KGConv, a Conversational Corpus Grounded in Wikidata

Quentin Brabant, Lina M. Rojas Barahona, Gwénolé Lecorvé, Claire Gardent


Abstract
We present KGConv, a large corpus of 71k English conversations where each question-answer pair is grounded in a Wikidata fact. Conversations contain on average 8.6 questions and for each Wikidata fact, we provide multiple variants (12 on average) of the corresponding question using templates, human annotations, hand-crafted rules and a question rewriting neural model. We provide baselines for the task of Knowledge-Based, Conversational Question Generation. KGConv can further be used for other generation and analysis tasks such as single-turn question generation from Wikidata triples, question rewriting, question answering from conversation or from knowledge graphs and quiz generation.
Anthology ID:
2024.lrec-main.850
Volume:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Venues:
LREC | COLING
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
9732–9742
Language:
URL:
https://aclanthology.org/2024.lrec-main.850
DOI:
Bibkey:
Cite (ACL):
Quentin Brabant, Lina M. Rojas Barahona, Gwénolé Lecorvé, and Claire Gardent. 2024. KGConv, a Conversational Corpus Grounded in Wikidata. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 9732–9742, Torino, Italia. ELRA and ICCL.
Cite (Informal):
KGConv, a Conversational Corpus Grounded in Wikidata (Brabant et al., LREC-COLING 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-4/2024.lrec-main.850.pdf