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Abstract

This paper presents our approach submitted
to the Language + Molecules 2024 (L+M-24)
Shared Task in the Molecular Captioning track.
The task involves generating captions that de-
scribe the properties of molecules that are pro-
vided in SMILES format. We propose a method
for the task that decomposes the challenge of
generating captions from SMILES into a clas-
sification problem, where we first predict the
molecule’s properties. The molecules whose
properties can be predicted with high accuracy
show high translation metric scores in the cap-
tion generation by LLMs, while others produce
low scores. Then we use the predicted proper-
ties to select the captions generated by different
types of LLMs, and use that prediction as the
final output. Our submission achieved an over-
all increase score of 15.21 on the dev set and
12.30 on the evaluation set, based on translation
metrics and property metrics from the baseline.

1 Introduction

Molecular design is the process of devising
molecules with desired properties and functions.
While this is widely practiced in fields such as drug
discovery, new materials, and chemical processes,
predicting the properties of designed molecules
remains a challenging problem. To tackle this prob-
lem, language models trained on molecular infor-
mation have gained attention (Ahmad et al., 2022).
The L+M-24 shared task (Edwards et al., 2024)
involves translation between SMILES (Weininger,
1988), a string-encoded molecular format, and de-
scriptive captions of the molecule’s properties. The
dataset covers four high-impact areas of molecular
science: Biomedical, Human Interaction, Light and
Electricity, and Agriculture and Industry, providing
pairs of molecules and their corresponding captions
for these properties.

An example of the data is shown in Figure 1. In
this sample, specific diseases and protein properties

Figure 1: A sample molecule depicted using RDKit
(Landrum et al., 2024) and its caption from the training
data. Caption: The molecule is a jak inhibitor, im-
munomodulator, protein tyrosine kinase inhibitor, pro-
tein kinase inhibitor and belongs to the autoimmune
disease treatment class of molecules.

are described, yet the ways of describing molec-
ular properties are highly diverse. For instance,
while drug discovery seeks to generate specific in-
formation related to diseases, industrial chemistry
researchers prefer to include functions of molecules
such as absorption wavelengths of light. Given this
variability in the desired captions, the task of gen-
erating desired captions is highly challenging.

In this paper, we describe our submission to the
Molecular Captioning track. We first address the
properties of SMILES as a multi-label classifica-
tion problem. Predicting properties is essential for
molecule captioning and offers the following ad-
vantage: a lightweight model can be built that pre-
dicts the properties of the molecules compared to
fine-tuning existing large transformer-based mod-
els. Such an approach can get classification accu-
racy of 80% against experimental measurements
with as little as 100 datapoints (McDonagh et al.,
2024, 2023).

We also fine-tune LlaSMolMistral and Multitask
Text Chemistry T5 (Christofidellis et al., 2023)
models for the end-to-end molecular captioning.
We obtain the system’s output by selecting the gen-
erated captions from these models based on the pre-
dicted properties. We achieve an overall increase
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Figure 2: Overview of the submission system

score from the MolT5-Small1 baseline of 15.21 on
the dev set and 12.30 on the eval set. In the next
section, we discuss some related work that inspired
our contributions to this shared task.

2 Related Work

Text2Mol (Edwards et al., 2021) stands out as a
pioneering study integrating modalities between
text and molecules. This task involves retrieving
molecules using natural language descriptions as
queries. They employ the SciBERT (Beltagy et al.,
2019) model to encode the text information and a
Graph Convolutional Network for the molecular
information. The model is based on a cross-modal
attention structure and successfully integrates the
two modalities.

MolT5 (Edwards et al., 2022) is a T5 (Raf-
fel et al., 2020) based model that enables both
molecule captioning and molecule generation,
which generates SMILES from natural language.
The model is first trained using an objective that
replaces corrupted spans. This task is performed
on general text data in the form of the C4 Cor-
pus (Colossal Clean Crawled Corpus) as well as on
SMILES from the ZINC-15 dataset (Sterling and Ir-
win, 2015). This pre-training procedure encourages
the model to learn textual and chemical informa-
tion. The model is then fine-tuned for molecule
captioning and molecule generation using ChEBI-
20 (Edwards et al., 2021), which comprises approx-
imately 33k text-molecule pairs.

Another T5 based model, Text+Chem T5
(Christofidellis et al., 2023), aims at improving
multitasking and multi-domain capabilities. This
model is trained not only on SMILES and cap-
tion pairs such as ChEBI-20 but also on reaction-
products pairs such as Pistachio dataset used in

1https://huggingface.co/
language-plus-molecules/
molt5-small-smiles2caption-LPM24

(Toniato et al., 2021), and experimental procedures
dataset (Vaucher et al., 2019) for chemical synthe-
sis actions. It can perform multiple tasks beyond
text2molecule and molecule2text translation, in-
cluding mol2mol and text2text tasks. The mol2mol
tasks contain forward reaction prediction, which
predicts products from given reactants, and retro-
synthesis, which predicts the necessary substances
for synthesis from a given chemical compound.
The text2text task consists of paragraph to action,
which generates sequential steps to execute a de-
scribed chemical reaction. A notable aspect of this
model is its ability to perform all these tasks with-
out additional fine-tuning, using a single model
instead of individual specialised models for each
task. This eliminates the need to develop tailored
models for each domain, achieving a unified repre-
sentation of the chemical domain with one model.

3 System Description

Figure 2 shows an overview of the submission sys-
tem. First, we develop a classifier to predict prop-
erties from a given SMILES string. The molecular
properties are extracted using the evaluation script
for the property metrics2 by determining whether a
predefined string is included in the tokenised cap-
tions using scibert_scivocab_uncased3. Based
on our analysis of the extracted properties, there
are 1,084 unique properties present in the train-
ing data. Since properties are extracted using
string-matching, some occur together. Some
co-occurances are correct biochemically, like
“Biomedical disease – Heart disease” and “Biomed-
ical disease – Diabetic heart disease”. Others
are not, like “Biomedical disease – Non-alcoholic

2https://github.com/language-plus-molecules/
LPM-24-Dataset/blob/main/evaluation/text_
property_metrics.py

3https://huggingface.co/allenai/scibert_
scivocab_uncased
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Molecule Type Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

Has Predicted Props. Multitask T5 82.15 59.49 91.64 69.74 60.20 87.05
LlaSMolMistral 82.66 59.81 92.27 69.53 60.54 87.70

No Props. Predicted Multitask T5 43.12 30.58 52.35 38.51 50.67 51.87
LlaSMolMistral 35.24 24.27 48.99 35.45 47.95 45.50

Table 1: Translation metrics by molecular type on dev set.

fatty liver disease” and “Human Interaction and
Organoleptics – organoleptic effect relations –
fatty”. This leads to chemically incorrect labelling
for some molecules. A molecule whose descrip-
tion is “This molecule impacts non-alcoholic fatty
liver disease” is not necessarily fatty in the sense
of organoleptic effects, yet it is always labelled as
so.

3.1 Property Classification

We build multi-label classifiers for each molecu-
lar property in the dataset. The SMILES string is
converted to a binary fingerprint using the finger-
printer in RDKit 2023.9.6 (Landrum et al., 2024)
with a minimum path length of 1, maximum path
length of 7 and 2048 bits. SMILES strings are also
provided to the encoder part of MolT5-Small, and
the embedding representation is obtained by mean
pooling the last hidden layer. The obtained finger-
print and embedding are concatenated and passed
through a classifier consisting of three linear layers
to predict the classes.

We only train the classifier on labels with over
1,500 positive examples. Because of this limitation,
the predictable subset of the labels contains 53
properties. The classifier outputs multiple labels
for each molecule that exceeds a threshold based on
the Sigmoid function of the activation layer. Labels
not meeting the threshold are not output; hence,
some molecules may have no predicted properties.

3.2 LLMs for Caption Generation

Following the classification task, we use the
SMILES string as inputs to experiment with the
following methods.

Fine-Tuning LLMs We also utilise models
that predict the captions directly using only the
SMILES as input. In initial experiments, we found
that included properties harmed performance for
the Multitask T5 model4 and as a result we did not
include them. For the LlaSMolMistral model, we

4https://huggingface.co/GT4SD/
multitask-text-and-chemistry-t5-base-augm

loaded pretrained LoRA modules into the model
and followed the prompt pattern in their work,
which did not include properties.

Multitask T5 model is trained with a learning
rate of 5e-4 and a batch size of 8 for 10 epochs on
the extra training set provided by the task organ-
iser. For fine-tuning and caption generation, we
use a prompt template in Appendix A.1 Table 5,
which is presented in (Christofidellis et al., 2023).
LlaSMolMistral is a Mistral-7b model trained on the
SMolInstruct dataset by Yu et al. (2024), which
covers 14 chemistry tasks including a molecular
captioning task derived from the ChEBI-20 dataset.
Here, the base model is frozen and additional mod-
ules are trained using LoRA (Hu et al., 2022).
The LoRA component only comprises 0.58% of
the full model parameters. We further fine-tuned
LlaSMolMistral on the L+M-24 dataset. The prompt
used is shown in Appendix A.1 Table 6. First we
trained on the concatenation of train and the ex-
tra training data for 3 epochs. We then further
finetuned the LoRA modules for 10 epochs on the
training set.

3.3 Ensembling

We perform an ensemble by selecting generated
captions from Multitask T5 and LlaSMolMistral
based on the result of the property classification
model. If the model predicts at least one label for
the target SMILES, we choose the caption from the
LlaSMolMistral model; otherwise, we choose from
the Multitask T5 model.

4 Results and Discussion

In this section, we present the results of our classi-
fication models and generated captions using Mul-
titask T5 and LlaSMolMistral.

4.1 Property Classification

When evaluated on the dev set using only the
predictable subset, an F1 score of 97.86% was
achieved. Thus, on the predictable subset, we have
classifiers with a high percentage of true positives
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Model Overall
Increase

Translation
Metric Increase BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

baselines
MolT5-Small 0.00 0.00 70.90 51.20 74.50 55.80 54.40 70.10
Meditron-7b 13.15 5.50 79.20 57.60 79.70 60.20 57.50 75.70
ours
Multitask T5 15.31 5.23 78.22 56.73 57.28 60.17 57.28 76.27
LlaSMolMistral 10.59 4.68 78.84 57.17 78.82 58.79 56.50 74.87
Ensembled 15.21 5.52 78.70 57.04 80.04 60.03 57.51 76.72

Table 2: Overall increase from MolT5-Small baseline and translation metrics results on dev set.

Model Prop. Metric
Increase

Overall
Prop. F1 Biomedical Human

Interaction
Agr.

+ Industry
Light

+ Electro X-icides Toxins Light Electricity

baselines
MolT5-Small 0.00 7.88 23.33 0.56 4.36 3.27 0.00 0.00 6.54 0.00
Meditron-7b 15.70 8.93 11.94 6.51 3.04 14.22 0.00 11.05 14.10 14.34
ours
Multitask T5 18.67 19.10 36.97 7.27 7.40 24.76 0.00 11.36 25.26 24.26
LlaSMolMistral 12.56 15.35 32.28 7.30 6.58 15.22 0.00 11.20 18.69 11.77
Ensembled 18.44 19.09 36.75 7.73 7.65 24.24 0.00 12.28 25.21 23.28

Model Inhibitors anti-X Modulators Antagonists Treatments Agonists Cancer Disease Combos

baselines
MolT5-Small 0.09 0.00 0.00 0.00 1.70 0.00 24.27 49.94 0.00
Meditron-7b 22.65 8.98 24.98 21.15 15.13 26.35 72.62 82.02 0.56
ours
Multitask T5 26.04 10.35 31.11 26.54 19.37 31.71 73.59 81.89 0.93
LlaSMolMistral 14.57 5.33 15.69 12.95 9.11 19.06 70.76 81.76 0.38
Ensembled 25.86 10.11 30.81 26.80 19.14 31.69 70.42 81.87 0.93

Table 3: Property metric increase from MolT5-Small baseline and F1 scores of each property on dev set.

and a low percentage of false positives. When con-
sidering all properties in the dev set, at least one
property was predicted for 69% in dev set, while no
properties were predicted for the remaining 31%.

4.2 Caption Generation

Table 1 shows the translation metrics for each
model, both when the classifier predicts at least one
property (Has Predicted Props.) and when it does
not (No Props. Predicted). When at least one prop-
erty was predicted, LlaSMolMistral model exceeded
Multitask T5 model in 5 out of 6 metrics, excluding
ROUGE-2. Conversely, when no properties were
predicted, Multitask T5 significantly outperformed
the LlaSMolMistral. Hence, based on these results,
we adopted an ensemble approach where we used
the captions generated by the LlaSMolMistral model
when at least one property was predicted, and those
generated by Multitask T5 model when no proper-
ties were predicted.

Table 2 shows the overall increase, translation
metric Increase and the scores of each transla-
tion metric on dev set of the two baseline models,
LlaSMolMistral, Multitask T5 and ensembled model
of LlaSMolMistral and Multitask T5. Table 3 shows
the property metric increase and F1 scores of each
property metric. Each Increase is calculated as the
average improvement from the baseline results of
MolT5-Small. In the translation metrics, the En-

sembled model achieved the best performance in
four metrics, including the translation metric in-
crease, indicating it has the highest performance
among all models. On the other hand, in the prop-
erty metrics, the Multitask T5 model showed the
best performance in 13 metrics, including the prop-
erty metric increase. Despite the baseline Meditron-
7b model exhibiting the highest BLEU-2 score of
79.2%, our models outperformed the baseline for
the property-specific F1 score. As a result, the
Overall Increase was highest for the Multitask T5
model, with a score of 15.31.

Even though these predictions show higher F1
scores, the BLEU-2 score remains lower because
there are numerous ways to describe molecules
in natural language. This points to some features
of the description which are not features of the
molecule but features of the particular distribution
of the dataset:

1. The order of words or phrases in a sentence,
which is not essentially important, can still
significantly influence these translation metric
scores.

2. The scibert_scivocab_uncased tokeniser
includes punctuation, thus mis-predicting the
location of a comma or a full stop will break
a correct bigram and lead to a lower BLEU
score.
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Team Overall
Increase

Translation
Metric Increase

Prop. Metric
Increase BLEU-2 BLEU-4 Overall

Prop. F1 Rank

avaliev 27.08 6.37 33.99 73.81 53.04 26.99 1
qizhipei 14.66 6.45 17.39 75.58 54.77 13.76 2
protonunfold 12.39 5.77 14.60 75.66 54.98 11.51 3
NLPeople (ours) 12.30 5.68 14.50 75.54 54.83 11.63 4
langmolecules† 10.34 5.47 11.96 75.16 54.72 9.70 8
langmolecules‡ 0.00 0.00 0.00 66.82 48.29 3.23 18

Table 4: Top four results and two baseline results on the eval set. † represents the results from the baseline model,
Meditron-7b, and ‡ represents the results from MolT5-Small respectively. Best results are in Bold, and second-best
results are underlined.

3. Mis-predicting the number of properties will
also reduce the BLEU score. Some of
these properties are very general, such as the
organoleptics, and may be correctly predicted
for a molecule even if they do not exist in the
ground truth caption. For example, molecules
with long carbon tails will all likely taste fatty,
but only the subset of those who were actually
tasted by humans have the fatty caption.

Given all these features of the data, it would be
interesting to create realistic performance bounds
for a molecule to text model evaluated using BLEU
scores, similar to the ones Crusius et al. (2024)
used for regression and classification datasets by
randomising over the features of the caption that
cannot be predicted from a molecule. For example
in our testing, using the ground truth labels in a
zero-shot prompted Meditron-7b gave a BLEU-2
score of 76.36. Thus, our intuition is that we are
close to saturating this benchmark, with some mod-
els achieving performance higher than this value.

Finally, Table 4 shows the results of the evalua-
tion set. It includes the increases in overall, transla-
tion, and property metrics, as well as BLEU scores
and property F1 scores, from the official leader-
board. Our team NLPeople’s submission results
from ensembling Multitask T5 and LlaSMolMistral.
Based on the results of the property classification,
out of 21,942 data points, approximately 35% used
cations generated by Multitask T5, while the re-
maining 65% are from LlaSMolMistral.The team
avaliev significantly outperformed other teams in
the property metric, resulting in the highest overall
score of 27.08. Our submission showed an increase
of 12.30 overall from the MolT5-Small baseline,
ranking fourth and achieving the second-highest
BLEU-4 score of 54.83 among all teams.

5 Conclusion

In this work, we present our approach to the molec-
ular captioning task. We propose combining a prop-
erty classification model, LLMs for caption gener-
ation, and an ensemble method. Our results show
that molecules distinguished by property classifi-
cation exhibit varying strengths and weaknesses
depending on the model used. This approach
achieved a translation increase score of 5.52 on
the dev set and 5.68 on the eval set. For property
metrics, we recorded an increase score of 18.44 on
the dev set and 14.50 on the eval set. The overall
increase score was 15.21 on the dev set and 12.30
on the eval set, ranking 4th in this shared task.

References
Walid Ahmad, Elana Simon, Seyone Chithrananda,

Gabriel Grand, and Bharath Ramsundar. 2022.
Chemberta-2: Towards chemical foundation models.
Preprint, arXiv:2209.01712.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Dimitrios Christofidellis, Giorgio Giannone, Jannis
Born, Ole Winther, Teodoro Laino, and Matteo Man-
ica. 2023. Unifying molecular and textual representa-
tions via multi-task language modelling. In Proceed-
ings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org.

Daniel Crusius, Flaviu Cipcigan, and Philip Biggin.
2024. Are we fitting data or noise? analysing the
predictive power of commonly used datasets in drug-,
materials-, and molecular-discovery.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke,
Kyunghyun Cho, and Heng Ji. 2022. Translation

90

https://arxiv.org/abs/2209.01712
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.26434/chemrxiv-2024-z0pz7
https://doi.org/10.26434/chemrxiv-2024-z0pz7
https://doi.org/10.26434/chemrxiv-2024-z0pz7
https://doi.org/10.18653/v1/2022.emnlp-main.26


between molecules and natural language. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 375–413,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Carl Edwards, Qingyun Wang, Lawrence Zhao, and
Heng Ji. 2024. L+M-24: Building a dataset
for language + molecules @ acl 2024. Preprint,
arXiv:2403.00791.

Carl Edwards, ChengXiang Zhai, and Heng Ji. 2021.
Text2Mol: Cross-modal molecule retrieval with nat-
ural language queries. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 595–607, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Greg Landrum, Paolo Tosco, Brian Kelley, Ric, David
Cosgrove, sriniker, Riccardo Vianello, gedeck, Nadi-
neSchneider, Gareth Jones, Eisuke Kawashima,
Dan Nealschneider, Andrew Dalke, Brian Cole,
Matt Swain, Samo Turk, Aleksandr Savelev, Alain
Vaucher, Maciej Wójcikowski, Ichiru Take, Vincent F.
Scalfani, Daniel Probst, Kazuya Ujihara, Rachel
Walker, guillaume godin, Axel Pahl, Juuso Lehti-
varjo, Francois Berenger, strets123, and jasondbiggs.
2024. rdkit/rdkit: 2023_09_6 (q3 2023) release.

James L. McDonagh, Benjamin H. Wunsch, Stamatia
Zavitsanou, Alexander Harrison, Bruce Elmegreen,
Stacey Gifford, Theodore van Kessel, and Flaviu Cip-
cigan. 2023. Machine guided discovery of novel car-
bon capture solvents. Preprint, arXiv:2303.14223.

James L. McDonagh, Stamatia Zavitsanou, Alexander
Harrison, Dimitry Zubarev, Theordore van Kessel,
Benjamin H. Wunsch, and Flaviu Cipcigan. 2024.
Chemical space analysis and property prediction for
carbon capture solvent molecules. Digital Discovery,
3(3):528–543.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

T. Sterling and J. J. Irwin. 2015. Zinc 15 – ligand discov-
ery for everyone. Journal of Chemical Information
and Modeling, 55:2324–2337.

Alessandra Toniato, Philippe Schwaller, Antonio Car-
dinale, Joppe Geluykens, and Teodoro Laino. 2021.
Unassisted noise reduction of chemical reaction data
sets. Preprint, arXiv:2102.01399.

Alain Vaucher, Federico Zipoli, Joppe Geluykens,
Vishnu Nair, Philippe Schwaller, and Teodoro Laino.

2019. Automated extraction of chemical synthesis
actions from experimental procedures.

David Weininger. 1988. Smiles, a chemical language
and information system. 1. introduction to methodol-
ogy and encoding rules. J. Chem. Inf. Comput. Sci.,
28:31–36.

Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and
Huan Sun. 2024. Llasmol: Advancing large language
models for chemistry with a large-scale, comprehen-
sive, high-quality instruction tuning dataset. arXiv
preprint arXiv:2402.09391.

A Appendix

A.1 Prompt Templates
We present the prompt templates in Tables 5 and 6.

Caption the following SMILES: {SMILES}

Table 5: Multitask Text+Chem T5 Prompt with
Molecule

Query: Describe this molecule: <SMILES> {SMILES}
</SMILES>

Response: The molecule is an imidazole derivative
with short-acting sedative, hypnotic, and general
anesthetic properties. Etomidate appears to
have gamma-aminobutyric acid (GABA) like effects,
mediated through GABA-A receptor. The action
enhances the inhibitory effect of GABA on
the central nervous system by causing chloride
channel opening events which leads to membrane
hyperpolarization.

Table 6: Prompt with SMILES and Caption for the
Mistral-7b LlaSMol model.
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