compared to the Odyssey, or vice
versa). Specifically, it examines how the un-
expectedness of the verse within its own con-
text contrasts with its unexpectedness when

assessed against the entirety of the alternative
Homeric work.

This method lays the groundwork for investigat-
ing internal transposition of text within each poem,
as well as Odyssean elements in the Iliad and vice
versa. Further systematic study of such passages
may help not only unveil patterns of interpolation
itself, but also to shed light on what is consciously
or instinctively perceived as ‘Iliadic’ or ‘Odyssean’,
thereby ultimately unlocking insights into the ago-
nistic, compositional basis of either poem.

3 Assessing proximity with the other
poem

3.1 Positive cross-score
To identify verses and passages that may be linguis-
tically more distant to their source poem than to
the other one, we use the cross score. For a given
verse, this is the difference between the PPL for
that verse computed with the model trained on the
source poem and the equivalent PPL computed with
the model trained on the other poem. A positive
cross value (PCV) for a verse means that the verse
is more surprising to the source poem model than it
is to the model trained on the other poem. We used
PCVs to identify possible passages that may exhibit
greater source poem surprise (clusters of more than
two PCVs). Since a PCV is a rarity and to ensure
that individual verses are not isolated from their sur-
roundings, we also took into account the top 10%
of verses with the highest negative scores (NCV).
As mentioned above, few verses have a positive
cross score: in the Iliad there are 511 PCVs in total
and 375 if we remove the duplicate verses among
them. In the Odyssey, we identified 272 PCVs (235
after duplicate verse elimination). Thus, the Iliad
contains far more such verses, even after allow-
ing for its greater length compared to the Odyssey
(Fig. 1).

The greatest concentration is found in Books 24
(Fig. 3), 9 and 1 of the Iliad. The lowest concen-
tration is found in Odyssey 7. Of the 783 PCVs,
approximately one in five (173) are duplicates. Far
less duplicate verses have a positive cross-score in
the Odyssey (0.3%) than in the Iliad (0.87%). This
could be due to the fact that in the Odyssey, unique
common verses that appear across poems are fewer
in number but are repeated more frequently com-
pared to those in the Iliad(Fig. 2 and Table 2).

The low number of PCVs does not allow a re-
liable statistical analysis at the book level and a
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Verse Total count Iliad count Odyssey count
καί μιν φωνήσας ἔπεα πτερόεντα προσηύδα 30 15 15
τὸν δ᾿ ἀπαμειβόμενος προσέφη πολύμητις ὀδυσσεύς 30 5 25
ἦμος δ᾿ ἠριγένεια φάνη ῥοδοδάκτυλος ἠώς 22 2 20
αὐτὰρ ἐπεὶ πόσιος καὶ ἐδητύος ἐξ ἔρον ἕντο 21 7 14
ἀλλ᾿ ἄγε μοι τόδε εἰπὲ καὶ ἀτρεκέως κατάλεξον 17 4 13
διογενὲς λαερτιάδη πολυμήχαν᾿ ὀδυσσεῦ 17 7 10
ὀχθήσας δ᾿ ἄρα εἶπε πρὸς ὃν μεγαλήτορα θυμόν 11 7 4
τὸν δ᾿ ἠμείβετ᾿ ἔπειτα γερήνιος ἱππότα νέστωρ 11 8 3
ἀτρεΐδη κύδιστε ἄναξ ἀνδρῶν ἀγάμεμνον 10 8 2
τὴν δ᾿ ἀπαμειβόμενος προσέφη νεφεληγερέτα ζεύς 10 7 3

Table 2: The common verses in the two poems with the most occurances.

Figure 1: Number of verses with positive cross scores per book in the Iliad and the Odyssey

Figure 2: Verses in each poem also found in the other
(percentage of total poem verses)

more decisive tool should be used for this purpose.
Nevertheless, the cross-score metric can be useful
to identify potential passages of interest.

4 Intra-poem unexpectedness: global
versus local PPL

Local PPL is computed by training a statistical
language model on the whole of the source book,
excluding only the textual part that is being scored.
As global PPL we consider the PPL score com-
puted by a model trained on the source poem. In

the Iliad, of the 1568 verses within the top 10 per-
centile of global PPL score, only 510 also rank
among the top 10 percentile of Local PPL score.
This means that 66% of the top surprising verses
to the Global Iliad model are not surprising to their
local Book model (and vice versa). If we examine
the top 20 percentile, then 1536 out of the 3233
(48%) are equally surprising both globally and lo-
cally. In the Odyssey, it is a similar ratio, with 1123
verses universally surprising out of the 2421 glob-
ally surprising ones. The books with the greatest
number of high local PPL verses are: Iliad 12, 22
and 24, and 1, 8 and 11 of the Odyssey (Fig. 4).

5 Zooming in

As is appropriate for works with such a lengthy and
involved compositional history, the macroscopic
book-level analysis ultimately aims at identifying
distinctive narrative segments with higher concen-
tration of PCVs, indicating a closer affinity with
the other poem than their source poem. Using the
books that stood out in the statistical analysis of
PCVs, we focus on Iliad 1, 2, 9, 10 and 24. Book
10 is probably the most discussed book in terms
of its authenticity; it is still commonly regarded
as interpolated (or at least extended parts of it)
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(a) HoLM SLM

(b) RNNLM

Figure 3: Iliad book 24: (a) PCV and near positive cross-score verses computed with the HoLM SLM models and
(b) PCV computed with the RNN model

(Danek, 2012). Book 2, which heralds ‘the great
gathering of armies’, has also been discussed exten-
sively in the literature (see for instance (Karanika,
2020)), again due to its atypical content, since it
includes extensive lists, not least of which is the
famous catalogue of ships. However, it is Book 24
that stands out from our book-level analysis of the
HoLM resource: it exhibits the highest number of
PCVs (Fig. 1) as well as the highest rate of locally
surprising verses (Fig. 4). From the Odyssey, we
selected books 11, 15, 22 and 24, the ones with the
highest number of PCVs. Book 11 demonstrates
in addition the highest number of high local PPL
in the poem. Together with Book 24, they also
present a more coherent picture of surprising pas-
sages with high concentration of PCVs (groups of
verses clustered in close proximity).

5.1 Machine Learning for verse classification

To capture greater depth and range of language
dependencies, we trained supervised learning algo-
rithms to classify verses between the two poems
(i.e., source v. other poem). This results in each

unseen verse being marked as ‘source-surprising’
or not. We opted for three traditional machine
learning algorithms for this experiment,2 K-nearest
neighbours (KNN), logistic regression (LR), and
random forests (RF). All the algorithms oper-
ated on top of term-frequency inverse-document-
frequency (TFIDF; documents are verses in our
case) features, using character n-grams (i.e., se-
quences of two to five characters), maximum doc-
ument frequency of 0.5 and minimum document
frequency of 5 (i.e., we ignore n-grams in more
than half and less than 5 verses).

The classifiers were trained on the whole of
both poems, excluding books 1, 2, 9, 10 and 24
of the Iliad and books 11, 15, 22, and 24 of the
Odyssey. We kept 20% of the verses, randomly se-
lected across both poems, for evaluation purposes.
This left us with 12,103 verses from Iliad and 9,861
verses from Odyssey for training. As is shown in
Table 3, LR was the best in classifying the poem
a verse belongs in, followed by RF and KNN. All

2We used the scikit-learn library for the implementations.
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Figure 4: Global vs local PPL per book in the two poems

ODYSSEY ILIAD

P R F1 P R F1

LR 0.75 0.68 0.72 0.76 0.82 0.79
KNN 0.70 0.66 0.68 0.73 0.77 0.75
RF 0.73 0.65 0.69 0.74 0.81 0.77
RAND 0.45 0.50 0.47 0.55 0.50 0.52

Table 3: Precision, Recall and F1 per algorithm per
poem. In bold the best per column.

three algorithms, however performed considerably
better than a random baseline (RAND), classifying
the verse randomly.

We also used these three classifiers to yield pre-
dictions per verse from the left out books. The
distribution of source-surprising verses across the
9 books is shown in Fig. 6, but we observe that
there is a positive correlation between the classifi-
cations of the three models (Fig. 5).

5.2 Classification vs PCV

Comparing the attribution of verses to the other
poem in the four books, the classifiers largely sup-
port the SLM PCVs. In the Iliad, 79% of the PCVs
are also flagged by the classifiers as Odyssean; in
the Odyssey, 71% of PCVs are flagged as Iliadic.
At the same time, the three classifiers substantially
increase the quantity of source-surprising verses,
revealing a clearer view. Among then, they mark as
source-surprising another 1,622 verses in the Iliad
and 1,192 in the Odyssey.

6 Discussion

Compared to the PCVs, a large number of groups
of source-surprising verses (up to four excluding
duplicates) can be readily observable in all of the
individual books evaluated by the ML classifiers.
Further merging groups located closely together
requires closer examination and carefully selected
criteria. It is, however, feasible to discern poten-
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Figure 5: Pearson correlation between the machine learning classifiers on verses from held-out books of Iliad (the
heatmap on the left) and Odyssey (on the right).

Figure 6: ML rate agreement in identifying source-surprising verses per book (0: no model classifies the verse
as source-surprising; 1: all three models classify the verse as source-surprising). Number of verses shown as
percentage of the book’s total verses.

tial patterns among some of the passages picked
out. These include lists (such as the catalogue of
ships in Iliad 2 and the list of women in Odyssey
11), but also a number of similes, as well as nar-
rations referring to the past. From a literary per-
spective, the books that emerge as related to the
‘other’ poem reveal close correspondences. These
moments of contact could simply be down to the
protagonist of either poem and their prominence
in the other poem, namely Odysseus in Iliad 2, 9
and 10, and Achilles in Odyssey 11 (noting that
the wrath of Achilles is the headline of the Iliad,
and the return home of Odysseus the subject of
the Odyssey). But, as well as being insufficient to
explain all the cases (particularly in the Odyssey),
the presence of the protagonist arguably better indi-
cates heightened moments of thematic cross-over
between the epics. As well as being prominent in
these books of the Iliad, Odysseus also acts in an
‘Odyssean’ manner, most notably in Iliad 10, the
book which some critics still doubt or consider as

a late ‘add on’, precisely because of its seemingly
unIliadic story of night adventure, ambush and de-
ceit (led, of course, by Odysseus) (Barker, 2009).
In Iliad 9 Odysseus is prominent as the leader of
the embassy to Achilles, where his rhetorical skills
are on display (and seen through by Achilles). In
Iliad 2, Odysseus again takes control of the nar-
rative, after Agamemnon’s disastrous ‘testing’ of
the troops: it is Odysseus to whom Athena goes
(as she so often does in the Odyssey) and who
notably holds back the Achaeans as they rush to
the ships to go home, an event that, the Homeric
narrator remarks, would have been ‘beyond fate’
(Barker, 2009).. The rivalry between these alter-
native epic traditions is taken up in Odyssey 11,
where an ambushed Achilles is left behind in the
Underworld bemoaning his early death and anxious
for news of his son, even as Odysseus continues
on his journey home to reunite with his l(Edwards,
1985). Odyssey 22 is the moment when Odysseus’s
banqueting halls become an Iliadic battleground,
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as Odysseus takes on and slaughters all the suit-
ors who have been eating his son out of house and
home. Odyssey 24 opens with another scene of
(un)Iliadic heroes in the underworld — Achilles
and Agamemnon praising each other no less —
and culminates in another battle, when Odysseus,
accompanied by both his father and son, takes on
and kills the families of the suitors (Barker, 2009;
Barker and Christensen, 2019). It is also strik-
ing that the beginning and ending of the Iliad is
marked out as resonating strongly with the other
tradition, as if self-consciously aware of its place
in the tradition. Analysing individual passages is
simultaneously more straightforward and open to
speculation, especially in defining their boundaries.
Nevertheless, a number clearly stand out when con-
sidering both PCVs and the ML models classifica-
tions. Such an example of source-surprising verses
is in Iliad book 10 (263-279) where the arming
of Odysseus is described in a distinct section of
the book. In the Odyssey, the models mark as
source-surprising the catalogue of women in book
11 (specifically verses 255-272 and 299-330). This
is also a section mentioned in literature as a possi-
ble interpolation and further discussed in the same
context in (Pavlopoulos and Konstantinidou, 2023).

7 Conclusions

Our two methods for assessing the level of inter-
poem surprise largely converge in identifying spe-
cific books and passages as notably surprising
within their respective poems. An initial expert
analysis of the flagged passages reveals potential
patterns recognized by the models; notably, Books
1, 9, 10, and 24 of the Iliad and Books 11, 15, 22,
and 24 of the Odyssey contain the highest concen-
tration of such verses. Within these books, shorter
passages appear to contribute more significantly to
these findings.

Further analysis of shorter verse clusters with
positive or almost positive cross score seem promis-
ing in revealing both linguistic and thematic crite-
ria associated with either poem. It may also reveal
lexical features that weigh more in each poem’s
language modelling.

Future research may focus on these aspects, in-
cluding catalogs, direct speech, gender-related top-
ics and discourse, as well as proper names and con-
tent words. Additionally, it should aim to examine
the Homeric poems within their closer historical
context and model them alongside other ancient au-

thors and genres, such as Hesiod and lyric poetry.
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