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Abstract

Pre-trained Language Models have been shown to be able to emulate deductive reasoning in natural language.
However, PLMs are easily affected by irrelevant information (e.g., entity) in instance-level proofs when learning
deductive reasoning. To address this limitation, we propose an Abstract-level Deductive Reasoner (ADR). ADR
is trained to predict the abstract reasoning proof of each sample, which guides PLMs to learn general reasoning
patterns rather than instance-level knowledge. Experimental results demonstrate that ADR significantly reduces the
impact of PLMs learning instance-level knowledge (over 70%).
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1. Introduction

A long-term goal of AI is to build systems that can
automatically reason over a given context and gen-
erate logically valid conclusions (McCarthy et al.,
1960; Helwe et al., 2021). Recently, Pre-trained
Language Models (PLMs, e.g., RoBERTa (Liu et al.,
2019), T5 (Raffel et al., 2020)) are able to predict
the logical validity of natural language deductions
(Clark et al., 2021; Tafjord et al., 2021; Sanyal et al.,
2022b). For example in Figure 1, given a deduction
about whether Gary is nice, PLMs utilize the pro-
vided context to determine its validity and generate
the reasoning proof. Endowing machines with de-
ductive reasoning abilities brings immense potential
for downstream applications such as question an-
swering (Yang et al., 2018; Dalvi et al., 2021), and
argument mining (Habernal and Gurevych, 2017).

Existing methods (Tafjord et al., 2021) fine-tune
PLMs using the validity label and instance-level
reasoning proofs as supervision signals. This ap-
proach easily leads PLMs to learn narrow instance-
level knowledge without learning general reasoning
patterns between instances, making it difficult to
generalize to out-of-distribution samples. For ex-
ample in Figure 1 (a), in the fine-tuning set, the
labels of samples containing “Gary is nice” are all
valid. PLMs may learn the instance-level knowl-
edge that there is a mapping relationship between
“gary is nice” and the label “valid”. This leads PLMs
to incorrectly determine the invalid sample “Gary
is smart. Smart things are not nice. Therefore,
Garry is nice." as valid. In contrast, humans pos-
sess the ability to abstract information unrelated
to reasoning, thus learning general reasoning pat-
terns (Marcus and Davis, 2020). As illustrated in
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Figure 1 (b), the information unrelated to reasoning
in “Gary is smart. Smart things are not nice. There-
fore, Garry is nice.” is abstracted into symbols as
“A is B, B people are not C. Therefore, A is not C.”
This corresponds to an invalid pattern, so this sam-
ple should be considered invalid. We consider that
utilizing abstract reasoning proof as supervision
signals can compel PLMs to focus on the reason-
ing patterns when learning deductive reasoning,
thereby avoiding the acquisition of instance-level
knowledge unrelated to reasoning.
Additionally, existing methods (Tafjord et al.,

2021) adopt a post hoc manner to generate reason-
ing proofs, wherein validity labels are first gener-
ated followed by the generation of reasoning proofs.
When the predicted labels are incorrect, the proofs
generated by PLMs are also incorrect. For instance,
as depicted in Figure 1 (a), PLMs incorrectly predict
“Gary is smart. Smart things are not nice. There-
fore, Garry is nice.” as valid based on instance-
level knowledge. Then they generate incorrect rea-
soning proofs to “support” the incorrect prediction
by using a nonexistent rule (“if someone is smart
then it is nice”). We consider having PLMs gen-
erate abstract-level proof first, and then generat-
ing validity predictions based on the abstract-level
proof. Because abstract-level proof is composed of
abstracted symbols and does not include specific
entities and predicates, it can avoid interference
from instance-level knowledge. Additionally, the
abstract-level proof generated first will serve as
context to constrain PLMs in predicting correct la-
bels.

To address the above limitations, we propose an
Abstract-level Deductive Reasoner (ADR). Specifi-
cally, ADR symbolizes the entities and predicates in
instance-level reasoning proofs to obtain abstract



Figure 1: Comparison of (a) existing methods
based on instance-level proof and (b) our proposed
method based on abstract-level proof.

reasoning proofs. ADR utilizes logical validity la-
bels and abstract reasoning proofs as supervised
signals for training. This approach prevents PLMs
from learning instance-level knowledge that may
affect their generalization in deductive reasoning.
Additionally, to address the issue of PLMs fabricat-
ing reasoning proofs, ADR adopts a reason-and-
decide manner that generates reasoning proofs
first and then generates validity labels. To bet-
ter observe whether PLMs have learned instance-
level knowledge, we propose to inject label-specific
knowledge into the training data. This knowledge
would only appear in one category of the training
set (e.g., valid) but appear in another category in
the test set (e.g., invalid). If PLMs make incorrect
predictions, it can indicate that they have learned
instance-level knowledge. We utilize this approach
to construct an injection dataset and test the ADR
and the baseline models on it.
The contributions of the paper are as follows:

• We show that PLMs are easily affected by ir-
relevant information in instance-level proofs
when learning deductive reasoning, making
them difficult to generalize to out-of-distribution
deductive reasoning data.

• We propose to train PLMs for deductive rea-
soning by abstracting irrelevant information
(e.g., entity), enabling PLMs to learn general

Figure 2: The overall architecture of ADR.

reasoning patterns across instances, and im-
proving their robustness on deductive reason-
ing data from different distributions.

• We conduct extensive experiments to evaluate
our proposed ADR. The results indicate that
ADR significantly reduces the impact of PLMs
learning instance-level knowledge (over 70%).

2. Method

2.1. Task Definition
In the deductive reasoning task, given a context C,
the goal is to predict whether C can support a hy-
pothesis H. Examples are shown in Figure 2. The
label for each hypothesis can be either Valid (the
hypothesis can be provably supported) or Invalid
(the hypothesis can be provably unsupported).

2.2. Generative Reasoner
The input to the generative reasoner is of the form:
“$hypothesis$ = HT ; $context$ = CT ”, where HT
and CT are the text of hypothesis and context re-
spectively. The output of the generative reasoner
is in the form of: “ABP , so the answer is L”. The
ABP is the abstract reasoning proof, which is de-
scribed in the following section. The L is the validity
label of each sample, which is Valid or Invalid.

2.3. Obtaining Abstract Reasoning Proof
We propose to use the abstract reasoning proof
to guide the model fine-tuning. In abstract reason-
ing proof, entities and predicates are replaced with
meaningless symbols, thus forcing the model to
learn the reasoning pattern rather than instance-
level knowledge. Given an instance-level proof, we
replace the fact and rule indicators with their cor-
responding text to obtain the instance-level proof
(e.g., “Gary is furry. Gary is smart. Smart, furry



things are round. Gary is round”), there are three
steps to obtain the abstract reasoning proof: Ex-
tracting. We extract the entities and predicates in
the instance-level proof. Mapping. We map each
entity and predicate with a letter symbol from a sym-
bol list [A,B,C, ...., Z]. Replacing. We replace
each entity and predicate with their letter symbols
in the instance-level proof.

For example in Figure 2, we firstly extract “Gary”,
“furry”, “smart”, and “round” in the instance-level
proof. Then we map them into “A”, “B”, “C”, and “D”
respectively. Finally, we obtain abstract reasoning
proof “A is C. A is D. D, C things are B, so A is B”.

3. Label-specific Knowledge Injection

We construct an instance-level knowledge injec-
tion dataset (injection dataset for short) to evaluate
whether PLMs have learned label-specific instance-
level knowledge. The core idea is to inject label-
specific instance-level knowledge into training sam-
ples of each label (e.g., valid and invalid) and then
inject this instance-level knowledge into test sam-
ples of different labels. If the PLMs learn this label-
specific instance-level knowledge during training,
they will perform poorly on the test set. In contrast,
if the models learn general reasoning patterns, their
test performance will be robust. In this paper, we
focus on injecting instance-level knowledge related
to entities and predicates. Specifically, we use the
same entities and predicates when constructing the
valid samples of the training set and the invalid sam-
ples of the test set; and use the same entities and
predicates when constructing the invalid samples
of the training set and the valid samples of the test
set. If the PLMs learn instance-level knowledge
related to entities or predicates during training, they
will perform poorly on the test set.

For example, the sentences “Gary is nice” and
“The cat needs the cow” only appear in the “valid”
samples of the training set. The model may learn a
spurious association between these sentences and
the “valid” label. When these two sentences appear
in “invalid” samples in the test set, the model may
make incorrect prediction.

4. Experiments and Results

4.1. Experimental Setup
Datasets: We conduct experiments on the Rule-
Taker (Clark et al., 2021; Tafjord et al., 2021) deduc-
tive reasoning dataset (Original dataset for short)
and the constructed injection dataset. Each dataset
contains 56,512 samples (39,864 for training, 5,272
for development, and 11,376 for testing). The train-
ing, development, and test set are all with an equal
balance of valid and invalid samples.

Table 1: The test set accuracy of each model on
the original and injection dataset.

Original Injection
RoBERTa-large 99.8 0.0

T5 99.1 0.0
ProofWriter 99.7 10.0
ADR (Ours) 99.9 80.9

Baselines: RoBERTa: We follow (Clark et al.,
2021) who adopt a RoBERTa-large (Liu et al., 2019)
as the baseline. According to their experiments,
the RoBERTa-large is additionally fine-tuned on the
RACE dataset, and then fine-tuned on the reason-
ing dataset. T5: We contain facts, rules, and the
question as the input, and use the label as the out-
put. ProofWriter: ProofWriter uses the classifica-
tion label and Polish Notations proof with sentence
identifiers as the output (Tafjord et al., 2021).
Setup: The input length of each model is set to
512, the batch size is set to 4. The learning rate of
the RoBERTa-large is set to 1e-5, and the learning
rate of the other T5-based models (i.e., T5-base,
ProofWriter, ADR) is set to 1e-3. All the models are
trained on a V100. We follow the (Clark et al., 2021)
to use the classification accuracy as themetric. The
decoding parameter for all models is set to a greedy
search with a maximum length of 512. Formally,
the training data for T5 consists of (X, Y) pairs. The
purpose of ADR is to modify the original training
data Y, denoted as f(Y). This transforms the T5
training data into (X, f(Y)) pairs.

4.2. Overall Performance

The results of all tested models are shown in Ta-
ble 1. Firstly, we observe that all the tested models
can achieve >99% accuracy on the original dataset,
which demonstrates their capability of learning de-
ductive reasoning. However, when training models
on the injection dataset, the performance of the
RobERTa-large and T5-base drops to 0%. This indi-
cates that these two models have learned instance-
level knowledge. Models that are only trained with
validity label is prone to learn instance-level knowl-
edge. In contrast, models trained with proof super-
vision (i.e., ProofWriter, and ADR) can alleviate the
problem. However, the accuracy of the ProofWriter
still drops to 10%, which drops nearly 90%. This in-
dicates that simply using the instance-level proof is
not enough to train a robust reasoner. ProofWriter
still learned the instance-level knowledge. Com-
pared with all the baselines, ADR achieves the best
and the most robust performance on both the origi-
nal and injection datasets. This indicates that us-
ing abstract reasoning proofs prevents PLMs from
learning narrow instance-level knowledge.



Table 2: The ablation results of ADR.

Models Abstract
proof

Reason-and-
decide Accuracy

ADR 3 3 80.9
(a) 3 10.0
(b) 3 19.5

4.3. Ablation Study

Given a context C and a hypothesis H, the label L
for whether C supports H is V alid, Invalid. Addi-
tionally, the instance-level proof for L is Pi, and the
abstract-level proof is Pa. The training data for ADR
consists of pairs (X,Y ), whereX is [C,H] and Y is
[Pa, L]. Here, [a, b] indicates concatenating a and b
in order. Therefore, in the ablation experiments, the
training data Y for models (a) and (b) correspond
to [L,Pa] and [Pi, L], respectively.

Table 2 shows the results of the ablation experi-
ments on abstract reasoning proofs and the reason-
and-decide manner. We make the following ob-
servations: (1) The reason-and-decide manner is
crucial for ADR. When not using the reason-and-
decide manner (using post hoc manner instead),
ADR’s performance dropped from 80.9% to 10.0%
(compare ADR and (a)). During training, PLMs
first learn to predict validity labels and then learn
proof generation. In this situation, PLMs are prone
to learning instance-level knowledge, which pre-
vents abstract reasoning proofs from influencing
the model’s learning process. (2) Abstract reason-
ing proofs are also crucial for ADR. When using
instance-level reasoning proof, ADR’s performance
dropped to 19.5% (Compare ADR and (b)). This
indicates that instance-level reasoning proof fails
to reveal general reasoning patterns, leading PLMs
to learn instance-level knowledge.

4.4. Qualitative Analysis

Wemanually evaluate proof generated by ADR and
ProofWriter. We observe that ProofWriter often gen-
erates proofs unrelated to the hypothesis. For ex-
ample, given the hypothesis “warrigal is enlivened,”
ProofWriter generates a proof related to the “kaffir
cat”: “kaffir cat is automotive, kaffir cat is germy.
And germy, automotive things are syphilitic. So
kaffir cat is syphilitic.” This is because ProofWriter
has learned instance-level knowledge that “war-
rigal is not enlivened” during training and deter-
mines that the hypothesis “warrigal is enlivened” is
invalid, leading to the generation of an unrelated
proof. In contrast, ADR, by abstracting entities and
predicates during training, can avoid the influence
of instance-level knowledge and generate correct
proofs. Moreover, we observe that the proof gen-
erated by ADR may differ from the ground truth

Table 3: The results on human-written dataset.

Models Human-written Dataset
RoBERTa-large 2.4

T5 1.0
ProofWriter 29.8
ADR (Ours) 87.5

but is still logically valid. This suggests that ADR
contributes to learning deductive reasoning.

4.5. Knowledge Injection Percentage
We test the performance of ADR and ProofWriter
at different levels of injection. Specifically, we con-
struct training and test sets with different injection
levels by controlling the percentage of injection
samples. We observe that at injection percent-
age of 0%, 50%, 90%, and 100%, the accuracy of
ProofWriter is 99.1%, 96.6%, 85.0%, and 10.0%,
respectively, while the accuracy of ADR is 99.9%,
96.8%, 90.7%, and 80.9%, respectively. The im-
provements brought by ADR are 0.2%, 0.2%, 5.7%,
and 70.9%, respectively. This indicates that both
the model’s performance and the improvements
brought by ADR are directly proportional to the per-
centage of injection samples. Therefore, the more
instance-level knowledge that exists in a dataset,
the more improvements ADR can bring.

4.6. Human-written Deductive Reasoning
We also evaluate ADR and the baseline models
on the human-paraphrased version of Ruletaker
(Clark et al., 2021) dataset. We use the same in-
jection procedure to inject label-specific knowledge
into the dataset. The results are illustrated in Table
3. We make the following observations: (1) On the
human-written dataset, RoBERTa-large, T5, and
Proofwriter also easily learn instance-level knowl-
edge, which leads to their overall performance be-
ing unsatisfactory. (2) On the contrary, ADR is still
more robust and outperforms the baseline mod-
els. This indicates that ADR can be applied to
human-written deductive reasoning. (3) Proofwriter
and ADR both achieve better results on human-
written data compared to synthetic data. One pos-
sible reason is that the diversity of natural language
expressions increases, which also makes it more
challenging for the model to learn instance-level
knowledge. This results in the model being more
inclined to learn general reasoning patterns.

5. Related Work

Previous works on deductive reasoning are mostly
based on formal language (Musen and Van der Lei,
1988; Metaxiotis et al., 2002; Paulin-Mohring, 2011;



Phillips and Stanovskỳ, 2008), which cannot be di-
rectly applied to the daily used natural language.
Some prior works parse natural language into for-
mal forms (Martínez-Gómez et al., 2016; Suzuki
et al., 2019; Kamath and Das, 2018; Wu et al.,
2023), then apply formal reasoner to perform logi-
cal reasoning. Recently, Pre-trained languagemod-
els have achieved impressive performance across
multiple tasks (Bu et al., 2022; Yuan et al., 2022; Bu
et al., 2023). (Clark et al., 2021) proposes a natu-
ral language deductive reasoning task and dataset
called RuleTaker. They find that transformer-based
(Vaswani et al., 2017) pre-trained RoBERTe-large
(Liu et al., 2019) are able to emulate deductive rea-
soning on natural language. The follow-up work
(Tafjord et al., 2021) refines the RuleTaker and pro-
poses proof generation tasks. They use the T5
(Raffel et al., 2020) instead of RoBERTa as the
neural reasoner. And several neural reasoners
(Sanyal et al., 2022b; Liang et al., 2021; Yang et al.,
2022) are proposed to perform deductive reasoning,
which is mostly based on T5 or RoBERTa. Recent
works evaluate the robustness of neural reason-
ers from logic operators (Sanyal et al., 2022a) and
logic consistent adversarial attacks (Gaskell et al.,
2022) in two respects. Compared with their works,
we focus on the issue of instance-level knowledge,
which has not been discussed in previous work.

The Selection-Inference method (Creswell et al.,
2022) decouples selection and inference, gen-
erating proofs through multiple iterations rather
than providing all proofs at once. Additionally,
the Selection-Inference method employs in-context
learning for both selection and inference, which
largely avoids instance-level knowledge during
training and fine-tuning processes. However, due to
the absence of fine-tuning, the Selection-Inference
method may have lower performance for specific
tasks compared to methods like ProofWriter and
ADR. Moreover, research indicates (Si et al., 2023)
that in-context learning may be influenced by bias
present in the demonstration. Therefore, we be-
lieve future research could explore combining ADR
methods with in-context learning in the Selection-
Inference approach.

6. Conclusion

In this paper, we reveal that abstract reasoning
proofs can effectively alleviate the issue of PLMs
learning undesired instance-level knowledge when
learning deductive reasoning. Additionally, we pro-
pose to generate proofs first and then determine
their validity, which plays a significant role in pro-
ducing valid proofs. It is easy to learn instance-level
knowledge even with ADR without this manner.
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Limitations

ADR currently still needs abstract reasoning proofs
for fine-tuning, which can be time-consuming. How
to make the model autonomously discover reason-
ing patterns in the data is also a problem worthy of
research. Especially when many large language
models currently only provide API interfaces, how
to equip these LLMs with robust deductive reason-
ing capabilities is also worth investigating.
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