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Abstract

Large language models (LLMs) are pre-trained
on enormous amounts of text data and show
acclaimed success in knowledge representa-
tion. However, there are two bottlenecks
with this approach. (1) Pre-training data can-
not be regularly updated once the models are
deployed, and it is not very fruitful if the
model cannot represent updated knowledge.
(2) The consistently increasing size and com-
putational resources make it difficult for non-
commercial and individual researchers to fine-
tune and scale these language models. Ma-
jor LLMs with external knowledge are also
proprietary. In this paper, we propose Ac-
Knowledge, a framework wrapped around a
small, non-pre-trained language model for an
open-domain question-answering (QA) experi-
ment. AcKnowledge learns relevant knowledge
from the internet via meta-learning based on
user questions, and re-learns from user feed-
back if knowledge is misrepresented. Our ef-
ficient knowledge representation framework
avoids pre-training overhead while enabling up-
dated information. Benchmarking shows com-
petitive performance against similarly sized
state-of-the-art (SoTA) LLMs on gold stan-
dard QA datasets, demonstrating the potential
of integrating internet search and user feed-
back for improved performance and general-
izability. The repository of the work is avail-
able at https://github.com/SouravD-Me/
AcKnowledge---KnowledgeLM-ACL-2024.

1 Introduction

The excellent performance of large language mod-
els (LLMs) in various natural language processing
(NLP) tasks can be mainly attributed to their ability
to capture and represent knowledge from exten-
sive pre-training on massive text corpora (Chang
et al., 2024; Min et al., 2023). However, the out-
dated nature of data for pre-trained knowledge can
limit their adaptability to new information or recent

Figure 1: Fundamental illustration of AcKnowledge:
Representing acquired knowledge through user ques-
tions and feedback.

events (Kazemnejad et al., 2023). Traditional meth-
ods for updating LLMs, such as continuous pre-
training on the latest data or fine-tuning, are com-
putationally expensive and time-consuming (Tian
et al., 2023).

To address these limitations, we propose Ac-
Knowledge, a novel framework that equips a small
language model (SLM) with the dynamic capability
to acquire and represent knowledge without conven-
tional pre-training. Our approach exploits real-time
web search and meta-learning (Xie et al., 2023; Li
et al., 2020) to enable an SLM to learn new informa-
tion efficiently. Upon receiving a user’s question,
the topics are extracted using Latent Dirichlet Al-
location (LDA) (Blei et al., 2003). These topics
are then transmitted to the language model (LM),
which uses these topics as keywords to perform
a targeted online search and uses meta-learning
(Lin and Chen, 2020) to acquire relevant knowl-
edge. The acquired knowledge is then summarized
(Moratanch and Chitrakala, 2017) and presented to
the user as a concise answer.

AcKnowledge also integrates a user feedback
mechanism to ensure authenticity and reliability for
generated answers. Negative feedback triggers a
new search iteration to find more accurate informa-
tion, while positive feedback fortifies the learning.
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User feedback plays a vital role in AcKnowledge’s
learning loop in augmenting the acquired knowl-
edge for increasingly more correct and factual an-
swers. We evaluate AcKnowledge’s performance
by benchmarking it against similarly sized LMs
in open-domain QA tasks, demonstrating compet-
itive results despite the absence of traditional pre-
training.

The main contributions of this paper are:

• We propose AcKnowledge, a novel open-
domain QA system that utilizes a non-pre-
trained SLM to dynamically acquire and rep-
resent knowledge from the internet based on
user questions.

• A meta-learning algorithm is implemented to
enable the language model to efficiently learn
from search results and refine its knowledge
representation through user feedback.

• The framework is designed for users to initiate
re-searching for answers if the initial response
is misrepresented, enhancing the reliability
and user control over language model outputs.

• The effectiveness of AcKnowledge is demon-
strated through extensive benchmarking
against similar language models, showcasing
competitive performance without relying on
pre-training.

• The quality of the generated answers is metic-
ulously analyzed, showcasing the impact of
real-time knowledge acquisition in adaptable
SLMs for efficient QA.

2 Relevant Works

Knowledge representation is indispensable for NLP
systems to understand meaning and perform rea-
soning. The statistical approaches in the early last
decade like word embeddings (Mikolov et al., 2013;
Chen et al., 2013) learned vector representations
but lacked explicit knowledge modeling. Further
advances in integrated neural networks with sym-
bolic knowledge graphs and ontologies through
techniques like graph convolutional networks (Kipf
and Welling, 2016).

Hybrid neuro-symbolic methods show promise
in injecting knowledge into large pre-trained lan-
guage models like RoBERTa (Liu et al., 2019) to
improve common sense reasoning (Bosselut et al.,
2019) and factual grounding (Guan et al., 2020).
Multimodal learning from transformer architecture
has also been in research focus (Tan and Bansal,
2019). Key challenges in representing knowledge

often include effective representation and context-
sensitivity to the core topic (Verma and Bergler,
2023), performing reasoning over learned repre-
sentations (Saha et al., 2022), and generating logi-
cal forms (Hu et al., 2022). Promising directions
also involve meta-learning for fast knowledge adap-
tation (Zhao et al., 2022) and graph embedding
methods for knowledge representation (Cao et al.,
2024).

3 System Framework

Our fundamental objective is to develop AcKnowl-
edge with the ability to dynamically retrieve and
adapt relevant knowledge seamlessly from the in-
ternet. The proposed system comprises several key
components that work in tandem to facilitate this
process. The overview of our system is illustrated
in Figure 2. The primary components of the frame-
work are discussed in the following sections.

3.1 Answer Retrieval from Internet Search

To accumulate external knowledge from the inter-
net, our approach employs a two-stage informa-
tion retrieval process. First, LDA is implemented
for topic extraction from the user question. LDA
serves as an unsupervised clustering model for the
revelation of topics in a collection of documents
(Alhawarat and Hegazi, 2018; Zong et al., 2021).
It can be formalized as a probabilistic generative
model. In this model, the distribution of topics
for any number of questions can be represented
as ΩQ ≈ Dirichlet(δ), where Ω is the distribution
parameter. The Dirichlet distribution is used here
to guide the distribution of topics from tokens, and
the parameter δ controls the sparsity of the distri-
bution. Second, these topic words are transmitted
to the language model. Using these topics as key-
words, it uses the Google search API to retrieve a
set of relevant passages, such as P from the search
results.

Here, we employ a dense passage retrieval tech-
nique (Karpukhin et al., 2020) to rank and select the
most relevant passages. We encode each passage
Pi to obtain a sequence of dense vector represen-
tations Pi = (p1,p2, . . . ,pn), where pn ∈ Rdemb .
Here, Rdemb is used for the dimensional embed-
ding in real space of the n-th token in Pi. Here-
after, these passages are passed through the meta-
learning module to learn from them as potential
answers to the users’ questions.
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Figure 2: Overview of AcKnowledge. The user asks a question; keywords are extracted and used by the language
model to search the internet. The MAML algorithm learns passages from the search results to retrieve potential
answers. These passages are then transferred to the language model. It generates an answer summary, on which
extractive summarization is performed to finally present a concise answer. If incorrect, the user can provide feedback
to initiate iterative learning for improved responses.

3.2 Meta-learning for Search Results

To effectively utilize the information retrieved,
we employ a meta-learning algorithm that learns
from the retrieved passages. We use the model-
agnostic meta-learning algorithm (MAML) (Lee
et al., 2022), which has shown promising results in
natural language understanding (NLU) scenarios.

For retrieving information from the passages
P, the proposed language model M adapts to
these passages from meta-learning. As Pi rep-
resents a retrieved passage, the aim is to accumu-
late the sequence of texts from it and send it to
M. Adapt all passages from the search results for
each question, by minimizing the meta-objective
minθ EPi∼P

[
LMθ′ (Q,A)

]
. Here, θ represents

the parameters of the language model, E is the
expected value of the loss function for the distribu-
tion of passages from search results, and L denotes
the cross-entropy loss function. The meta-learning
algorithm updates the model parameters θ by tak-
ing a gradient step on each passage Pi, resulting
in adapted parameters θ′. The adapted model Mθ′

is then evaluated on the original question-answer
pair (Q,A). Internally, the meta-learning process
is further decomposed into two stages; the inner
loop and the outer loop. In the inner loop, for each
search result in Pi, the model parameters θ are up-
dated using gradient descent to minimize the loss

specific to the task LMθ(Pi):

θ′i = θ − α∇θL(Mθ,Pi) (1)

This inner loop uses the learning rate α to update
itself and allows the model to adapt to the infor-
mation contained in the passages. The updated
parameters θ′i are specific to each passage Pi.

In the outer loop, the meta-objective is optimized
across all search results:

min
θ

N∑

i=1

LMθ′i
(Q,A) (2)

The outer loop update aggregates the losses from
the adapted models Mθ′i

and updates the global
parameters θ to minimize the expected loss across
all search results.

By iterating between the updates of the inner
loop and the outer loop, meta-learning enables the
language model to efficiently incorporate the re-
trieved passages from the search results and gener-
alize to unseen questions. The adapted parameters
θ′i capture the question-specific information from
each search result, while the global parameters θ
learn to adapt to new information.

The MAML algorithm emphasizes learning a
good initialization of the model parameters that
can rapidly adapt to new questions with just a few
gradient steps. This is particularly advantageous
in QA tasks, where the framework must quickly
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assimilate relevant information from the search re-
sults to generate accurate answers without relying
on extensive pre-training.

3.3 Language Model Development
We build the language model in the AcKnowledge
framework from scratch based on the fundamen-
tal transformer architecture (Vaswani et al., 2017).
The model consists of a parameter size of just
125 Million, with a multi-layer encoder and de-
coder, with each layer employing multi-head self-
attention mechanisms to capture long-range depen-
dencies in text sequences.

The model encoder processes the input keywords
from a question K = {k1, k2, . . . , kn}, while
the decoder generates the corresponding answer
A = {a1, a2, . . . , am}. This process is enhanced
by meta-learning from retrieved passages. Both
the encoder and decoder consist of multiple layers,
each containing a multi-head self-attention sub-
layer and a position-wise feedforward sublayer.

In this architecture, the input sequence x =
(x1,x2, . . . ,xT ) is mapped to token embeddings,
with T representing the length of the sequence. The
encoder transforms this input into a sequence of
continuous representations Z = (z1, z2, . . . , zi),
which the decoder then uses to generate the output
sequence Y = (y1, y2, . . . , ym).

The input token embeddings are the sum of token
embeddings and positional embeddings:

xT = W tok[xT ] +W pos[T ], (3)

where W tok and W pos are embedding matrices
for tokens and positions, respectively.

Multi-head attention is a key component, calcu-
lated in multiple heads H . Each head computes
attention scores using query, key, and value projec-
tions:

A(h) = Softmax

(
Q(h)K(h)⊤

√
dk

)
V (h), (4)

where Q(h),K(h),V (h) are the projections, and
dk is the dimension of each head.

These attention scores are concatenated and lin-
early projected:

MultiHead(x) = Cat(A(1),A(2), . . . ,A(H))WO,
(5)

where WO is the projection matrix.
The position-wise feed-forward network (FFN)

processes each token independently:

FFN(x) = max(0,xW 1 + b1)W 2 + b2, (6)

with learnable parameters W 1, b1,W 2, b2.
Both the attention and feed-forward layers use

residual connections and layer normalization:

x′ = LayerNorm(x+ MultiHead(x)), (7)

x′′ = LayerNorm(x′ + FFN(x′)), (8)

ensuring stability and efficiency.
The final output, after layer normalization and a

linear projection, provides the logits for next-token
prediction:

y = LayerNorm(x′′)W y + by, (9)

with W y and by as learnable parameters.
The model minimizes the cross-entropy loss be-

tween predicted logits y and target tokens t:

L = −
T∑

i=1

log p(ti|x,θ′), (10)

where θ′ represents all learnable parameters of the
model from meta-learning, and p(ti|x,θ′) is the
predicted probability of the i-th target token given
the input sequence x and the model parameters θ′.

3.4 Knowledge Summarization

After incorporating the retrieved information
through meta-learning, the language model gen-
erates a summary or answer to the user’s query. To
ensure that the generated answer is concise, we
employ extractive summarization. Here, the most
salient sentences from the summary are selected
and combined to form the final answer. We use
the centrality-dependent ranking approach (Liang
et al., 2021) to identify and rank the most important
text segments.

Here, a sentence-document weight is added to
the sentence centrality score, allowing more atten-
tion to different facets in the generated answer sum-
maries. This approach is applicable for long and
multi-document scenarios, as in our experiment
the summaries with multiple information gener-
ated by the language model. These text segments
are then merged and represented as the final an-
swers. We do not paraphrase the answers by em-
ploying abstractive summarization. This reduces
the scope for representing misinformation (Krishna
et al., 2024). Finally, extractive summarized con-
tent is presented to users as final answers. Table 1
represents question-answer pairs in 3 distinct as-
pects.
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QA 1: Topic → Latest News and Events
Q: What is the latest news development for today?

( Question without any specific date or timeline guidance. )
A: As per the current time of Thursday, May 23, 2024, 09:34 UTC, a devastating tornado outbreak struck Iowa, leaving
a trail of destruction. At least five people were confirmed dead and more than 35 injured. The town of Greenfield,
southwest of Des Moines, bore the brunt of the damage, with homes destroyed, trees uprooted, and even wind turbines
twisted by the powerful winds. Relief efforts are underway to assist those affected by the disaster.
Majority Feedback (5:0): Correct. (Accurate date and news representation.)

QA 2: Topic → Education and Training
Q: Suggest some NLP courses offered by leading universities.

( No mention of ranking, regionality, or instructor names which can initiate potential bias. )
A: Some of the most recognized NLP courses offered by leading universities are Natural Language Processing with Deep
Learning: Stanford University CS224n, Computational Linguistics: University of California, Berkeley, Natural Language
Understanding with Deep Learning: Massachusetts Institute of Technology (MIT), Natural Language Processing:
University of Michigan.
Majority Feedback (3:2): Correct. (Factually correct, course choices can be subjective for different people.)

QA 3: Topic → Science and Research
Q: What is the fundamental advantage of stochastic gradient descent over batch gradient descent?

( Extensive machine learning insight is required to answer this question. )
A: The fundamental advantage of stochastic gradient descent (SGD) compared to batch gradient descent is its ability to
converge more quickly and with higher computational efficiency, particularly for large datasets. This efficiency occurs
from SGD updating the model parameters after examining examples or mini-batch, while batch gradient descent waits to
update the parameters until the complete training dataset is processed.
Majority Feedback (4:1): Partially Correct. (The presented knowledge in the answer is not completely accurate. Here,
higher and examples are not the correctly predicted tokens, rather they should be better and each example, respectively.
However, the rest of the answer is correct.)

Table 1: Question-answer pairs to demonstrate the real-time response of AcKnowledge. Different topics of questions
elaborate on AcKnowledge’s prowess in efficiently acquiring and presenting updated knowledge in answers.

3.5 Iterative Learning from User Feedback

Our approach implements user feedback in an iter-
ative learning process to improve the quality of the
generated answers and adapt to user preferences.
After receiving an answer from the language model,
the user can provide positive or negative feedback,
indicating their satisfaction with the response.

If the users provide negative feedback, the sys-
tem initiates another internet search, using the same
keywords from the original query. The retrieved in-
formation and the language model’s parameters are
updated based on the user’s feedback to generate a
more accurate and relevant answer.

This iterative process continues until users are
satisfied with the authenticity of the information in
the answer. User feedback is a valuable indication
that guides AcKnowledge in enhancing its under-
standing and generating more accurate responses
with correct information.

For the user feedback mechanism, a group study
is carried out. Here, the answers are evaluated by a
group of 5 people consisting of 2 NLP experts, 2
researchers, and a student. These people are only
the end users and are not involved in any of the
experiments described in the paper.

After receiving an answer, the users individually
provide binary feedback signals f ∈ {1, 0}, indi-

cating satisfaction with the answer. If any feedback
is labeled as (f = 0), i.e., ‘incorrect’, M initiates
a new search process, searching for the unexplored
search results in the previous hop, and updates its
parameters using the MAML algorithm described
earlier. After any n-th iteration of iterative learning
and refinement, the users provide positive feedback,
indicating that the generated answer is correct and
high quality. The majority of user group feedback
determines each answer’s correctness or incorrect-
ness. The user feedback on 3 distinct aspects is
shown in Table 1.

4 Experiments

To evaluate AcKnowledge’s performance on gold-
standard corpora, we use two widely-used open-
domain QA datasets; Stanford Question An-
swering Dataset (SQuAD 2.0) (Rajpurkar et al.,
2018) and Natural Questions (NQ) (Kwiatkowski
et al., 2019), SQuAD 2.0 integrates approximately
50,000 adversarial-designed unanswerable ques-
tions to mimic responsive questions. For good per-
formance on SQuAD 2.0, ideally, systems should
recognize when the text does not support a response
and refrain from responding. NQ is a large-scale
dataset with more than 300,000 question-answer
pairs based on real-world Google search queries.
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It includes a diverse range of topics and question
types, with an average of 16.5 tokens per question
and 77 tokens per answer.

We preprocess the datasets by tokenizing the
text using the WordPiece tokenizer (Hussain et al.,
2023) and converting the tokens to their correspond-
ing embeddings using Word2vec (Mikolov et al.,
2013). The preprocessed datasets are then split into
training, validation, and test sets with a ratio of
80%, 10%, and 10%, respectively.

4.1 Experimental Settings
We implement AcKnowledge using the PyTorch
framework (Paszke et al., 2019). The encoder and
decoder of M consist of 6 layers each, with a hid-
den size of 768 and 8 attention heads. The model
is trained in gold standard QA corpora using the
Adam optimizer (Kingma, 2014) with a learning
rate of 0.0005 and a batch size of 32. The maxi-
mum sequence length is set to 1024 tokens. We
apply gradient clipping with a maximum norm of
1.0 to stabilize the training.

For the internet search component, we use the
Google search API to retrieve the first 10 search
results sequentially for any question. The MAML
algorithm is applied with a learning rate α = 0.001
and a maximum of 5 adaptation steps. If a user initi-
ates negative feedback for any answer, this process
is repeated for iterative learning.

4.2 Quantitative Evaluation Metrics
We evaluate the performance of our approach using
standard empirical evaluation metrics. For such
purpose, we employ metrics such as semantic flu-
ency (Sem-FL) (Zhou et al., 2023) for quantify-
ing the semantic coherence and meaningfulness of
the outputs, Length fluency (Len-FL) (Zhou et al.,
2023) for evaluating the ability to generate outputs
of appropriate verbosity, F1 score (Tan et al., 2016),
computed by comparing the word-level overlap
between the predicted and ground truth answers,
binary accuracy (Y/N) (Choi et al., 2018), for veri-
fying the accuracy in binary answerable questions,
exact match (EM) (Chen et al., 2024), the percent-
age of predictions that exactly match the ground
truth answer, BLEU (BL) (Chen et al., 2023), the
metric widely used in machine translation that mea-
sures the n-gram overlap between the predicted
and reference answers, ROUGE (RG) (Schluter,
2017), the metric commonly used for summariza-
tion tasks, which evaluates the quality of the gen-
erated summaries based on n-gram overlap with

reference summaries, and METEOR (MR) (Chen
et al., 2019), for analyzing multiple matching crite-
ria, including exact word matches, stemmed word
matches, synonyms, and paraphrases.

Furthermore, we perform statistical signifi-
cance tests such as the Wilcoxon signed-rank test
(Narayan et al., 2023) to determine if the perfor-
mance differences between the SoTA models and
AcKnowledge are statistically significant (ref. Fig-
ure 3(b)). This significance is measured using the
p value. Let µLM and µM denote the mean scores
for the SoTA models and AcKnowledge, respec-
tively. The null hypothesis H0 for the performance
below the significance threshold and the alterna-
tive hypothesis H1 for the performance above the
significance threshold are defined as follows:

H0 : µLM = µM (11)

H1 : µLM > µM (12)

We set a standard significance threshold for p value
(0.05) (Smucker et al., 2007) and calculate to de-
termine below and above-significance threshold
performance for all the SoTA models compared
with AcKnowledge.

4.3 SoTA and Baseline Comparisons
The performance of AcKnowledge is compared
with several state-of-the-art (SoTA) models for
QA. Small language models are scarce for down-
stream tasks. However, several SoTA models are
selected based on comparable parameter sizes and
considering their efficiency in QA. Such models
are BLOOM (Muennighoff et al., 2022), Open Pre-
trained Transformer (OPT) by Meta AI (Zhang
et al., 2022), ELECTRA(Clark et al., 2019), Fine-
tuned LAnguage Net (Flan-T5-base) by Google
(Chung et al., 2024), DeBERTaV3-Base (He et al.,
2022), GPT-Neo (Kashyap et al., 2022), and
MiniLM (Wang et al., 2020).

We do not explicitly fine-tune these models,
but rather deploy with their recommended setup
with default hyperparameters. To benchmark the
performance of SoTA models and AcKnowledge,
we compare this evaluation setup against several
strong baseline models, such as BERT (Devlin
et al., 2018) for checking the performance based
on pre-training and fine-tuning on the QA datasets
without any external knowledge or user feedback,
SpanBERT (Joshi et al., 2020) for evaluating the
span of answers against each question, and RAG-
Base (Braunschweiler et al., 2023) for comparing
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Models Sem-FL Len-FL F1 Y/N-Ac Ex-M BL RG MR
Dataset: SQuAD 2.0

BLOOM 350M 0.84 0.91 88.0 82.1 70.9 87.4 87.9 86.7
OPT 350M 0.85 0.92 87.7 81.6 70.5 87.0 87.6 86.3
ELECTRA 335M 0.82 0.89 87.3 81.0 69.9 86.7 87.2 85.9
Flan T5-Base 250M 0.83 0.90 86.9 80.4 69.3 86.3 86.8 85.5
DBV3-Base w/ Voc. 134M 0.80 0.87 86.5 79.8 68.7 85.9 86.4 85.1
GPT-Neo 125M 0.81 0.88 86.1 79.2 68.1 85.5 86.0 84.7
MiniLM-XLMR 117M 0.79 0.86 85.7 78.6 67.5 85.1 85.6 84.3
AcKnowledge 125M 0.88 0.95 89.5 84.2 73.1 88.9 89.4 88.2
BERT-base 0.78 0.85 85.5 78.2 67.1 84.9 85.4 84.1
SpanBERT 0.77 0.84 85.1 77.6 66.5 84.5 85.0 83.7
RAGBase 0.76 0.83 84.7 77.0 65.9 84.1 84.6 83.3

Dataset: NQ
BLOOM 350M 0.83 0.90 87.6 81.7 70.3 86.9 87.5 86.2
OPT 350M 0.84 0.91 87.2 81.1 69.7 86.5 87.1 85.8
ELECTRA 335M 0.81 0.88 86.8 80.5 69.1 86.1 86.7 85.4
Flan T5-Base 250M 0.82 0.89 86.4 79.9 68.5 85.7 86.3 85.0
DBV3-Base w/ Voc. 134M 0.79 0.86 86.0 79.3 67.9 85.3 85.9 84.6
GPT-Neo 125M 0.80 0.87 85.6 78.7 67.3 84.9 85.5 84.2
MiniLM-XLMR 117M 0.78 0.85 85.2 78.1 66.7 84.5 85.1 83.8
AcKnowledge 125M 0.87 0.94 89.0 83.7 72.3 88.4 88.9 87.7
BERT-base 0.77 0.84 85.0 77.7 66.3 84.3 84.9 83.6
SpanBERT 0.76 0.83 84.6 77.1 65.7 83.9 84.5 83.2
RAGBase 0.75 0.82 84.2 76.5 65.1 83.5 84.1 82.8

Table 2: Benchmark evaluation on SQuAD 2.0 and NQ datasets. The original parameter size of the DeBERTaV3
model is 86 Million. However, for all DeBERTaV3 models, the vocabulary size is 128K tokens, adding approximately
48 Million parameters to the total size. M is used to denote the parameter size of each model in Million.

the performance of vanilla models (including ours)
with retrieval augmented generation (RAG)-based
language model.

5 Results and Discussion

5.1 Benchmarking Results
In this section, we present the results of our pro-
posed approach and compare it with various base-
lines and SoTA models. We also provide a qualita-
tive analysis of the generated answers, the impact
of user feedback on model performance, and the
limitations and potential improvements of our ap-
proach.

Table 2 presents a comprehensive evaluation of
SoTA and baseline language models on SQuAD 2.0
and NQ. The results demonstrate that AcKnowl-
edge consistently outperforms the other models
across both datasets and all evaluation metrics. De-
spite having a smaller parameter size compared to
the other models, AcKnowledge achieves superior
performance, highlighting its efficiency and effec-
tiveness in QA tasks. The bold values in the table
emphasize the superior performance of AcKnowl-
edge.

Among the baseline models, the BERT-base ex-
hibits the best performance, followed by Span-
BERT and RAGBase. However, their performance
falls short of that of the SoTA models, indicating

the more recent advances made in QA using such
models.

5.2 Qualitative Analysis

Scrutinizing further into the SoTA comparisons, a
human evaluation is carried to assess the quality
of the generated answers using several qualitative
metrics. A blind evaluation of the answers of all
models on gold standard datasets is performed by
the same group of 5 people described earlier. Here,
100 questions are randomly selected from the test
sets, and the quality of the answers generated by
each model is manually evaluated.

The qualitative evaluation metrics are the max-
imum token length (Max-Tk) supported by each
model, context preservation in answers (C-Pr), cor-
rectness (Cr) (Falke et al., 2019), and completeness
(Cn) (Lu et al., 2022). Context preservation is a
binary metric indicating whether the model can
maintain the context of the question when generat-
ing answers. Correctness measures the accuracy of
the generated answers, while completeness evalu-
ates the extent to which the answers cover all the
necessary information.

The results in Table 3 demonstrate that Ac-
Knowledge performs best in correctness and com-
pleteness. The table also highlights the impor-
tance of context preservation in QA tasks for bet-
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Figure 3: Left (a): Balance between token length and answering performance of models. Middle (b): Wilcoxon
test scores compared to AcKnowledge, showing all models perform above the significance level. The black line
connects mean performance scores, indicating AcKnowledge and GPT-Neo perform similarly and better than others.
Right (c): Cumulative Cr and Cn performance scores of the models against their combined average performance
threshold.

ter answer responses. Apart from ELECTRA and
MiniLM-XLMR, the rest of the models generally
perform better in correctness and completeness.
This depicts that maintaining context from the
users’ questions plays a crucial role in high-quality
and relevant answers.

Models Max-Tk C-Pr Cr Cn

BLOOM 1024 ✓ 0.92 0.95
OPT 2048 ✓ 0.91 0.94
ELECTRA 512 × 0.90 0.93
Flan T5-Base 512 ✓ 0.89 0.92
DBV3-Base 512 ✓ 0.88 0.91
GPT-Neo 2048 ✓ 0.87 0.90
MiniLM-XLMR 512 × 0.86 0.89
AcKnowledge 1024 ✓ 0.94 0.95

Table 3: Qualitative analysis of the compared models
on SQuAD 2.0 and NQ. We show the standard token
lengths that are mentioned in each model documenta-
tion.

5.3 Ablation Studies
We conduct ablation studies to assess the impact of
meta-learning and user feedback in the AcKnowl-
edge architecture.

Meta-Learning. We replace the MAML algo-
rithm with standard fine-tuning to evaluate its sig-
nificance. Results show that with meta-learning,
AcKnowledge achieves 89.5% F1 and 84.2% exact
match. However, without meta-learning, scores
drop to 85.8% and 80.1% respectively. This high-
lights the crucial role of meta-learning in efficiently
incorporating retrieved information and adapting
to unseen questions.

User Feedback. Disabling the feedback loop
and iterative learning process resulted in reduced

performance. With user feedback, AcKnowl-
edge achieves 87.2% F1 and 83.7% exact match,
whereas, without it, scores decrease to 82.6% and
77.3% respectively. Incorporating user feedback
significantly enhances the framework’s understand-
ing and answer accuracy.

These findings underscore the importance of inte-
grating meta-learning and user feedback in knowl-
edge representation in QA by a small language
model.

6 Conclusion

We introduced AcKnowledge, a framework that
can search the internet for updated answers to user
questions, learn from the search results using meta-
learning, and assimilate user feedback to improve
performance. Our proposed approach outperforms
various SoTA and baseline models in standard QA
evaluation metrics. Our approach has several po-
tentials for language model applications. Firstly,
it demonstrates the benefit of integrating internet
search and meta-learning in language models to im-
prove their answering ability. Secondly, it can also
answer complex questions that require access to
up-to-date and diverse information sources. Third,
it can be used to develop scalable language models
that can learn from user feedback to improve their
performance and adapt to user preferences. There
are prominent future research directions for our
work. We aim to explore the prospect of scalability
and robustness in larger and real-world deployable
scenarios. This experiment can pave the way for
developing more knowledgeable language models
that can assist users in various tasks and scenarios.
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A Appendix

A.1 Ethical Statement

Although our proposed framework achieves promis-
ing results, there are currently a few limitations and
potential areas for improvement. First, the perfor-
mance of the framework may be affected by the
quality and relevance of the search results. Search
results can certainly integrate incorrect or mislead-
ing information. User feedback can preliminarily
mitigate that by using ‘incorrect’ feedback. Im-
plementing an ensemble method for more filtered
information retrieval techniques could help miti-
gate this issue even further. Second, the frame-
work’s ability to handle complex, multi-hop ques-
tions is currently limited. Extending the meta-
learning approach in the multi-episode phase to
handle such questions is an important direction
for our future work. Finally, the efficiency of Ac-
Knowledge’s knowledge representation could be
improved by back-end storage, preferably a vector
database (Zhang et al., 2023), for efficient infor-
mation retrieval. In addition, we are also working
on integrating moderate to no-offensive content re-
trieval as knowledge during the internet search by
implementing Google’s ‘safe search’ feature.

A.2 Language Model Insights

We provide the detailed architectural details of the
language model developed for AcKnowledge. It
is based on the standard transformer network and
comprises the following components.

• Hidden size: The hidden size or embedding
dimension is set to 512. This represents the
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dimensionality of the hidden states and em-
beddings used in the model.

• Intermediate Hidden Size: The intermediate
hidden size in the FeedFoward layer is set to
4 times the hidden size. In this case, it would
be 4 *512 = 2048.

• Context Length: The maximum context
length or block size is set to 256. This de-
termines the maximum number of tokens that
the model can process in a single sequence.

• Heads: The number of attention heads in the
multi-head attention layer is set to 8. This
allows the model to attend to different parts
of the input sequence simultaneously.

• Layers: The model’s number of transformer
blocks or layers is set to 8. Each block consists
of a multi-head attention layer followed by a
FeedFoward layer.

• Vocabulary Size: The vocabulary size is not
explicitly mentioned in the provided code. It
would depend on the size of the vocabulary
used during the model’s training.

• Token and Position Embeddings: The input
tokens are mapped to embeddings using an
embedding table, and position embeddings
are added to capture positional information.

• Transformer Blocks: The model consists of a
sequence of transformer blocks, each contain-
ing a multi-head attention layer and a Feed-
Foward layer. The multi-head attention layer
allows the model to attend to different parts
of the input sequence, while the FeedFoward
layer applies non-linear transformations.

• Layer Normalization: Layer normalization
is applied after each multi-head attention and
feedforward layer to normalize the activations
and improve training stability.

• Linear Output Layer: The final hidden states
are passed through a linear layer to generate
temporal records or logits for each token in
the vocabulary.

The total number of parameters in the model is
calculated to be around 124.6 million, or approx-
imately 125 million. In addition, we implement
layer normalization instead of batch normalization
for our model.

A.3 Dataset Details

We offer more thorough explanations of the
datasets that we utilized in our experiments. The
sources from which we obtained the datasets and

the sources from which the authors originally made
them available are included. For information on
these sources’ licenses or conditions of use and/or
dissemination, we direct readers to them. To the
best of our knowledge, neither objectionable con-
tent nor names or unique identifiers for specific
individuals can be found in the databases that are
used.

• SQuAD 2.0: The dataset was originally
released in 2018, and was made publicly avail-
able at https://rajpurkar.github.io/
SQuAD-explorer/explore/v2.0/dev/.
We obtain the dataset from https:
//huggingface.co/datasets/rajpurkar/
squad_v2.

• NQ: The dataset was originally released
in 2019, and was made publicly available
at https://ai.google.com/research/
NaturalQuestions. We obtain the dataset
from https://huggingface.co/datasets/
natural_questions.

A.4 Benchmarking Setup

The experiments are conducted with standard com-
putational resources for NLP and machine learning
experiments. Specifically, the hardware configura-
tion includes an Intel Xeon CPU with a 2.20 GHz
clock speed and 12 GB of RAM.

We use the NVIDIA A100 GPU (Markidis et al.,
2018) for our experiments. It is built on Tensor
Core architecture, up to 80 GB of GPU mem-
ory, and up to 312 TFLOPS single precision per-
formance. The parallel processing ability of the
GPU makes the meta-learning and iterative learn-
ing based on user feedback of the model more ro-
bust, as well as the benchmarking process more
time-efficient. This setup ensures that the models
can be trained by exploiting the high computational
power and memory bandwidth of the GPU.

The training durations for all SoTA and baseline
models range from 8 to 15 hours on SQuAD 2.0
and NQ datasets. BLOOM 350M takes the highest
time to train on both datasets, i.e., approximately
15 hours, while BERT-base takes the lowest time
to train, i.e., 8 hours. AcKnowledge takes approx-
imately 10 hours to train on SQuAD 2.0 and NQ
datasets.

A.5 Extensive Evaluation

Furthermore, we showcase the performance of the
compared language models on two widely adopted
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benchmarks, Massive Multitask Language Under-
standing (MMLU) and BIG-Bench Hard (BBH).
The evaluation of all the compared models is con-
ducted in their standard settings without any addi-
tional fine-tuning, whereas AcKnowledge is evalu-
ated in the meta-learning (M-L) setting as proposed.

The MMLU benchmark comprises a diverse ar-
ray of NLP tasks, including question-answering,
commonsense reasoning, and natural language in-
ference, among others. In contrast, the BBH bench-
mark is a curated subset of challenging tasks from
the BIG-Bench suite, designed to assess the capa-
bilities of LLMs in complex and specialized in-
structions. Table 4 presents the benchmark results
for MMLU, BBH, and the average performance of
each model.

Models MMLU BBH Average
BLOOM 42.7 28.3 35.5
OPT 43.2 27.9 35.6
ELECTRA 41.9 28.1 35.0
Flan T5-Base 44.1 28.5 36.3
DBV3-Base 43.6 28.2 35.9
GPT-Neo 40.8 27.6 34.2
MiniLM-XLMR 39.5 26.9 33.2
AcKnowledge (M-L) 45.3 28.4 36.9

Table 4: Performance comparison of language models
on MMLU and BBH benchmarks.

Here also, AcKnowledge achieves a higher score
of 45.3 on the MMLU benchmark compared to
the other models, demonstrating its superior per-
formance in language understanding on a broader
scale. However, on the BBH benchmark, it ob-
tains a score of 28.4, which is comparable to the
scores of the other models, indicating similar per-
formance.

The Average score shows that AcKnowledge has
the highest overall performance at 36.9, followed
by Flan T5-Base at 36.3. This suggests that the
proposed framework can maintain a good balance
between a strong performance on MMLU and a
competitive performance on BBH.

For all the benchmarking experiments on
SQuAD 2.0, NQ, MLMU, and BBH, the respec-
tive language models answer from their pre-trained
knowledge. However, AcKnowledge answers with
the aid of internet search and meta-learning, provid-
ing answers with the latest information and updates.
Also, the user feedback in AcKnowledge for the
answers is an efficient and scalable approach to
continuously learning and improving the quality of
answers based on real-time knowledge representa-
tion.
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