Abstract
Auxiliary information, such as knowledge graph (KG), has become increasingly crucial in recommender systems. However, the current KG-based recommendation still has some limitations: (1) low link rates between items and KG entities, (2) redundant knowledge in KG. In this paper, we introduce the aspect, which refers to keywords describing item attributes in reviews, to KG-based recommendation, and propose a new model, Collaborative Aspect Graph enhanced Knowledge-based Network (CAGK). Firstly, CAGK builds a Collaborative Aspect Graph (CAG) with user-item interactions, aspects and KG, where aspects can fill most of the sparsity. Secondly, we leverage interactive information and aspect features to generate aspect-aware guidance signals to customize knowledge extraction and eliminate redundant knowledge. Lastly, we utilize low ratings and negative aspect sentiment to capture features of that users dislike to prevent repetitive recommendations of disliked items. Experimental results on two widely used benchmark datasets, Amazon-book and Yelp2018, confirm the superiority of CAGK.