MoPE: Mixture of Prefix Experts for Zero-Shot Dialogue State Tracking

Tianwen Tang, Tong Zhu, Haodong Liu, Yin Bai, Jia Cheng, Wenliang Chen


Abstract
Zero-shot dialogue state tracking (DST) transfers knowledge to unseen domains, reducing the cost of annotating new datasets. Previous zero-shot DST models mainly suffer from domain transferring and partial prediction problems. To address these challenges, we propose Mixture of Prefix Experts (MoPE) to establish connections between similar slots in different domains, which strengthens the model transfer performance in unseen domains. Empirical results demonstrate that MoPE-DST achieves the joint goal accuracy of 57.13% on MultiWOZ2.1 and 55.4.
Anthology ID:
2024.lrec-main.1012
Volume:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Venues:
LREC | COLING
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
11582–11592
Language:
URL:
https://aclanthology.org/2024.lrec-main.1012
DOI:
Bibkey:
Cite (ACL):
Tianwen Tang, Tong Zhu, Haodong Liu, Yin Bai, Jia Cheng, and Wenliang Chen. 2024. MoPE: Mixture of Prefix Experts for Zero-Shot Dialogue State Tracking. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 11582–11592, Torino, Italia. ELRA and ICCL.
Cite (Informal):
MoPE: Mixture of Prefix Experts for Zero-Shot Dialogue State Tracking (Tang et al., LREC-COLING 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-4/2024.lrec-main.1012.pdf