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Abstract

We show that meaning shifts in political dog-
whistle expressions (DWEs) are explained by
the expressions changing with regard to their
“hidden” (in-group) and “public” (out-group)
dimensions. We study the association between
computational measures of Lexical Semantic
Change (LSC) and the In-group/Out-group Ra-
tio (IOR) of four Swedish DWEs. We use
a combination of distributional modeling of
DWEs in the online discussion forum Flash-
back and data collected from a lexical replace-
ment survey of Swedish residents. We explore
several vector-space meaning representation ap-
proaches and demonstrate that distributional
methods can be used to identify semantic shifts
relevant to dogwhistle development, particu-
larly contextual representations from Swedish
BERT, SBERT, and multilingual T5.

1 Introduction

Online media is important for political communi-
cation, but its fast pace makes it very susceptible to
meaning manipulation and deceptive communica-
tion strategies. Analyzing communicative patterns
in such large quantities of data requires computa-
tional methods (Theocharis and Jungherr, 2021).
In the context of political discourse, this form of
data analysis has been used to combat hate speech
and related problems for online moderation.

A key challenge for automated analysis of text
is identifying implicit meanings (Magu and Luo,
2018). In this work, we explore computational ap-
proaches for modeling the temporal dynamics of
political dogwhistles. Following Lo Guercio and
Caso (2022, p. 203), political dogwhistles can be
defined as “speech acts that explicitly convey a cer-
tain content to an audience, while simultaneously
sending a different, concealed message to a spe-
cific subset of that audience” (Saul, 2018; Howdle,
2023; Witten, 2023). Henceforth, we refer to the
explicit meaning of dogwhistles as their out-group

meaning, and the concealed meaning as their in-
group meaning. We define a dogwhistle expression
(DWE) as a linguistic form that encodes this dual
function and carries both in-group and out-group
meanings (Henderson and McCready, 2018).

Dogwhistles that secretly convey racist or oth-
erwise derogatory attitudes are ethical problems
for democratic society (Åkerlund, 2022; Lindgren
et al., 2023; Bhat and Klein, 2020; Saul, 2018; Stan-
ley, 2015; Haney-López, 2014). Independent of
content, dogwhistles have been discussed as prob-
lems for democracy by obscuring political mandate
and democratic legitimacy (Goodin and Saward,
2005; Howdle, 2023).

Previous work includes theoretical accounts of
how dogwhistles work semantically (Breitholtz and
Cooper, 2021; Henderson and McCready, 2018;
Stanley, 2015; Khoo, 2017; Lo Guercio and Caso,
2022), experiments that test the consequence of
dogwhistle communication for the acceptance of
policies and attitudes (White, 2007; Wetts and
Willer, 2019), and content analyses of how dog-
whistles are used online (Bhat and Klein, 2020; Åk-
erlund, 2022). Less attention has been devoted to
the distributional modeling of dogwhistle meaning
(but see, e.g., Hertzberg et al., 2022; Mendelsohn
et al., 2023; Boholm and Sayeed, 2023; Xu et al.,
2021). In particular, while semantic change is es-
sential to the concept of dogwhistle, it has only
recently been systematically addressed (Boholm
and Sayeed, 2023; Sayeed et al., 2024).

Our aim is to combine established methods of
lexical semantic change (LSC) detection (Kutuzov
et al., 2018; Tahmasebi and Dubossarsky, 2023;
Tahmasebi et al., 2021; Tang, 2018) and survey data
from linguistic replacement tests (Arefyev et al.,
2022; Lindgren et al., 2023) to model the temporal
dynamics of dogwhistle meaning over time. The
research questions are (1) to what extent are com-
putational measures of LSC associated with shifts
in the in-group and out-group meanings of DWEs.
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Moreover, we ask (2) how different approaches to
modeling meaning compare with respect to the re-
lationship between LSC and shifts in in-group and
out-group meaning over time.

We analyse the relationship between rate of
LSC and the in-group–out-group dynamics of dog-
whistles through four ways of modeling mean-
ing: (i) skip-gram with negative sampling (SGNS)
(Mikolov et al., 2013), (ii) Bidirectional Encoder
Representations from Transformer BERT (De-
vlin et al., 2019), (iii) Sentence-BERT (SBERT)
(Reimers and Gurevych, 2019), and (iv) massively
multilingual Text-to-Text Transfer Transformer
(mT5) (Raffel et al., 2020; Xue et al., 2021). These
methods are sensitive to the dynamic meaning
changes of DWEs, suggesting that they can be de-
veloped for the detection and analysis of dogwhis-
tle communication online. We also show that the
pipelines with the large language models (LLMs)
are better at predicting dogwhistle meaning shifts
than the SGNS-based pipelines.

2 Related work

Methods of distributional semantics have recently
been applied to the long-standing study of semantic
change (Bréal, 1904). Advances include the devel-
opment and validation of approaches for studying
when, how, and how much words change. (Kutu-
zov et al., 2018; Tahmasebi and Dubossarsky, 2023;
Tahmasebi et al., 2021; Tang, 2018). To study how
much and when words change, the features of the
vector representations can be compared. Formally,
the semantic change of a word w in a transition
from ti to tj can be defined as the distance of w’s
vector at ti (−→w ti) and its vector at tj (−→w tj ):

∆ti,tj (w) = distance(−→w ti ,
−→w tj )

Diachronic word embeddings have been built
as static word embeddings trained at time peri-
ods t1, . . . tn (Hamilton et al., 2016b; Kim et al.,
2014), such as SGNS (Mikolov et al., 2013), PPMI
(Levy et al., 2015) and GloVe (Pennington et al.,
2014); by averaging over contextualized token em-
beddings at t1, . . . tn (Martinc et al., 2020a; Ku-
tuzov and Giulianelli, 2020), using, for example,
BERT (Devlin et al., 2019) and ELMo (Peters et al.,
2018); and as probability distributions over clusters
of contextualised token embeddings at t1, . . . tn
(Giulianelli et al., 2020; Kutuzov and Giulianelli,
2020; Martinc et al., 2020b; Vani et al., 2020).

To investigate how words change, we can an-
alyze how words’ positions change in the vector
space (Hamilton et al., 2016a,b). By measuring
the distance between the vector of a word w and
those of other words, the nearest neighbors of w
at time ti can be compared with its neighbors at tj
(Charlesworth et al., 2022; Vylomova and Haslam,
2021; Tripodi et al., 2019). With predefined con-
cepts (or dimensions) of interest (Caliskan et al.,
2017), w’s distance to those “concepts” can be
tracked over time (Mendelsohn et al., 2020). This
latter approach enables exploration of conceptual
shifts in large datasets, possibly over long time
spans (Garg et al., 2018). For example, Mendel-
sohn et al. (2020) studied the dehumanization of
LGBTQ people in US media by tracking over time
the distance between the words for these groups
and the vocabulary relevant for the analytical di-
mensions investigated (e.g., disgust and power).
Other work has tested the theory of “concept creep”
(Haslam, 2016) by analyzing the semantic shift of
harm-related (Vylomova and Haslam, 2021) and
health-related concepts (Baes et al., 2023).

The present work analyses dogwhistles and how
their in-group and out-group dimensions of mean-
ing change over time. Previously, philosophers of
language and linguists have tried to explain the dual
meanings of dogwhistles (Breitholtz and Cooper,
2021; Henderson and McCready, 2018). The role
of convention versus pragmatic inference is one
of the main theoretical issues addressed in this
discussion (Breitholtz and Cooper, 2021; Hender-
son and McCready, 2018; Stanley, 2015; Khoo,
2017; Lo Guercio and Caso, 2022). Few attempts
have been made to use distributional semantics
to study dogwhistles, but notable exceptions exist.
Hertzberg et al. (2022) partitioned in-group and out-
group interpretations of DWEs in a word replace-
ment experiment, using SBERT. Xu et al. (2021)
built an annotated data set for Chinese dogwhistles.
Similarly, Mendelsohn et al. (2023) presented an
extensive database of dogwhistle definitions in a
US context. In addition, they illustrated the ability
of GPT-3 to identify dogwhistles, based on prompts
with definitions from their database.

We expand on these efforts to study dogwhistles
by combining LSC techniques and suvey data for
modeling in-group–out-group dynamics of DWEs.
Although time is essential for dogwhistles, since
the in-group meaning evolves in parallel to an exist-
ing (out-group) meaning (Sayeed et al., 2024), only
recently have the temporal aspects of dogwhistles
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been systematically studied. Boholm and Sayeed
(2023) used computational methods of LSC analy-
sis to model the rate of change of DWEs in different
online discussion forums and found that the rate of
semantic change of DWEs observed in the highly
politically polarized online community diverged
from the rate of semantic change of the same terms
(at the same period of time) in the less polarized
community, suggesting that dogwhistle evolution
is community dependent (Quaranto, 2022; Clark,
1996). However, they did not systematically test
whether the rate of change observed for the DWEs
was explained by systematic variation in the in-
group and out-group meaning of the expressions.

3 Data

3.1 Replacement survey

We use data from a word replacement test imple-
mented via a survey of Swedish residents. The aim
of this test was to quantify variability in how in-
dividuals understand the meaning of dogwhistles.
In the first step, we collected potential dogwhistle
words from political messaging in Swedish media.
Twelve words were included in the replacement test
(February and March 2021). The sample (n=1780)
consisted of self-recruited panelists, pre-stratified
to reflect the Swedish population in terms of age,
gender and education.

Panelists were asked to read sentences and in-
structed to replace a potential DWE in each sen-
tence with one or more words so that the meaning
of the sentence remains largely the same. The re-
placement test was completed by 1,045 panelists,
with a participation rate of 51%.

The test was followed by manual coding of re-
sponses. A coding manual was drafted and re-
fined by the research group. Coders classified
the replacement words into three categories: 1)
the implicit dogwhistle meaning, 2) the explicit
literal meaning, or 3) word(s) that could not be
coded as 1 or 2. In this study, we take DWEs that
had high inter-annotator agreement (Krippendorff’s
α > 0.6) and acceptable corpus frequency (at least
10 instances per year when mentioned). We discuss
these in the next section.

3.2 Four Swedish DWEs

The in-group meanings of the DWEs analyzed can
be listed at a general level. With the out-group
meaning of ‘suburban gang’, the in-group meaning
of the dogwhistle förortsgäng is that of ‘immi-

grant gang’. As such, this DWE works by a biased
place-for-person metonymy, similar to inner city
discussed in US context (Saul, 2018). The DWE
återvandring (‘re-migration’) has in-group and out-
group meanings based on the (in)voluntariness of
the process, with a voluntary act as the out-group
meaning, while ‘deportation’ is the in-group mean-
ing. The DWE of berika (‘enrich’) is the result of
malevolent irony, in response to positive opinions
on multiculturalism, where the in-group meaning
is the opposite of enrichment, namely criminal and
destructive activities (by immigrants). In a Swedish
context and elsewhere, globalist is used with sev-
eral different in-group meanings, including an anti-
Semitic reference to Jews, a nationalistic reference
to anti-nationalists (i.e., opponents of nationalism),
and a populist reference to elitism.

3.3 Corpus
Flashback is a discussion forum with over 1.5
million users and more than 80 million posts, as
of 13 March, 2024 (according to the website’s
own claim). The topics of discussions are or-
ganized in “threads” under 15 general sections
(e.g., drugs, economy, lifestyle and politics). With
anonymous users, Flashback is known for discus-
sion of controversial topics and the expression of
controversial opinions, including discrimination
and racism (Åkerlund, 2021; Blomberg and Stier,
2019; Malmqvist, 2015). Although hate speech
and threats are not allowed by the rules, the web-
site clearly contains offensive language. We here
analyze Flashback data from 2000 to 2022, on the
topic of politics. The corpus, which in total con-
tains 49M sentences (posts) and 785M words, was
collected from the Swedish national language data
processing infrastructure Språkbanken Text.1 On
average, there are 2.1M sentences (SD = 1.4M) and
34.1M words (SD = 21.7M) per year.

There is considerable variation in frequency of
the four DWEs analyzed in the corpus (Table 1). In
particular, förortsgäng is much less frequent than
the other terms. Moreover, term frequencies are
very different in different years, which is reflected
in the high values of the standard deviation.

The corpus has been preprocessed for all
pipelines (SGNS, BERT, SBERT and mT5) by
lower-casing and removing URLs and emojis. Cor-
pus data for the SGNS approach have been further
processed by removal of numbers and punctuation;

1https://spraakbanken.gu.se/en/resources/
flashback-politik
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DWE Total M SD
berika 20936 27.92 12.18
förortsgäng 227 0.23 0.26
globalist 31156 32.07 39.62
återvandring 12999 13.19 22.20

Table 1: Total frequency and mean frequency per mil-
lion per year

separation of compounds that contain the DWEs un-
der analysis as their left-hand element, e.g., “glob-
alistelit” is replaced by “globalist elit” (with space);
and lemmatization of the DWEs analyzed, for ex-
ample, “globalisten” (definite form of globalist)
is replaced by “globalist” (lemma form). Regular
expressions were used for lemmatization and split-
ting of compounds. For the other approaches, there
was no additional step of preprocessing to the steps
listed above, but some minor changes were made to
facilitate mapping of input words and tokenisation
for BERT and mT5.

4 Semantic modeling

Below we introduce four pipelines to test the re-
lationship between the LSC and the in-group/out-
group dynamics of DWEs. The piplelines have two
basic steps: (a) modeling of the rate of semantic
change of DWEs in the corpus; and (b) modeling
of the degree of in-group vs. out-group meaning
of the DWEs based on the replacements observed
in the survey. The key difference between the four
pipelines is the algorithm used for modeling mean-
ing: SGNS, BERT, SBERT and mT5.2

4.1 LSC modeling
The semantic change of a word w in a transition
from ti to tj , i.e., ∆ti,tj (w), is defined as the an-
gular distance of w’s vector at ti (i.e., −→w ti) and
its vector at tj (i.e., −→w tj ) (Kim et al., 2014; Noble
et al., 2021):

∆ti,tj (w) =
arccos(cossim(−→wti ,

−→wtj ))

π

We apply four approaches to build time-indexed
word vectors in the diachronic corpus C, which
is a collection of sentences from the consecutive
set of time periods, T = ⟨2000, . . ., 2022⟩. Thus,
C = ⟨c2000, . . ., c2022⟩. Vectors are trained only for
words at t with a minimum frequency of 10.

2Code for running experiments can be found at https:
//github.com/mboholm/dogwhistle-lsc-predicition.

4.1.1 The SGNS approach
A SGNS model is trained for each sub-corpus
in C, in the sorted order of T, from first to last.
The weights of the model are randomly initial-
ized for the first time period, M2000, but for every
other model, Mti , where ti > 2000, the weights
of Mti are initialized with the trained weights of
Mti−1 . For every consecutive pair in T, i.e. the
set of transitions R = ⟨⟨t1, t2⟩, . . .⟨tn-1, tn⟩⟩ =
⟨⟨2000, 2001⟩, . . .⟨2021, 2022⟩⟩, and for every
word w existing in both models Mti and Mti+1 , the
vectors −→wti and −→w ti+1 are compared for ∆ti,tj (w).
We train six SGNS variants for 100 and 200 dimen-
sions and window sizes of 5, 10, and 15.

4.1.2 The BERT approach
The diachronic corpus B is a subset of C, such that
it covers the same consecutive time periods in T, but
where every sub-corpus bt = {sentence s: s is in ct∧
at least one the analyzed DWEs is in s}. Sentences
in B are encoded by Swedish BERT (Malmsten
et al., 2020).3 A word vectors of a DWE w at t
is built in two steps: first, contextualised token
embeddings of w in sentences from bt, are built by
averaging over the token embeddings of the last
hidden layer of BERT that correspond to w in the
input. Next, the mean vector of the contextualized
token embeddings for w in t constitutes −→w ti .

4

4.1.3 The mT5 approach
The third approach uses the mT5 model (Xue et al.,
2021), a multilingual variant of T5 (Raffel et al.,
2020) trained on the multilingual extension of the
Colossal Clean Crawled Corpus (C4), mC4, which
in total contains 6.3T tokens. Swedish is among
the 101 languages in mC4. With T5, every NLP
task is generalized as text-to-text problem. The
model is similar to the original transformer model
in Vaswani et al. (2017), with some alternations of,
for example, normalization of layers and position
embeddings (Raffel et al., 2020; Xue et al., 2021).
T5 was originally developed to test, in a unified and
controlled way, the effectiveness of transfer learn-
ing on a variety of NLP tasks (Raffel et al., 2020).
However, our implementation does not fine-tune
the pre-trained model. Rather, our main motive for

3https://huggingface.co/KB/
bert-base-swedish-cased

4For some compound words, the tokenization for BERT or
mT5 does not perfectly match the DWE part of the compound.
We then use the embeddings of tokens that maximize the simi-
larity of the two strings by the Ratcliff et al. (1988) algorithm
implemented as SequenceMatcher in Python.
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using mT5 is to test a recent large-scale transformer.
Here we use the 3.7 billion parameter version of
the model, named XL.5

We build word vectors at t as in the BERT ap-
proach: contextualized token embeddings are built
by averaging token embeddings of the last hidden
layer, corresponding to w in the input sentence;
−→w ti is the mean vector of the contextualised token
embeddings at t.

4.1.4 The SBERT approach
The fourth and final approach uses Swedish
SBERT (Rekathati, 2021).6 SBERT (Reimers and
Gurevych, 2019) is BERT (Devlin et al., 2019)
fine-tuned for predicting the semantic similarity
of two sentences. SBERT has a bi-encoder archi-
tecture to reduce the computational cost of sen-
tence pair-regression in original BERT. Reimers
and Gurevych (2019) show that a bi-encoder with
fine-tuning reaches state-of-the-art performance on
sentence similarity. Swedish SBERT is trained with
transfer learning in Reimers and Gurevych (2020),
where the objective is to make a student model7 (of
an under-resources language, here: Swedish) match
the sentence embeddings of a high-performing
teacher model8 (developed for a well-resourced
language, here: English) in a parallel corpus.

The implementation of the SBERT approach is
in most respects similar to the implementation of
the other transformer models, but does not require
mapping between token embeddings and the DWE
of the input, nor selection of layer, since SBERT
output 1 × 768-dimensional vectors that serve as
the contextualized token embedding. The mean
vector of the contextualized embeddings for w at t
constitutes −→w t.

4.2 In-group and out-group modeling

We modeled the semantic dimensions of in-group
and out-group meaning of a DWE w at time t by
measuring the similarity between (a) the embed-
ding for w at t trained on online community data (as
defined above, sect. 4.1) and (b) the (averaged) em-
bedding for text replacements Rw = {rw1 , ..., rwn }
for w in the replacement survey, annotated as “in-
group” (Iw) or “out-group” ( Ow). Details on how

5https://huggingface.co/google/mt5-xl
6https://huggingface.co/KBLab/

sentence-bert-swedish-cased
7https://huggingface.co/KB/

bert-base-swedish-cased
8https://huggingface.co/sentence-transformers/

paraphrase-mpnet-base-v2

the in-group and out-group embeddings,
−→
Iw and−→

Ow, are built from Iw and Ow are presented in
the following (sect. 4.2.1 - 4.2.2); each approach
parallels those defined above for the analysis of
LSC.

Once in-group and out-group embeddings for
DWE w are derived, we use cosine similarity to
calculate an in-group score (IS) and an out-group
score (OS) at each time t:

ISt(w) = cossim(−→wt,
−→
Iw)

OSt(w) = cossim(−→wt,
−→
Ow)

Next, we define the In-group/Out-group Ratio
(IOR) of DWE w, reflecting a normalized measure
of w’s in-group meaning relative to its out-group
meaning (Kapron-King and Xu, 2021):

IORt(w) =
ISt(w)

ISt(w) +OSt(w)

To measure the change in IOR for w over time,
we define the absolute difference in IOR as:

∆IOR
ti,tj (w) = abs(IORtj (w)− IORti(w))

This study uses linear regression to test whether
the difference in IOR (i.e., ∆IOR

ti,tj (w)) is a predictor
of the LSC of DWEs (i.e., ∆ti,tj (w)). Regression
models are described in more detail below (sect.
5.1), but first vectorization of in-group and out-
group dimensions is addressed.

4.2.1 SGNS
For the SGNS approach, vectorization of in-group
and out-group dimensions is based on the word
embeddings trained for the diachronic corpus data
(sect. 4.1.1). A bag-of-words (BOW) approach
was implemented to build in-group and out-group
embeddings from the SGNS models.9

The steps for building in-group and out-group
embeddings from the BOW-sets are as follows:10

first, stopwords were removed. Second, the top 3
words of each BOW set were selected based on

9An alternative approach could have been to build token
vectors of multi-word inputs (replacements) by pooling SGNS
word vectors of the input and then averaging over those token
vectors (similar to the approaches described below). The BOW
approach implemented here has lower computational cost than
a pooling of multi-word inputs would have had.

10We have tested different strategies for selection. Other ex-
amples of strategies include selecting the top 3 most frequent
words in Iw and Ow without overlap.
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their keyness (Gabrielatos, 2018), using the odds
ratio, which is an asymmetric measure of the proba-
bility of a word in a target corpus relative to a refer-
ence corpus (e.g., the probability of finding a word
x in the in-group replacements relative to the out-
group replacements). Third, we generalize from
the selected words, by adding related word forms
of the same lexeme, using existing resources for
Swedish morphology (Borin and Forsberg, 2009).
For example, in the replacement survey participants
were asked to replace the plural form of the DWE
globalist, i.e., “globalister” (plural). Consequently,
the replacements for globalist are dominated by plu-
ral forms of nouns, e.g., “elitister” (plural). How-
ever, embeddings for other wordforms than the
exact ones used in the replacement survey might be
relevant for modeling the in-group and out-group
dimension. Once the word forms of each lexeme
were identified, to minimize the influence of infre-
quent words, word forms that were not frequent
enough to account for at least 20% of the frequency
of the lexeme were removed. Finally, after selec-
tion and expansion, for each word in a remaining
set, its SGNS embedding was collected. The in-
group and out-group embeddings are defined as
the average vector of the collected embeddings for
each set (see Appendix A for examples of words).

4.2.2 BERT, mT5, and SBERT
For BERT and mT5, we represent each replacement
r by the average embedding of the last hidden layer
(Ni et al., 2021).11 Since SBERT is designed to rep-
resent sentences, there is no need for (additional)
pooling of token embeddings. Replacements are
represented by sentence embeddings. We define
the in-group (

−→
Iw) and out-group embeddings (

−→
Ow)

as the mean vectors of the contextualized token
embeddings for the replacements in Iw and Ow.

For examples of sentences from the Flashback
training data, with high and low scores of IOR, see
Appendix B.

5 Analysis

5.1 Regression models
The relationship between IOR and LSC is mod-
eled by linear regressions (OLS), implemented in
Python through statsmodels package. We try
to predict the rate of semantic change of DWEs

11For BERT we also tested the embedding of the CLS token,
which resulted in slightly higher R2 scores. Here we focus on
the mean pooling approach for comparability with the pipeline
for mT5-XL, which lacks a CLS token (Ni et al., 2021).

(∆ti,tj (w)) from their change in IOR (∆IOR
ti,tj (w)).

If the coefficient for the (independent) variable is
significant, the semantic change observed for the
DWEs is explained by their shifting meaning with
regard to in-group and out-group meanings. In
addition to the significance of the coefficent for
∆IOR, the pipelines defined above can be com-
pared with respect to the total variance explained
(R2). In total, there are 64 DWE-time pairs in the
data.

Previous research has shown that semantic
change is strongly correlated with term frequency
(Dubossarsky et al., 2017; Hamilton et al., 2016b).
To avoid having term frequency as a confound-
ing factor between ∆ti,tj (w) and ∆IOR

ti,tj (w), we
control for the effect of term frequency by hav-
ing term frequency per million (FPM) (at ti, log2-
transformed) and proportional change in FPM from
ti to tj as predictors (control variables).

Thus, we model the following relationship:

∆ti,tj (w) = β0 + β1 ×∆IOR
ti,tj (w)+

β2 × log2(FPMti(w)) + β3 ×∆FPM
ti,tj (w)

For comparability, the model variables are nor-
malized by z-scores. We assess there being no
problem with multicollinearity, since the variance
inflation factor (VIF) for independent variables is
close to 1 (below 2) in all models. For all regres-
sion models, except the ones based on the pipeline
for 200-dimensional SGNS models, the residuals
are not normally distributed, as measured by the
Jarque-Bera test. Under the assumption of the cen-
tral limit theorem, we proceed with the regression
model proposed above, despite nonnormal residu-
als, relying on our sample size being sufficiently
large (N = 64, with three predictors) (Weisberg,
2013; Schmidt and Finan, 2018). However, we
did test transformations of variables to meet the
assumption of normal residuals, see Appendix C.
The overall patterns are the same.

5.2 Results

For most models, shifts in IOR (∆IOR
ti,tj (w)) is a

significant predictor of rate of semantic change
(∆ti,tj (w)). That is, the rate of change observed for
DWEs using common methods for LSC-modeling
is related to shifts in in-group and out-group mean-
ing. Overall, these findings suggest that the estab-
lished computational methods of LSC detection
are, in fact, sensitive to the emergence and decline
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Dependent variable: ∆ti,tj

SBERT BERT mT5-XL SGNS-
w5-d100

SGNS-
w10-d100

SGNS-
w15-d100

SGNS-
w5-d200

SGNS-
w10-d200

SGNS-
w15-d200

∆IOR
ti,tj 0.794∗∗∗ 0.546∗∗∗ 0.555∗∗∗ 0.250∗ 0.129 0.246∗ 0.273∗ 0.184 0.361∗∗

(0.059) (0.103) (0.102) (0.121) (0.130) (0.122) (0.112) (0.123) (0.114)
∆FPM

ti,tj -0.022 -0.078 -0.220∗ 0.256∗ 0.236 0.198 0.265∗ 0.202 0.206
(0.057) (0.099) (0.103) (0.122) (0.126) (0.123) (0.113) (0.120) (0.114)

FPM (log) -0.265∗∗∗ -0.236∗ -0.451∗∗∗ 0.049 -0.032 -0.078 0.347∗∗ 0.258∗ 0.223
(0.059) (0.103) (0.099) (0.122) (0.130) (0.123) (0.113) (0.125) (0.115)

Const. -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.057) (0.098) (0.097) (0.120) (0.125) (0.122) (0.112) (0.119) (0.113)

R2 0.807 0.426 0.430 0.129 0.067 0.113 0.248 0.149 0.240
Adj. R2 0.798 0.398 0.401 0.086 0.021 0.069 0.210 0.106 0.202
Resid. Std. Er-
ror

0.453
(df=60)

0.782
(df=60)

0.780
(df=60)

0.964
(df=60)

0.997
(df=60)

0.973
(df=60)

0.896
(df=60)

0.953
(df=60)

0.901
(df=60)

F Stat. 83.866∗∗∗

(df=3; 60)
14.862∗∗∗

(df=3; 60)
15.079∗∗∗

(df=3; 60)
2.971∗

(df=3; 60)
1.447
(df=3; 60)

2.545
(df=3; 60)

6.589∗∗∗

(df=3; 60)
3.495∗

(df=3; 60)
6.302∗∗∗

(df=3; 60)

Note: N = 64; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 2: Explaining semantic change of DWEs (standardized coefficients)

Figure 1: Relationship between LSC and IOR in SBERT
pipeline

of dogwhistles. Exceptions to this general observa-
tion are found among variants of the SGNS models,
where the coefficient for ∆IOR

ti,tj (w) is not signifi-
cant (at α = 0.05); namely those with window size
= 10. We return to this pattern below.

Out of the pipelines, the LLM-based pipelines
explain more variability of the data and have
larger coefficients for ∆IOR

ti,tj , than the SGNS-based
models. Thus, in predicting semantic change,
these models rely more on the semantic variabil-
ity related to the IOR, than the SGNS models
do. When comparing LLM-based pipelines, the
SBERT-based approach shows higher R2 and a
stronger effect of ∆IOR than the BERT and mT5
approaches. For SBERT, the strong correlation
between LSC and IOR is illustrated in Figure 1.
These observations suggest that sentence embed-
dings are beneficial for explaining the semantic

change of dogwhistles (SBERT), compared with av-
eraging over the embeddings of input tokens map-
ping to the DWE (BERT, mT5). Note that these
findings derive from pipelines that contain both the
rate of change and the IOR. Thus, the different ob-
served can be a consequence of how replacements
are represented, how LSC is modeled, or both.

An explanation for why SBERT explains more
variability in the data might be that SBERT is fine-
tuned for a task that has a similar structure as the
one implemented in our pipeline for modeling in-
group and out-group scores, namely to predict the
similarity of embeddings (Reimers and Gurevych,
2019). It might also be the case that in-group and
out-group meanings of DWEs are best captured
holistically by sentence representations that give
more prominence to the full context of DWEs.

The pipelines with BERT and mT5 are very sim-
ilar in terms of R2 and effect of ∆IOR. On the one
hand, the large computational overhead of mT5-XL
compared to BERT does not result in stronger pre-
dictions, as modeled in the present context. On the
other hand, the multilingual transformer performs
on par with the language-specific one.

For the SGNS models, both the window size and
the number of dimensions of the vectors matter.
With higher dimensionality of the vectors, more
variation in ∆ti,tj (w) is explained. When different
window sizes are compared, a U-shaped pattern
emerges. For both 100- and 200-dimensional mod-
els, the strongest effect of ∆IOR and the highest
values of R2 are observed for window size = 5.
However, almost as strong effects are found for

150



window size = 15, but smaller effect sizes for win-
dow size = 10. These observations indicate that
words used both in close proximity and far away
from the DWE are relevant to communicate in-
group messages. This U-shaped pattern may be
related to the fact that we model different DWEs.
That is, for some DWEs, words in close context
may be central to the in-group meaning, but for
other DWEs, a wider context is important.

As in previous studies, term frequency (at ti) ex-
plains the rate of semantic change (Hamilton et al.,
2016b; Dubossarsky et al., 2017). For LLMs, the
relationship is negative: the more frequent a word
is, the less it changes, which is in line with “law
of conformity” (Hamilton et al., 2016b). However,
for the SGNS models, the relation between term
frequency and semantic change is in most cases
not significant; and when significant, the relation-
ship is, unlike for the LLM pipelines, positive.The
change in frequency from ti to tj have no effect on
∆ti,tj (w), besides the case of SGNS, where win-
dow size = 5 and d = 100.12 In both models for the
BERT-pipelines, ∆IOR

ti,tj (w) has a stronger effect on
∆ti,tj than term frequency, while for mT5 pipeline,
the effect of IOR and term frequency are in the
same magnitude (though the latter is negative).

6 Discussion

We find that the observed meaning shifts for DWEs
using distributional methods are explained by their
in-group and out-group dimensions. That is, the
methods for detecting LSC are sensitive to the dy-
namic meaning of DWE, suggesting that the mea-
sures of LSC could be used to detect dogwhistles
online. However, it could have been the case that
LSC measures did pick up on contextual drifts of
DWEs, which were not directly related to their
function as dogwhistles. After all, as an implemen-
tation of the distributional hypothesis, meaning is
in LSC detection modeled as statistical correlation
over context words.

But context can vary for various reasons, not all
of which are straightforward cases of change in
meaning (Bender and Koller, 2020). Words can be
used in the same sense in relation to different topics
of discussion at different times, which poses chal-
lenges for modeling meaning change (Hengchen
et al., 2021; Tang, 2018). For example, previous

12Other operationalisation of change in term frequency
(than percental difference) were tested: (non-proportional) raw
change in frequency and absolute difference of frequency, but
the overall pattern persists: no effect for predicting ∆ti,tj (w).

work has showed that distributional methods for
LSC sometimes overgeneralizes due to “referential
effects”, i.e., the observed change of word usage
is explained by reference to different persons or
events at different times (Del Tredici et al., 2018).
In such cases, “the meaning of the word stays the
same, despite the change in context” (Del Tredici
et al., 2018, 2073). These types of “semantic” (or
contextual) shifts are not clear examples of mean-
ing change or differentiation of senses that have
been mainly discussed in theoretical linguistics
(Traugott and Dasher, 2002). But from the point
of view of distributional semantics, it is difficult to
distinguish these different aspects of variable usage
(Geeraerts et al., 2024). Given a strict interpreta-
tion of the distributional thesis, a change in context
is a change of meaning.

In the context of these potential challenges that
have been raised for the interpretation of distribu-
tional LSC detection results, our results are notably
interpretable. The rate of change of the DWEs is,
in fact, related to changes in the in-group vs. out-
group “senses” of these words. From the geometric
viewpoint that defines distributional modeling of
meaning, the shifting positions of DWEs in seman-
tic space over time (as identified by LSC) are repo-
sitioning along the in-group vs. out-group axes (as
identified by ∆IOR). Given the high values of R2,
for many of the pipelines tested here, the IOR of the
DWEs is a key factor in explaining their semantic
variability over time.

The above findings suggest that the pipelines
with LLMs are better than the SGNS models at the
relevant meaning variation of DWEs. This finding
is in line with the general trend, with transformer
models having substantially improved the state-
of-the-art for NLU tasks. The nuanced semantic
representation enabled by these models seems to be
important also for the related challenge of modeling
dogwhistle meaning.

Future research should attempt to scale up the
present approach for the analysis of a wider range
of DWEs. A key challenge in doing so is infer-
ring and representing the in-group and out-group
dimensions of the DWEs. This study used a survey
methodology to develop an independent basis for
defining the in-group and out-group dimensions of
DWEs, but such an approach is costly, especially
at a large scale. Another possibility for future re-
search is using definitions of dogwhistles in ex-
isting online databases to represent in-group and
out-group embeddings (Mendelsohn et al., 2023).
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Limitations

This work applies to the political media context
of Sweden. Although we believe that the gen-
eral methodologies developed should also apply
to other national, linguistic, and political contexts,
this must be tested in other work.

Since DWEs emerge and disappear on the basis
of politically relevant current affairs, it is not pos-
sible to develop a sample of relevant DWEs that
allows analysis of DWEs themselves as a general
category. As a result, our work shows our hypoth-
esis for an admittedly limited set of dogwhistles
from which we cannot make global generalizations.
However, the fact that the effects are strong is a con-
tribution that calls for future testing of the method-
ology at a larger scale, with additional terms, and
in other national contexts.

Ethics Statement

When creating a system that detects potentially neg-
ative social phenomena, there is always a risk of
malicious use of the system. In principle, the de-
veloped technology can be used for evaluating, for
example, attempts to manipulate political discourse.
However, we believe that actors motivated to do so
can do so anyway and that public research should
not avoid the analysis of harmful communication
for this reason. Rather, tools should be developed
to detect and combat these harmful phenomena. In
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that contributes to understanding dogwhistle com-
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own.
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A In-group and out-group vocabulary for
SGNS approach

Table 3 exemplifies the words whose embeddings
are used to model the in-group and out-group em-
beddings of the four DWEs in the SGNS approach.

B Example sentences

Warning: the following examples may be upsetting
or offensive to some readers.

Examples are selected from the training corpus
(Flashback) to illustrate high and low IOR values
from years with high and low general IOR val-
ues, as measured by BERT. To identify examples,
IOR values for individual sentences were computed.
That is, we compute IORt(w), as defined above,
but where −→w is not the diachronic embedding of t,
but the embedding of a word instance from the time
bin t. We show examples from the top (“high IOR”)
and bottom (“high IOR”) five of the sentences of a
year, measured by their individual IOR value.

B.1 berika

1. (low IOR, 2007) den typen av invandring är
bra och berikande och bör uppmuntras
(that kind of immigration is good and enrich-
ing and should be encouraged)

2. (high IOR, 2010) kålsvart hår och mörkt hud-
pigment, troligen hemmavarande i Iran eller
Irak, varför måste vi skandinaver berikas med
detta drägg?
(coal black hair and dark skin pigment, proba-
bly native to Iran or Iraq, why do we Scandi-
navians have to be enriched with this dreg?)

B.2 globalist

3. (low IOR, 2006) jag är alltså globalist, fri-
handelsförespråkare, demokrat och kapitalist
för att detta är det bästa sättet att göra fattiga
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DWE In-group Out-group
berika förstöra (destroy, inf.), förstör (destroy,

pres.), utnyttjar (exploit, pres.), utnyttja
(exploit, inf.), negativ (negative), negativa
(negative, pl.), negativt (negative, neut.)

positiv (positive), positiva (positive, pl.),
positivt (positive, neut.), ger (give, pres.),
ge (give, inf.), gynna (benefit, inf.), gynnar
(benefit, pres.)

globalist judar (jews), eliten (elite, def.), elit (elite,
indef.)

världsmedborgare (world citizen), inter-
nationellt (international, neut.), interna-
tionell (international), internationella (in-
ternational, pl.)

återvandring utvisning, skickar (send, pres.), skicka
(send, inf.)

flytta (move, inf.), återvänder (return,
pres.), återvända (return, inf.), hemland
(home country, indef.), hemlandet (home
country, def.)

förortsgäng invandrargäng (immigrant gang, indef.),
invandrare (immigrant, indef.), invan-
drarungdomar (immigrant youths)

utsatt (exposed), utsatta (exposed,
neut./pl.), förorten (suburb, def.), förorter
(suburbs, indef.), förorterna (suburbs,
def.), ungdomsgäng (youth gangs, indef.)

Note: def. = definite; indef. = indefinite; inf. = infinitive; neut = neuter; pres. = present; pl. = plural

Table 3: Vocabulary for in-group and out-group

människor rikare och utvecklar alla länder
som ingår i handelsutbytet
(so I am a globalist, free trade advocate, demo-
crat and capitalist because this is the best way
to make poor people richer and develop all
countries that are part of the trade exchange)

4. (high IOR, 2008) globalist-maffian med ju-
darna i spetsen har ju mer eller mindre full
kontroll över Amerika, och därmed har dom
tillgång till världens starkaste armé
(the globalist mafia with the Jews at the head
has more or less full control over America,
and thus they have access to the world’s
strongest army)

B.3 återvandring

5. (low IOR, 2011) de flesta invandrar p.g.a
studier, arbete, återvandring eller för att de
har anhöriga i Sverige
(most people immigrate due to studies, work,
re-migration or because they have relatives in
Sweden)

6. (high IOR, 2018) återvandring och utvisning
nu, det är enda lösningen
(re-migration and deportation now, that is the
only solution)

B.4 förortsgäng

7. (low IOR, 2014) kan tillägga att vi var ett
helsvenskt förortsgäng med 50 % skinnskallar

och 50 % fotbollshuliganer
(can add that we were an all-Swedish sub-
urban gang with 50 % skinheads and 50 %
football hooligans)

8. (high IOR, 2015) ett passivt / slappt invan-
drarflöde orsakar sånt, och man måste ak-
tivt minska folkvandringen som bosätter sig i
förorterna om man vill bli av med förortsgäng
(a passive / slack immigrant flow causes that,
and you have to actively reduce the migration
of people settling in the suburbs if you want
to get rid of suburban gangs)

C Transformations

To maximize the number of models having nor-
mal distribution of residuals, we tested combina-
tions of log transformation of variables. The log
transformation of the dependent variable and of the
∆IOR

ti,tj resulted in normally distributed residuals for
all models but BERT and mT5-XL. No combina-
tion of transformed variables was found that makes
the error term normally distributed for all models.
The regression models for the transformed data are
shown in Table 4.
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Dependent variable: log2(∆ti,tj )

SBERT BERT mT5-XL SGNS-
w5-d100

SGNS-
w10-d100

SGNS-
w15-d100

SGNS-
w5-d200

SGNS-
w10-d200

SGNS-
w15-d200

∆IOR 0.640∗∗∗ 0.424∗∗∗ 0.464∗∗∗ 0.286∗ 0.190 0.272∗ 0.285∗ 0.209 0.351∗∗

(0.066) (0.092) (0.091) (0.119) (0.128) (0.121) (0.109) (0.120) (0.113)
∆FPM -0.006 -0.043 -0.159 0.259∗ 0.249 0.205 0.257∗ 0.207 0.205

(0.065) (0.088) (0.092) (0.120) (0.125) (0.122) (0.110) (0.117) (0.113)
FPM (log) -0.451∗∗∗ -0.493∗∗∗ -0.647∗∗∗ 0.097 -0.033 -0.071 0.400∗∗∗ 0.300∗ 0.268∗

(0.067) (0.092) (0.088) (0.120) (0.129) (0.122) (0.110) (0.122) (0.114)
const 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000

(0.064) (0.087) (0.087) (0.119) (0.123) (0.120) (0.109) (0.116) (0.111)

R2 0.757 0.541 0.549 0.156 0.089 0.129 0.289 0.189 0.256
Adj. R2 0.745 0.518 0.527 0.114 0.043 0.085 0.253 0.148 0.219
Resid. Std. Er-
ror

0.509
(df=60)

0.699
(df=60)

0.693
(df=60)

0.949
(df=60)

0.986
(df=60)

0.964
(df=60)

0.871
(df=60)

0.930
(df=60)

0.891
(df=60)

F Stat. 62.391∗∗∗

(df=3; 60)
23.607∗∗∗

(df=3; 60)
24.378∗∗∗

(df=3; 60)
3.709∗

(df=3; 60)
1.949
(df=3; 60)

2.958∗

(df=3; 60)
8.128∗∗∗

(df=3; 60)
4.659∗∗

(df=3; 60)
6.889∗∗∗

(df=3; 60)

Notes: N = 64; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Relationship estimated: log2(∆ti,tj (w)) = β0 + β1 ×∆IOR

ti,tj (w) + β2 × log2(FPMti(w)) + β3 ×∆FPM
ti,tj (w)

Table 4: Explaining semantic change of DWEs (standardized coefficients), log-transformed data
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